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EXECUTIVE SUMMARY 
 

The current work reports only the objective data from AFRL-HE-AZ-TR-2006-0015 Volume I, 
Distributed Mission Operations Within-Simulator Training Effectiveness: Summary Report, but 
here we expand the reporting of objective data both in depth and breadth.  More specifically, in 
this report we discuss the importance of objective data, the development, and validation of the 
metrics, and report additional metrics and statistics.  We examined F-16 pilots participating in 
week-long Distributed Mission Operations (DMO) training exercises and compared beginning-
of-week to end-of-week performance on mirror-image scenarios.  To evaluate performance, we 
collected extensive computer-based data of pilot performance (over 55 billion individual data 
points collected).   
 
In conjunction with a computer-generated threat system and an instructor operator station, the 
DMO research environment in Mesa, AZ consisted of four high-fidelity F-16 simulators and one 
high-fidelity Airborne Warning and Control System simulator.  From January 2002 to October 
2004, participating F-16 teams flew over 40 total scenarios according to a five-day syllabus, 
book-ended on Monday and Friday by mirror-image point defense air combat benchmark 
scenarios.  Seven mission outcome measures were found to be significantly better on Friday than 
Monday:  A 58.33% decrease in enemy strikers reaching their target, 38.10% greater distance 
from the base the F-16s disposed of the strikers, 54.77% fewer F-16 mortalities, 75.26% more 
enemy striker kills (before reaching base), 6.82% higher proportion of Viper Advanced Medium 
Range Air-to-Air Missile (AMRAAM) shots resulting in a kill, 51.60% lower proportion of 
enemy Alamo missile shots resulting in a kill, and a highly impressive 314.21% increase in an 
overall summary scoring scheme developed by subject matter experts.  Significant trends were 
also found for a number of other metrics assessing skills. 
 
A large number of objective Mission Essential Competency (MEC)-based measures were 
defined, developed, and validated in the current work, but it is our recommendation that some 
skill measures be captured using other measurement means, such as expert observer ratings.  In 
the objective data here, pilots performed better on almost every metric, including those that 
easily lend themselves to trade-offs (i.e., offensive and defensive metrics).  The F-16 teams 
denied enemy strikers to base, killed more enemy aircraft, survived more frequently themselves, 
and did so while maintaining greater separation from the adversary (e.g., increased ranges in 
shots, F-poles, and decreased times in vulnerability zones such as Minimum Abort Range.  Of all 
the measures investigated in the current work, not a single offensive/defensive trade-off was 
observed, which significantly strengthens our conclusion that significant within-simulator 
learning took place. 
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DISTRIBUTED MISSION OPERATIONS WITHIN-SIMULATOR TRAINING 
EFFECTIVENESS BASELINE STUDY:  METRIC DEVELOPMENT AND 

OBJECTIVELY QUANTIFYING THE DEGREE OF LEARNING, VOLUME II 
 

 
INTRODUCTION 

 
Schreiber and Bennett (2006) reported a Distributed Mission Operations (DMO) training 
effectiveness study.  That study represented a very large, comprehensive effort to evaluate DMO 
within-simulator training effectiveness, reporting numerous different data sources converging on 
the highly positive training effectiveness of the Mesa DMO environment.  As such, that report’s 
focus was to document the overall results stemming from the central hypotheses of each dataset 
and its scope, therefore, it prohibited reporting detailed results from any single dataset.  The 
current work reports only the objective data from that study, but expands it both in depth and 
breadth.  More specifically, in this report we discuss the importance of objective data, the 
development and validation of the metrics, and report additional metrics and statistics not 
suitable for AFRL-HE-AZ-TR-2006-015, Volume I, Distributed Mission Operations Within-
Simulator Training Effectiveness Baseline Study:  Summary Report. 
 
In choosing indices for evaluating training improvement, scientists can pick from numerous 
approaches and methods (e.g., objective, expert observer ratings, opinions, surveys, mental 
models, decision making, etc.).  As Bell and Waag (1998) point out, user acceptance is often 
necessary for a technology/training system to be seriously considered for routine or widespread 
use.  Each additional potential data source and method can serve to address a critical facet of 
assessing learning.  However, once acceptance is established (as we purport is the case with the 
Mesa DMO research site; Schreiber, Rowe, & Bennett, 2006), objective data arguably carries 
principal weighting among assessment methods.  And, chief among objective data are the 
outcome metrics that measure warfighter performance exactly in the manner it will count during 
war—that is, kill ratios and mission objectives achieved.  If powerful learning and transfer of 
training effects are discovered using these objective outcome metrics, from a warfighter’s 
perspective all other effectiveness data types are relegated to secondary, more academic interest.   
 
Additionally, automatically captured objective data affords powerful applied capabilities not 
easily equaled by other assessment methods.  We can quantify the extent of DMO learning; we 
can more sensitively delineate differential learning performance among Mission Essential 
Competency (MEC) skills (Colegrove & Alliger, 2002); we can more accurately compare 
alternatives and their absolute degrees of effectiveness; we can, through standards (Schreiber, in 
press), cross-compare results across training institutions; we can potentially assess each and 
every warfighter in an exercise with a single assessment computer; we can calculate DMO return 
on investment; etc., etc.  Furthermore, very unlike other psychological measurement techniques 
such as opinion data, surveys, mental models, or even expert observer ratings, objective data 
allows the warfighter more detailed feedback to diagnose performance.  Finally, objective 
outcome data is difficult to argue with; no individual opinions, biases, or philosophies—only 
hard data that reports exactly what happened in terms of important combat-relevant metrics.  
Other data measurements are invaluable for rounding-out comprehensive effectiveness 
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evaluations, but the importance of reliable and valid objective data as central data cannot be 
overemphasized.  However, challenges exist in obtaining the objective data. 
 
One major challenge simply was developing a robust software tool that could reliably capture 
human performance data from multiplayer networks.  Schreiber, Watz, Bennett, and Portrey 
(2003) reiterated an often stated need for robust objective measurement (e.g., Brecke & Miller, 
1991; Kelly, 1998).  Technological progress in several areas (especially the need for 
interoperability standards), however, have since matured and Schreiber et al. (2003) introduced a 
proof-of-concept software tool to capture data from a DMO network.  Developmental 
performance measurement research at the Air Force Research Laboratory in Mesa, AZ resulted 
in this “Performance Effectiveness/Evaluation Tracking System” (PETS).  PETS is a software 
tool that enables multi-platform, multi-level measurement ability at the individual and team level 
in a complex Distributed Interactive Simulation/High Level Architecture (DIS/HLA) 
environment.  Installed at the Mesa research site, up to one million data points per minute are 
collected and organized into several formats differing in unit of analysis.  Though a useable 
DMO software objective assessment tool obstacle appears recently overcome, another issue still 
looms. 
 
The remaining major challenge is to properly identify standardized skills to be assessed and to 
define one or more metrics for a system like PETS to have meaningful data to capture.  
Identifying simple objective metrics for stand-alone simulation systems on simple tasks (e.g., 
emergency procedures) poses few complications compared to defining measures for air combat 
or for DMO training involving multiplayer networked environments.  Defining objective 
assessments in complex tasks/environments presents much greater challenges.  Fortunately, the 
MEC process has defined which skills constitute a proficient warfighter in combat, which are 
readily applicable to a realistic environment such as DMO.  And, quite contrary to lower order 
emergency procedure-type skills exercised in standalone simulators, DMO can actually exercise 
the higher-order MEC skills (e.g., controls intercept geometry among several entities), which 
provides us potential opportunities to assess those skills in an ecologically valid environment.  
But the task of concretely developing/coding objective metrics for skills such as controls 
intercept geometry during many versus many scenarios must be undertaken.  Once metrics are 
defined and validated, they can be programmed into the PETS human performance assessment 
tool and used for a great number of DMO research studies. 
 
 

CURRENT WORK 
 
The current work sought to fulfill the following specific objectives: 
 

1. Define, develop, validate, and document air combat outcome metrics and objective skill 
metrics to be captured by the PETS assessment tool.  Use the validated skill measures as 
standardized MEC-based assessment metrics for a DMO within-simulator effectiveness 
experiment and future DMO and live-fly studies. 

2. Quantify the within-simulator learning benefits of five-day DMO training, report the 
comprehensive objective results here, and use the high-level results as a cornerstone 
database for the Volume I summary report (Schreiber & Bennett, 2006). 
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3. Analyze the objective data obtained above to explore potential moderators of DMO 
learning (e.g., flight experience). 

4. Document more detailed results not suitable for reporting in AFRL-HE-AZ-TR-2006-
0015-Vol I: Distributed Mission Operations Within-Simulator Training Effectiveness 
Baseline Study:  Summary Report (Schreiber & Bennett , 2006). 

 
 

METHODS 
 
Overview 
 
Subject matter expert (SME) interviews were used to identify critical behaviors for metric 
development and programming into the PETS system, a process which required approximately 
24 months to complete.  These metrics then served as the objective data source for the Volume I 
DMO within-simulator training effectiveness study (Schreiber & Bennett, 2006).  In conducting 
said study, F-16 pilots arrived at the Air Force Research Laboratory, Human Effectiveness 
Directorate, Warfighter Training Research Division (AFRL/HEA) DMO training research 
facility in Mesa, AZ, for five days of training.  The pilots received some simulator 
familiarization training and then were immediately “benchmarked,” or “tested,” on their pre-
training point defense scenario performance.  Post-training reassessment with those same pilots 
using mirror-image point defense scenario benchmarks occurred at the completion of five-day 
DMO training.  The objective human performance metrics were collected throughout the five-
day training.  Observed performance between the pre- and post-test benchmark assessment 
sessions served as the basis for the within-simulator training effectiveness evaluation.   
 
