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ii. DISCLAIMER 
 
This report was prepared as an account of work sponsored by an agency of the United States 
Government.  Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability of 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus 
product, or process disclosed, or represents that its use would not infringe privately owned rights.   
Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof.  The 
views and opinions of authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof. 
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INTRODUCTION 
 
 Shortages of potable water affect 88 developing countries where 80-90% of all diseases and 30% 
of all deaths result from poor water quality (Leitner 1998, see also review by Miller 2003).  Water short 
fall in many countries is at the level of petroleum availability.  With the current predictions of global 
population expansion this problem will increase the need for a solution.  One strategy for generation of 
high quality potable water involves desalination via clathrate crystal formation.  Forty years ago, the US 
Department of the Interior supported construction of two freeze desalination pilot plants that were based 
on clathrate formation (CCl2F2, and butane) (Miller 2003).  Dendritic hydrate crystal formation made it 
difficult to separate the freshwater crystals from the aqueous brine (Barduhn 1982).  A Bureau of 
Reclamation study (McCormack and Andersen 1995) was followed by a partially successful pilot test 
conducted at the Natural Energy Laboratory of Hawaii (McCormack and Niblock 1998, Miller 2003).  
The primary issues still involved clathrate crystal separation which led to a subsequent program to 
determine the filterability of crystals, the surveying alternate higher temperature clathrate formers and 
design and operation of a wash column (McCormack and Niblock 2000, Miller 2003). 
 
 Marine Desalination Systems (MDS) is currently developing new technology in gas hydrate 
formation to supply potable water. To scale this technology to support different country needs there is a 
requirement to assess the environmental impact of desalination.  It is important to determine the MDS 
technology impact on local water quality and marine microbiota through partitioning of dissolved organic 
carbon and brine production in wastestreams.  High local fluctuations in salinity that would inevitably 
result from the hydrate formation may be comparable to those seen in sea ice formation.  The internal 
environment of sea ice is known as the brine channel system and is characterized by low temperature, 
high salinity and elevated concentrations of dissolved nutrients and dissolved organic carbon 
(Kaartokallio et al. 2005).  These changes are known to affect the composition of estuarine and marine 
bacterial assemblages (Ezura et al. 1974, Rheinheimer 1977) and particularly psychrophilic marine 
bacteria (Helmke and Weyland 1995, Morita 1976, Morita et al. 1973, Stanley and Morita 1968).  The 
latter class of bacteria may be important in the expected deep water hydrate formation zone for the MDS 
technology.  Bacteria change the composition of their cell membranes in response to local environmental 
conditions and these alterations can make them more or less susceptible to drastic temperature and 
salinity gradients (Nichols et al. 2000).  These unique environments lead to differences in bacterial 
community structure between sea ice assemblages, such as those in the hydrate, and those in the open 
water, such as those that might be produced in the process streams of the MDS technology (Del Giorgio 
and Bouvier 2002, Kaartokallio et al. 2005).  The bacterial community in naturally occurring hydrate 
formations has been reported to harbor unique eubacteria and archebacteria genotypes not reported 
elsewhere (Reed et al. 2002, Mills et al. 2005) including methanotrophic Archaea (Lanoil et al. 2001).  
Deep sea methane hydrate assemblages are known to be adapted to the elevated salinity that would be 
commensurate with hydrate formation coupled with the generation of interstitial brine (Kaye and Baross 
2004).  These microorganisms are responsible for key elemental cycles in nature that affect the ecosystem 
health. 
 
 This study initiates assessment of the effect of the MDS process on water quality and the 
growth rate of the natural bacterial assemblage.  We measured heterotrophic bacterial 
production, dissolved organic carbon (DOC) concentration and stable isotope values, and 
fluorescence spectra of the organic matter that partitions into the hydrate and waste water 
streams. 
 
