
Asymptotic Properties of Proportional-Fair

Sharing Algorithms

Harold J. Kushner∗

Division of Applied Mathematics
Brown University, Providence RI 02912

Philip A. Whiting
Room 2C-317, Bell Labs, Lucent Technologies, 600 Mountain Ave,

Murray Hill NJ 07974-0636
Tel: +1 908 508 1593 Fax:+1 908 508 1593

email: pwhiting@research.bell-labs.com

May 30, 2002

Note: The current draft is only a brief outline, with no proofs: More detail will
be in the final paper.

Abstract

We are concerned with the allocation of channel or transmitter re-
sources for time varying mobile communications. There are many users
who are competing to transmit data over the resource. Time is divided
into small scheduling intervals, and information on the channel rates for
the various users is available at the start of the intervals. Since the rates
vary randomly, there is a conflict at any time between fully exploiting the
channel (by selecting the user with the highest current rate) and being
fair (giving attention to users with poor rates, to assure a fair through-
put for them). The Proportional Fair Scheduler (PFS) of the Qualcomm
High Data Rate (HDR) system and related algorithms are designed to
deal with such conflicts. There is little analysis available for such systems
and our aim is to put them on a sure mathematical footing and analyze
their behavior. Such algorithms are of the stochastic approximation type
and results of stochastic approximation are used to analyze the long term
properties of this class. The limiting behavior of the throughputs con-
verges to the solution of an ordinary differential equation (a mean ODE),
which is akin to a mean flow. The ODE has a unique equilibrium and it is
optimal in the sense that it optimizes a concave utility function. The re-
sults depend on the fact that the mean ODE has a special form that arises
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in problems with certain types of repeated stochastic games with compet-
itive behavior. There are a large family of such algorithms, each member
corresponding to a a concave utility function. Thus, PFS is not simply
ad-hoc, but actually corresponds to a reasonable maximization problem.
There are extensions to multiple antenna and frequency systems. Also,
the infinite backlog assumption can be dropped and the data is allowed
to arrive at random.

1 Introduction

HDR provides data connection for a set of users via a common shared downlink,
onto which user transmissions are scheduled. Access to the link is given one
user at a time for a fixed duration time slot of about 1.67 ms. The rates of
transmission (based, say, on the response to pilot signals) for the various users
are known at the beginning of the slot. Since the time between measurement
and prediction is short, fairly accurate rate predictions (taken in this paper to
be exact) can be made. Scheduling decisions can take into account Rayleigh
fading with a frequency of a few tens of Hertz. A problem for HDR is how to
“fair share” the slots - if the highest declared rate is always chosen, users with
high SNR will consistently be selected, starving low SNR users.

The Proportional Fair scheduler, selects mobiles by comparing their current
rates with their past averaged throughputs and selecting the mobile with highest
relative throughput as in (6). The algorithm proposed by Qualcomm performs
this sharing by comparing the declared rates with the users long run throughputs
at the nth timeslot and scheduling the user with the highest relative throughput
as in (6). PFS originates in the allocation of connections over multiple links on
the Internet [6]. In wireless, it allows “scheduling according to the peak channel
fluctuations.” There has been little rigorous analysis of such algorithms, and
our aim is to put them on a solid mathematical foundation.

The algorithms fall into the area that is known as stochastic approximation
in which there is a wide range of useful results [8]. The main one used here is
convergence of the sample paths of the throughputs to trajectories of a corre-
sponding dynamical system, the characteristics of which can be obtained from
the rate distribution; see Theorem 3.1.

It is difficult to solve these equations explicitly, except in special cases. Nev-
ertheless, utilizing certain monotonicity properties, we show that they possess
a unique equilibrium point; see Theorem 3.3. Moreover this equilibrium can be
characterized as optimizing the sum (over mobiles) log throughputs.

The rest of the paper is as follows. In section 2 a generalized version of PFS
is detailed. In section 3 we outline the key results. Section 4 gives numerical
data. Only a brief outline of the ideas is given. Weaker conditions, applications
to multitransmitter systems, and general data queues will be given elsewhere.
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2 Proportional Fair Algorithm Outline

There are N mobiles transmitting data over a single (say, wireless) channel,
and the possible rates of transmission of the individual users are randomly
time varying. Time is divided into small scheduling intervals and mobiles are
scheduled one at a time. If mobile i is selected in interval n, then it transmits
ri,n units of data, where {ri,n, n < ∞} is a bounded (and usually correlated)
random sequence, which might also be correlated among the i. They need only
satisfy some mixing type condition, to be specified in the next section. It is
assumed that each user has an infinite backlog of data, which has been the
standard assumption in the literature to date. The end of scheduling interval n
is called time n Define the throughput up to time n for user i as .