Metric Generation 
 
To derive the measures, structured interviews were conducted with SMEs.  A minimum of three 
SMEs were interviewed independently to each metric.  We began air superiority measurement 
development with outcome metrics, which were defined by SMEs.  We then asked SMEs to 
describe observable behaviors or events that constituted examples of good and poor 
performance.  We identified skill metrics and the associated rule sets for a number of measures; 
the minor discrepancies found between SMEs during the independent interviews occurred only 
for a few metrics as the result of assumption differences and ideas overlooked.  These differences 
were quickly resolved by bringing the SMEs together for concurrence.  The air-to-air measure 
development interview process was undertaken before the air-to-air MECs were completed.  As 
such, we later attempted to map the measures to the MEC skills using SMEs.  We identified a 
number of the MEC air superiority skills with no associated measures (from the list of 
programmed metrics) and/or were deemed difficult to measure objectively at this time (e.g., 
“listens”).  Therefore, a subjective assessment system was used in an attempt to capture many of 
those metrics (Schreiber, Gehr, & Bennett, 2006).  We will discuss the objective metrics, both 
outcome and MEC-based skill metrics, in turn.  
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Objective Outcome Metrics 
 

Strikers Reaching Base.  For point defense scenarios, the most important goal is to deny 
enemy strikers from reaching their intended target.  Given that the enemy strikers were carrying 
conventional bombs, the PETS system continuously tracked enemy strikers and “gave credit” to 
the strikers reaching base (and therefore an opportunity of employing weapons) if they flew 
within a two nautical mile radius (two-dimensional) of the intended target.  Strikers reaching 
base is a dichotomous variable (yes/no) which carries utmost importance during war and point 
defense missions like those used in the current work.  By far, it is therefore the single most 
important measurement among all five volumes of the study of the effectiveness evaluation.  
(Note:  Strikers do not have to be killed to be “denied” reaching the base.) 
 

Minimum Distance Achieved by Strikers.  This is the closest distance to target achieved 
by strikers at any time during the scenario, reflecting a high-level look at the overall ease with 
which the F-16s were able to achieve mission success.  Related to the metric above, this variable 
is a more sensitive continuous variable instead of a dichotomous one.  If the enemy strikers flew 
unimpeded in the target area, this value would be very nearly or equal to zero. 
 

Proportion of Vipers Killed.  The proportion of all Vipers killed in the engagement.  All 
scenarios contained four F-16s. 
 

Proportion of (Valid) Enemy Strikers Killed.  The proportion of enemy strikers killed 
during the benchmark scenarios before reaching the base (and therefore before having an 
opportunity to release weapons).  All benchmarks contained two enemy strikers. 
 

Proportion of all Threats Killed.  The proportion of all enemy aircraft killed during the 
engagement.  All benchmarks contained six enemy hostile fighters and two strikers. 
 

Viper Missile Hit Proportions.  Of all missiles fired, the proportion of which resulted in 
detonation on an enemy aircraft.  This metric is reported by weapon type (AIM-9 and 
AMRAAM).     
 

Threat Missile Hit Proportions.  Of all threat missiles fired, the proportion of which 
resulted in detonation on an F-16.  This metric is also reported by weapon type. 
 

“Top Gun” Summary Outcome Scoring Scheme   As a final outcome metric, F-16 SMEs 
defined a “Top Gun” scoring scheme as a single summary metric suitable for totaling 
performance on a single point defense scenario.  These arbitrary scores were debated and settled 
upon after consideration of the point defense mission objectives and relative importance of each 
event.  Point structure for the Top Gun summary metric is outlined as follows: 

 
Enemy striker killed before reaching target: +450 points 
Enemy striker killed after reaching target: +150 points 
Enemy fighter (hostile) killed:  +150 points 
Fratricide:     -900 points 
Any other cause of F-16 mortality:  -300 points 
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Objective Process/Skill Metrics 
 
Process or skill oriented measures of performance are metrics assessing execution and typically 
correlate with outcome metrics.  Frequently more sensitive to differences in skill, these process 
metrics often reveal significant changes in behavior and performance between individuals and/or 
teams when outcome metrics may be roughly equivalent.  Results on each metric must frequently 
be taken into consideration with one or more other metrics to fully understand participant 
strategy biases or performance trade-offs.  In developing each metric, we were limited to the 
information each simulator passed across the network according to DIS standards.  Additional 
information aiding in assessing a skill had to be in the form of logic or configuration tables.  DIS 
network traffic is fairly limited, primarily sending time, space, and positional information (TSPI) 
variables such as latitude, longitude, altitude, heading, pitch, roll, entity type, and airspeed.  
From these, however, we were still able to calculate a great number of other variables, such as 
aspect angles, closure rates, angles off tail, etc.  Augmented with tables and algorithms housed 
on the PETS computer, we could then derive more complicated measures, such as those 
involving weapons envelopes.  Nonetheless, since a great deal of relevant data remained resident 
within each simulator (e.g., symbology displaying results of weapons calculations), many skill 
measurements could not be developed at this time (i.e., the raw data is not available on the 
network).  Standardizing more extensive interoperability data demands in the future could 
release more relevant information on the network that could then be used by the PETS system to 
automatically generate many more skill performance metrics.   
 
Please note that the organization/mapping of the measures to a given MEC skill or supporting 
competency is still in progress.  The organization of the measures reported on the following 
pages is the result of unanimous independent judgments by two SMEs highly familiar with both 
the MECs and the measures developed.  With such a small sample of SMEs, the mappings listed 
herein should be considered preliminary. 
 
MEC Skill: Weapons Employment   
 
As long as meeting mission objectives and maintaining favorable kill ratios are not traded off, 
some generalities exist for effective weapons employment (e.g., launching a radar guided missile 
at higher altitude).  Nine objective MEC weapons employment measures were developed: 
 

Range at missile launch.  At the time of pickle, the X and Y (i.e., 2D) and the X, Y, and Z 
(i.e., slant range) distances are computed.  These distances are calculated for all missiles and are 
reported separately by weapon type.   
 

Mach at Missile Launch.  Mach at pickle is the velocity of the aircraft at the time a 
weapon is launched.  This measure is calculated for all missiles and is reported separately by 
weapon type. 
 

Loft Angle at Missile Launch.  The loft angle at missile launch is the angle created 
between the aircraft’s upward nose pitch and the imaginary level flight path at the time the 
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weapon is pickled.  This measure is calculated for all missile shots taken outside of 10 nm and is 
reported separately by weapon type. 
 

Altitude at missile launch.  The altitude above Mean Sea Level (MSL) at the time of 
pickle.  This measure is calculated for all missiles and is reported separately by weapon type.  
 

Percentage Maximum at Launch.  The percent maximum at firing is the reading of the 
caret within the F-16 dynamic launch zone (DLZ) at the time of pickle.  That is, it is the 
percentage reading of maximum DLZ at the time of missile firing.  This metric is calculated and 
reported for the AIM-9 and AMRAAM missiles.  At the time of the current work, measurements 
in relation to R50 and R90 were not available (resident only within the simulator). 
 

Escape-G at Launch.  Escape-G at launch is a complex algorithm that takes into account 
ranges, closure velocity, aspect angles, altitudes, and weapon type to determine the exact degree 
of weapons engagement zone penetration.  It is a transformed value of the DLZ reading, but 
measured in G-load units, and it can be thought of as the theoretical probability of a weapon 
intercepting its target at the time of weapon launch (i.e., an estimate of probability of kill).  This 
value reports, at the precise time of pickle, the extent of G-load turn necessary for the targeted 
adversary to escape that weapon’s fly-out (turning to either 180 or 0 aspect, whichever Escape-G 
value is lower) if the turn was to be initiated at the moment of pickle.  This metric is derived 
from the same Fire Control Computer code that generates the DLZ in the F-16.  This metric is 
calculated and reported for the AIM-9 and AMRAAM missiles.  The Appendix contains a more 
detailed discussion on the Escape-G calculation and its theoretical background. 
 

G-load at missile launch.  The amount of G-forces on the aircraft at missile launch.  This 
measure is calculated for all missiles and is reported separately by weapon type. 
 

Distance of miss.  The point of closest approach of the air-to-air munition employed.  
This metric, reported in feet, reports exactly how close a munition came to impacting on its 
intended target (a hit would therefore be zero).  This measure is calculated for all missiles and is 
reported separately by weapon type. 
 

Clear Avenue of Fire.  The parameter of “Clear Avenue of Fire” (CAF) may be described 
as the degree to which the firing entity had a CAF from other friendlies to the intended target.  
That is, the degree to which another friendly may be at fratricide risk because of proximity to the 
intended threat.  For the AIM-9, PETS measured the positional data for all aircraft in the 
engagement, drawing a line from the seeker head of the fired missile to the intended target, then 
calculating the angle of each friendly aircraft to that line during the entire fly-out of that missile.  
The nearest angular friendly to the fired missile during the entire fly-out (see Figure 1) represents 
the CAF.  Rules for this measure ignored any friendly aircraft outside of five nautical miles.  A 
similar, but different computation is made for the AMRAAM CAF. 
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Figure 1  AIM-9 Clear Avenue of Fire 
 
 
MEC Supporting Competency: Weapons Engagement Zone (WEZ) Management 
 
These metrics are reported to provide indication as to what extent the friendlies kept themselves 
out of adversary WEZs.  Generally speaking, disposing of all threats and achieving mission 
objectives while minimizing time in the Minimum Abort Range (MAR), Minimum Out Range 
(MOR), and Notch-Pole (N-pole) are desirable, as are maximizing such metrics as F-pole and A-
pole. 
 

