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Abstract

Consider the forward link of a mobile communications system with a
single transmitter and rather arbitrary randomly time varying channels
connecting the base to the mobiles. Data arrives at the base in some ran-
dom way (and might have a bursty character) and is queued according to
the destination until transmitted. The main issues are the allocation of
transmitter power and time to the various queues in a queue- and channel-
state dependent way to assure stability and good operation. The control
decisions are made at the beginning of the (small) scheduling intervals.
Stability methods are used to allocate time and power. Many schemes of
current interest can be handled: For example, CDMA with control over
the bit interval and power per bit, TDMA with control over the time allo-
cated, power per bit, and bit interval, as well as arbitrary combinations.
There might be random errors in transmission which require retransmis-
sion. The channel-state process might be known or only partially known.
The details of the scheme are not directly involved; all essential factors are
incorporated into a “rate” and “error” function. The system and channel
process are scaled by speed. Under a stability assumption on a model
obtained from the “mean drift,” and some other natural conditions, it
is shown that the scaled physical system can be controlled to be stable,
uniformly in the speed, for fast enough speeds. Owing to the non-Markov
nature of the problem, we use the perturbed Liapunov function method,
which is very useful for the analysis of non-Markovian systems. Finally,
the stability method is used to actually choose the power and time allo-
cations. The allocation will depend on the Liapunov function. But each
such function corresponds loosely to an optimization problem for some
performance criterion. Since there is a choice of Liapunov functions, vari-
ous performance criteria can be taken into account in the allocations. The
resulting controls are quite reasonable. The power of the method is due to
the rather general conditions under which it works and the reasonableness
of the controls.

∗Both authors were partially supported by Army Research Office Contract DAAD19-00-1-
0549 and National Science Foundation Grant ECS 9979250.
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1 Introduction

We consider the problem of power and time control for the forward link of a
mobile communications system when the connecting channels are time varying.
There are K queues at the base station, each receiving data according to some
random process, which allows burstiness. Time is divided into small scheduling
intervals of length ∆̄s,n and the transmitter decisions concerning power alloca-
tion, etc., are made at the beginning of the intervals. With the appropriate use
of pilot signals or other estimation methods, it is becoming increasingly practi-
cal to estimate key properties of the channel and to use this information to help
allocate transmitter power and time among the competing queues. One could
suppose, for example, that some receivers make measurements of their own con-
necting channels via a pilot signal, and then pass information on the channel
state back to the base. This information determines the set of acceptable power
levels and bit intervals. This approach could greatly improve the performance
[1]. The channel state is denoted by j, which is vector-valued and indicates the
states of all of the K individual channels. It is assumed that the channel state
takes only a finite number of values. There is no natural impediment to the use
of a continuous state space, but it requires more detail. The individual compo-
nents of the channel state might or might not be mutually independent. The
actual physical situation that corresponds to a channel state j is unimportant.
Each state j corresponds to an allowed set of usage patterns. Given ones as-
sessment of the channel (the channel state), one need only know the probability
of bit error at the receiver under an arbitrary power allocation and the allowed
rates of transmission. These are assumed to be known functions of the channel
state. For simplicity, it is assumed that the channel state does not change during
a scheduling interval. The arrivals to and contents of the queues and rates of
transmission are measured in terms of packets. The data “arrival rates” and the
rate of change of the channel state are “high.” The actual transmission schemes
that are allowed are quite general. They can be based on TDMA, CDMA, bit
interval control, or on various combinations. The channel state space need not
be finite, provided that the true states are divided into a finite number of ag-
gregated groups that are indexed by j, and that decisions are made on the basis
of the aggregated group or its estimate.

Generally, to best accommodate issues of fairness and the particular perfor-
mance criteria of interest, this power and time allocation should depend on the
lengths of the queues as well as on the current knowledge of the (vector) state
of the channel. There might be either complete or only partial knowledge of
the channel. Furthermore, depending on the noise levels and the character of
the individual channel, a received packet might be found to contain too many
errors, and will need to be retransmitted. The resulting optimal control prob-
lem is quite difficult. The dimension (K) might be high, the set of queue length
process might not be Markovian under any control scheme, and uncertainty of
the channel state can lead to a complicated filtering problem.

The difficulties of direct solution, the high speed of the system and the high
rate of change of the channel state process suggest an approach to the control
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problem that is based on an “averaged” system. It will be seen that such an
approach can be carried out under quite general conditions for a great variety
of systems, based on TDMA, CDMA, or various combinations.

The approach is as follows. We consider a sequence of systems, scaled by n.
The rates of service and arrivals are O(n). There are ν ∈ (0, 1) and a process
L(·) such that the the channel-state process can be represented as Ln(·), where
Ln(t) = L(nνt). More will be said about L(·) later. In fact, the representation
of the channel state process in the form Ln(t) = L(nνt) is just a convenience
for the notation. It is not necessary, provided that Ln(·) changes “fast enough.”
In any particular application, the value of n is fixed. But the results show that
for high enough system speed and fast enough channel variations, we will have
stability under the obtained (very reasonable) controls. Define x̄n

i (t) to be 1/n
times the number of packets in queue i at time t. Define x̄n(t) = (x̄n

i (t), i ≤ K).
In typical current stability results for queueing networks, one uses assump-

tions that allow the current queue to be represented in terms of a Markov
process [2]. For example, the interarrival intervals and service requirements are
independent and those for a particular class are identically distributed. Then
one represents the network in terms of the “residual” arrival and service times
and the current content. Fluid approximations are derived for Q(Mt)/M as
M → ∞, where Q(t) is the queue size at time t. Then, under appropriate ad-
ditional conditions, one shows that stability of the fluid approximation implies
various stability properties of the queue. Such a method does not work for our
case. First, the assumptions do not necessarily allow a Markov representation.
Second, we are concerned with a family of queues, indexed by both the speed
n and the controls, and are interested in getting stabilizing controls that have
other useful properties as well. Finally, even if there is a fluid approximation
in the above “scaled and time squeezing sense” for each n, it in itself won’t
lead to the “uniformity” results that are desired. Nevertheless, there is a “mean
drift,” and the stability results for the queues depend on a stability assumption
concerning the system whose dynamics are this mean drift. Because of this, and
to motivate this equation for the randomly time varying channel, in Section 3 a
fluid approximation to x̄n(·) is obtained under assumptions on the data arrival
processes that are stronger than those used in the stability analysis in Sections
4–6. This approximation depends on the actual power and time allocation rule
that is used as well as on the (channel state and power allocation dependent)
probabilities of acceptance of a received packed. As noted above (A4.1), with
a little extra work the various arrival and service “rates” (λ̄a

i , λ̄d
i (j)) could be

made queue-state dependent.

