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Abstract
Large-scale simulations are often under-resolved at some level, but

they are still useful in extracting both qualitative and quantitative infor-
mation about the flow. In order to use such results effectively we need
to characterize the numerical uncertainty of under-resolved simulations.
However, different numerical methods exhibit different behavior, and
spectral-based methods in particular may over-predict fluctuations both
in amplitude and frequency due to their very low artificial dissipation
in contrast with finite differences. In this chapter, we provide insight
into under-resolved spectral simulations and document several diagnos-
tic signs of under-resolution for spectral/hp element methods. We first
review the state-of-the art in direct numerical simulation and present
a new class of spectral methods on unstructured grids for handling
complex-geometry compressible and incompressible flows. We then fo-
cus on the effects of under-resolving the nonlinear contributions, and
finally we present prototype cases for both transitional and turbulent
flows.

Keywords: Spectral methods, complex-geometry, under-resolution, unstructured
grids, turbulence
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1. Introduction
Under-resolved simulations are perhaps the rule rather than the excep-

tion! This can be understood, as in practice users attempt high Reynolds
number simulations in problems with new physics and thus unknown
resolution requirements. Verification and validation of the solution is a
very tedious process ([1]), and at present there are no established efficient
methods to assess numerical accuracy. Also, for large-scale turbulence
simulations, existing computational resources may often be inadequate
for the attempted simulations, so additional error checking simulations
would be prohibitively expensive.

However, an under-resolved simulation is not useless but, in fact, it
can provide a lot of information if proper characterization is established
combined with experience for the specific discretization used in such a
simulation. One such example is a relatively early direct numerical sim-
ulation of turbulent channel flow by ([2]) which has remained largely
unnoticed. In figure 1 we plot one of his results, i.e. the Reynolds stress
distribution across the channel. It is in good agreement with high resolu-
tion DNS even for the lowest resolution employed in Zores’s simulation,
corresponding to four Fourier modes in the streamwise, 16 Chebyshev
modes in the normal, and six Fourier modes in the spanwise direction.
The Reynolds number based on the wall shear velocity is R∗ ≈ 120. In
order to achieve smooth profiles a very long- time averaging was em-
ployed. Clearly, this is an example of an under-resolved simulation,
which however sustains the turbulence fluctuations and leads to better
than 10% accuracy in second-order statistics. In contrast, a low reso-
lution simulation based on finite differences would typically converge to
the laminar steady state solution.

For under-resolved simulations to be useful we need to characterize
both numerical and physical uncertainty, creating appropriate composite
error bars similar to experiments. This is a very difficult task, and work
on uncertainty associated with the data, i.e. input, is still at an early
stage. On the numerical side, there are still many classical issues which
are unresolved today, e.g. skew-symmetry of advection operators in the
discrete sense, time-integration algorithms with large time step, efficient
treatment of geometric complexity, efficient adaptivity, etc.

There are two major challenges today in direct numerical simula-
tions (DNS) of turbulence following the successes of the last two decades
([3]): The first is that the maximum Reynolds number possible in simula-
tions is still much lower compared to turbulent flows of practical interest.
For example, at present or in the near future, the maximum Reλ (based
on the Taylor micro-scale) for homogeneous turbulence that can be ac-
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curately simulated is less than 500. However, in geophysical flows the
typical Reynolds number Reλ may be orders of magnitude higher. The
second challenge we face is that complex-geometry flows are still largely
untackled; geometries beyond the standard channel flow with flat walls
have only recently been considered, and most of them involve at least
one homogeneous direction.

A summary of the range of Reynolds number and geometries for which
direct numerical simulations have been successfully completed is plotted
in the sketch of figure 2. It shows that accurate direct numerical simula-
tions of turbulence in simple-geometry domains can handle much higher
Reynolds number flows than in complex-geometry domains. This, in
essence, reflects the additional computational complexity associated with
discretization of the Navier-Stokes equations in complex-geometry do-
mains. Clearly, the Fourier discretization which is employed for all three
directions in homogeneous turbulence cannot be used in inhomogeneous
directions, where Chebyshev or Legendre spectral discretizations (or al-
ternatively some high-order finite difference variant) are used. More
specifically, on non-separable or multiply-connected domains (e.g. flow
past a circular cylinder) these classical methods are also inappropriate,
and thus new domain-decomposition based methods need to be used
effectively.

As regards the type of discretization, it was evident even from the
early attempts to perform DNS of turbulence in the seventies, that
high-order discretization was not only computationally advantageous but

            

Figure 1. Reynolds stress distribution of a low-resolution simulation of a turbulent
channel flow by ([2]). The different symbols correspond to different resolution in x
(stream), y (normal) and z (span) as follows: � : 8×32×8; ��: 8×16×8; + : 6×16×6;
× : 4× 16× 6.



4

5 000

10 000

50 000

2π

   Spectral Methods &
High Order Differences

Spectral Elements

R
ey

no
ld

s 
N

um
be

r

Geometric Complexity

       Low−Order &
Hybrid Discretizations

Figure 2. Conceptual overview of DNS of turbulent flows: Maximum Reynolds
number versus geometric complexity.

also a necessity. Simulating turbulence requires long-time integration,
however non-negligible dispersion errors associated with low-order dis-
cretization could eventually render the computational results erroneous.
There is plenty of anecdotal evidence about such results from the early
practitioners, and modern numerical analysis can rigorously document
this as well. The importance of high-order discretization has also been
recognized for large eddy simulations (LES) ([4]), as discretization errors
seem to interact with the subgrid modeling errors in an adverse way.

As we go through the multi-Teraflop (and beyond) computing era
and are capable of performing simulations of 1 billion points or more
at reasonable turn-around time, high-order numerical methods will play
a key role in simulating high Reynolds number and complex-geometry
turbulence. They provide

fast convergence,

small diffusion and dispersion errors,

easier implementation of the inf-sup condition for incompressible
Navier-Stokes,
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better data volume-over-surface ratio for efficient parallel process-
ing, and

better input/output handling due to the smaller volume of data.

For many engineering applications where accuracy of the order of 10%
is acceptable, quadratic convergence is usually sufficient for stationary
problems. However, this is not true in time-dependent flow simulations
where long-time integration is required. Also, in DNS a 10% inaccuracy
in phase errors may lead to flow re-laminarization. Therefore, we must
ask how long-time integration relates to the formal order of accuracy of
a numerical scheme, and what is the corresponding computational cost?
To this end, let us consider the convection of a waveform at a constant
speed. Let us now assume that there are N (k) grid points required per
wavelength to reduce the error to a level ε, where k denotes the formal
order of the scheme. In addition, let us assume that we integrate for M
time periods. We can neglect temporal errors O(∆t)J (where J is the
order of the time integration) by assuming a sufficiently small time step
∆t. We wish to estimate the phase error in this simulation for second-
N (2), fourth- N (4), and sixth- N (6) order finite difference schemes. The
complete analysis is presented in ([5]), and here we present the results
for the computational work. In figure 3 we compare the efficiency of
these three different discretizations for the same phase error by plotting
the computational work required to maintain an “engineering” accuracy
of 10% versus the number of time periods for the integration. This
comparison favors the fourth-order scheme for short times (M ∝ O(1))
over both the second-order and the sixth-order schemes. However, for
long-time integration (M ∝ O(100)), even for this engineering accuracy
of 10%, the sixth-order scheme is superior as the corresponding operation
count W (6) is about 6 times lower than the operation count of the second-
order scheme W (2), and half the work of the fourth-order scheme W (4).
For an accuracy of 1% in the solution of this convection problem, the
sixth-order scheme is superior even for short-time integration.