MAR and MAR-1.  For each scenario, the number of times a pilot allowed a hostile to fly 
within MAR is recorded, as well as the total time spent within MAR.  These calculations are 
again made for MAR-1 nautical mile (i.e., 1 mile less than MAR values).  These numbers are 
calculated according to the following rules: 
 

1. All friendly aircraft ignored 
2. All enemy strike aircraft (i.e., bombers) ignored 
3. All enemy fighter aircraft position and weapon load tracked 
4. Continuously calculates all hostile aspect angles 
5. If aspect angle is > 120 degrees, then given the hostile’s altitude, weapon type, and 

quadrant (refer to Figure 2), is range less than that of value in Table 1 below.  If yes, 
friendly has allowed hostile to violate MAR. 

 
For the time measures, one or more hostiles satisfying the above rules increments the timer (i.e., 
three simultaneous threats entering MAR does not triple the time), while the MAR count does 
count each hostile independently (i.e., three simultaneous threats entering MAR does triple the 
count). 
 

MOR.  For each scenario, the number of times a pilot allowed a hostile within MOR is 
recorded, as well as the total time spent within MOR.  These numbers are calculated according to 
similar rules as the MAR metric. 

 
N-pole.  Similar to both MAR and MOR rule-set computations, the total time spent 

within N-pole and the number of violations of N-pole are computed. 
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Figure 2  MAR, MAR-1, MOR, and N-pole heuristics 
 
 

Table 1  Configuration table used by PETS to determine violations for MAR, MAR-1, MOR, and N-pole 
(note: cell values intentionally omitted). 

 
Adversary carrying AA-10A missile Adversary carrying AA-10C missile  

High Alt Med Alt Low Alt High Alt Med Alt Low Alt 
Front (MOR)       
Side (MOR)       
Rear (MOR)       
Front (MAR)       
Side (MAR)       
Rear (MAR)       
Front(MAR-1)       
Side (MAR-1)       
Rear (MAR-1)       
Front (N-pole)       
Side (N-pole)       
Rear (N-pole)       
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F-Pole.  Measured in feet, the F-pole range is the slant range from the firing entity to the 
target when the missile detonates.  Ordinarily, fighter pilots define and use F-pole only for 
missiles that hit their target.  Since the range preservation concept is important regardless of 
whether the missile hits the intended target, the F-pole metric is calculated for both hits and 
misses.  For a missed shot, the PETS system captures and records F-pole the moment missile 
closure rate on the intended target begins to increase (i.e., increasing its distance from the target).  
Note:  This measure is still undergoing validation. 
 

A-Pole.  A-pole is the distance from the launching aircraft to the target when a missile 
begins active guidance and is measured in feet.   

 
Minimum 2D distance.  The minimum 2D distance of a Viper to any threat fighter, 

measured in nautical miles. 
 
MEC Skill: Maintains Formation 
 

Wingman position.  Wingman position is a measure of how often and for how long a 
wingman is out of formation.  “In formation” is considered to be within three miles, 5,000 feet 
altitude and to be no more than ten degrees forward of the 3/9 line of the element lead.  The 
measures are taken for Viper 2 from Viper 1 and from Viper 4 to Viper 3.  The measures were 
also taken and separated for all time outside of 40nm to threats and time inside of 40 nm to 
threats. 
 

Range between elements.  This metric is a snapshot measurement taken at 30nm, 10nm, 
and 3nm to the nearest threat.  The measures are slant range distances, measured in feet, between 
Vipers 1 and 2 to Vipers 3 and 4 (three total measurements taken). 

 
Range within elements.  This metric is a snapshot measurement taken at 30nm, 10nm, and 

3nm to the nearest threat.  The measures are slant range distances, measured in feet, between 
Vipers 1 and 2 and also between Vipers 3 and 4 (six total measurements taken). 
 

Altitude between elements.  This metric is a snapshot measurement taken at 30nm, 10nm, 
and 3nm to the nearest threat.  The measures are distances, measured in feet, between Vipers 1 
and 2 to Vipers 3 and 4 (three total measurements taken). 
 

Altitude within elements.  This metric is a snapshot measurement taken at 10nm and 3nm 
to the nearest threat.  The measures are distances, measured in feet, between Vipers 1 and 2 and 
also between Vipers 3 and 4 (four total measurements taken). 
 
MEC Skill:  Controls Intercept Geometry 
 

Altitude between V1/V2 and nearest threat.  This metric is a snapshot measurement taken 
at 30nm, 10nm, and 3nm to the nearest threat.  The measures are altitude separation distances, 
measured in feet, between the threat and Viper 1 or 2 (whoever is closer to threat; three total 
measurements taken).  Because we report the measures in aggregate here over hundreds of 
engagements, the absolute values were used (instead of actual differences). 
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Altitude between V3/V4 and nearest threat.  This metric is a snapshot measurement taken 

at 30nm, 10nm, and 3nm to the nearest threat.  The measures are altitude separation distances, 
measured in feet, between the threat and Viper 3 or 4 (whoever is closer to threat; three total 
measurements taken).  Because we report the measures in aggregate here over hundreds of 
engagements, the absolute values were used (instead of actual differences). 

 
Range at first launch opportunity (FLO) Vipers 1 and 2.  This metric, measured in 

nautical miles is a snapshot measurement taken at the first time the DLZ reads R50 and again at 
R90 for Vipers 1 or 2.  (This measurement is taken regardless of threat designation or non-
designation.  The PETS system calculates all DLZs to all threats at all times to accurately capture 
this metric, regardless of what each individual Viper pilot chooses to display).  Note:  This 
measure is still in development and validation, and this measure is part of SCU-5 upgrades (vast 
majority of pilots in this study flew SCU-4). 

 
Range at FLO Vipers 3 and 4.  This metric, also measured in nautical miles is a snapshot 

measurement taken at the first time the DLZ reads R50 and again at R90 for Vipers 3 or 4.  As 
with the above metric, this measurement is taken regardless of threat designation or non-
designation.  Note:  This measure is still in development and validation, and this measure is part 
of SCU-5 upgrades (vast majority of pilots in this study flew SCU-4). 
 
MEC Supporting Competency:  Communication 
 

Communication “step-overs” (frequency).  This measures how many times two or more 
team members were attempting to communicate at the same time on the same frequency.  This 
metric is captured for just the four Vipers as a team and again for the four Vipers + Airborne 
Warning and Control System (AWACS) as a team. 

 
Communication “step-overs” (duration).  Similar to the measure above, the 

communication duration measure calculates the average time of each communication “step-
over.”  It is also calculated separately for the four Vipers as a team and the four Vipers + 
AWACS as a team.  
 
Metric Validation 
 
To ensure the accuracy and validity of each outcome and process measure, the following steps 
were undertaken (in chronological order): 
 

1. Initial conceptual validity of each outcome and process metric was established through 
the structured SME interview process described in the “Metric Generation” section. 

2. Each metric was transformed into C code and the rule sets were again presented to 
subject matter expertise before beta data collection. 

3. To ensure we were capturing unusual scenario events and capturing measures correctly, 
simulator scenario set-ups were designed and flown with very specific, out of the 
ordinary trigger events in order to exercise all portions of software code (e.g., multiple 
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simultaneous shots at same entity, fratricides, entities killed as a result of flying into the 
ground trying to evade munitions, etc.). 

4. Initial beta testing of the software was performed, collecting “test” data on operational 
pilots in the DMO environment.  Software engineers identified and corrected bugs, if 
any. 

5. Researchers and SMEs observed individual beta testing engagements in real-time and 
examined output files to confirm that the proper values of metrics were taken. 

6. Outcome and shot-related metrics were provided as feedback to the beta testing 
operational F-16 pilot participants (zero inaccuracies reported).  

7. Researchers plotted large sample distributions of each metric to ensure not only that all 
values did indeed fall within bounds for that metric, but also that the distribution 
properties observed adhered to expected values for that platform, missile, tactic, etc. 

8. Trend data was checked across high/low experience demographics for improvements in 
the expected directions. 

9. As a final validity check, a formal database was created for outcome metrics and shots.  
A research assistant, following a blind protocol, observed and manually recorded these 
same measurements for 163 scenarios.  The human recorded data was then compared to 
PETS data of the same scenarios. 

 
Participants 
 
A portion of the following information is from General Method in Schreiber and Bennett (2006).   
 
From January 1, 2002 to October 22, 2004, 76 fighter pilot teams participated in the overall 
DMO within-simulator training research study at the Mesa DMO site.  An estimated 20% of the 
entire USAF F-16 worldwide population -- 384 pilots -- participated in the study.  To participate 
in the training research, operational F-16 squadrons vied for posted vacant DMO training 
research weeks at the Mesa research site, readily volunteering for available training research 
opportunities.  As such, participants in this study were not randomly sampled.  Of the 76 teams 
under investigation for the overall study (Schreiber & Bennett, 2006), 53 teams produced useable 
objective data.  Those teams that did not produce useable objective data were the result of either 
(a) not having at least two matched pairs of usable benchmark data, and/or (b) technical issues 
arising in the simulation environment that would systematically create biases in the objective 
data (e.g., temporary missile model change that dramatically increased missile probability of kill 
for several teams).  Across the 272 pilots producing data useable for objective analyses, all but 
three were male, with a mean age of 33.1 years, 10.8 average years of military service, and a 
mean number of hours in an F-16 of 1,016 (Note:  Between 3 and 5 of the 272 pilots did not 
provide information for one or more of the aforementioned demographic statistics and averages 
were computed based upon the remaining data).    
 
DMO Training Facility 
 
In conjunction with a computer-generated threat system and an instructor operator station (IOS), 
the DMO research environment in Mesa, AZ consisted of four high-fidelity F-16 simulators and 
one high-fidelity AWACS simulator.  The F-16s, AWACS, and threat entities interoperated 
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according to DIS standards (IEEE Standard for Distributed Interactive Simulation - Application 
Protocols, 1995) version 4.02 or version 6.0. 
 