Definition of stability, uniformly in large n. Suppose that there are q0 <
∞ and a real-valued function f(·) such that the following holds: For σn

0 any

random time for x̄n(·), and σn
1 = min{t ≥ σn

0 : |x̄n(t)| ≤ q0}, we have

En
σn
0

[σn
1 − σn

0 ] ≤ f(x̄n(σn
0 ))I{|x̄n(σn

0 )|>q0}

with probability one for all large n and all such σn
0 . [Here En

t denotes the
expectation conditioned on all of the systems data to time t (arrival and service
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times, actual channel states, estimated channel states, rejected packets).] Then
we say that there is stability, uniformly for large n.

Remark. Although the queue state is normalized by n, the stability is for each

individual n that is large. The qualifier “large” appears essentially since small
scheduling intervals are required. Under certain conditions, the qualifier “large”
can be dropped. See the comments at the end of Section 5. The assumptions
(A4.1), (A5.2) and (A5.8) on the arrival processes allow bursts of order n. This
makes sense since the usage should depend on the system bandwidth. Because
of this, the buffers must be scaled accordingly and it makes sense to normalize
by n.

The stability is proved using the perturbed Liapunov function methods of
[8]. With this method, one starts with a basic Liapunov function that works for
the fluid approximation. Then one finds a suitable perturbation that works for
the actual physical problem.

Two canonical classes of physical models (and various combinations and ex-
tensions) are discussed in Section 2. These include the standard CDMA and
TDMA. For expositional convenience the development is based on these mod-
els. It is seen that the approach and results are the same when the channel
is only partly known or retransmission of poorly received packets is called for.
A similar analysis can be used when there are multiple antennas [5] and fre-
quencies. Multiple antennas and frequencies are used in the space-time coded
OFDM (orthogonal frequency division multiplexing) approach [11, 14]. Part of
the purpose of which is to provide ‘space-time “diversity,” to partially neutralize
the effects of channel variations. But, via the approach of this paper and given
sufficient information on the channel, one might find it preferable to use only
the most appropriate combinations of antennas and frequencies for the various
sources at any time.

There is a close connection between stability and optimal control. Consider-
ing the Liapunov function as a total cost function, the “conditional mean rate of
change” of the Liapunov function is a cost rate, and the Liapunov function is an
optimal cost function for the cost rate which is minimal over the possible control
functions [7]. Thus, by varying the Liapunov function in a systematic manner,
one gets solutions to a sequence of optimization problems. One can then ex-
ploit this flexibility to select a control that not only assures stability, but is
approximately optimal with respect to some desired criterion. Some additional
comments appear in Section 6.

Canonical models are given in Section 2. Section 4 gives and discusses some
of the assumptions on the channel and arrival process that will be needed for
the stability analysis. Assumptions on the Liapunov function and the stability
proofs are in Section 5. An example is given in Section 6, where there is also
a comparison of the obtained controls with optimal controls. It will be seen
that the approach is quite natural and general for the problems of concern and
yields results that are reasonable. We have chosen particular classes of packet
arrival processes. But the general forms in which the associated conditions are
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given are quite flexible. For problems of the type of Example 2.1, [1, 12] obtain
rules for power allocation whose form is similar to ours and which are based on
stability considerations, although the method uses large deviations estimates
and the setup is Markovian. The reference [15] was perhaps the first to consider
the problem of dynamic power allocation when the channels are time varying.

2 Classes of Models

In order to illustrate the numerous possible systems to which the methods are
applicable, it is convenient to consider two basic classes. These will allow us
to focus on the key points. It will be seen that, although the models in the
two classes are quite different from a physical point of view, they are treated
in essentially the same way, with similar limit forms, stability criteria, and
controls. They can be combined, and this will be commented on later. Until
further notice, suppose that the channel state is known, whether via the use of
pilot signals or otherwise. The case of partially known channel state is discussed
below (3.16) and in Sections 5 and 6.

In the first class of models, spelled out in Example 2.1 below, data from the
selected queues are transmitted simultaneously, as in CDMA [16]. In addition,
the bit interval might be controlled. In each scheduling interval the total avail-
able power is split among the queues in a queue- and channel-state-dependent
way. In the second class of models, whose basic form is spelled out in Example
2.2 below, transmission is from only one queue at a time (e.g, as in TDMA)
and both the power and the time allocated to the queues during a scheduling
interval are controlled. Extensions to combined time and bit interval control are
then noted. These power and/or time allocations depend on the information on
the channel and queue state that is available at the transmitter at the start of
the scheduling interval. The power allocation to each queue is constant during
the interval. It will be seen that the types of controls in these two examples
can be used simultaneously, and that the type can vary with the channel and
queue state. Part of the scheduling interval might be taken by estimation of the
channel state. But that is covered in our framework, since the results are based
on what happens in an entire scheduling interval.

For notational convenience, we will work in discrete time. Assume that
there is δn > 0 such that all completed cell arrivals and transmissions (at the
base station) occur only at integral multiples of δn. We simply suppose that
δn = α0/n for some small α0. The use of δn is just a bookkeeping device.
To fix ideas, suppose that detection at the receiver is bit by bit, and ignore
interuser interference (as is common with CDMA- and TDMA-type systems).
Let the background noise in detection at the mobiles be white, with constant
spectral density σ2

i for mobile i. Packets received at the mobile might be rejected
(and need to be retransmitted) if the receiver decides that the decoded message
contains too many errors. Interuser interference can be partly accounted for
in determining the sets of allowable power combinations and the acceptance
functions qi(·) in (A3.3) or (A3.5). Unless otherwise specified, when dealing
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with an arbitrary scheduling interval we will use the canonical variables j for
the channel state and x̄ for the queue state at the start of the interval, whatever
it is.