High-order accuracy, however, does not automatically imply a resolved
and thus accurate DNS or LES. In particular, spectral-based methods
tend to behave differently when the number of grid points or modes is
insufficient. For example, they tend to be more unstable, lead to over-
prediction of amplitudes, and could even result in erroneous unsteady
flow at subcritical conditions. This is the primary topic that we focus
on in the present paper.

Specifically, we first review some key developments in extending spec-
tral methods to unstructured grids for both incompressible and com-
pressible flows. We then discuss in some detail the effect of under-
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Figure 3. Computational work (number of floating-point operations) required to
integrate a linear advection equation for M periods while maintaining a cumulative
phase error of 10%.

resolving the discretization of nonlinear terms and how dealising can be
handled on non-uniform grids presenting both one-dimensional exam-
ples but also full DNS of turbulent flow that may suffer from aliasing.
We then proceed with several examples of internal and external flows
and document diagnostics that can be employed to detect erroneous
physics. We also include simulations of some turbulent flows which, al-
though clearly under-resolved, lead to useful results in agreement with
the experiments. Finally, we conclude with a perspective on simulat-
ing turbulence in fully three-dimensional domains where both numerical
uncertainty and physical uncertainty are adequately characterized.

2. Spectral Methods on Unstructured Grids
There have been more than fifteen years of developments in extending

spectral methods to complex-geometry domains ([5]), starting with the
pioneering work of ([6]), who developed spectral methods in the con-
text of a multi-element variational formulation similar to finite element
methods. This allowed the use of spectral (Chebyshev or Legendre)
expansions as trial basis in general quadrilateral subdomains. Conti-
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nuity of data and unknowns across subdomains is ensured via appro-
priate construction of the trial basis similar to finite element methods
for second-order elliptic problems. Such methods were used to produce
the first spectral DNS of turbulence in complex-geometry domain, flow
over riblets, in ([7]). An extension to non-conforming discretizations for
turbulent flows, which are more appropriate for local refinement, was
presented in ([8]).

The new generation of spectral methods developed recently is more
appropriate for discretizations on unstructured grids consisting of tri-
angles and tetrahedra, similar to grids used in aerodynamics ([9, 10]).
In many simulations, however, it is more efficient to employ hybrid dis-
cretizations, i.e. discretizations using a combination of structured and
unstructured subdomains. This is a recent trend in computational me-
chanics involving complex three-dimensional computational domains (
[11, 12]). Such an approach combines the simplicity and convenience
of structured domains with the geometric flexibility of an unstructured
discretization. In two-dimensions, hybrid discretization simply implies
the use of triangular and rectangular subdomains, however in three-
dimensions the hybrid strategy is more complex requiring the use of
hexahedra, prisms, pyramids and tetrahedra.

We have developed a unified description in dealing with elements of
different shape in two- and three-dimensions. This unified approach
generates polynomial expansions which can be expressed in terms of a
generalized product of the form

φpqr(x, y, z) = φap(x)φbpq(y)φcpqr(z).

Here we have used the Cartesian co-ordinates x, y and z but, in general,
they can be any set of co-ordinates defining a specified region. The stan-
dard tensor product is simply a degenerate case of this product, where
the second and third functions are only dependent on one index. The
primary motivation in developing an expansion of this form is computa-
tional efficiency. Such expansions can be evaluated in three-dimensions
in O(P 4) operations as compared to O(P 6) operations with non-tensor
products (where P is the number of spectral modes per direction).

2.1 Local Co-ordinate Systems
We start by defining a convenient set of local co-ordinates upon which

we can construct the expansions. Unlike the barycentric co-ordinates,
which are typically applied to unstructured domains in linear finite
elements, we define a set of collapsed Cartesian co-ordinates in non-
rectangular domains. These co-ordinates will form the foundation of the
polynomial expansions. The advantage of this system is that every do-
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main can be bounded by constant limits of the new local co-ordinates;
accordingly operations such as integration and differentiation can be
performed using standard one-dimensional techniques.

The new co-ordinate systems are based upon the transformation of
a triangular region to a rectangular domain (and vice versa) as shown
in figure 4. The main effect of the transformation is to map the verti-
cal lines in the rectangular domain (i.e. lines of constant η1) onto lines
radiating out of the point (ξ1 = −1, ξ2 = 1) in the triangular domain.
The triangular region can now be described using the “ray” co-ordinate
(η1) and the standard horizontal co-ordinate (ξ2 = η2). The triangu-
lar domain is therefore defined by (−1 ≤ η1, η2 ≤ 1) rather than the
Cartesian description (−1 ≤ ξ1, ξ2; ξ1 + ξ2 ≤ 0) where the upper bound
couples the two co-ordinates. The “ray” co-ordinate (η1) is multi-valued
at (ξ1 = −1, ξ2 = 1). Nevertheless, we note that the use of singu-
lar co-ordinate systems is very common, arising in both cylindrical and
spherical co-ordinate systems.

As illustrated in figure 5, the same transformation can be repeatedly
applied to generate new co-ordinate systems in three-dimensions. Here,
we start from the bi-unit hexahedral domain and apply the triangle to
rectangle transformation in the vertical plane to generate a prismatic
region. The transformation is then used in the second vertical plane to
generate the pyramidic region. Finally, the rectangle to triangle trans-
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formation is applied to every square cross section parallel to the base of
the pyramidic region to arrive at the tetrahedral domain.

By determining the hexahedral co-ordinates (η1, η2, η3) in terms of
the Cartesian co-ordinates of the tetrahedral region (ξ1, ξ2, ξ3) we can
generate a new co-ordinate system for the tetrahedron. This new system
and the planes described by fixing the local co-ordinates are shown in
figure 6. Also shown are the new systems for the intermediate domains
which are generated in the same fashion. Here we have assumed that
the local Cartesian co-ordinates for every domain are (ξ1, ξ2, ξ3).

2.2 Hierarchical Expansions
For each of the hybrid domains we can develop a polynomial expansion

based upon the local co-ordinate system derived in section 2.1. These
expansions will be polynomials in terms of the local co-ordinates as well
as the Cartesian co-ordinates (ξ1, ξ2, ξ3). This is a significant property
as primary operations such as integration and differentiation can be
performed with respect to the local co-ordinates but the expansion may
still be considered as a polynomial expansion in terms of the Cartesian
system.