The high-fidelity F-16 Block 30 simulators utilized 360 degree out-the-window visual displays 
with either SGI Onyx II Reality Monsters or PC Nova IIs running Aechelon runtime software.  
The visual system used high resolution photo-realistic databases of the Sonoran desert overlaid 
on terrain elevation data of the region.  The hardware was very nearly identical to that found in 
the actual F-16, as was the software (Software Capabilities Upgrade version 4).  Depending on 
the type of mission to be flown, F-16 weapon load-outs for missions consisted of differing 
combinations of the gun, the Air Intercept Missile (AIM-9), the Advanced Medium Range Air-
to-Air Missile (AMRAAM), and/or the Mk-82 and Mk-84 general purpose bombs.  A high-
fidelity Solipsys version 6 AWACS sensor simulation was also used to provide a more realistic 
environment.   
 
The Automated Threat Engagement System (ATES) generated all adversaries.  A computerized, 
real-time threat generation system, ATES operates on standard DIS networks, providing air-to-
air, air-to-ground, and surface-to-air threats.  The ATES incorporates aerodynamic modeling, 
atmospheric models, radar models, infrared models, and data parameter tables for thrust, drag, 
lift, etc.  For the current work, threat air models were the MiG-29, MiG-27/23, and Su-27 loaded 
with the AA-8, AA-10a, and AA-10c air-to-air missiles.  Ground threats included the SA-2, SA-
6, and SA-8, and AAA.  Threat aircraft performed maneuvers and/or scripted flight paths while 
reacting to the F-16’s maneuvers and weapons. 
 
Throughout the majority of the data collection time period, the debrief facility included five 50-
inch plasma screens -- one for a God’s eye view and one dedicated for each of the four F-16s.  
Each of the F-16 plasma screens presented four avionic displays from the F-16.  The time 
synchronized replay included all communications and could be paused, fast-forwarded, or 
rewound according to the lead pilot’s desired use of the allotted debrief time.   
 
As a training research installation striving to continually integrate and evaluate new training 
technologies, the DMO site at Mesa undergoes occasional upgrades to its simulation systems.  
Therefore, the DMO simulation environment was not constant for all participants in this study.  
Some examples of upgrades/changes to the environment during the 33-month data collection 
period included (but is not limited to):   
 

• Upgrading the visual databases in cockpits #3 and #4 to use the same photospecific 
database used in cockpits #1 and #2,  

• upgrading to eight visual channels,  
• upgrading the radios,  
• installing SCU-5 Situation Awareness Data Link (SADL) software,  
• installing new ALQ-213 radar warning/electronic countermeasure panels and 5100 power 

PC boards,  
• adding smoke trails to missile fly-outs,  
• upgrading the brief/debrief facility with Portable Flight Planning Software version 3.2, 

and 
•  a sixth 50-inch plasma debrief display for AWACS.  
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Under most circumstances changing the apparatus during the course of a scientific study 
threatens the study’s conclusions.  However, for the current work, we viewed these changes in 
the DMO environment as highly desirable.  Further explained, as a system of integrated 
technologies, all DMO environments will change and be constantly upgraded at every field 
location.  By doing similarly in our experimental environment we more closely replicate the 
actual systems to which we aim to generalize.  Furthermore, we argue that significant learning 
effects must be found in light of the additional error variance associated with updates/changes to 
the environment, because of the fact that DMO environments will undoubtedly undergo change.  
If a training effect is not found under these changing conditions, justification for DMO training 
does not exist.  

 
Training Research Syllabi/Training Research Week. 
 
Table 2 shows a general timeline for each participating team.  Participants arrived early Monday 
morning for five days of DMO participation.  Upon arrival, participants were first given an 
inbrief on the objectives and procedures of DMO and the simulators, a tour of the facilities, and 
then given a research administrative session where they completed a demographic form, were 
assigned anonymous barcode identification numbers, and finally took the first Pathfinder 
exercise-- an electronic assessment used to capture the knowledge structures of novice and 
expert pilots (Schreiber, DiSalvo, Stock, & Bennett, 2006).  
 

Table 2  Participant General Timeline. 
 
Session# 1 2 3 4 5 6 7 8 9 
Day/time Mon AM Mon PM Tues AM Tues PM Wed AM Wed PM Thur AM Thur PM Fri AM 

Activity Mesa 
Inbrief 
 
Admin 
 
Pathfinder 
 
Pilot Brief 
 
Fly Fam 
 
Pilot 
Debrief 

Pilot Brief 
 
Fly 3 
Benchs+ 
 
Pilot 
Debrief 
 
Feedback 
Survey 

Pilot Brief 
 
Fly 4-8 
engmnts 
 
Pilot 
Debrief 

Pilot Brief 
 
Fly 4-8 
engmnts 
 
Pilot 
Debrief 

Pilot Brief 
 
Fly 4-8 
engmnts 
 
Pilot 
Debrief 

Pilot Brief 
 
Fly 4-8 
engmnts 
 
Pilot 
Debrief 

Pilot Brief 
 
Fly 4-8 
engmnts 
 
Pilot 
Debrief 

Pilot Brief 
 
Fly 4-8 
engmnts 
 
Pilot 
Debrief 

Pilot Brief 
 
Fly 3 
Benchs+ 
 
Pilot 
Debrief 
 
Feedback 
Survey 
 
Reaction 
Survey 
 
Pathfinder 
 

 
Outbrief 

Pilots participated in one of four very similar syllabi, each syllabus consisting of nine 3.5 hour 
sessions, beginning with session one on Monday morning and ending with session nine on 
Friday morning.  There were two sessions each day of the five-day training week, save Friday’s 
single session.  Each session entailed a one hour briefing, an hour of flying multiple 
engagements of the same mission genre, and an hour and a half debriefing.  The syllabi scenarios 
could be either offensive or defensive, but were all four F-16s versus X number of threats.  
Scenarios were designed with trigger events and situations to specifically train MEC skills 
(Symons, France, Bell, & Bennett, 2006).  These syllabi were developed with traditional 
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methods using full mission rehearsal scenarios across a spectrum of probable air-to-air missions 
and threats while increasing the complexity of the missions as the training research week 
progressed.  
 
After completing the administrative tasks early Monday morning, each syllabus began with a 
familiarization session (session one) late Monday morning to orient pilots to DMO simulator 
environment specifics, such as visual ID characteristics and any switchology differences due to 
F-16 block number or F-16 mission software.  The pilots required surprisingly little familiarity 
training.  The hour allotted turned out to be more than enough familiarity time, as the high 
fidelity simulator layout and underlying simulation models closely resembled the actual aircraft 
and pilots very quickly became comfortable with DMO simulator operation.  Since the pilots 
readily and easily adapted to the simulation environment during the familiarization period, 
performance increases observed throughout the course of the subsequent sessions should be the 
result of learning/honing their skills and not learning “sim-isms” or other DMO idiosyncrasies. 
 
Session two on Monday afternoon began with benchmarks (i.e., a “pre-test”) used to measure 
pre-training performance.  The training week ended with the “post-test” training benchmark 
session nine on Friday morning.  The benchmark sessions consisted of flying three point defense 
engagements (see Figure 3).  All benchmark point defense scenarios pitted the four participant F-
16s and their AWACS controller against eight threats (six hostiles and two strikers) at a distance 
greater than 40 nautical miles.  During all benchmark scenarios, AWACS informed the F-16s (at 
long range to the threats) that there were six entities and that all six were already identified as 
hostile, thereby allowing the F-16s to shoot beyond visual range at those six entities.  Regarding 
the two strikers, the AWACS operator could not “see” below 10,000 feet--the altitude under 
which the enemy strikers flew during all benchmarks.  Therefore, the onus fell upon the F-16s to 
find any entities below 10,000 feet with their onboard radars and visually identify them before 
employing ordnance.  
 
All benchmarks were designed to be equally complex according to the absolute complexity 
scoring scheme outlined by Denning, Bennett, and Crane (2002).  Seven-point defense 
benchmark scenarios were developed, and the complexity analysis revealed that all benchmarks 
were indeed equally complex.  Pilots flew in the same flight/cockpit assignment on Monday and 
Friday.  Unbeknown to the pilots, for the Friday benchmarks, pilots flew the mirror image of the 
three benchmarks that were flown on Monday.  Strict data collection rules governed all 
benchmarks in order to maintain a realistic combat environment—i.e., no freezing or reloading 
entities, fuel always on, no reincarnating entities, no inserting new entities, real-time kill removal 
for all entities, no intervention/assistance from IOS operators, etc.  Benchmarks terminated under 
one the following conditions:  All F-16s dead, all air adversaries dead, enemy strikers reached 
their target, or 13 minutes elapsed time.  During the course of the study, the vast majority of 
benchmarks terminated under one of the first three conditions. 
 
The participants’ overriding goal for the point defense benchmark scenario was to prevent the 
enemy strikers/bombers from reaching the base – success being striker denial or kill.  The second 
and third most important goals are to minimize friendly mortalities and maximize the adversary 
kills.  The point defense benchmark scenarios were selected for examination in the present study 
as pre- and post-test assessments because: (1) point defense scenarios have very clear goals and 
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measures of success, (2) all the benchmark engagements have equivalent levels of complexity, 
(3) three benchmark scenarios occur at the beginning and the end of the week-long DMO 
syllabus, (4) the same pilots in the same cockpit assignments perform the mirror-image 
benchmark scenarios at the beginning and the end of the week (unknown to them), and (5) the 
benchmarks were flown under real-time kill removal and strict data collection rules.   

 

 
 

Figure 3  Example mirror-image point defense benchmark scenarios used for the pre- and post-test 
 
 
The MEC-based building-block training began immediately after the benchmarks (with the 
remaining time during session two) on Monday afternoon and continued through the course of 
the week.  Participating teams were exposed to four to eight full engagements per session.  While 
these training sessions emphasized Defensive Counter Air scenarios (DCA), pilots also flew 
some Offensive Counter Air (OCA) and air-to-ground missions.  Usually, participating teams 
experienced about 35 training engagements between the Monday and Friday benchmarks, 
providing an intensive training curriculum.  The building block training sessions progressed in 
complexity by increasing the number of threat aircraft, the type of threat aircraft, the threat 
aircraft reactivity/maneuver, and/or an increase in the vulnerability time. 
 