θi,n =
1
n

n∑
l=1

ri,lIi,l, (1)

where Ii,l = 1 if user i is chosen at time l and is zero otherwise. With the
definition εn = 1/(n + 1), (1) can be written in the recursive form (which
defines Yn)

θi,n+1 = θi,n + εn [Ii,n+1ri,n+1 − θi,n] = θi,n + εnYi,n. (2)

We will also treat the discounted alternative to (2), namely,

θεi,n = (1 − ε)nθεi,0 + ε

n∑
l=1

(1 − ε)n−lri,lIi,l, (3)

where ε is a small positive discount factor. This can be written in the recursive
form (which defines Y ε

n)

θεi,n+1 = θεi,n + ε
[
Ii,n+1ri,n+1 − θεi,n

]
= θεi,n + εY ε

i,n. (4)

The representations (2)-(4) allow arbitrary initial conditions which might reflect
some past history.

The representation (2) allows the use of other values of εn. For example,
they might go to zero more slowly than 1/n, which provides for a weighing
between those of (2) and (4). If the initial condition is zero (no past history),
then it makes sense that the weights in (3) sum to unity. Then one would use
the normalized form

θεi,n = ε

n∑
l=1

(1 − ε)n−lri,lIi,l/[1 − (1 − ε)n]. (5)

Owing to the boundedness of the ri,n, the solutions to (3) and (4) are
bounded, provided that the initial conditions are confined to a compact set.

The original proportional-fair sharing algorithm chooses the user at time n
which maximizes in

arg max{ri,n+1/θi,n, i ≤ N} (6)
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or with θεi,n if (4) is used.
When all of the current components θi,n, i ≤ N, are very small, there is

little sense in (6), since in any practical sense, the current throughputs are all
essentially zero and there is little motivation to distinguish between them. We
modify the algorithm slightly as follows. Let di, i ≤ N, be positive numbers,
which can be as small as we wish. The chosen user at time n is that which
maximizes in

arg max{ri,n+1/(di + θi,n), i ≤ N} (7)

In the event of ties, we randomize among the possibilities in order to resolve
conflicts. The end results will be seen to be completely independent of how the
conflicts are resolved. Define the vectors θn = {θi,n, i ≤ N} and Rn = {ri,n, i ≤
N}.

Definitions. The usual stochastic approximation asymptotic (or large time)
analysis of the algorithms (2), (3) uses continuous time interpolations. For each
n, define the shifted process θn(·) (with components θni (·), i ≤ N) by θn(0) = θn
and, for l ≥ 0,

θn(t) = θn+l for t ∈
[
n+l−1∑
k=n

εk,

n+l∑
k=n

εk

)
, (8)

where the empty sum is defined to be zero. Since the interpolated process θn(·)
starts at iterate n, the behavior of θn(·) as n → ∞ is that of θn as n → ∞.

Define the interpolated process θε(·) (with components θεi (·), i ≤ N) by
θε(t) = θεn for t ∈ [nε, nε + ε).

3 Main Results

3.1 Assumptions

Assumption 3.2 is used only to assure that when a component θi is small there
is a nonzero chance that user i will be chosen, no matter what the values of the
other components of θ. It guarantees that ḡi(θ) is always positive when θi is
small, hardly a restriction. The density assumption (3.3) and assumption (3.1)
are satisfied under standard physical assumptions: for example, if the channel
variations are due to Raleigh fading. The density condition is used only to show
that the limit point is unique. Condition (10) is a very weak form of the law of
large numbers, due to the use of the conditional expectation En. It basically says
that the mean transmitted rate for user i on an interval [n, n+m], conditioned
on the data to n, converges to the ergodic average as m becomes large, hardly
a restriction. If the conditional expectation of the transmitted rate at time l,
given the data to time n is close to its stationary expectation for large l − n,
then it holds. If the channel rate process is ergodic, then the condition holds
even without the conditional expectation. So the combination of the conditional
expectation and the division by m gives a very weak condition indeed.
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Assumption 3.1 Let ξn denote the past: {Rl : l ≤ n}. For each i, n, the
function on IRN