Example 2.1. Power allocation, completely known channel state. In
this scheme, in each scheduling interval one chooses a set of queues and transmits
simultaneously from them, and power only is to be allocated. There is a total
amount of power nū which is to be divided among the queues. Let nui(j, x̄)
denote the power allocated to queue i during the current scheduling interval.
Thus,

∑

i

ui(j, x̄) ≤ ū, each channel state j. (2.1)

For each channel state j, the rate of (bit or packet) transmission (per unit time
in the scheduling interval) is assumed to be proportional to the power allocated.
This can be realized in several ways. One is to allow the possibility of several
“spreading sequences” per queue [5]. An alternative is to allow the bit interval
to be controllable (sometimes called “time diversity”). In particular, suppose

that there are (perhaps queue-dependent) basic time intervals ∆̄b,n
i , of which

the actual bit interval is one of the multiples m∆̄b,n
i , m = 1, . . . , mi, for some

given mi < ∞. Thus, cutting the bit interval in half would require twice the
power for the same signal to noise ratio. Set mi = 1 if bit interval control is
not allowed for queue i. Thus there are constants λ̄d

i (j) such that the number
of packets per unit time that can be sent from queue i under channel state j is
nλ̄d

i (j)ui(j, x̄) for the allowed values of ui(j, x̄).1 Additional details for one case
are in the comments following the example. The chosen bit interval (duration)
is constant during a scheduling interval.

With this setup, there is a basic packet interval ∆̄p,n
i (the number of bits

per packet times ∆̄b,n
i ) and the packets can have the durations m∆̄p,n

i , m =
1, . . . , mi. The scheduling interval is assumed to be much larger than the packet
interval in that ∆̄s,n >> mi∆̄

p,n
i , but nν∆̄s,n → 0, where we recall that nν is

the scaling for the channel state process. Thus the channel state changes slowly
relative to the length of the scheduling interval. The allocated power has two
roles. It determines the transmission rate as well as the probability that the
receiver will accept a transmitted packet. The following remarks provide more
detail on one case of interest.

Elaboration of the discussion of Example 2.1: A special case. Sup-
pose that the actual signal power at the receiver output is (a real number)
γi(j)ui(j, x̄). Then γi(j) defines the channel state. Suppose that if the power
allocation to any queue is not zero then it must be such that the signal to noise
ratio per bit at the receiver is at least some given positive number (which might
be channel- and queue-state dependent). Since detection is done bit by bit, it

1More generally, one could replace nλ̄d

i
(j)ui(j, x̄) by nfi(j, ui(j, x̄)), for some monotonic

and continuous fi(·). This is always a designers choice. For example, one might consider a
nonlinear fi(j, ·) to account for delay spread or non white noise.
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is the signal to noise power ratio for each bit interval that is of interest, since it
determines the error distribution for the received packet. Hence it determines
whether the received packet is accepted or rejected.

Suppose that if the channel state is j and data is transmitted from queue i,
then we require a minimum required S/N ratio ci(j). Let x̄ denote the state at
the start of the current scheduling interval. Assume perfect synchronization (at
the bit level) at the receiver, and denote the bit interval which is to be actually
used by ∆ = O(1/n). Then the probability of error per bit at receiver i is

P
{

w(∆) ≥
√

γi(j)nui(j, x̄)∆
}

where w(∆) is a random variable that is normally distributed with mean zero
and variance σ2

i ∆. This probability equals

1√
2π

∫ ∞

[γi(j)nui(j,x̄)∆/σ2
i
(j)]1/2

e−ξ2/2dξ.

The signal/noise ratio of interest is

S

N
=

nui(j, x̄)γi(j)∆

σ2
i (j)

≥ ci(j).

Thus, either don’t transmit or choose ui(j, x̄) to yield a bit interval

∆ = m∆̄b,n
i ≥ ci(j)σ

2
i (j)

nγi(j)ui(j, x̄)

for some m ≤ mi. Let a1 denote the inverse of the number of bits per packet.
Then the rate of transmission λ̄d

i (j) of packets per unit power for queue i is
a1/∆. Equivalently, λ̄d

i (j) is defined by

a1
nγi(j)ui(j, x̄)

ci(j)σ2
i (j)

= nλ̄d
i (j)ui(j, x̄).

The scaled power is either zero or takes one of the values

ui(j, x̄) =
ci(j)σ

2
i (j)

nγi(j)m∆̄b,n
i

, m ≤ mi.

With this “variable bit length” model, the rate of transmission will always be
proportional to power. The m = 1 lower bound puts an upper bound on the
power that can be allocated to the queue.

We can allow a received packet to be rejected by the receiver if it decides that
there are too many errors. Then the acceptance probability will also depend
on the power and we let qi(j, ui(j, x̄)) denote the probability that the received
packet is accepted. [See A3.3 below.]

Example 2.2, which includes TDMA. In Example 2.1, it was supposed that
the total power is constrained to nū at each time and that the transmissions
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from all selected queues in a scheduling interval was done simultaneously. Al-
ternatively, suppose that we schedule by dividing time as well as power in the
following form of TDMA. Partition the µth scheduling interval into K subin-
tervals (some subintervals might not be connected and some might have length
zero) of total lengths ∆s,n

i,µ , i ≤ K, where
∑

i ∆s,n
i,µ = ∆̄s,n. The total length of

the ith subinterval will be zero if we do not serve queue i in that scheduling
interval. The ith subinterval will be connected if, once service on queue i starts
in that scheduling interval, then it continues until all the allocated time is used.
For services such as processor sharing, one cycles among the members of the
subset of selected queues, and the subintervals will not be connected. Summa-
rizing, in the µth scheduling interval, we transmit from queue i on a total time
of length ∆s,n

i,µ , which can depend on i, x̄ and j.
Suppose that the bit interval does not depend on x̄ but that it can depend

on i, j. In the simplest scheme the power is constant at value nū at all times.
However, since the scheduling intervals are short, if desired we can allow the
power to vary within the interval, but to average to nū over the interval. In
particular, let nui(j, x̄) denote the power that is applied to queue i during the
part of the scheduling interval that queue i is being worked on. [If ui(j, x̄) ≡ ū,
then we are back to the simplest scheme.] Then, in lieu of the pointwise con-
straint (2.1), we now constrain average total power over the scheduling interval
and (2.1) is replaced by

∑

i

ui(j, x̄)
∆s,n

i,µ

∆̄s,n
= ū, all j. (2.2)

Let λ̄d
i (j) denote 1/n times the number of packets transmitted per unit of allo-

cated time for queue i when the channel state is j. The effective rate of trans-
mitting packets per unit time over the current scheduling interval for queue i
is

nλ̄d
i (j)∆

s,n
i,µ

∆̄s,n
. (2.3)

The presence of the factor λ̄d
i (j) gives us the freedom to use bit intervals that

depend on i, j. One chooses ui(j, x̄) to compensate for the channel dependent
attenuation and receiver noise. In general, the length of the subintervals will
depend on the state (j, x̄) at the start of the scheduling interval, and we define
the control over the time allocation to be vi(j, x̄) = ∆s,n

i,µ /∆̄s,n.