Either after the last session on Thursday or on Friday morning, pilots took the second Pathfinder 
exercise and were given a DMO reaction rating form.  The DMO rating form is a rating scale 
survey that pilots use to rate their DMO training experience. After the last session on Monday 
and Friday, the teams were also given a self-report feedback form with open-ended questions 
asking if they felt their objectives had been met and what facilitated or hindered their 
performance. Finally, before departure, teams were given a performance outbrief after their last 
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set of benchmarks.  This outbrief consisted of graphs for a number of the objective measures, 
showing the team’s observed performance.  
 

RESULTS 
 

Data 
 
This report omits certain results.  At the time of press, intentions were to generate an additional 
report with additional data suitable for restricted distribution channels.   
 
In the results section that follows, t-test degrees of freedom vary across the variables tested.  A 
primary cause of this variation is the lack of an observation on the variable in question. Because 
Monday and Friday for each variable were compared using dependent t-tests and because these 
tests require responses to be present for both days, the absence of an observation on either 
Monday or Friday causes the loss of a decrease in the degrees of freedom for the test. 
 
Metric Validation 
 
As previously discussed, metric validation was a nine-step process.  Progression from each step 
to the next was undertaken only when complete confidence on the prior developmental 
validation step was achieved.  As such, here in the results section we report only the final step, 
comparing human observed data to automatically captured data for those metrics suitable for 
human counting.  A research assistant observed 163 benchmark scenarios, manually recording 
(a) strikers on target, (b) F-16 mortalities, (c) total threat mortalities, and (d) missiles fired.  The 
correlation between each of these four human observed metrics and the corresponding PETS 
captured metric was .75, .98, .92, and .94, respectively.  Though all these correlations were 
statistically significant, we originally anticipated even higher correlations. Upon further 
investigation, explanations for the small differences became readily apparent.  For the bombers 
to target, the debrief system’s God’s-eye view was very difficult for the research assistant to use 
in determining if strikers reached a 2nm radius of the target, as the overhead view was typically 
depicted in 10nm square grids with no circular rings to aid judgments.  As far as the enemy 
mortalities, there were a few instances where a threat was being chased, but was just out of range 
of an AIM-9, and the threat eventually flew into a mountainside or the ground.  Additional logic 
code within PETS gave kill credit to the chasing F-16, whereas the research assistant did not.  A 
small discrepancy in shot correlation was also expected, as we have found in other research that 
even F-16 subject matter experts fail to count shots perfectly over a large number of graded 
engagements (Krusmark, Schreiber, & Bennett, 2004).  This final validation step and subsequent 
investigation resulted in greater confidence of the PETS-derived outcome measures than the 
more error-prone manually recorded outcome metrics. 
 
Outcome Metrics.   
 
Of the 76 teams reported in AFRL-HE-AZ-TR-2006-0015-Vol I, Distributed Mission Operations 
Within-Simulator Training Effectiveness Baseline Study: Summary Report, 53 teams (272 
pilots) produced usable data for some or all of the objective data analyses.  Table 3 contains the 
summary results for all outcome metrics collected on benchmarks.   A t-test procedure was 
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performed for each metric.  Significant Monday to Friday differences were observed on 8 of the 
10 outcome metrics, and all of those effects were in the expected direction (i.e., improved 
performance).  Number of strikers reaching base reduced 58.33% from Monday to Friday [t(52) 
= 4.70, p < .01], while the closest average distance they came to target increased 38.10% [t(52) = 
-2.21, p < .04].  F-16 mortalities reduced 54.77% (t(52) = 4.76, p < .01), while total threats killed 
and enemy strikers killed (before reaching the defended base) increased 9.20% and 75.26% 
[t(52) = -4.84, p < .01 and t(52) = -6.34, p < .01].  The proportion of F-16 AMRAAM missiles 
resulting in a kill increased 6.82% [t(51) = -2.23, p < .03], while the proportion of threat Alamo 
missiles resulting in a kill decreased 51.60% [t(49) = 5.35, p < .01].  Combining many of the 
outcome measures, it comes as no surprise then that we also found a significant increase in the 
“Top Gun” summary scoring scheme—an impressively large 314.21% increase [t(52) = -5.62, p 
< .01].   
 

Table 3  Summary results for all outcome metrics. 
 

Metric Name Mon vs. Fri 
Decreased by 58.33% # of enemy strikers reaching target 
Increased by 38.10% Closest distance achieved in above 
Decreased by 54.77% # of Viper mortalities 
Increased by 75.26% # of enemy strikers killed (before base) 
Increased by 9.20% Total # of enemy threats killed 

Increased by 314.21% “Top Gun” summary scoring scheme 
 BVR Missiles Heat-seeking 

Prop. Viper missiles resulting in a kill Increased 6.82% NS 
Prop. Threat missiles resulting in a kill Decreased 51.60% NS 

Cells in italics represent a statistically significant Monday to Friday change, p<.05 
 
To determine if any demographic variables moderated the learning, we specifically examined the 
following for the lead pilot of the session 2 and 9 benchmarks (taken from the demographic 
questionnaire): 
 

1. Flight Qualification (wingman, 2-ship lead, 4-ship lead, Mission Commander, 
and Instructor Pilot). 

2. Weapons Instructor Course (WIC) Graduate (yes/no) 
3. Total number of DMO Simulator Exercises (e.g., Shaw Mission Training 

Center [MTC]) 
4. Total number of Live-Fly Exercises (e.g., blue/red/green/Maple Flag) 

 
As we felt it produced the best summary of all the important outcome metrics by combining both 
offensive and defensive measures, we examined each of the above four demographics against the 
“Top Gun” scores for moderating effects.  Since Flight Qualification and WIC Graduate are 
categorical variables, we ran Analysis of Variance (ANOVAs) for these and examined the 
interaction between these demographics and the Monday/Friday change in Top Gun scores.  
Pearson correlations were calculated for the continuous variables of Number of Live-Fly 
Exercises and Number of DMO Simulator Exercises.  We found no significant effect for Flight 
Qualification, F(4,39) = 2.32, p = .43, WIC Graduate, F(1,42) = 2.21, p = .14, or Number of 
DMO Simulator Exercises, r = .07, p = .66, but we did find a significant correlation with Number 
of Live-Fly Exercises, r = .34, p < .03. 
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MEC Skill “Weapons Employment” 
 
Table 4 contains the summary results for all MEC skill “Weapons Employment” assessment 
metrics.  A t-test procedure was performed for each metric.  Significant Monday to Friday 
differences were observed for some, but not all measures.  All of the significant effects were in 
the expected direction (i.e., improved performance).  Comparing Monday to Friday, the F-16 
pilots, on average, pickled the AMRAAM at significantly increased 2D ranges [10.30% longer; 
t(52) = -3.70, p < .01], slant ranges [10.31% longer; t(52) = -3.71, p < .01], mach [5.28% faster; 
t(52) = -4.44, p < .01], loft angle [14.80% higher; t(52) = -2.66, p < .01], and altitudes [7.97% 
higher; t(52) = -4.05, p < .01] on Friday, but only one of these was significant for the AIM-9 
[mach at pickle increased 11.02%; t(46) = -2.39, p < .02]. 
 
 

Table 4  Summary results for all MEC skill “Weapons Employment” assessment metrics. 
 

Mon vs. Fri Metric Name 
AMRAAM AIM-9 

Range at pickle (2D) Increased 10.30% NS 
Range at pickle (slant) Increased 10.31% NS 

Mach at pickle Increased 5.28% Increased 11.02% 
Altitude at pickle Increased 7.97% NS 

Loft angle at pickle Increased 14.80% NS 
G-loading at pickle NS NS 

Percent of DLZ maximum at pickle NS NS 
Escape-G at pickle NS NS 
Distance of miss NS NS 
Clear Ave of Fire NS NS 

Cells in italics represent a statistically significant Monday to Friday change, p<.05 
 
MEC Supporting Competency “Weapons Engagement Zone Management” 
 
Table 5 contains the summary results for all MEC supporting competency “WEZ Management” 
assessment metrics.  A t-test procedure was performed for each metric.  Significant Monday to 
Friday differences were observed for over half of the WEZ management measures, and all those 
were in the expected direction.  Comparing Monday to Friday, the F-16 pilots, on average 
allowed hostiles into MOR, MAR, MAR-1, and N-pole for significantly less time (respectively, 
decreases of 14.15%, 55.20%, 57.90%, and 60.33% with t-values (52) of 2.51, 4.00, 3.88, and 
4.99, and associated p-values less than .02, .01, .01, and .01).  The number of times the F-16 
pilots allowed hostiles into MAR [-39.92%, t(52) = 3.53, p < .01] and MAR-1 [-44.56%, t(52) = 
3.45, p < .01) were also significantly reduced.  The minimum range any F-16 pilot came to any 
hostile during a given benchmark increased by 44.99% [t(52) = -4.85, p < .01).  These increased 
ranges from the threats reveals itself in the weapons fly-out tactical behavior as well, where A-
pole ranges were 14.35% longer [t(34) = -3.15, p < .01] and F-poles were 8.12% longer [t(52) =  
-2.60, p < .01]. 
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Table 5  Summary results for all MEC Supporting Competency “WEZ Management” assessment metrics 
 

Metric Name Mon vs. Fri 
Decreased by 39.92% Hostiles in MAR (count) 
Decreased by 55.20% Hostiles in MAR (time) 
Decreased by 44.56% Hostiles in MAR-1 (count) 
Decreased by 57.90% Hostiles in MAR-1 (time) 

Hostiles in MOR (count) NS 
Decreased by 14.15% Hostiles in MOR (time) 

Hostiles in N-pole (count) ++ 
Decreased by 60.33% Hostiles in N-pole (time) 
Increased by 8.12% F-pole (hits and misses; AMRAAMs) 
Increased 14.35% A-pole (AMRAAMs) 

Increased by 44.99% Minimum 2D range to hostile 
Cells in italics represent a statistically significant Monday to Friday change, p < .05.  A cell with a 

++ denotes that the value was not output at time of going to press. 
 