We shall initially consider expansions which are orthogonal in the
Legendre inner product. We define three principle functions φai (z), φbij(z)
and φcijk(z), in terms of the Jacobi polynomial, Pα,β

p (z), as:

φai (z) = P 0,0
i (z), φbij(z) =

(
1−z
2

)i
P 2i+1,0
j (z),

φcijk(z) =
(

1−z
2

)i+j
P 2i+2j+2,0
k (z).
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Using these functions we can construct the orthogonal polynomial ex-
pansions:

Hexahedral expansion: φpqr(ξ1, ξ2, ξ3) = φap(ξ1)φaq(ξ2)φar(ξ3)

Prismatic expansion: φpqr(ξ1, ξ2, ξ3) = φap(ξ1)φaq(η2)φbqr(ξ3)

Pyramidic expansion: φpqr(ξ1, ξ2, ξ3) = φap(η1)φaq(η2)φcpqr(η3)

Tetrahedral expansion: φpqr(ξ1, ξ2, ξ3) = φap(η1)φbpq(η2)φcpqr(η3)

where,

η1 =
2(1 + ξ1)

(−ξ2 − ξ3)
−1, η1 =

2(1 + ξ1)
(1 − ξ3)

−1, η2 =
2(1 + ξ2)
(1 − ξ3)

−1, η3 = ξ3,

are the local co-ordinates illustrated in figure 6.
The hexahedral expansion is simply a standard tensor product of

Legendre polynomials (since P 0,0
p (z) = Lp(z)). In the other expansions

the introduction of the degenerate local co-ordinate systems is linked to
the use of the more unusual functions φbij(z) and φcijk(z). These func-

tions both contain factors of the form
(

1−z
2

)p
which is necessary to keep

the expansion as a polynomial of the Cartesian co-ordinates (ξ1, ξ2, ξ3).
For example, the co-ordinate η2 in the prismatic expansion necessitates
the use of the function φbqr(ξ3) which introduces a factor of

(
1−ξ3

2

)q
. The

product of this factor with φaq(η2) is a polynomial function in ξ2 and ξ3.
Since the remaining part of the prismatic expansion, φap(ξ1), is already
in terms of a Cartesian co-ordinate the whole expansion is a polynomial
in terms of the Cartesian system.

The polynomial space, in Cartesian co-ordinates, for each expansion
is:

P = Span{ξp1 ξq2 ξr3} (1)

where pqr for each domain is

Hexahedron 0 ≤ p ≤ P1 0 ≤ q ≤ P2 0 ≤ r ≤ P3

Prism 0 ≤ p ≤ P1 0 ≤ q ≤ P2 0 ≤ q + r ≤ P3

Pyramidic 0 ≤ p ≤ P1 0 ≤ q ≤ P2 0 ≤ p + q + r ≤ P3

Tetrahedron 0 ≤ p ≤ P1 0 ≤ p + q ≤ P2 0 ≤ p + q + r ≤ P3.

(2)

The range of the p, q and r indices indicate how the expansions should
be expanded to generate a complete polynomial space. We note that if
P1 = P2 = P3 then the tetrahedral and pyramidic expansions span the
same space and are in a subspace of the prismatic expansion which is in
turn a subspace of the hexahedral expansion.
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2.3 Galerkin and Discontinuous Galerkin
Projections

To obtain a system of nonlinear algebraic equations, we employ dif-
ferent projections and time integration algorithms. In particular, for
incompressible flows we use a linear Galerkin projection in conjunction
with the high-order fractional stepping scheme described in ([13, 14]).
For compressible flows, we use a discontinuous Galerkin projection with
multi-step explicit time integration ([15]).

We describe both approaches next with more emphasis on the latter
which is a more recent development.

Incompressible Flows. The standard approach in treating the
incompressible Navier-Stokes equations is to combine a semi-implicit
scheme with a fractional procedure ([5]) following the Eulerian descrip-
tion. Here we consider a more recent development that takes advantage
of semi-Lagrangian treatment for advection. This allows for large size
time steps in simulations of turbulence, where at high Reynolds num-
ber the temporal scales are largely over-resolved. Following ([16]) we
consider the Navier-Stokes equations in Lagrangian form

du
dt

= −∇p + ν∇2u, (3)

∇ · u = 0, (4)

where d/dt denotes a Lagrangian derivative. We employ a stiffly-stable
second-order scheme to discretize the time derivative:

3
2u

n+1 − 2und + 1
2u

n−1
d

∆t
= (−∇p + ν∇2u)n+1, (5)

where und is the velocity u at the departure point xnd at time level tn,
and un−1

d is the velocity at the departure point xn−1
d at time level tn−1.

The departure point xnd is obtained by solving

dx

dt
= un+1/2(x, t), x(tn+1) = xa

and also
un+1/2 = 3/2un − 1/2un−1.

The point xn−1
d is obtained by solving

dx

dt
= un(x, t), x(tn+1) = xa.



12

By using the above characteristic equations, the resulting scheme is
second-order accurate in time.

Specifically, for computational convenience we use the following three
substeps to solve equation (5)

û− 2und + 1
2u

n−1
d

∆t
= 0, (6)

ˆ̂u− û

∆t
= −∇pn+1, (7)

3
2u

n+1 − ˆ̂u
∆t

= ν∇2un+1. (8)

The discrete divergence-free condition results in a consistent Poisson
equation for the pressure, i.e.

∇2pn+1 =
1

∆t
∇ · û,

with accurate pressure boundary conditions of the form ([5])

∂p

∂n
= −ν · [û + ∇× ωn+1],

where n is the unit normal, and ω is the vorticity ([14]).
The semi-Lagrangian approach is typically more expensive than the

corresponding Eulerian approach, but in practice the larger size of time
step allowed in the former leads to more efficient simulations. This was
demonstrated for two- and three-dimensional flows in ([16]).

With regards to spatial discretization, in order to enforce the required
C0 continuity, the orthogonal expansion is modified by decomposing
the expansion into an interior and boundary contribution. This results
in partially sacrificing orthogonality. The interior modes (or bubble
functions) are defined to be zero on the boundary of the local domain.
The completeness of the expansion is then ensured by adding boundary
modes which consist of

Vertex, Edge, and Face contributions.

The vertex modes have unit value at one vertex and decay to zero at
all other vertices; edge modes have local support along one edge and are
zero on all other edges and vertices, and face modes have local support
on one face and are zero on all other faces, edges and vertices. C0

continuity between elements can then be enforced by matching similar
shaped boundary modes. The local co-ordinate systems do impose some
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restrictions on the orientation in which triangular faces may connect.
However, it has been shown in ([10]) that a C0 tetrahedral expansion
can be constructed for any tetrahedral mesh. A similar strategy could
be applied to a hybrid discretization.

Compressible Flows. We consider the non-dimensionalized com-
pressible Navier-Stokes equations, which we write in compact form as

 Ut + ∇ · F = Re−1
∞ ∇ · Fν (9)

where F and Fν correspond to inviscid and viscous flux contributions,
respectively. Here the vector  U = [ρ, ρu, ρv, ρw,E]t with (u, v,w) the
local fluid velocity, ρ the fluid density, and E the total internal en-
ergy. Splitting the Navier-Stokes operator in this form allows for the
separate treatment of the inviscid and viscous contributions, which in
general exhibit different mathematical properties. In the following, we
review briefly the discontinuous Galerkin formulations employed in the
proposed method. A systematic analysis of the advection operator was
presented in ([17]), where a mixed formulation was used to treat the
diffusion terms. No flux limiters are necessary as has been found before
in ([18]) and has been justified theoretically in ([19]).