Extensions to Example 2.2. The setup of Example 2.2 can be extended in
many ways. A more complicated form keeps the time division, but allows the
bit intervals to depend on the queue state, as in Example 2.1. Redefine λ̄d

i (j) to
be the rate per unit of allocated time per unit power. Then, with qi(j, ui(j, x̄))
denoting the acceptance probability, the effective rate of transmitting packets
per unit time for the current scheduling interval can be written as

nλ̄d
i (j)ui(j, x̄)qi(j, ui(j, x̄))∆s,n

i,µ

∆̄s,n
. (2.4)
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This is the form (but with partially unknown channel state as well) that will be
used in the sequel when extensions to Example 2.2 are referred to.

Further complicating the model, we can allow the subintervals to overlap,
which means that transmission is allowed from several queues simultaneously,
perhaps a combination of CDMA and TDMA. For example, for part of the
interval we might transmit from one subset of queues via CDMA and similarly
from another subset on the rest of the interval.

3 A Fluid Approximation

Fluid approximations will be obtained for special cases of the models of the types
of Examples 2.1 and 2.2 and their extensions. It will be seen that the conditions,
results, and proofs, are essentially the same for all cases. In fact Theorem 3.3
for the extension of Example 2.2 covers all cases. The essential requirements are
a mixing condition on the channel state process, the continuity of the control
functions, and a weak convergence assumption on the scaled arrival process.
We start with Example 2.1 where the channel state is known. A convenient
representation of the transmission term is given and then the main theorem is
stated and proved. Theorem 3.2 concerns the case where the channel state is
only partially known and the proof requires only minor adjustments. Theorem
3.3 deals with the extension to Example 2.2 and, again, the proof requires only
minor alterations.

The fluid limits are given to show that they arise naturally even for the
non-Markov setup and are similar for all cases, and also because essentially the
same channel process is used for the stability analysis. The stability proofs do
not depend on the fact that there is a fluid approximation, only on the fact
that the differential equations (3.8), (3.17), or (3.22) (according to the case)
are stable under the controls which are used. Under the conditions that are
used for the stability analysis in Sections 4 and 5 (which allow more general
arrival processes), there might not be a fluid limit. Under the conditions of
this section, the ODE’s do represent the fluid approximations, but they also
represent the “average drift terms” under the conditions that are used for the
stability analysis. 2

3.1 Example 2.1.

Definitions and assumptions. Consider the model of Example 2.1 where the
assigned power to queue i is nui(j, x̄) at each time in the current scheduling
interval, and (2.1) holds. Let Ān

i (t) be 1/n times the number of packets that
have arrived at queue i by time t. Let D̄n

i (t) denote 1/n times the number
of packets whose transmission from queue i was completed and which were

2With a little extra work, the rates λ̄a

i
and λ̄d

i
(j) could depend (continuously) on the

queue-state.
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accepted by the receiver by time t. Then

x̄n
i (t) = x̄n

i (0) + Ān
i (t) − D̄n

i (t). (3.1)

The arrivals are assumed to occur in batches, with va,n
i,l denoting the size of

the ith batch. Let Iα,n
i,lδn

, α = a (resp., α = d) denote the indicator function of

an arrival (resp., completed transmission) at queue i at time lδn, and let Ir,n
i,lδn

denote the indicator function that such a transmitted packet was accepted by
the receiver and does not need to be retransmitted. Then

D̄n
i (t) =

1

n

t/δn
∑

l=0

Id,n
i,lδn

Ir,n
i,lδn

. (3.2)

When t/δn appears as an index of summation, as in (3.2), take the integer part.
If there is an arrival of a batch at time kδn, denote the size by va,n

i,kδn
. The scaled

arrival process is

Ān
i (t) =

1

n

t/δn
∑

l=0

va,n
i,lδn

Ia,n
i,lδn

, (3.3)

Assumption 3.3 formalizes the white noise and detection assumptions made in
the Introduction. Let En

t denote the expectation conditioned on all of the system
data to time t. In all weak convergence statements, the Skorohod topology [3]
is used on the space of functions on the value space which are right continuous
and have left hand limits.

A3.1. {x̄n(0)} is tight.

A3.2. There are constants λ̄a
i and v̄a

i such that the process Ān
i (·) converges

weakly to the nonrandom process with values tλ̄a
i v̄a

i .

A3.3. The probability that the lth packet sent from queue i will be rejected,

conditioned on the data up to the time that the transmission of the packet is

complete, is qi(j, ui(j, x̄)), which is continuous in ui for each i, j, where (j, x̄)
is the (channel, queue) state at the start of the scheduling interval in which the

packet is sent. Also, qi(j, 0) = 0.

A3.4. There are Π(j) such that for each i, j, and T < ∞, the integral

∫ T

t

En
t

[

I{Ln(s)=j} − Π(j)
]

ds = n−ν

∫ nνT

nνt

En
t

[

I{L(s)=j} − Π(j)
]

ds

is well-defined, bounded uniformly in ω, n, t ≤ T , where ω is the canonical vari-

able of the probability space, and it converges to zero uniformly in t ≤ T and in

ω, as n → ∞,

Remarks on the assumptions. (A3.2) simply says that for high enough
system speed and arrival “rates,” 1/n times the number of packets arriving in

10



any time interval is approximately the mean packet size times the mean arrival
rate times the interval. The form used in the stability analysis is more general,
allowing non-degenerating “Poisson jumps” and other forms of burstiness of
the scaled process. Condition (A3.4) is not restrictive. Commonly, there is
enough “mixing” in L(·) so that the right hand integral is bounded uniformly
in (t, T ). For example, if L(·) is an ergodic finite-state Markov chain, then the
convergence of the conditional expectation is exponentially fast, whatever the
initial condition, and the right-hand integral is bounded.

Representations for the transmission term. Let x̄n
i [s] and Ln[s] denote

the values of the queue and channel states at the start of the scheduling interval
containing time s. For simplicity in the representation of the transmission term,
suppose that a queue i with λ̄d

i (j) > 0 can be served with a particular power
allocation in the scheduling interval only if the number of packets that it contains
at the beginning of the interval is at least what could be served during that
interval under the power allocation, unless this condition is impossible to meet
for all queues. I.e., for any channel state j there is no idle time unless all queues
with positive λ̄d

i (j) have very small content. This assumption will have no effect
on the stability analysis, which concerns queue-state values that are not small.
More precisely, the scaled number of packets that can be transmitted from queue
i in the µth scheduling interval when the channel state is j and under a given
power allocation is proportional to both the scheduling interval and the power
and is

dn
i (j) =

1

n

[

nλ̄d
i (j)ui(j, x̄

n(µ∆̄s,n))∆̄s,n
]

→ 0, as n → ∞.