+ defined by

gi,n(θ, ξn) = Enri,n+1I{ri,n+1/(di+θi)≥rj,n+1/(dj+θj),j �=i}

is continuous in θ ∈ IRN
+ . Here θ is considered fixed, and not random. Let δ > 0

be arbitrary. Then in the set {θ : θi ≥ δ, i ≤ N}, the continuity is uniform in n
and in ξn. 1

Assumption 3.2 {Rn, n < ∞} is stationary. Define the functions ḡi(·), i ≤ N,
on IRN

+ by the stationary expectation:

ḡi(θ) = EriI{ri/rj≥(di+θi)/(dj+θj),j �=i} (9)

In (9),θ is considered fixed and not random. For θ ∈ IRN
+ , The function ḡ(·) is

continuous on IRN
+ . Also,

lim
m,n→∞

1
m

n+m−1∑
l=n

[
Enri,l+1I{ri,l+1/rj,l+1≥(di+θi)/(dj+θj),j �=i} − ḡi(θ)

]
= 0 (10)

in the sense of probability. There are small positive δ, δ1 such that

P {ri,n/di ≥ rj,n/(dj − δ) + δ1, j �= i} > 0, i ≤ N. (11)

Assumption 3.3 Rn is defined on some bounded set and has a bounded density.

It follows from assumption 3.3 that ḡ(·) is Lipschitz continuous.

3.2 Limiting ODE

The next theorem is by now a standard result in stochastic approximation. It
basically says that the limit points of the algorithm (3), (7) are contained in
those of the ODE (12).

Theorem 3.1 (This is [8, Theorems 2.2 and 2.3, Section 8.2].) Assume al-
gorithm (2), 3.1 and 3.2Then for any bounded set of initial conditions, any
subsequence of θn(·) has a further subsequence that converges weakly to the set
of limit points of the solution of the ODE

θ̇i = ḡi(θ) − θi, i ≤ N. (12)

The same conclusion holds if the εn = 1/(n+1) in (2) is replaced by a sequence
of positive numbers such that εn → 0,

∑
n εn = ∞, and where εn doesn’t vary

too fast in the sense that for some sequence αn → ∞

lim
n

sup
0≤l≤αn

∣∣∣∣εn+l

εn
− 1

∣∣∣∣ = 0.

1This is [8, condition (A2.3), Chapter 8]. The cited theorem holds if there is a delay in
the conditioning; I.e., En−m is used, for any integer m. It can be weakened further but this
is enough for typical applications where assumption 3.3 holds.
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For algorithm (4), the same conclusion holds for the sequence θε(εqε + ·) for
any sequence of integers qε.

The ODE depends on the channel statistics only through the joint distribution
of the current rates, and is thus independent of the fading rate. It has a number
of important properties which stem from the definition of PFS. In particular
the ODE satisfies the Kamke (or simply the K-condition). A function f(·)
is said to satisfy the K-condition) if for any x, y, i, with x ≤ y, xi = yi, we
have fi(x) ≤ fi(y). In our case, f(θ) = ḡ(θ) − θ, and the condition holds. The
condition says nothing more than the following, which is obvious for PDF: If θi is
suddenly increased, then the other users are not less likely to be chosen. The K-
condition implies the following monotonicity result. Its proof in [9, Proposition
1.1] assumes continuous differentiability of f(·). For our purposes, the main
consequence of the K-condition is the following monotonicity theorem.

Theorem 3.2 [9, Proposition 1.1] Let f(·) be Lipschitz continuous and as-
sume the K-condition. If x(0) ≤ y(0) (resp., <,�, then x(t|x(0)) ≤ x(t|y(0)))
(resp., <,�).