We first use a linear two-dimensional advection equation of a con-
served quantity u in a region Ω, in order to illustrate the treatment of
inviscid contributions:

∂u

∂t
+ ∇·F(u) = 0, (10)

where F(u) = (f(u), g(u), h(u)) is the flux vector which defines the
transport of u(x, t). We start with the variational statement of the
standard Galerkin formulation of (10) by multiplying by a test function
v and integrating by parts

∫
Ω

∂u

∂t
v dx +

∫
∂Ω

v n̂·F(u) ds −
∫
Ω
∇v·F(u) dx = 0. (11)

The solution u ∈ X (approximation space) satisfies this equation for
all v ∈ V (test space). The requirement that X consist of continuous
functions naturally leads to a basis consisting of functions with over-
lapping support, which implies equation (11) becomes a banded matrix
equation. Solving the corresponding large system is not a trivial task for
parallel implementations, and therefore a different type of formulation
is desirable.
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Another consideration from the point of view of advection is that con-
tinuous function spaces are not the natural place to pose the problem.
Mathematically, hyperbolic problems of this type tend to have solutions
in spaces of bounded variation. In physical problems, the best one can
hope for in practice is that solutions will be piecewise continuous, that
is, be smooth in regions separated by discontinuities (shocks). An ad-
ditional consideration is that the formulation presented next preserves
automatically conservativity in the element-wise sense.

These considerations suggest immediately a formulation where X may
contain discontinuous functions. The discrete space X δ contains poly-
nomials within each “element,” but zero outside the element. Here the
“element” is, for example, an individual triangular region Ti in the com-
putational mesh applied to the problem. Thus the computational do-
main Ω =

⋃
i Ti, and Ti, Tj overlap only on edges.

Contending with the discontinuities requires a somewhat different ap-
proach to the variational formulation. Each element (E) is treated sep-
arately, giving a variational statement (after integrating by parts once
more):

∂

∂t
(u, v)E +

∫
∂TE

v(f̃(ui, ue) − f(ui))·n ds + (∇ · f(u), v)E = 0, (12)

where f(ui) is the flux of the interior values. Computations on each
element are performed separately, and the connection between elements
is a result of the way boundary conditions are applied. Here, bound-
ary conditions are enforced via the numerical surface flux f̃(ui, ue) that
appears in equation (12). Because this value is computed at the bound-
ary between adjacent elements, it may be computed from the value of u
given at either element. These two possible values are denoted here as
ui in the interior of the element under consideration and and ue in the
exterior (see figure 7). Upwinding considerations dictate how this flux
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is computed. In the more complicated case of a hyperbolic system of
equations, an approximate Riemann solver should be used to compute
a value of f, g, h (in three-dimensions) based on ui and ue. Specifically,
we compute the flux f̃(ui, ue) using upwinding, i.e.

f̃(u) = RΛ+Lui + RΛ−Lue

where A (the Jacobian matrix of F ) is written in terms of the left and
right eigenvectors, i.e. A = RΛL with Λ containing the corresponding
eigenvalues in the diagonal; also, Λ± = (Λ ± |Λ|)/2. Alternatively, we
can use a standard Lax-Friedrichs flux

f̃(u) =
1
2

(f(ue) + f(ui)) − 1
2
R|Λ|L(ue − ui).

This last form is what is used in the airfoil example presented in section
4.

Next, we consider as a model problem the parabolic equation with
variable coefficient ν to demonstrate the treatment of the viscous con-
tributions:

ut = ∇ · (ν∇u) + f, in Ω, u ∈ L2(Ω)

u = g(x, t), on ∂Ω

We then introduce the flux variable

q = −ν∇u

with q(x, t) ∈ L2(Ω), and re-write the parabolic equation

ut = −∇ · q+ f, in Ω

1/νq = −∇u, in Ω

u = g(x, t), on ∂Ω.

The weak formulation of the problem is then as follows: Find (q, u) ∈
L2(Ω) × L2(Ω) such that

(ut, w)E = (q,∇w)E− < w,qb · n >E +(f,w)E , ∀w ∈ L2(Ω)

1/ν(qm,v)E = (u,∇ · v)E− < ub,v · n >E, ∀v ∈ L2(Ω)

u = g(x, t), on ∂Ω

where the parentheses denote standard inner product in an element (E)
and the angle brackets denote boundary terms on each element, with n
denoting the unit outwards normal. The surface terms contain weighted
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boundary values of vb, qb, which can be chosen as the arithmetic mean
of values from the two sides of the boundary, i.e.

vb = (vi + ve)/2,

and
qb = (qi + qe)/2.

The consequences of choosing different numerical fluxes with regards to
stability and accuracy have been investigated in ([20]).

By integrating by parts once more, we obtain an equivalent formula-
tion which is easier to implement, and it is actually used in the computer
code. The new variational problem is

(ut, w)E = (−∇·q, w)E− < w, (qb −qi) ·n >E +(f,w)E , ∀w ∈ L2(Ω)

1/ν(q,v)E = (−∇u,v)E− < ub − ui,v · n >E, ∀v ∈ L2(Ω)

u = g(x, t), in ∂Ω

where the subscript (i) denotes contributions evaluated at the interior
side of the boundary. We integrate the above system explicitly in time
and employ the orthogonal Jacobi polynomials as trial and test basis.

3. Nonlinearities and Dealising
In spectral methods the quadratic nonlinearities in the incompressible

Navier-Stokes equations or the cubic nonlinearities in the compressible
Navier-Stokes are computed in the physical space. Specifically, the fields
(velocity, pressure, energy) are first transformed into physical space and
subsequently the products are obtained at all quadrature points in a
collocation fashion. Another transform is then performed to bring the
results back to modal space. More specifically, when the number of
quadrature points Q is the same as the number of modes in the spectral
expansion P we have a true collocation method, otherwise for Q > P
we have a super-collocation method.

The form in which we write the nonlinear terms, that is,

in convective (flux), or

skew-symmetric, or

rotation form

is also important. In spectral DNS of boundary layers and channel flows,
the rotation form is usually preferred over the convective form as it semi-
conserves energy (in the inviscid limit). This, typically, makes it more
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stable, especially for the long-time integration required in DNS. In ad-
dition, it is more economical as it requires the evaluation of only six
derivatives whereas the convective form requires nine derivative evalu-
ations. The skew-symmetric form was found to be more “forgiving” in
aliasing errors in under-resolved simulations of homogeneous turbulence
compared to the rotation form. This is also true for finite difference
methods; see the article of ([21]) in this volume where it is shown that
skew-symmetry leads to symmetry preservation and enhanced stability.
However, the skew-symmetric form requires the evaluation of 18 deriva-
tives which is computationally more expensive.