Thus in Theorems 3.1–3.3 we suppose that (when the channel state is j) if
ui(j, x̄

n[lδn]) > 0, then x̄n
i [lδn] ≥ dn

i (j). Actually, the the requirement in the
theorems that ui(j, ·) be continuous and have zero value at x̄ = 0, covers the
above restriction, since it assures that negligible power is applied to queues with
negligible content.

Rewrite (3.2) by centering the summands about their “conditional mean
values:”

D̄n
i (t) =

[

D̄n
i (t) − D̄0,n

i (t)
]

+ D̄0,n
i (t), (3.4)

where the centering term is

D̄0,n
i (t) =

δn

t/δn
∑

l=0

∑

j

λ̄d
i (j)ui(j, x̄

n[lδn])qi(j, ui(j, x̄
n[lδn]))I{Ln[lδn]=j}I{x̄n

i
[lδn]>dn

i
(j)}.

(3.5)
The right hand indicator function is redundant since it will be unity if and only
if ui(j, x̄

n[lδn]) > 0, and it will be dropped. The centered term (the bracketed

11



term in (3.4)) is thus

1

n

t/δn
∑

l=0



Id,n
i,lδn

Ir,n
i,lδn

− nδn

∑

j

λ̄d
i (j)ui(j, x̄

n[lδn])qi(j, ui(j, x̄
n[lδn]))I{Ln[lδn]=j}



 .

(3.6)

Define the occupation measure process T n(j, t) =
∫ t

0 I{Ln(s)=j}ds. As will be
seen in Theorem 3.1, the limit T (j, ·) satisfies

T (j, t) = Π(j)t. (3.7)

This and the assumed continuity of the ui(j, ·) will yield the limit form

x̄i(t) = x̄i(0) +

∫ t

0

bi(x̄(s), u(x̄(s))ds,

bi(x̄, u(x̄)) = λ̄a
i v̄a

i −
∑

j

λ̄d
i (j)ui(j, x̄)qi(j, ui(j, x̄))Π(j).

(3.8)

In Theorems 3.1–3.3, we suppose that ui(j, 0) = 0 in order to simplify the
treatment on the boundary and concentrate the power and time allocations on
the queues with non-negligible content. With this scheme, all of the power might
not be used if x̄ is very small, even if not zero. But the assumptions are used
to get a canonical fluid model only, and the stability analysis in Sections 4–6
concern large x̄ values.

Theorem 3.1. Assume (A3.1)–(A3.4), let the ui(j, ·) be continuous with ui(j, 0)
= 0, and suppose that the channel state is known. Assume (3.1) and the model

of Example 2.1. Then {x̄n(·)} is tight. The limit of any weakly convergent

subsequence satisfies (3.8).

Remark on the continuity of the controls. Continuity is assumed to fa-
cilitate the proof. The result using relaxed controls which is given after the
theorem always holds, and implies that (3.8) still holds with the understanding
that the possible values of the control at any point in the set of discontinuity
are in the convex hull of the values in the “neighboring” points.

Proof. To evaluate D̄n
i (·), start by considering the centered sum, for each j,

1

n

t/δn
∑

l=0

Id,n
i,lδn

[

Ir,n
i,lδn

− qi(j, ui(j, x̄
n[lδn]))

]

I{Ln[lδn]=j}. (3.9)

Under (A3.3) the summands are martingale differences. The variance of (3.9)
is bounded by

C

n2
E

t/δn
∑

l=1

Id,n
i,lδn

I{Ln[lδn]=j},

12



where C is an upper bound on the expectation of
[

Ir,n
i,lδn

− qi(j, ui(j, x̄
n[lδn]))

]2

,

conditioned on the channel state j, x̄n[lδn], and the fact that the transmission
of a packet is completed at lδn. Since the sum is O(t/n), the processes defined
by (3.9) converge weakly to the “zero” process.

Next consider the sum (which is the centering in (3.9))

∑

j

1

n

t/δn
∑

l=0

Id,n
i,lδn

qi(j, ui(j, x̄
n[lδn]))I{Ln[lδn]=j}. (3.10)

Note that the coefficient of Id,n
i,lδn

in (3.10) for lδn in the µth scheduling interval
depends on the queue and channel states at the start of the interval only, and
not otherwise on l or µ. Fix the channel state at the start of a scheduling
interval to be j, and take the sum in (3.10) only over those l that correspond to
that scheduling interval. Then, recalling the definitions of λ̄d

i (j) as 1/n times
the rate per unit power, and of [lδn] as the time at the start of the scheduling
interval containing lδn, the contribution to the sum (3.10) of these indices l is
just (for any lδn in the interval and any channel state j)

λ̄d
i (j)ui(j, x̄

n[lδn])qi(j, ui(j, x̄
n[lδn]))I{Ln[lδn]=j}∆̄

s,n.

Thus, by summing over j and modulo an asymptotically negligible error, (3.10)
equals

δn

t/δn
∑

l=0

∑

j

λ̄d
i (j)ui(j, x̄

n[lδn]))qi(j, ui(j, x̄
n[lδn]))I{Ln[lδn]=j}, (3.11)

which is (3.5). Thus (3.9) equals (3.6).
The centering process (3.11) is tight; in fact, it is asymptotically Lipschitz

continuous on the infinite time interval. Hence by the above approximations
{x̄n(·)} is tight and is asymptotically Lipschitz continuous on any finite interval.
Take a weakly convergent subsequence and, for notational simplicity, abuse
notation and index it by n. The weak convergence, continuity of the limit,
and the fact that ∆̄s,n → 0, implies that for any T < ∞, and in the sense of
probability,

lim
n

sup
t≤T

|xn(t) − xn[t]| = 0. (3.12)

We need only characterize the limit of the integral approximation to (3.11),
namely of,

∑

j

∫ t

0

λ̄d
i (j)ui(j, x̄

n[s])qi(j, ui(j, x̄
n[s]))T n(j; ds). (3.13)

where we write I{Ln[s]=j}ds = T n(j; ds). By (3.12), one can replace xn[s] by
xn(s) without changing the limits.
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Proof that dT (j; t)/dt = Π(j). A perturbed test function method [8] will be
used. It is sufficient to work on an arbitrary time interval [0, T ]. Let Fn

t denote
the minimal σ-algebra which measures all of the arrival, service, acceptance and
channel state processes to time t. Let En

t denote the associated conditional
expectation. For any countable sequence δ → 0, let f δ,n(·) be a sequence of
Fn

t -adapted real-valued processes. Fix n. Following [8, 6], we say that p−
limδ→0 f δ,n(·) = 0 if supδ,t E|f δ,n(t)| < ∞ and limδ→0 E

∣

∣f δ,n(t)
∣

∣ = 0 for each

t. Define the operator Ân as follows. We say that fn(·) ∈ D(Ân) (the domain
of Ân) and Ânfn(t) = gn(t) if

p−limδ→0

[

En
t fn(t + δ) − fn(t)

δ
− gn(t)

]

= 0.