_______________
Manuscript approved September 25, 2006. 
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MATERIAL AND METHODS 
 
Sampling 
 
 Samples were collected in 250 mL Nalgene bottles previously acid-washed (2% HCl) and rinsed 
with MilliQ grade water.  Samples for stable isotope analyses were collected in cleaned (acid-washed and 
then baked at 450 °C for 6 h) glass bottles using clean techniques (e.g., gloves).  Atlantic Ocean seawater 
was collected from Indian River Inlet, DE on an incoming tide.  MDS system source water was collected 
from Tampa Bay surface water.  After operation of the MDS hydrate formation and dissociation system 
(Figure 1), water samples were collected from above the hydrate diaphragm (upstream) and below the 
hydrate (downstream).  In addition, frozen hydrate crystals were collected and melted at room 
temperature (hydrate water). 
 
Synchronous fluorescence 
 
 Seawater samples (3 mL) were used for Synchronous Fluorescence (SF) measurements on a 
Shimadzu RF5301 spectrofluorometer operating in the synchronous mode.  Excitation wavelength range 
will be 236 to 600 nm with a 14 nm offset.  All spectra acquired were calibrated to the water Raman 
signal and normalized to instrument corrections. 
 
Dissolved organic carbon and stable isotope composition 
 
 Seawater samples (40 mL) were filtered through 0.2 μm (nominal pore diameter) Teflon filters 
into cleaned glass vials and sealed with Teflon-lined silicone closures.  H3PO4 (85%) was added to adjust 
the pH of samples to ~3 and then samples were sparged for 10 min with UHP Helium.  DOC 
measurement were conducted by heated (98°C) persulfate oxidation on an OI Analytical 1010 TOC 
analyzer employing an NDIR detector that measures CO2 evolved from the oxidation.  Potassium 
hydrogen phthalate was used to construct a calibration curve.  Stable carbon isotopes of DOC (δ13C-
DOC) were measured on the evolved CO2 that vents from the OI instrument.  Teflon tubing connected to 
the 1010 vent carries the CO2 to a 750°C reactor containing elemental copper and silvered colbatic 
cobaltous reagent to remove halogens.  The scrubbed CO2 was then re-focused using a Porapak GC 
column and transferred through a Conflo III interface to the inlet of a ThermoElectron DeltaPlusXP 
isotope ratio mass spectrometer (IRMS).  δ13C-DOC values was normalized to the VPDB international 
stable isotope standard of L-glutamic acid (δ13C-DOC = -26.2‰). 
 
Tangential flow filtration 
 
 A PALL MiniTan microcassette tangential flow filtration system was used to separate DOC 
compounds greater than 1000 Daltons.  A peristaltic pump was used to recirculate 100 mL of water in the 
filtration system.  SF, DOC, and δ13C-DOC was measured on the filtrate and the retentates of the TFF 
system to estimate the changes to these properties induced by selective removal of higher molecular 
weight organic C compounds. 
 
Dissolved inorganic carbon 
 
 Dissolved inorganic carbon was measured using a Somma coulometer (Johnson et al. 1987). 
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Heterotrophic bacterial production 
 

The leucine incorporation method (Kirchman et al. 1985, Kirchman 1993, Smith and Azam 1992) 
was used to measure bacterial production as adapted by Montgomery et al. (1999). A 0.50 µL aliquot of 
wet surface sediment from each station was added to 2 mL centrifuge tubes (three experimental and one 
control) which were pre-charged with [3H-4,5]-L-leucine (154 mCi mmol-1).  The sediment was extracted 
from the benthic grab sample and added to the 2 mL tube using a 1 mL plastic syringe with the end cut 
off.  One mL of 0.45 µm nom. pore dia. (Acrodisk, Gelman) filtered bottom water (collected <1 m above 
bottom) was then added to each tube to form a sediment slurry.  Samples were incubated for 1-2 h at in 
situ temperatures and subsequently processed by the method of Smith and Azam (1992).  A constant 
isotope dilution factor of 1000 was used for all samples.  This was estimated from actual measurements of 
sediment dissolved free amino acids (Burdige and Martens 1990) and saturation experiment estimates 
(Tuominen 1995).  One mL syringed samples of wet sediment were dried at 50 oC and used to covert 
production values to dry weight. Leucine incorporation rate was converted to bacterial carbon using 
factors determined by Simon and Azam (1989). 
 