There is not sufficient experience yet with spectral/hp element DNS
to conclusively suggest one form or the other although there is some
consensus that the convective form is quite accurate and leads to sta-
ble discretizations. A comparison of the different forms (convective,
flux, and skew-symmetric) was performed in ([22]) for a constant ad-
vection velocity as well as for a spatially varying divergent-free veloc-
ity (u, v) = (− sinx2 cos x1, sinx1 cos x2). The discretization was based
on a nodal Gauss-Lobatto-Legendre basis. The result was that for the
constant advection velocity all forms were the same in that they pro-
duced identical eigenspectrum with all imaginary eigenvalues. However,
for the variable advection velocity, only the skew-symmetric form gave
imaginary eigenvalues with the convective and conservative form produc-
ing complex eigenvalues with positive real parts. For purely convection
equations, these spurious positive values may lead to instabilities if ex-
plicit time stepping is used. However, for Navier-Stokes computations at
modest Reynolds number no such instabilities have been observed, pre-
sumably due to the stabilizing role of the viscous terms. Although the
skew-symmetric form is usually considered the most accurate, problems
may also be encountered with this form for Dirichlet and inflow/outflow
conditions. This is presented in some detail in ([5]) using a numerical
experiment performed by ([23]).

Finally, errors may be caused by insufficient quadrature used in the
spectral/hp element discretization of the nonlinear terms, especially in
complex-geometry flows. These errors can be eliminated effectively by
employing over-integration, i.e. integrating the nonlinear terms in the
variational statement with higher order quadrature than the one em-
ployed for the linear contributions, e.g. pressure and viscous terms. We
will examine this issue in some detail next.
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3.1 Accuracy, Stability and Over-Integration
To understand the ramifications of under-integration of nonlinear terms,

we perform the following test:

1 Consider a single element in the space interval [−1, 1] containing
P = 16 Jacobi modes.

2 Initialize all the modal coefficients to one.

3 Evaluate the modal representation on a set of Q quadrature points.

4 Square (in a pointwise fashion) the values at the quadrature points.

5 Pre-multiply the set of points (as a vector) by the collocation deriv-
ative matrix of the appropriate size (rank Q×Q).

6 Project back to modal coefficients by discrete inner products using
Gaussian integration.

The procedure above mimics the “physical space” or pseudo-spectral
evaluation of the term ∂u2

∂x commonly used in spectral methods for evalu-
ating nonlinear terms. This test was chosen because even in its simplicity
it models the order of nonlinearity that occurs in the solution of the in-
compressible Navier-Stokes equations. All modes are set to one to mimic
a case in which an element has under-resolved or marginally resolved the
solution within the element. In the test above, the only unspecified pa-
rameter is the number of quadrature points Q to be used. In using
Gauss-Lobattto points, the value of Q is taken to be one more than the
number of modes P (in this case then P = 16 and Q = 17) ([24]), but
this value is appropriate for the inner products corresponding to linear
terms. For quadratic or cubic nonlinearities more quadrature points are
required. The ramifications of under-integration of this form are shown
in figure 8. The figure on the left was obtained for quadratic nonlinearity
( ∂
∂xu

2) and the figure on the right was obtained for a cubic nonlinearity
( ∂
∂xu

3). The difference in the modal coefficients at the conclusion of the
algorithm above for different values of Q is provided. We observe that
for the quadratic nonlinearity, once 3

2P quadrature points are used, the
differences in the modal values do not change. Similarly for the cubic
nonlinearity, once 2P quadrature points are used the differences in the
modal values do not change.

In order to appreciate the effect of under-integration in the context of
a numerical solution, we consider the inviscid Burgers equation, which
we discretize using the discontinuous Galerkin method. The initial con-
dition is − sin(πx), and five equally spaced elements spanning [−1, 1]
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Figure 8. Comparison of the difference in modal coefficients when different numbers
of quadrature points are used. Quadratic nonlinearity is shown on the left and cubic
nonlinearity is shown on the right.

were used, each one having P = 16 modes. In figure 9, we plot the
L2 norm of the solution versus the number of quadrature points used
for numerical integration. When using Q = 17, 19 and Q = 21 points,
the solution is unstable (denoted by the blue *). Once the number of
quadrature points reaches Q = 24 (3

2P where P is the number of modes),
the L2 norm of the solution does not change.

We can analyze this behavior by examining the energy in the modes
(denoted by the square of the modal values) within the element that
contains the jump in the inviscid Burgers solution. The modes were
extracted at time T = 0.35, after the shock has formed (at time 1

π ) and
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Figure 9. Solution of the inviscid Burgers equation evaluated at T = 0.5. Five
equal spaced elements were used with 16 modes in each element. On the ordinate
we plot the L2 norm of the solution, and on the abscissa we plot the number of
quadrature points used for numerical integration. Unstable solutions are denoted by
blue *. Observe that after Q = 24 points, the L2 norm of the solution does not
change.

prior to the solution becoming unstable. In figure 10, we plot the square
of the modal coefficients versus the mode number. Due to the symmetry
of the element placement, only even number modes were excited.

This case corresponds to Q = 17 quadrature points being used, which
from the figure 9, we know will become unstable by time T = 0.5. If a
3
2P rule is used, yielding Q = 24 points, the solution is stable, and the
energy is much less than when the non-linear terms are under-integrated.
This plot shows vividly the effects of aliasing when under-integration of
the non-linear terms is performed.

An alternative way of handling instabilities associated with nonlinear-
ities in hyperbolic conservation laws is through monotonicity preserving
schemes. An approach suitable for high-order methods has been devel-
oped by ([25]) and was employed in large-eddy simulations in ([26]). It
involves the addition of a second-order convolution kernel that acts on
each mode separately and controls the high modes suppressing prefer-
entially erroneous high-frequency oscillations. This type of nonlinear
kernel has been termed as spectral vanishing viscosity (SVV). As an
example, the inviscid Burgers equation with the SVV term added is

∂u

∂t
+

1
2
∂u2

∂x
= ε

∂

∂x
(Qk ∗ ∂u

∂x
). (13)
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Figure 10. Modal coefficients of the inviscid Burgers solution before blow up. Both
over-integration and SVV lead to a stable solution unlike the collocation approach.

Here ε ∝ 1/P , i.e. it is inversely proportional to the number of modes,
and Qk is a smooth kernel that facilitates a transition between the con-
trolled high modes and the uncontrolled and more energetic low modes.
It is given by

Q̂k = e
− (k−P )2

(k−Pc)2 , k > Pc.

The cut-off wave number Pc scales as Pc ≈ √
P , asymptotically for P

large. Although the above can be considered as a viscosity regularization
procedure there is a significant difference as has been demonstrated in
([27]), see also ([26]). The parameters ε and Qk are chosen so that
monotonicity is preserved while the spectral accuracy in the solution is
also maintained. In figure 10 we demonstrate how the addition of SVV
leads to effectively the same results as over-integration but operating
with a collocation discretization, i.e. Q = P + 1. The modal coefficients
of the inviscid Burgers solution converge monotonically to zero leading
to a stable simulation unlike the collocation untreated simulation.

3.2 Transition and Turbulence in a Triangular
Duct

We demonstrate next the effect of under-integration and associated
aliasing errors by simulating transition to turbulence of incompressible
flow in a duct with its cross-section being an equilateral triangle. The
laminar fully-developed solution is known analytically. We introduce
some random disturbances in the flow and we integrate in time until
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these disturbances start decaying or growing in time. All simulations
were performed in the domain shown in figure 11 with the cross-section
discretized using one triangular element only and 16 Fourier modes (32
collocation points) in the streamwise (homogeneous) direction. The
Reynolds number is defined as Re = UDe/ν where U is the average
velocity and De is the equivalent (hydraulic) diameter. For Re ≤ 500 all
disturbances decay but for Re = 1250 the flow goes through transition
and a turbulent state is sustained.