MEC Skill “Maintains Formation” 
 
Table 6 contains the summary results for all MEC skill “Maintains Formation” assessment 
metrics.  A t-test procedure was performed for each metric.  Significant Monday to Friday 
differences were observed on just 3 of the 24 metrics.   

 
Table 6  Summary results for all MEC skill “Maintains Formation” assessment metrics 

 
Metric Name Mon vs. Fri 

# times V2 violated wingman 
position (>40nm to threats) 

NS 

Increased 15.46% Prop. time V2 spent in wing. pos. 
violation (>40nm to threats) 

# times V4 violated wingman 
position (>40nm to threats) 

NS 

Decreased 12.24% Prop. time V4 spent in wing. pos. 
violation (>40nm to threats) 

# times V2 violated wingman 
position (<40nm to threats) 

NS 

Prop. time V2 spent in wing. pos. 
violation (<40nm to threats) 

NS 

# times V4 violated wingman 
position (<40nm to threats) 

NS 

Prop. time V4 spent in wing. pos. 
violation (<40nm to threats) 

NS 

 30nm 10nm 3nm 
Range btw elements (1/2 to 3/4) NS Decreased 

10.00% 
NS 

Range within element 1/2 NS NS NS 
Range within element 3/4 NS NS NS 

Alt btw elements (1/2 to 3/4) NS NS NS 
Alt within element 1/2  NS NS 
Alt within element 3/4  NS NS 

Cells in italics represent a statistically significant Monday to Friday change, p<.05 
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MEC Skill “Controls Intercept Geometry” 
 
Table 7 contains the summary results for all MEC skill “Controls Intercept Geometry” 
assessment metrics.  A t-test procedure was performed for each metric.  Significant Monday to 
Friday differences were observed for the altitude between V1/V2 and nearest threat at 30 nm 
[increased by 32.76%; t(52)= -4.26, p<.01], and the altitude between V3/V4 at 30nm [increased 
by 22.48%; t(52) = -3.66, p < .01], 10nm [increased 18.23%; t(51) = -1.99, p < .05], and 3nm 
[increased 36.24%; t(25) = -2.27, p < .03].  As the pilots in this study flew SCU version 4 (and 
the fact that creating measures for R50/R90 from SCU 5 were still in development), outputs for 
R50/R90 were not obtained for the current work.   
 

Table 7  Summary results for all MEC skill “Controls Intercept Geometry” assessment metrics 
 

Metric Name Mon vs. Fri 
 30nm 10nm 3nm 

Altitude btw V1/V2 & nearest threat Increased 32.76% NS NS 
Altitude btw V3/V4 & nearest threat Increased 22.48% Increased 

18.23% 
Increased 
36.24% 

 R90 R50 
Range @ FLO for V1/V2 ++ ++ 
Range @ FLO for V3/V4 ++ ++ 

Cells in italics represent a statistically significant Monday to Friday change, p < .05.  Cells with a 
“++” symbol were not calculated for the current work. 

 
Table 8 contains the results of communication use inside of 40nm to the threats.  These 
communication metrics only report the frequency and duration of communication “step-overs” 
by measuring the unique instances participants “push to talk” on the radio at the same time on 
the same frequency.  A t-test procedure was performed for each metric. Significant Monday to 
Friday differences were observed for three of the four measures, all declines.  Frequencies of 
step-overs were 34.61% less for the entire team [t(52) = 4.40, p < .01] and 16.33% less for just 
the F-16 four-ship [t(52) = 2.66, p < .01].  Durations of step-overs were not significantly 
different for the whole team, while durations of step-overs were significantly less (-11.92%) for 
just the F-16 four-ship [t(52) = 2.90, p < .01].    
 

Table 8  Radio communication use. 
 

Metric Name Mon vs. Fri 
Decreased 16.33% “Step-over” frequency within Viper 

flight 
Decreased 34.61% “Step-over” frequency among team 
Decreased 11.92% “Step-over” duration within Viper flight 

“Step-over” duration among team NS 
Cells in italics represent a statistically significant Monday to Friday change, p<.05 

 
 

20 



DISCUSSION 
 
Satisfying our first objective – defining, developing, validating, and documenting air superiority 
MEC-based metrics – proved overall slightly more challenging than originally anticipated.  
During the SME interview process, we defined a number of skill measures rather easily, but 
found the translation difficulty into software code varied significantly with each metric.  Many 
weapons launch metrics, for example, were quite easy to capture off the DMO network and 
could be coded, tested, and validated within a few weeks.  However, complete and accurate 
DMO network data became an issue that prohibited us from developing/assessing some 
measures.  We say “given complete and accurate” due to (a) current standardized DIS network 
data are not terribly comprehensive and much simulator data are not passed on the network, 
halting measurement development entirely for some skill metrics, and (b) the fact that some 
DMO network data would occasionally be missing (e.g., who fired a missile).  For these latter 
“occasional missing data” instances, additional time and logic was required to accurately capture 
the skill metric.  For other, more complicated measures (e.g., Escape-G), many months of 
coding, testing, and validation were required.  Finally and unfortunately, we discovered that 
many of the MEC air superiority skills simply did not lend themselves to automated objective 
assessment (e.g., “listens”).  As a result, despite our continued automated objective metric 
development efforts, it is our recommendation that some skill measures be captured using 
objective techniques like those described herein and some skill measures be captured via other 
measurement means, such as expert observer ratings. 
 
Identifying and defining mission outcome metrics was very straightforward in the SME 
interviews, but coding them and obtaining the measures reliably and accurately was altogether 
more complicated.  As one example, if a friendly chased an adversary but was not quite within 
range for missile employment, the adversary, on occasion, might have flown into a mountainside 
in its attempt to escape; kill credit needed to be given to the chaser.  As another example, if two 
friendlies each fired a missile and both detonated on the same adversary at roughly the same 
time, only one “kill” can be registered and therefore only one friendly can receive kill credit.  In 
both these examples (unforeseen before development began), we wrote significant extra logic 
code to simply track shots and lives lost in order to assign kill credit correctly.   
 
For outcome and skill measures, completing metric development, coding, and validation required 
approximately two years, but the results were worth the effort.  All metrics underwent a multi-
step validation effort and the most critical outcome metrics were subjected to a final manual 
observation validation step where correspondence/validation was solidified.  Consequently, 
millions of individual data points now can be captured automatically and reliably on MEC-based 
metrics.  These MEC-based metrics are invaluable for DMO studies. 
 
The first such DMO study (and our second objective, which is documented in this report ) was 
quantifying the within-simulator learning benefits of DMO training.  Previously, DMO 
assessments largely consisted of expert observer ratings, which showed effects, but often were 
not very sensitive in differentiating skills.  We attribute this to a number of factors, two primary 
ones including observer anchoring and lack of SME observer measurement sensitivity.  The 
objective metrics here were much more sensitive than what we have experienced with SME 
ratings (Krusmark, et al., 2004; Schreiber, Gehr, & Bennett, 2006), revealing a number of highly 
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significant effects in many different areas.  Most importantly, strikers to target and friendly 
mortalities by Friday changed an astounding -58% and -55%, respectively.  Indeed, during 
informal mission observation, we frequently noticed that the F-16 pilots were so preoccupied 
with hostiles on Monday benchmarks that they infrequently engaged (or, often, did not even 
sample with radar!) the enemy strikers.  On Friday benchmarks, enemy strikers were much more 
easily disposed of and done so at sufficient range from the point being defended (closest distance 
achieved by strikers on Friday increased by 38%).  These highly significant results lay to rest any 
doubts that DMO training yields substantial within-simulator learning, at least for F-16 air 
superiority missions. 
 
Participants were unaware of most measures used for evaluation.  That is, the pilots only knew 
we were assessing their performance in a general sense.  Sometimes, participants who know they 
are being evaluated may maximize their performance on one assessed dimension at the sacrifice 
of another task dimension so as to achieve a goal criterion (e.g., speed/accuracy trade-off).  In the 
data here, pilots performed better on almost every metric, including those that easily lend 
themselves to trade-offs (i.e., offensive and defensive metrics).  The F-16 teams denied enemy 
strikers to base, killed more enemy aircraft, survived more frequently themselves, and did so 
while maintaining greater separation from the adversary (e.g., increased ranges in shots, F-poles, 
A-poles, and decreased times in vulnerability zones such as MAR).  Of all the measures 
investigated in the current work, not a single offensive/defensive trade-off was observed.  The 
fact that the offensive and defensive measures improved simultaneously and significantly over 
the course of the week deeply strengthens our conclusion that significant within-simulator 
learning took place. 
 
After SME review, explanation for the large proportion of non-significant findings for the 
Maintains Formation metrics (Table 6) became very straightforward.  The metrics in the bottom 
half of the table (i.e., those snapshots taken at 30, 10, and 3nm) are situation-specific and 
valuable for mission debrief.  However, in the aggregate, general rule-of-thumb performance 
generalizations are not easily made.  Therefore, for future application we recommend that these 
measures be used for mission-by-mission training feedback and not as part of future data 
aggregated effectiveness evaluations.  Wingman formation (i.e., those measures in the top half of 
Table 6) is a more fundamental skill.  That is, wingman formation is a lower order skill, and 
since DMO scenarios like those used in the current work tend to exercise higher order skills, a 
SME would not expect numerous significant learning effects on those measures. 
 