3.2.1 Two User example

Consider two independent users with received signal power determined by a
stationary Rayleigh fading and with constant external noise. Suppose further
that their rate declarations are proportional to the signal to noise ratio, with
mean rates 1/βi, i = 1, 2 respectively. Then the ODE (12) becomes,

θ̇1 =
1
β1

− β1(d1 + θ1)2

(β1(d1 + θ1) + β2(d2 + θ2))
2 − θ1 (13)

θ̇2 =
1
β2

− β2(d2 + θ2)2

(β1(d1 + θ1) + β2(d2 + θ2))
2 − θ2

3.3 Uniqueness of Limit Point and Characterization

The following result establishes that the throughputs converge to unique lim-
iting values (taking a period of order 1/ε slots). As we will see this fact has
consequence for performance modeling of PFS, particularly in the case of long
file transfers.

Theorem 3.3 Assume algorithm (3) with assumptions 3.1, and 3.2. The limit
point (θ̄) of (12) is unique, irrespective of the initial condition. So the processes
θn(·) and θε(εqε + ·) converge to θ̄ as n → ∞ (resp., as ε → 0 and εqε → ∞).

The previous theorem shows that there is a unique asymptotically stable
limit point θ̄ of the ODE and algorithm. We have not addressed the optimality
of the algorithm at all. Intuitively it can be seen that PFS is a steepest ascent
algorithm for a strictly concave utility function,

U(θ) .=
∑
i

log(di + θi). (14)
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≤ SNR -12.5 -9.5 -8.5 -6.5 -5.7 -4.0
Rate 0.0 38.4 76.8 102.6 153.6 204.8

≤ SNR -1.0 1.3 3.0 7.2 9.5
Rate 307.2 614.4 921.6 1228.8 1843.2

Table 1: Rate vs. SNR for 1% packet loss (taken from [1]

The problem is that the allowed directions of ascent depend heavily on θ. Hence
there is no a priori guarantee of any type of maximization. However, it can still
be shown that the rule maximizes the asymptotic value of the utility function
U(·) as in

Theorem 3.4 The rule (7) maximizes limn U(θn) with respect to all non-anticipative
policies.

4 Performance Results

4.1 Transient Behavior

The graphs are from simulations based on Raleigh fading, and the relation
between the current rates and signal to noise ratios is taken from Table 1, which
comes from [1]. Our first results depict the advantages to be gained by taking
advantage of the current values of the time varying rates. In Figure 1, one set of
curves corresponds to the transient behavior for three mobiles using table 1 and
mean SNRs, -12dB,-2dB,-8dB, respectively, using algorithm (4). There are two
sets of curves: those with solid lines and (the higher ones) those with dotted
lines. The solid lines depict the throughputs if the SNRs (and hence the rates)
are assumed to be constant at the average values. ε = 0.0001. Initially slots are
offered only to mobile 2, with the other two mobile throughputs exponentially
decaying. Also there are two “switching times”. At the first slots are equally
divided between mobiles 2 and 3 (0, 1/2, 1/2) whereas at the second the slots are
divided (1/3, 1/3, 1/3). (This behavior is generic for constant rates.) The second
set of curves (dotted lines/filled symbol) are obtained for Rayleigh fading with
fading rate 6 Hz and the same mean SNRs, and using PFS. As expected these
curves show significant throughput gains from scheduling. Since the dependence
on rates is roughly linear on SNR, it is expected the slots will be approximately
evenly divided as the users SNR all have exponential distributions.

4.2 Comparison with Solution to ODE

Consider two users with received signal power determined by a stationary Rayleigh
fading and with constant external noise. Suppose further that their rate decla-
rations are proportional to the SNR, with mean rates 1/β1, 1/β2 respectively.
Then the ODE coincides with (13), once again using algorithm (4),(6). For two
such users, and initial throughput 250.0, figure 2 shows a sample path for θ the
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Figure 1: Time dependent behavior of Proportional Fair
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Figure 2: Sample path for θ and the Solution to the ODE

proportional fair throughput estimate and a numerical solution to the corre-
sponding ODE. ε = 0.0001 and rates are given via a Rayleigh fading simulator
with 1/β1 = 572 bits/slot and 1/β2 = 128 bits/slot. The fading rates were taken
as 60 Hz. In equilibrium the throughputs are, 3

2 · 1
2 · 572 = 429, 3

2 · 1
2 · 128 = 96.

In general, from the equilibrium, for Rayleigh fading, the scheduling gains are
given by G(n) =

∑n
j=1 1/j.

The time constant for convergence is 1/ε = 10, 000 slots and the results con-
firm convergence in a period of this order. The results also show the theoretical
equilibrium being approached.
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