We have performed three simulations at Re = 1250 corresponding
to three different combinations of polynomial and quadrature order. In
the first one, shown in 11(a), we consider the case where Q = P + 1,
where P = 16. The forces on the three walls of the duct are plotted
as a function of time. From symmetry considerations, we expect that
the statistical averages of the three forces are identical but obviously
the symmetry is not preserved here. In figure 11(b) we plot the forces
for the case with Q = 2P , and in figure 11(c) the case with Q = 3P/2.
We have verified that in both cases the same statistical force average
is obtained, consistent with the analysis presented above for handling
under-integration induced errors.

Based on the above analysis and result as well as other similar results,
we can state the following semi-empirical rule:

Dealising Rule: For quadratic nonlinearities employing super-collocation
with 3/2P grid (quadrature) points per direction, where P is the poly-
nomial order per direction, followed by a Galerkin projection leads to a
dealiased turbulence simulation on non-uniform meshes.

4. Under-Resolution and Diagnostics
Spectral and spectral/hp element methods behave, in general, differ-

ently than low-order methods in under-resolved simulations. Spectral
discretizations are more susceptible to numerical instabilities than other
low-order discretizations. This could be frustrating for the users who
seek robustness but it is actually safe-guarding against erroneous an-
swers, as typically spectral codes blow up in seriously under-resolved
simulations. In under-resolved spectral discretizations there are many
more wiggles, and therefore it is easier to detect suspicious simulations
before resorting to more rigorous error estimation. Also, spectral dis-
cretizations typically suffer from little numerical dissipation unlike finite-
difference methods, which introduce an erroneous numerical viscosity
in low resolution discretizations. This effectively lowers the nominal
Reynolds number of the simulated flow and leads to stable simulations
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Figure 11. Duct flow domain: The cross-section is an equilateral triangle and the
streamwise length is three times the triangle edge. Shown is a snapshot of streamwise
velocity contours at Re = 1250.

but with the incorrect physics. This is not true in spectral/hp discretiza-
tions where the nominal Reynolds number is also the effective Reynolds
number. However, such behavior in conjunction also with the presence
of high-wave number wiggles, may sometimes be the source of erroneous
instabilities in under-resolved spectral flow simulations. For example,
the resulting velocity profiles may not be monotonic and thus are sus-
ceptible to inviscid type instabilities, which in turn promote transition
from steady to unsteady flow or transition to higher bifurcations and
eventually turbulence. For open unsteady flows, the amplitude of the
oscillation in an under-resolved simulation is usually over-predicted.

In the following, we present a few examples of under-resolved flows
that affect both transition to turbulence as well as turbulence statistics.
We also include a case of transient compressible flow past an airfoil where
under-resolution may seriously affect the lift. However, as we will see not
all results from under-resolved simulations are inaccurate. Some flows
exhibit low-dimensionality and the energetics of low modes dominate so
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Figure 12. Wall shear forces on each wall as a function of time for (a) (Q = M +1);
(b) (Q = 2M); and (c) (Q = 3M/2).
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even a very coarse grid turbulence simulation may predict the correct
statistics – this is the case of the cylinder wake.

Figure 13. Low resolution mesh for flow over a backwards-facing step.

Figure 14. High resolution mesh for flow over a backwards-facing step.
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Figure 15. Time history at the third point (shown in the mesh in figures 13 and
14) at Re=700. Solid line: low resolution; Dash line: high resolution.

4.1 Erroneous Flow Transition
The first example is from the systematic spectral simulations pre-

sented by ([28]), in the study of bypass transition in a boundary layer.
Using a Chebyshev discretization in the inhomogeneous direction and
Fourier expansions in the other two directions, they demonstrated that
with P = 33 Chebyshev modes their simulation showed that a wave
structure was present which would give rise to a secondary instabil-
ity, as suggested earlier by other investigators. However, this structure
changed, and the instability vanished completely when P = 66 Cheby-
shev modes were employed in the simulation. In fact, simulations with
even higher resolution confirmed this explanation.

An example of similar behavior but with spectral element discretiza-
tion is the simulation of flow over a backwards-facing step, which was
first presented in ([29]). For the resolution shown in figure 13 the flow is
unsteady as is evident in the plot that shows time history of velocity (fig-
ure 15). However, if higher resolution is used as shown in figure 14, then
a steady state is reached (see corresponding figure 15), and this is true
even at higher Reynolds numbers up to about Re ≈ 2, 500. Interestingly,
the results of the under-resolved simulation are not totally irrelevant as
they contain information about the actual flow albeit at a different set
of parameters. For example, the two frequencies present in the unsteady
case are the natural frequencies of the flow corresponding to the shear
layer instability at the step corner and the Tollmien-Schlichting waves
in the downstream channel portion. These modes are excited either by
background noise, for example, some small turbulence level at the in-
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flow, or spontaneously at a higher Reynolds number. Since no absolutely
quiet wind tunnels exist, the results of the under-resolved “noisy” simu-
lation, in this case, match the results of the experiment ([30]). We note
that other inherently noisy discretizations employing vortex methods
and lattice-Boltzmann methods also lead to an unsteady flow solution (
[31, 32]).

4.2 Fast-Pitching Airfoil
Next, we consider laminar flow around a rapidly pitching airfoil and

compare discontinuous Galerkin spectral/hp element results against the
finite volume results obtained in ([33]). In particular, we consider a
NACA 0015 airfoil pitching upwards about a fixed axis at a constant
rate from zero incidence to a maximum angle of attack of approximately
60 degrees. The pivot axis location is at 1/4 of the chord measured from
the leading edge. The temporal variation of the pitch given in ([33]) is

Ω(t) = Ω0[1 − e−4.6t/t0 ], t ≥ 0

where t0 denotes the time elapsed for the airfoil to reach 99% of its final
pitch rate Ω0. Here the non-dimensional values are t∗0 = 1.0 and Ω∗

0 = 0.6
based on the chord length and free stream velocity. As initial condition
the computed field at 0 degrees angle of attack is used. The Mach
number is M = 0.2 and the chord Reynolds number is Re = 10, 000.

In ([33]) a similar simulation was obtained using a grid fixed to the
airfoil by employing an appropriate transformation and discretizing the
modified compressible Navier-Stokes equations using the implicit ap-
proximate factorization of ([34]). A typical grid used in ([33]) involved
203 × 101 points. In the present study, we employ the domain shown in
figure 16. We performed two different sets of simulations, first with un-
structured discretization around the airfoil (see figure 17; total of 3, 888
triangular elements), and subsequently with hybrid discretization with
quadrilateral elements around the airfoil for better resolution of bound-
ary layers (total of 116 quadrilateral and 2167 triangular elements). We
demonstrate how the hybrid discretization combined with variable P-
order per element allows accurate resolution of boundary elements with-
out the need for re-meshing. We first performed simulations with con-
stant P-order on all elements and subsequently with higher P-order in
the inner layers of elements as shown in figure 18. We contrast the results
in figure 19 for P-order P = 3 on the left, and P varying from 10 in the
innermost layer to 2 in the far field. We see that the boundary layer is
unresolved as indicated by the discontinuities at the element interfaces,
but it is accurately resolved in the second simulation.
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Figure 16. Domain and triangulization for the simulation around the pitching airfoil
NACA 0015.
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in units of chord length.
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Figure 18. Hybrid discretization showing the variable p-order on a gray-scale map
around the airfoil. The dash vertical line indicates the location where boundary layer
profiles are taken (see figure 19).