RESULTS AND DISCUSSION 
 
Water Quality 
 
 Salinity 
 
 The salinity of the seawater from the source (Tampa Bay) and various process streams (Figure 1) 
were determined for 12 experiments generating hydrates.  The primary goal of the desalination process is 
to create low salinity hydrate by exclusing sea salt ions from the hydrate matrix and partitioning them into 
the downstream waste water.  Depending on the volume of the hydrate produced relative to that of the 
process water, downstream salinity may measurably increase.  Over the course of the 12 experiments, 
salinity of the melted hydrate water ranged from 0 to 7 ‰ with 10 of the samples ranging from 0 to 3 ‰ 
(Figure 2).  As expected, source water and upstream water ranged from 27 to 34 ppt and covaried.  Oddly, 
salinity in the downstream water actually decreased slightly ranging from 27 to 31 ‰.  It was expected 
that the downstream water would increase in salinity with formation of the low salinity hydrate. 
 
 pH 
 
 Source water pH ranged from 6.6 to 7.5 among the 12 experiments and was lower in upstream 
(5.5 to 6.5) and downstream (5.7 to 6.2) samples (Figure 3).  In the melted hydrate water, the total pH 
range was much greater (4.7 to 6.4) with seven of the experiments ranging from 4.7 to 5.3 and four 
experiments ranging from 6.0 to 6.4 (Figure 3). 
 
 Dissolved organic carbon 
 
 DOC concentration increases from 2 to 4 mg C L-1 in the source water to 2 to 14 mg C L-1 in the 
hydrate (though all but one sample are 2 to 7 mg C L-1) to 3 to 8 mg C L-1 in the upstream water and 5 to 
12 mg C L-1 in the downstream water (Figure 4).  Relative to the source water, DOC concentration 
increases in all media suggesting that the gas involved in hydrate formation (propane) or other 
compounds associated with the gas that is bubbled into the upstream water is contributing to DOC in the 
process streams.  The δ13C-DOC values in the source water range from about -24 to -26 (Figure 5).  With 
the exception of the two anomylous hydrate values of -20, the range of δ13C-DOC values for the 
upstream, downstream and hydrate samples are all lighter (-24 to -30) than that in the source water.  
When δ13C-DOC values are compared with increasing DOC concentration, isotope values become lighter, 
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changing from -24 at 2 mg L-1 to around -30 at 10 to 12 mg L-1 DOC (Figure 6).  Petroleum 
hydrocarbons, such as the gas that was used to form the hydrates, have δ13C values around -28 to -30.  
These data sugest that the dissolved hydrocarbon gas used to form the hydrate was influencing both the 
DOC concentration and the stable carbon isotope values in the process water and hydrate.  Before future 
experiments are conducted the source of the DOC will be indentified and the system will be redesigned to 
prohibit this contamination.  Hydrate formation has recently focused on carbon dioxide as the catylyst gas 
and this may avoid future experimental problem. 
 
 Synchronous fluorescence (SF) profiles of organic matter in coastal waters can indicate the 
presence of certain moieties common to either terrestrially derived carbon (allochthonous: fulvic and 
humic acids) or marine derived (autochthonous:  phytoplankton and other primary producers) (Figure 7).  
SF emission spectra derived from the source water were typical for estuarine systems with both terrestrial 
and phytoplankton related signals (Figure 8).  The upstream process water spectra maintain many of the 
features of the source water spectra, as expected, but add a fluorescence peak at around 270 nm.  This 
feature is also seen with the downstream water spectra and is the only peak in the hydrate water spectra 
(Figure 8).  This peak is most likely produces from the addition of the dissolved hydrocarbon gas used to 
form the hydrate.  The hydrate also appears to have excluded much of the organic matter signature 
associated with the source water. 
 