Future Directions.
 
If these results transferred entirely to combat, the capability of force gained from a single week 
of DMO training easily justifies the expenditures paid for DMO simulation environments.  But, 
that would, of course, be a potentially error-prone extrapolation.  Additional research should be 
undertaken to understand how quickly the gains decay and to what extent the gains transfer to 
live-fly range activities representative of actual combat (initial efforts for both of these studies 
are being undertaken).  Additionally, attempting to generalize results concerning DMO from the 
current work is limited by the use of just F-16 point defense missions and a non-random 
participant pool.  With additional research addressing the above-mentioned areas, we can better 
understand the different facets of DMO training benefits. 
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During the course of the current work, it became evident that measuring a particular MEC skill 
would require multiple measures.  Ideally, we would have liked to use the multiple measures for 
each MEC skill to develop a composite assessment for that skill.  One simple approach would 
have been to build multiple regression models for each skill.  Though we had numerous predictor 
variables for this, we did not have any suitable global assessments of each MEC skill to use as a 
dependent variable to build the models.  One approach in developing a suitable dependent 
variable may be to use new (and blind) SME ratings for just those MEC skills across a sufficient 
sample of engagements.  Then an effort could be undertaken to build and validate composite 
assessment models using different datasets. 
 
Our goal is to build both summary level measures (i.e., scenario summary measure) and real-
time measures (i.e., as the pilot is flying) to assess all of the MEC skills.  The summary level 
measures prove useful in overall assessments of competency and for aggregating data across 
scenarios, pilots, and teams.  Real-time measures as the pilot is flying would serve as useful 
diagnostic tools to an instructor/evaluator.  As previously mentioned, we see both objective and 
subjective tools as necessary to assess all the MEC skills.  Once this is accomplished, those 
measures could then be used as part of an adaptive and continuous learning system.  That is, 
warfighters could continually be monitored on their performance—delineated by the various 
MEC skills—and real-time deficiencies on certain skills would be identified.  These deficiencies 
could then be specifically targeted by MEC-based scenarios with trigger events specifically 
tailored to train those skills.   
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ACRONYMS 
 
 
AA Air-to-Air 
AFRL Air Force Research Laboratory 
AIM Air Intercept Missile 
AMRAAM Advanced Medium Range Air-to-Air Missile 
ANOVA Analysis of Variance 
ATES Automated Threat Engagement System 
AWACS Airborne Warning and Control System 
CAF Clear Avenue of Fire 
DCA Defensive Counter Air 
DIS Distributed Interactive Simulation 
DLZ Dynamic Launch Zone 
DMO Distributed Mission Operations 
FLO First Launch Opportunity 
HLA High Level Architecture 
IEEE Institute of Electrical and Electronics Engineers 
IOS Instructor Operator Station 
MAR Minimum Abort Range 
MEC Mission Essential Competencies 
MOR Minimum Out Range 
MSL Mean Sea Level 
MTC Mission Training Center 
N-Pole Notch-Pole 
OCA Offensive Counter Air 
PETS Performance Effectiveness/Evaluation Tracking System
Pk Probability of kill 
SADL Situation Awareness DataLink 
SCU Software Capabilities Upgrade 
SME Subject Matter Expert 
TSPI Time, Space, and Positional Information 
USAF United States Air Force 
WEZ Weapons Engagement Zone 
WIC Weapons Instructor Course 
 

26 



APPENDIX:  EXPLANATION OF ESCAPE-G 
 
When measuring the performance of the air combat pilot, outcome measures such as kill ratios 
and missile hit ratios are obviously a first concern.  However, as these outcome measures only 
provide the end result, they are infrequent and do little to reveal how well a pilot is performing 
during an engagement.  Sensitive and more readily available performance measures would allow 
theoretical research examination of possible discriminating behavioral events or evaluation of 
Mission Essential Competency (MEC) skills (Colegrove & Alliger, 2002) such as controls 
intercept geometry or weapons engagement zone management. 
 
Much of the fighter pilot’s success or failure rests upon the ability to put his or her aircraft into a 
region/geometry of opportunity to advantageously employ specific ordnance against a threat 
while simultaneously trying to deny the threat that same opportunity.  That is, a primary goal 
during air combat is to keep the fighter pilot in an offensive position that greatly increases the 
probability of weapon intercept with the threat, while simultaneously trying to keep the threat 
and its weapon’s probability of intercept to the friendly quite low. 
 

Theoretical Instantaneous Probability of Weapons Intercept (TIPWI) as an assessment of 
Weapons Engagement Zone (WEZ) penetration.  The WEZ is a relatively simple way for a pilot 
to think about how far a weapon can travel to a target.  It can assist in the cognitive assessment 
of whether or not a targeted threat aircraft is within a vulnerability zone in order for the pilot to 
engage.  The WEZ is purely a theoretical construct based on the capabilities of the weapon and 
interaircraft geometries.  Since the WEZ, without specific targets, is a theoretical construct, a 
method to estimate the degree of WEZ penetration by an adversary is desirable.  That is, a 
calculation for the TIPWI was sought (Figure 1).  The WEZ introduces an idea of the weapons 
intercept, while the TIPWI brings an exact and dynamic calculation of the weapons interception 
probability. 

 
A goal of the fighter pilot in the air-to-air arena is to maintain a TIPWI advantage, which directly 
contributes to the theoretical probability of kill (Pk).  TIPWI is not perfectly synonymous with 
Pk, but it is a very close approximation of a theoretical Pk and can generally be thought of as 
such.  Most precisely defined, TIPWI is an ongoing theoretical probability of the weapon 
intercepting its target if the pilot were to select and launch that specific weapon at that specific 
threat at that precise moment. Through the moment of weapon launch, TIPWI is a very precise 
estimate of Pk.  After missile launch, however, TIPWI as an estimate of Pk is no longer 
appropriate for the missile in flight, only for the missiles remaining on the plane.  TIPWI 
assumes at launch that the missile will then fly-out without failure according to its performance 
envelope, and it also assumes the pilot will not “trash the missile.”  Possible affecting factors 
include, during a radar missile fly-out, a failed control surface, a guidance system failure or other 
pilot behaviors may lead to a reduced theoretical Pk.  In these examples, the TIPWI may have 
been quite high up until and when the shot was taken, but the Pk could be dramatically reduced 
during missile fly-out. 
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Figure 1  Theoretical WEZ depictions between two aircraft 
 
 
Due to the fact that no weapon launch is necessary for deriving TIPWI, it can be estimated 
continuously.  TIPWI to a given threat changes constantly and oftentimes quite rapidly, 
depending upon the moment-to-moment change in inter-aircraft geometry and weapons 
remaining onboard the firing aircraft.  Before coming within critical ranges to a threat, a pilot is 
trying to use inter-aircraft geometries to his or her advantage in anticipation of raising TIPWI to 
employ a specific weapon. 
 
Pilot’s display of TIPWI estimate.  Once within critical ranges, an estimate measure of a pilot’s 
offensive TIPWI opportunity can be presented on the Heads-Up Display (HUD) or avionics 
display.  When the pilot “locks onto” a threat, he or she receives a WEZ display (see Figure 2).  
The caret position within this WEZ provides the pilot with an indication of the current offensive 
estimate value of TIPWI to that threat.  In this manner, the caret provides the pilot with an 
ongoing estimate of TIPWI before a shot.  The pilot relies heavily upon this TIPWI estimate to 
decide when and whether or not to shoot.  It is important to emphasize that this caret estimate of 
TIPWI is only displayed to the pilot if the pilot chooses to lock onto a threat.  Also, the 
caret/WEZ is only displayed for that one threat for the one missile chosen.  Therefore, before 
targeting any one threat, the pilot must perform several tasks.  Tasks include using the radar, 
interpreting the radar, evaluating missile capabilities, and positioning the aircraft based upon 
cognitive estimates of the inter-aircraft geometries and TIPWI values now and in the future. 
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Presenting a display showing the ongoing TIPWI values to all threats at all times for all weapons 
would probably greatly aid the pilot and reduce cognitive processing, but such a display is not 
available in the cockpit.  TIPWI is an ongoing composite indication of many of the most 
important air-to-air combat factors directly related to Pk.  It is therefore desirable to maintain 
high levels of offensive TIPWI over substantial segments of the engagement.  TIPWI serves as 
an ideal candidate for a sensitive real-time performance measure indicative of the air combat 
pilot’s expertise. 
 
Instantaneous geometry between two aircraft and the type of weapons employed are the two 
critical components in determining TIPWI at any given moment.  The instantaneous geometry of 
the two aircraft defines the current situation and includes numerous factors such as velocity 
vectors, X, Y, Z positions, relative heading and altitudes, etc.  Given an instantaneous inter-
aircraft geometry, the probability of intercept is then determined by the weapons onboard the 
aircraft.  With every different type of air-to-air weapon available, any single instantaneous inter-
aircraft geometry reveals an applicable portion of each different weapon’s performance envelope 
resulting in different TIPWI values.  As an obvious example, the gun does not have the same 
capabilities as a medium range radar missile.  When determining the probability of weapon 
intercept, it is therefore necessary to continuously calculate what the probability of intercept 
theoretically would be for each different weapon currently onboard the aircraft to each threat of 
potential interest. 

 

(R3)

(R2)

(R1 or R-maximum)

(R4 or R-minimum)

No-Escape Zone
bounded by R2, R3

V Caret

Figure 2  HUD of the AIM-9 Weapons Engagement Zone (WEZ).  Caret position and overall display changes 
according to changes in instantaneous inter-aircraft geometry 

 
 
Estimating TIPWI using AAMI.  The All-Aspect Maneuvering Index (AAMI) is a 

composite estimate measure of TIPWI developed by Vreuls Research Corporation (1987) and 
uses the following formula: 
 

AAMI = F(ATA) * WRM 
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Where ATA is the Antenna Train Angle and WRM is the Weapons Range Model (Utilizes AOT 
and Range; refer to Figure 3). 