0 0.5 1
U

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

y First Unstructured Triangle Layer

Second Structured Quadrilateral Layer

p = 3

p = 3

p = 3

First Structured Quadrilateral Layer

p = 3

0 0.5 1
U

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

y First Unstructured Triangle Layer

Second Structured Quadrilateral Layer

p = 10

p = 10

p = 7

First Structured Quadrilateral Layer

p = 5

Figure 19. Boundary layer profiles for a simulation with uniform P-resolution (left)
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Figure 20. Lift (upper curve) and drag (lower curve) coefficients versus angle of
attack in degrees. The symbols correspond to computations of ([33]), the dot line
corresponds to our simulation at P = 2, the solid line to P = 3 and the dash line to
P = 4.

Returning now to the unstructured grid, we test convergence by also
performing P -refinement on the same triangulization but with three dif-
ferent values of spectral order P corresponding to 2nd, 3rd and 4th order
polynomial interpolation. In figure 20 we plot the computed lift and drag
coefficients versus the angle of attack for grids corresponding to P = 2, 3
and P = 4. We also include (with symbols) the computational results
of ([33]), and we see that in general there is very good agreement except
at the large angles of attack close to 50 degrees. This difference is due
to qualitative difference in flow structure at small scales, which are only
resolved with the higher order simulations.

To examine differences in the flow field due to spatial resolution we
plot in figure 21 density contours for the cases P = 2 and P = 3 at
non-dimensional time t = 0.75 corresponding to an angle of attack 18.55
degrees. We see that the higher resolution simulation provides a more
detailed picture of the vortex shedding in the near-wake, but the contours
around the airfoil are very similar. At a later time t = 1.5, corresponding
to an angle of attack of 44.1 degrees, there are differences between the
computations at resolution P = 2 and P = 3 and these differences are
now extended to the upper surface of the airfoil where an interaction
between the trailing edge vortex and the upstream propagating shed-
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Figure 21. Density contours of the pitching airfoil at non-dimensional time t = 0.75
corresponding to 18.55 degrees angle of attack. Shown on the left are contours at
spectral order P = 2 and on the right at P = 3.
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Figure 22. Density contours of the pitching airfoil at non-dimensional time t = 1.5
corresponding to 44.1 degrees angle of attack. Shown on the left are contours at
spectral order P = 2 and on the right at P = 3.
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Figure 23. Two-dimensional “z-slice” of the entire domain (top left) and detail
around the cylinder of the standard mesh (K = 902 elements - top right); refined
(K = 1, 622 elements - bottom left); and coarse mesh (K = 412 elements - bottom
right) used in the spectral element simulations. The unstructured grid shown is the
skeleton based on which hierarchical spectral expansions are constructed.

vortex takes place, as shown in figure 22. These flow pattern differences
are responsible for the aforementioned differences in the lift and drag
coefficient at large angle of attack as shown in figure 20.

4.3 Turbulent Cylinder Wake
Numerical simulation of turbulent wakes has been computationally

prohibitive and only preliminary results have been obtained in ([8]) us-
ing DNS. A more systematic study of the cylinder turbulent wake at
Re = 3, 900 was undertaken by ([35]) who used LES with an upwind
discretization. A second LES study was performed by ([36]) with central-
differencing in order to control the numerical damping reported in the
first study, and more recently a high-order LES study was completed
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by ([37]). The results from the three studies are similar as far as the
computed mean and rms velocities are concerned, i.e. LES predicts rel-
atively accurately, although not uniformly, the experimental results in
the region downstream of x/D ≥ 3.

However, in the very-near-wake all simulations converge to a mean
velocity profile in the U-shape unlike the experiments of ([43]) that show
a V-shape. In contrast, an independent LES study by Rodi and co-
workers ([38]) produced a V-shape velocity profile. Also, despite the
higher fluctuations sustained in the central-differencing simulations by (
[39]), no clear inertial range was obtained in either of the first two LES
studies in contrast with the experiments. It is interesting to note that
corresponding simulations with the subfilter model turned off produced
an almost identical spectrum to the LES velocity spectrum. A system-
atic grid-refinement study performed in ([35]) also suggests that these
results are resolution- independent for at least the first ten diameters in
the near-wake. The high-order LES of Kravchenko & Moin, however,
reproduced accurately the inertial range but predicted the same mean
velocity field (i.e. U-shape) as the previous two simulations.
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Figure 24. DNS mean streamwise velocity predictions at x/D = 1.06; 1.54; 2.02
(from top to bottom, respectively ), (wide domain - solid line) and (narrow domain -
dash line). Squares are data of ([43]).

For the simulations presented here a continuous Galerkin spectral/hp
element method was employed in x- and y-directions while a Fourier ex-
pansion was employed along the homogeneous direction (cylinder-axis)
with appropriate dealiasing. Specifically, triangular elements are used,
filled with Jacobi polynomial modes of order P . We performed several
simulations corresponding to h-refinement (i.e. with respect to number
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Figure 25. DNS rms streamwise velocity predictions at x/D = 1.06; 1.54; 2.02 (from
top to bottom, respectively ). (wide domain - solid line) and (narrow domain - dash
line). Squares are data of ([43].

of elements K) and P -refinement (with respect to polynomial order P )
([40]). In figure 23 we show a “z-slice” of the computational domain in
the x− y plane with three different discretizations. The top plot shows
a grid with K = 902 triangular prismatic elements, which has been the
standard grid we have used for most cases. In the bottom plot we also
show a grid with finer resolution around the shear layers corresponding
to K = 1, 622 elements, and also a grid with coarser resolution cor-
responding to K = 412 elements. The polynomial order per element
varied from P = 4 to 10, and the number of Fourier modes varied from
N = 2 to 128 (the corresponding number of physical points is twice the
number of modes). The finest resolution simulation employed K = 902
elements of order P = 10 and 256 points (N = 128 Fourier modes) in the
spanwise direction. The lowest resolution simulation employed K = 412
elements with P = 6 and only N = 2, i.e. a severe truncation of Fourier
modes in the spanwise direction.

The domain extends from −15D at the inflow to 25D at the outflow,
and from −9D to 9D in the cross-flow direction. Neumann boundary
conditions (i.e. zero flux) were used at the outflow and on the sides of the
domain to minimize the effect of normal boundary layers at the truncated
domain. The spanwise length was varied as Lz/D = π/2, π, 1.5π, 2π. For
reference, the spanwise length used in all simulations of ([35, 36, 37]) was
Lz/D = π.