For s, t ≥ 0, we have T n(j; t + s) − T n(j; t) ≤ s. Thus {T n(j, ·)} is tight
in the Skorohod topology and all limits are Lipschitz continuous. Let f(·) be a
bounded real-valued test function on [0,∞), with compact support and whose
derivatives up to second order are continuous and let fv(·) denote the first
derivative. Then Ânf(T n(j : t)) = fv(T

n(j; t))I{Ln(t)=j}. For t ≤ T , define the
test function perturbation

δfn(t) = fv(T
n(j; t))

∫ T

t

En
t

[

I{Ln(s)=j} − Π(j)
]

ds,

and set fn(t) = f(T n(j; t)) + δfn(t). By (A3.4), supt |δfn(t)| → 0, uniformly in
ω as n → ∞. Note that, for t ≤ T ,

Ânδfn(t) =

−fv(T
n(j; t))

[

I{Ln(t)=j} − Π(j)
]

+ O(1)

∣

∣

∣

∣

∣

∫ T

t

En
t

[

I{Ln(s)=j} − Π(j)
]

ds

∣

∣

∣

∣

∣

.

(3.14)
By (A3.4), the last term on the right of (3.14) also goes to zero uniformly in
t, ω, as n → ∞. Thus, by (A3.4) and (3.14),

lim
n→∞

p−limδ→0

∣

∣

∣

∣

En
t fn(t + δ) − fn(t)

δ
− fv(T

n(j; t))Π(j)

∣

∣

∣

∣

= 0.

It follows from this [8, Theorem 1, Chapter 4], the tightness of {T n(j, ·)}, and
the fact that the perturbations δfn(t) converge to zero uniformly in t, ω, that
T n(j, ·) converges weakly to the process with values Π(j)t.

Now, use the approximation

∫ t

0

∑

j

λ̄d
i (j)ui(j, x̄

n(s))qi(j, ui(j, x̄
n(s)))dT n(j; s)

of (3.13), the weak convergence, and the continuity of qi(j, ·) and ui(j, ·), to get
the last term of (3.8).
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A representation of (3.5) in terms of relaxed controls. Relaxed controls
[9] will not be needed in the sequel, but they do allow us to get a limit without
any continuity restrictions on the controls ui(j, ·). We comment briefly on the
changes in the theorem. Define ūn

i (j, t) = ui(j, x̄
n[t]). Define the control space

of K-tuples U = {α = (α1, . . . , αK) :
∑

i αi ≤ ū}. Define the relaxed control
representation rn

i (j : ·) of ūn
i (j, ·) via its derivative with respect to Lebesgue

measure rn
i,t(j : ·); namely, define

rn
i,t(j : dαi) = I{ūn

i
(j,t)∈dαi}I{Ln(t)=j},

and

rn
i (j : A × [0, t]) =

∫ t

0

∫

A

rn
i,s(j, dαi)ds,

for any Borel set A ∈ [0, ū]. Note that

∑

i

rn
i (j; [0, ū] × t) = T n(j : t).

Write (3.5) as (modulo an asymptotically negligible error, due to the approxi-
mation of the sum by an integral)

∫ t

0

∑

j

∫

[0,ū]

λ̄d
i (j)αiqi(j, αi)r

n
i,s(j : dαi)ds. (3.15)

With the weak topology used on the space of relaxed controls, the sequence of
relaxed controls {rn

i (j, ·)} is always tight for each i, j [9]. Thus, taking a weakly
convergent subsequence for all i, j, yields the limit form

x̄i(t) = x̄i(0) + λ̄a
i v̄a

i t −
∫ t

0

∑

j

∫

[0,ū]

λ̄d
i (j)αiqi(j, αi)ri,s(j : dαi)ds. (3.16)

Incompletely known channel state. In Theorem 3.1, it was supposed that
the channel state process Ln(t) is known at the beginning of each scheduling
interval. This might be a good approximation. But, whatever the means of
estimation, it will never be perfect and any practical method must be robust
with respect to estimation errors. We will consider a reasonable formulation
for which the required changes are minor. Let Le,n(·) denote the estimated
channel-state process and je the canonical value of the estimate. The channel
estimation procedure satisfies (A3.5). The controls will be a function of the
queue state and the current estimate of the channel state. When the estimate
is je, the rate of transmission per unit power is now written as λ̄d

i (je), since the
basic bit interval must be based on the estimate.

Recall that j is vector-valued; it is the state of all K connecting individual
channels. It is possible that some components of the channel state are known or
well estimated, but other components are not estimated at all. This possibility
is covered in the following framework.
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A3.5. The channel estimation is done at the start of each scheduling inter-

val, with no filtering (i.e., previous estimates are not used to get the current

estimate). Let Π(je|j) denote the probability (conditioned on the systems data

to the start of the current interval, and that the current true channel state is j)
that the current estimate is je. Let qi(j, je, ui(je, x̄)) denote the probability that

a packet transmitted in the current interval is accepted at the receiver, condi-

tioned on the data to the time of completion of transmission, when the channel

state is j, the estimate is je and queue-state vector at the start of the interval

is x̄. Suppose that qi(j, je, ui) is continuous in ui. Also, qi(j, je, 0) = 0

The fluid limit will have the form

x̄i(t) = x̄i(0) +

∫ t

0

be
i (x̄(s), u(x̄))ds,

be
i (x̄, u(x̄)) = λ̄a

i v̄a
i −

∑

j,je

λ̄d
i (je)ui(je, x̄)qi(j, je, ui(je, x̄))Π(je|j)Π(j).

(3.17)
Define Πe(je) =

∑

j Π(je|j)Π(j), the “stationary probability” that the estimate
is je. Define the conditional probability Π(j|je) = Π(je|j)Π(j)/Πe(je) by Bayes’
rule, and define the average probability of acceptance of a packet at the receiver

q̄i(je, αi) =
∑

j

qi(j, je, αi)Π(j|je).