Marine Microbiota 
 
 Process water production 
 
 The MDS process can affect the natural bacterial assemblage in primarily two ways:  metabolic 
rate (production) and assemblage composition.  Changing water quality can impact the microbial 
assemblage by reducing microbial production which would result from lower organic substrate or through 
environmental stresses caused by changes in chemical speciation and composition.  There was a large 
range in bacterial production, 26 to 157 μg C L-1 d-1, in the source water samples among the five 
experiments in which this was measured (experiments #4, 8, 10, 11, 12), though this range is typical for 
estuarine waters (Figure 9).  Samples from the process water were much lower in bacterial production 
ranging from 0.08 to 0.28 μg C L-1 d-1 in the upstream water, 0.08 to 0.21 μg C L-1 d-1 in the downstream 
water, and 0.10 to 0.35 μg C L-1 d-1 in the melted hydrate water (Figure 9).  The MDS process or the 
sample collection appeared to dramatically affect bacterial growth based on the difference in production 
between the source water and process water samples. 
 
 Toxicity 
 
 Subsequent experiments were designed to differentiate between changes in bacterial production 
related to sample shipment and storage prior to the measurement and those due to changes in some water 
quality parameter that generally affects bacterial growth.  Bacterial production was measured on 
unamended Altantic Ocean surface seawater (100% treatment) and compared with samples that had 
additions of process water (10, 50% treatments) and to the process water alone.  If there were no water 
quality parameters in the process water that were inhibitory to marine bacteria, then there would be a 
linear relationship among the production values between the Atlantic Ocean water alone (100% 
treatment) and the process water (0% treatment) (dotted line; Figure 10). 
 
 There was little effect of the Tampa Bay source water on Atlantic Ocean water, that is, the 
production value was the sum of relative contributions of the source waters (Figure 10).  Bacterial 
production of the Atlantic Ocean water was inhibited by addition of all three process water samples 
(downstream, upstream and hydrate waters) (Figure 10).  This suggests that there was some feature or 
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component of the process water that was inhibitory to bacterial metabolism of natural marine 
assemblages.  Among the possible inhibiting factors is pH, low dissolved oxygen, and dissolved 
hydrocarbons though the 10% decrease in dissolved oxygen that would result from the 10% process water 
addition would not be likely to so dramatically decrease bacterial production in the Atlantic Ocean water.  
Likewise, given the buffering capacity of seawater, the pH change might not be enough to inhibit 
production to the extent seen in this experiment (Figure 10). 
 
 Future experiments will combine measurements of microbial community diversity, production 
and growth efficiency to assess the impact on the population and key elemental cycles.  
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Figure 1.  Schematic diagram of the MDS technology test system with source water (seawater) and 
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Figure 4.  DOC concentration between the source, hydrate and upstream and downstream water during 
the hydrate formation for 8 of the experiments.
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Figure 5.  δ13C-DOC values between the source, hydrate and upstream and downstream water during the 
hydrate formation for 8 of the experiments.
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Figure 6.  δ13C-DOC values relative to total DOC concentration for all samples (source, upstream, 
downstream, and hydrate water).
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Figure 7.  Synchronous fluorescence in an estuarine water sample.  The excitation wave lengths are 
presented for primary production, fulvic acids and humic acids.
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Figure 8.  Emission spectra (fluorescence intensity) for organic matter in source, upstream, downstream 
and hydrate waters.
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Figure 9.  Heterotrophic bacterial production (average (AVG) and standard deviation (SD) μC L-1 d-1) 
compared in hydrate formation experiments between source, upstream, downstream and hydrate water.
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Figure 10.  Heterotrophic bacterial production (μC L-1 d-1) mixed with different percentages of Tampa 
Bay source water, upstream and downstream water. 