The experimental results of ([41]) suggest a value of correlation length
less than 1.5D at three diameters downstream; this was obtained using
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the streamwise velocity only. However, from plots of the autocorrelation
function for all three velocity components and the pressure we have seen
that at a centerline point Ruu drops to zero at about 1.5D but that,
in general, at points off-centerline Rvv and Ruu do not decay as fast (
[40]). Such results indicate that values of Ruu obtained in experiments
at centerline points may under-predict the spanwise correlation length.
Therefore, it may be inadequate to use Ruu as the only criterion in
deciding on the domain size. Indeed, we have found that the span length
is very important in determining the rms values in the very-near-wake
and correspondingly the mean velocity profiles.

In ([40]) high resolution results can be found for many different quan-
tities. Typical velocity profiles for the mean and the variance and for
different spans are shown in figures 24 and 25. Here, we examine how
such results are affected by substantially reducing the grid resolution
and without using any subfilter model. In particular, we present here
results obtained on the grids shown in figure 23 (bottom right) consist-
ing of K = 412 triangular elements and only P = 6 and the equivalent
K = 902 and P = 4, both cases corresponding to approximately the
same number of degrees of freedom. More comparisons with the subfil-
ter model on the same grid can be found in ([42]). We will first use only
two Fourier modes in the span, i.e. the mean mode and one perturba-
tion (N = 2 or 4 points). We also choose a small value for the spanwise
length Lz/D = π/2.
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Figure 26. Streamwise mean velocity profile at x/D = 1.06, 1.54, 2.02. Squares
denote experimental data of ([43]), solid line DNS (K = 412; P = 6), dash-dot line
DNS (K = 902; P = 4) and dash line LES of Beaudan & Moin ([35]).

We compare first with the experiments of ([43]) in the very near-wake
and subsequently with the experiments of ([41]) farther downstream.
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Figure 27. Mean velocity profiles at x/D = 4, 7, 10. Circles denote experimental
data of ([41]), solid line DNS (K = 412; P = 6), dash-dot line DNS (K = 902; P = 4)
and dash line LES of Beaudan & Moin ([35]).
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Figure 28. Left: Turbulent intensity of the streamwise velocity (u2
rms) at x/D =

4, 7, 10. Right: Turbulent intensity of the cross-flow velocity (v2
rms) at x/D = 4, 7, 10.

Circles denote experimental data of Ong &Wallace, solid line DNS (K = 412; P = 6),
dash-dot line DNS (K = 902; P = 4) and dash line LES of Beaudan & Moin ([35]).

In figure 26 we plot the mean streamwise velocity profile at locations
x/D = 1.06, 1.54 and 2.02. We also include the experimental data of (
[43]) taken from ([35]), and the LES data of ([35]). We see that the pre-
dictions from both low-resolution simulations without subfiltering are
comparable to the LES predictions. In figures 27, 28 we plot the mean
streamwise velocity and turbulent fluctuations, respectively, at locations
x/D = 4, 7, 10 and compare with the experimental data of ([41]). The
predictions for the mean velocities are good but the streamwise turbu-
lence intensity shows some wiggles, which is an indication of insufficient
resolution. However, the low-resolution spectral simulations obtain an
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overall better agreement with the experimental data than the dissipative
LES predictions reported in ([35]).
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Figure 29. Streamwise mean velocity profile at x/D = 1.06 for different Fourier
modes employed along the span. Squares denote experimental data of ([43]), dash-
dot line 2D simulation, dash line N = 2, dot-solid line N = 8 and solid line N = 32
(coincides with N = 8).

The results presented so far were obtained with only N = 2 Fourier
modes employed along the cylinder span. Of interest is to examine the
influence of the number of Fourier modes N on the mean velocity profiles
presented above while retaining the same resolution in the x− y planes.
We performed additional simulations with N = 8 and 32 and also a two-
dimensional simulation. As we see in figure 29 there is essentially no
difference in the predicted mean streamwise velocity profile from N = 2
to N = 32 but the two-dimensional prediction deviates substantially.
The cases with N = 8 and N = 32 correspond to almost identical
predictions suggesting convergence in the z-direction.

The results presented here indicate that the first Fourier mode carries
most of the spanwise energy for the chosen span Lz/D = π/2, as it is
evident by comparing with the two-dimensional results in figure 29. This
has been independently verified by computing the averaged plane-modal
energy Exy(m) =

∫
xy[u2

m + v2
m + w2

m]dxdy and observe its decay with
respect to the mode number.

Given the surprisingly good results with this low-resolution at Re =
3, 900, we performed another set of simulations with the same low-
resolution and with only N = 2 Fourier modes at Re = 5, 000 for which
we had available experimental data from the work of ([44]). In figure 30
we plot the mean velocity profile and the streamwise turbulent intensity
u′2 at station x/D = 10. Again, we see that despite some wiggles in the
numerical results the agreement with the experimental results is good.
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Figure 30. Streamwise mean velocity profile (bottom) and turbulent fluctuation
(top) at x/D = 10 and Re = 5, 000. The experimental data (circles) are from Zhou
& Antonia (1993).

5. Discussion
Spectral methods have been used with great success in simulating

turbulent flows in periodic cubes and channel domains. The algorith-
mic developments of the last two decades have led to a new simulation
capability for complex-geometry turbulent flows as well. Such capabil-
ity, in conjunction with terascale computing at the PC cluster level,
will undoubtly lead to significant advances in simulating turbulence in
more realistic configurations and in realistic operating conditions. In
this chapter, we have summarized some of these developments and have
presented results for several transitional and turbulent flows in complex-
geometry domains.

Great care has to be exercised however in interpreting results from
DNS or LES in simple-geometry flows at high Reynolds number or in
complex-geometry flows with new physics. Many of these simulations
may be under-resolved at some level; for example, although the velocity
mean and variance may be correctly predicted, the high-order statistics
or the dissipation spectrum may be erroneous. It is important, therefore,
to have a diverse set of diagnostic tools to characterize numerical uncer-
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tainty in these situations. In particular, understanding how numerical
methods behave in DNS and LES for many prototype flows provides an
insight into uncertainities and their origin in large-scale simulations. Val-
idation and verification ([1]) of a turbulent simulation is a very difficult
task that, unfortunately, cannot be handled solely by error estimators
which are based primarily on extensions of linear concepts ([45, 46, 47]).

Under-resolved simulations are not useless if the numerical uncertainty
is properly characterized ([48, 49, 50]), i.e. quantified with a properly
constructed error bar ([51]). In many cases such under-resolved simula-
tions may contain the answer that we seek, e.g. an averaged lift or drag
coefficient and at the accuracy level that we expect. The type of flow
that we simulate is important in that respect. We have presented here,
for example, low-resolution simulations of the cylinder turbulent wake
which lead to results that match the experiments at Re = 5, 000. Flows
with inherent low-dimensionality, such as the cylinder wake for which the
vortex shedding process dominates the dynamics, may then be easier to
simulate. Moreover, quantification of numerical uncertainty in hierar-
chical methods, such as the spectral/hp element method, is also easier
to achieve and offer the possibility of obtaining multiple solutions with
relatively simple P-refinement without the need for re-meshing which,
typically, is a large overhead component in a turbulence simulation.
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