Then the be
i (·) in (3.17) can be written as

be
i (x̄, u(x̄)) = λ̄a

i v̄a
i −

∑

je

λ̄d
i (je)ui(je, x̄)q̄i(je, ui(je, x̄))Πe(je), (3.18)

which is (3.8) with the average probability used and je replacing j.

Theorem 3.2. Assume (A3.1), (A3.2), (A3.4), (A3.5), and the model of Ex-

ample 2.1 with continuous ui(j, ·) and ui(j, 0) = 0. Then {x̄n(·)} is tight and

the limit of any weakly convergent subsequence satisfies (3.17) and (3.18).

Comments on the proof. The development is similar to that of Theorem
3.1. The expression (3.9) is replaced by

1

n

t/δn
∑

l=0

Id,n
i,lδn

[

Ir,n
i,lδn

− qi(j, je, ui(je, x̄
n[lδn]))

]

I{Ln[lδn]=j,Le,n[lδn]=je}. (3.19)

By (A3.5), the summands are still martingale differences. Thus, using the pro-
cedure in Theorem 3.1, the analog of (3.10) is seen to be

1

n

t/δn
∑

l=0

∑

j,je

Id,n
i,lδn

qi(j, je, ui(je, x̄
n[lδn]))I{Ln[lδn]=j,Le,n[lδn]=je}. (3.20)
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By (A3.5) and another “martingale” argument the indicator function
I{Ln[lδn]=j,Le,n[lδn]=je} can be (asymptotically) replaced by I{Ln[lδn]=j}Π(je|j)
without changing the limits. This yields

1

n

t/δn
∑

l=0

∑

j,je

Id,n
i,lδn

qi(j, je, ui(je, x̄
n[lδn]))I{Ln[lδn]=j}Π(je|j). (3.21)

The rest of the development is similar to that of Theorem 3.1.

3.2 Example 2.2. Known or Incompletely Known Channel

State.

The development is nearly identical to that of Theorems 3.1 or 3.2. Arbitrary
combinations of the two canonical forms can be treated similarly. The model in
the following theorem is that of the Extension to Example 2.2, where the rate
of transmission is proportional to the power and the effective rate per unit time
is given by (2.4). Thus, there are two controls, which are the power and the
time allocations.

Theorem 3.3. Assume (A3.1), (A3.2), (A3.4), (A3.5), the model of the exten-

sion to Example 2.2, and (2.2). Let vi(je, ·) and ui(je, ·) be continuous with

ui(j, 0) = vi(j, 0) = 0. Then set {x̄n(·)} is tight and the limit of any weakly

convergent subsequence satisfies (be
i (·) is redefined) here

x̄i(t) = x̄i(0) +

∫ t

0

be
i (x̄(s), v(x̄(s)), u(x̄(s)))ds

be
i (x̄, v(x̄), u(x̄))

= λ̄a
i v̄a

i −
∑

j,je

λ̄d
i (je)ui(je, x̄)vi(je, x̄)qi(j, je, ui(je, x̄))Π(je|j)Π(j),

(3.22)
or, equivalently,

be
i (x̄, v(x̄), u(x̄)) = λ̄a

i v̄a
i −

∑

je

λ̄d
i (je)ui(je, x̄)vi(je, x̄), q̄i(je, ui(je, x̄))Πe(je).

(3.23)

Comments on the proof. The approximations (3.19)–(3.21) still hold. Again,

the coefficients of Id,n
i,lδn

in (3.19), (3.20) for lδn in the µth scheduling interval
depend only on the queue state and channel state estimate at the beginning
of that interval, and not otherwise on the index l. For fixed j, the sum of the
terms Id,n

i,lδn
/n in that scheduling interval equals

λ̄d
i (je)vi(je, x̄)ui(je, x̄)∆̄s,n,

where x̄ is the queue state and je the channel state estimate at the beginning
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of the interval. Thus, in the present case (3.11) is replaced by

δn

t/δn
∑

l=0

∑

j,je

λ̄d
i (je)qi(j, je, ui(je, x̄

n[lδn]))ui(je, x̄
n[lδn])

×vi(je, x̄
n[lδn])Π(je|j)I{Ln[lδn]=j}.

(3.24)

The rest of the development is similar to that of Theorems 3.1 and 3.2.

Comments on the generality of the approach. Theorem 3.3 includes Theo-
rems 3.1 and 3.2. The forms (3.19)–(3.21) for the number of packets successfully
transmitted is the same for all cases. If the channel state is known, then just
let je = j. These expressions simply represent counting of the transmitted and
accepted packets, whether centered about the acceptance probability or not.
They can be used as long as the acceptance probability depends only on the
channel state, its estimate, and the applied power, whatever the physical system
happens to be. Thus, one needs only to evaluate the form (3.21) to get the limit
process. As in the theorems, this form is evaluated for each scheduling interval
separately. Since the coefficient of the Id,n

i,lδn
is constant over the scheduling in-

terval, it is only the number of nonzero Id,n
i,lδn

in that interval that need to be
computed. But this is just the rate of transmission of packets, which depends
only on the choices made at the start of the interval. With this understanding,
various combinations of Examples 2.1 and 2.2 are possible, For example, the
subintervals in Example 2.2 can overlap each other.

4 Stability: Assumptions: Example 2.1

Owing to the fact that the queue length processes are not Markov, the classi-
cal Liapunov function methods [4, 7] cannot be used directly. The perturbed
Liapunov function method of the form in [8, 10] is a powerful method for non-
Markovian problems of the types that arise in this paper. The method starts
with a classical Liapunov function for the fluid limit, and then adds appropriate
perturbations to “average” the non-Markovian “noise.”

The assumptions that will be used to define the perturbations will be stated
and discussed in this section. It will be seen that the requirements are modest.
We will concentrate on Example 2.1, when the channel state is known. The
minor changes for the other cases will be discussed at the end of the next
section. The actual stability proof is given in the next section. The service
processes are determined by the system structure in Example 2.1 or 2.2.

We choose a particular set of conditions, defined by (A4.1), for the arrival
processes. These are weaker than (A3.2), but are only illustrative of the possi-
bilities. The form is chosen to cover “steady” arrival streams as well as large
bursts. The form is flexible and allows numerous variations of interest, as noted
in the discussion below (A4.3).

The smoothness condition on ui(j, x̄) in (A4.3) is a technical requirement for
the general problem and can be weakened under additional (but still reasonable)
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assumptions on the problem. This is seen in the remarks at the end of Section 6,
where we show that the smoothness condition can be dropped for the problem
of concern there.