ATA

AOT

 
Figure 3  Antenna Train Angle (ATA) and Angle off Tail (AOT) Geometries. 

 
 
The F(ATA) term is defined as follows:  If the ATA is greater than 90 degrees, then F(ATA) 
equals zero and the AAMI will equal zero.  For all other ATA values, F(ATA) = 100[(90 – 
ATA)/90].  The WRM described next does not use closure velocity (a critical factor for 
estimating TIPWI), making the F(ATA) term necessary to provide a very rough scaling term to 
adjust for this factor.  The WRM term, or weapons range model term, is derived by using the 
AOT and range to the threat.  For every degree of AOT, four ranges are provided in look-up 
tables for that particular weapon.  The tables provide the maximum range (R1), the minimum 
range (R4), and the no-escape ranges (bounded by ranges R2 and R3) for a given weapon.  If, for 
a given AOT, the look-up tables provide a value that either exceeds R1 or is under R4, the WRM 
term will be zero and the AAMI value will be zero, while any value falling between R2 and R3 
will yield a WRM term equal to 100.  Any AOT yielding a range value from the look-up tables 
falling between the bounds of R1 and R2 or between R3 and R4 is converted into a value 
between 0 and 100 by using linear interpolation (see Figure 4).  That is, if the R-value derived 
table look-up is half the distance between R1 and R2, then the WRM term would be .50. 
 
The resulting AAMI term is always a value from 0 to 100, representing an estimate of TIPWI.  A 
zero represents a 0% theoretical chance of weapon intercept, while 100 represents a 100% 
theoretical chance of weapon intercept.  All calculations from the friendly to the threat would be 
considered offensive estimates of TIPWI, while all the same calculations of the threat to the 
friendly would be considered defensive estimates of TIPWI (and would result in values ranging 
from 0 to –100). 
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Figure 4  AAMI Estimate of TIPWI as a Function of R-value 

 
 
The idea of estimating TIPWI by using the AAMI was quite innovative and insightful.  A later 
revision to the AAMI model included additional WRM look-up tables to include altitudes and 
closure velocities—two critical factors left out in the original model that greatly improves using 
AAMI as an estimate of TIPWI.  Current developmental research at the Air Force Research 
Laboratory in Mesa, AZ (AFRL/HEA) seeks to provide even a better estimate of TIPWI by 
adding to and refining the original ideas from the AAMI. 
 
AAMI is based on the weapons of the era in which it was developed—short-range radar missiles, 
heat-seekers, and guns.  Estimates of TIPWI need to include weapons models for today’s 
medium range radar missiles.  Most air combat engagements today are won or lost in the radar 
missile environment that is beyond visual range.  Including weapon models for each type of 
weapon available onboard each aircraft is critical to the success of TIPWI as a performance 
metric; once provided with a given inter-aircraft geometry, which weapon available is the 
determining factor for TIPWI.  To refer back to our extreme example, if the adversary only has 
guns remaining while the friendly has medium-range radar and heat-seeking missiles available, 
the offensive TIPWI values will be dramatically higher for the friendly at almost all inter-aircraft 
geometries.  As a more subtle yet equally important difference, given the same instantaneous 
long-range inter-aircraft geometry, an older version of an adversary’s radar missile could have a 
substantially lower TIPWI than the newest radar missile version and these differences within 
weapon type could influence tactics and engagement outcome. 
 
Another imprecision in estimating TIPWI, the AAMI assumes a linear interpolation for any R-
value falling between R1 and R2 or between R3 and R4 (see Figures 5 and 7).  While R-
minimum is based upon a minimum missile time of flight, the caret R-value and the other cut-off 
R-values of R1-R3 must be based upon a maneuvering assumption by the threat (it is not 
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possible to derive caret or R1-R3 values without a threat assumption.).  If the threat were 
completely non-maneuvering, R-maximum would increase and the entire range between R-
minimum and R-maximum would yield a TIPWI of 100% (as the threat is assumed to maneuver 
less, R2 and R3 would spread outward towards R1 and R4, respectively).  A non-maneuvering 
threat is of course unrealistic; the implied assumption to the linear interpolation procedure used 
in the AAMI is a very slight, relatively ineffective defensive maneuver by the threat.  To 
calculate and display the WEZ/caret in most modern fighters, the assumption is a high 
maneuvering threat (e.g., a 6 g-force drag maneuver), a curvilinear function involving dynamic 
pressure calculations.  The TIPWI curves for this assumption would look similar to those 
depicted in Figure 5. Since the pilot’s WEZ display in a real fighter depicts values representing a 
maneuvering aircraft, that same assumption will be used in our calculations of TIPWI.  By doing 
this, our TIPWI calculations will be based upon the same assumptions used in the real jet and 
will reflect the same data the pilot receives on the HUD. 
 
 

 
Figure 5  Linear Interpolation (AAMI) and Dynamic Pressure Curves (Maneuvering Aircraft) Used in 
Estimating TIPWI as a Function of R-value.  Linear interpolation would always overestimate TIPWI 

between R1/R2 and between R3/R4 if the assumption were a maneuvering threat. 
 
A third limitation for estimating TIPWI with AAMI calculations is that the AAMI calculations 
have built-in estimates that are too high.  The model allows for estimation of TIPWI at relatively 
large angles of AOT and ATA.  At ATAs approaching 90 degrees, the pilot realistically cannot 
employ ordnance.  To realistically employ a missile, the threat must be within the radar search 
range, the azimuth and elevation angles of which are limited.  Therefore, in our refined 
calculations for TIPWI, azimuth and elevation angles exceeding the radar limits of that particular 
aircraft will automatically receive a TIPWI value of zero (for the weapon would have no specific 
threat to look at).  Also, beyond certain g-loading limits of the aircraft, a missile cannot 
realistically (i.e., should not) be launched because of potential damage to the wing.  So, even if 
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an estimate of TIPWI is slightly positive given the instantaneous inter-aircraft geometry, an 
estimate of TIPWI should be zero if a given g-loading is also exceeded at that moment. 
 
It is unknown whether the AAMI estimates of TIPWI omitted important factors included in the 
weapons model or even if threat weapons models were used to calculate an estimate for the 
defensive TIPWI scores.  The weapon models used today at AFRL/HEA are available for both 
friendly and adversary missiles and include numerous variables regarding instantaneous inter-
aircraft geometry, such as potential launch airspeeds that are subsonic, supersonic, or involving 
shock waves in the transonic region for each type of weapon—a significant factor affecting 
TIPWI values differentially for various missiles.  Though the flight and weapons models in use 
today at AFRL/HEA are undoubtedly of higher fidelity than those used during the AAMI era, the 
models could always be improved upon. 
 
Finally, real-time calculations used during the AAMI era were limited to one enemy against one 
threat, almost certainly due to computer limitations at the time.  To improve upon the TIPWI 
potential application, AFRL/HEA performs all the TIPWI calculations for all entities and all 
weapons in real-time.  This entails a rapid (20 hertz), ongoing measurement of all pairwise inter-
aircraft geometries for all friendlies to all threats plus all threats to all friendlies, then accessing 
all appropriate weapons tables (held in memory), and finally calculating the TIPWI values from 
these two steps. 
 
Using Escape-G as an estimate of TIPWI.  For our estimate of TIPWI, we use a measurement 
referred to as Escape-G.  Escape-G uses the same algorithms the jet uses to display the WEZ, but 
makes more calculations to determine the precise degree of WEZ penetration by the adversary.  
That is, the calculations and weapons fly-outs are re-run multiple times per frame taking into 
account the previously mentioned factors that impact the true value of TIPWI (exact aspects, 
ranges, altitudes, etc.).  Pk for the Escape-G measure therefore very closely follows the 
theoretical, curvilinear TIPWI Pk estimate lines shown in Figure 5.  Escape-G can be thought of 
as the measure of G-force a pilot must turn while maintaining the same airspeed (to either 0 or 
180 aspect, whichever is more appropriate) to defeat the firing aircraft’s missile.  This is in 
essence how quickly the pilot must turn at that precise moment if the given weapon were 
pickled.  Fractional readings just above zero (e.g., 0.2) would indicate that the aircraft has just 
breached the outer boundaries of that weapon’s envelope and a shot would be considered a 
longer range one with a positive, but somewhat lower Pk given the instantaneous inter-aircraft 
geometries (i.e., an aware and defensive maneuvering threat would likely survive).  Readings 
beginning to approach the limits of human and/or aircraft tolerance (e.g., 6G), on the other hand, 
would mean reasonably deep penetration into the WEZ with little chance of survival if the 
weapon were to be launched (i.e, relatively high Pk shot—R2/R3 in Figure 5).  For illustrative 
purposes, we assign Escape-G values exceeding 15G as indicating that the aircraft has flown into 
the “heart of the envelope” for that weapon and the shot would be considered as a 100% Pk shot 
and only missile failure or other extreme circumstance would save the targeted aircraft (if the 
weapon was pickled). 
 
Escape-G can be utilized as a measure of how well a pilot is managing his or her WEZ during 
the engagement.  A pilot who is successful in managing the WEZ will generally have the threat 
aircraft in positions of high escape-G values.  Adversaries in positions with high Escape-G 
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values indicate a favorable inter-aircraft geometry for the friendly to the threat given the 
weapons onboard their respective airframes.  Similarly, the adversary desires favorable WEZ 
geometries and attempts to manipulate the inter-aircraft geometries such that the Viper is in 
states requiring high Escape-G values.  Whichever aircraft maintains the geometric advantage 
and a high Escape-G value will have the advantage over the adversary.   
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