When we say that a sum is well-defined in (A4.1) and (A4.2), we mean

that the sequence
∑M

l=k converges boundedly as M → ∞, uniformly in ω, with
probability one, for each (k, n). More generally, we could use discounted sums of
the type discussed at the end of Example 4.2. We also note that the development
could be extended to allow the arrival rates, mean batch sizes, and service rates
to depend on the queue state. For example, replace λ̄a

i by λ̄a
i (x̄n[µ∆s,n]) during

the µth scheduling interval, where λ̄a
i (·) is bounded and continuous, and change

the stability condition (A5.6) accordingly.

A4.1. The channel-state process and the data arrival process are mutually in-

dependent. For each i, k, the sum

Ca,n
i,kδn

=
1

n

∞
∑

l=k

En
kδn

[

va,n
i,lδn

Ia,n
i,lδn

− nδnλ̄a
i v̄a

i

]

, (4.1)

is well-defined, and bounded uniformly in k, ω, with probability one.

A4.2. For each i, j, k, the sum

Cd,0,n
kδn

(j) =

−δn

∞
∑

l=k

En
kδn

[

I{Ln[lδn]=j} − Π(j)
]

= −δn

∞
∑

l=k

En
kδn

[

I{L[nν lδn]=j} − Π(j)
]

(4.2)
is well-defined and, as n → ∞, it goes to zero, uniformly in k, ω, with probability

one.

A4.3. qi(j, ·) and ui(j, ·) have bounded and uniformly continuous first order

partial derivatives.

Discussion of the process Ca;ni;kÆn for the arrivals. Let us examine Ca,n
i,kδn

more closely to understand why our requirement on its value is reasonable.
Consider queue i. The following examples are illustrative, but not exhaustive.

Example 4.1. First, suppose that the unscaled packet arrival process is com-
pound Poisson with rate nλ̄a

i , with the batch sizes having a uniformly bounded
variance and mean v̄a

i . Approximate to discrete time so that rate nλ̄a
i , means

that the conditional probability of a single arrival on any single interval [lδn, lδn+
δn) is δnnλ̄a

i , with multiple arrivals not possible. Then, owing to the use of the
conditional expectation, each of the summands in (4.1) is zero. Under this Pois-
son condition, (A3.2) also holds. Now, let the rate for the unscaled process be
λ̄a

i , with batch sizes nva,n
i,lδn

for a batch arriving at lδn. Let va,n
i,lδn

be bounded
with mean v̄a

i . Then, the summands in (4.1) are still zero, but (A3.2) no longer
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holds. Any limit of x̄n(·) would be subject to a Poisson driving process. Such
jumps are one way of modeling burstiness: The input bursts can be of the order
of the speed of the system. Clearly intermediate Poisson cases are possible.

Example 4.2. To exhibit another class of examples, define ∆̄a
i = 1/λ̄a

i . Since
λ̄a

i v̄a
i is merely a centering constant for the entire sequence, the actual mean

values or rates can vary with time (say, being periodic, etc.). Since the arrival
rate is O(n), scale the interarrival times by defining a quantity ∆a,n

i,l such that

the interarrival times are ∆a,n
i,l /n. Fix k and let µk,n

i,1 δn and µk,n
i,2 δn denote the

times of the first two arrivals to queue i at or after time kδn. Consider the part
of Ca,n

i,kδn
given by

En
kδn

µk,n
i,2

∑

l=µ,n
i,1

+1

[

va,n
i,lδn

Ia,n
i,lδn

− nδnλ̄a
i v̄a

i

]

.

This equals

En
kδn

[

va,n

i,µk,n
i,2

δn
− (µk,n

i,2 − µk,n
i,1 )nδnλ̄a

i v̄a
i

]

. (4.3)

Next, for the moment, suppose that the interarrival times are mutually in-
dependent and identically distributed, with finite second moments, and mean
∆̄a

i /n, and that the batch sizes are mutually independent and independent of
the set of arrival times, and also have bounded second moments. Then the con-
ditional expectation (4.3) equals zero w.p.1, since En

kδn
(µk,n

i,2 − µk,n
i,1 )δn = ∆̄a

i /n

Obviously µk,n
i,1 δn and µk,n

i,2 δn can be any two successive arrival times with the
same result. Thus, under the independence assumption, the sum in Ca,n

i,kδn
is

just composed of the terms up to the time of the first arrival at or after time
kδn, namely,

v̄a
i En

kδn

[

1 − (µk,n
i,1 − k)λ̄a

i nδn

]

= v̄a
i En

kδn

[

1 −
(µk,n

i,1 − k)nδn

∆̄a
i

]

, (4.4)

where En
kδn

(µk,n
i,1 − k)δn is just the conditional expectation of the mean time to

the next arrival to queue i at or after time kδn, given the data to time kδn. The
quantity (4.4) is bounded uniformly in k, n, under the assumptions given above
on the independence and the moments.

Now, suppose that the interarrival times are correlated, still with mean
∆̄a

i /n, but retain the independence assumption on the set of batch sizes. Let

µk,n
i,l δn, l = 1, . . . , denote the sequence of arrival times to queue i at or after

time kδn. Then

En
kδn

[

1 − (µk,n
i,l+1 − µk,n

i,l )nδnλ̄a
i

]

= En
kδn

[

1 −
∆a

i,l

∆̄a
i

]

.
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Then, grouping terms, we see that the sum in Ca,n
i,kδn

is just (4.4) plus the series

∞
∑

l:µk,n
i,l

≥µk,n
i,1

En
kδn

[

1 −
∆a

i,l+1

∆̄a
i

]

va,n
i,l+1.

Owing to the conditional expectation, this sum is well-defined and bounded
uniformly in n, ω, under broad mixing conditions. So we see that (A4.1) is not
restrictive.

Discounted forms. Suppose that the batches in Example 4.2 cycle, alternat-
ing between 1 and 2. Then the sum

∑M
l=k of the summands in (4.1) will not

converge, but oscillate. This can be dealt with by using a discounted form of
Ca,n

i,kδn
such as

En
kδn

µk,n
i,1

∑

l=k

e−δn(l−k)
[

va,n
i,lδn

Ia,n
i,lδn

− nδnλ̄a
i v̄a

i

]

+

∞
∑

l:µk,n
i,l

≥µk,n
i,1

En
kδn

e−δn(µk,n
i,l

−k)

[

1 −
∆a

i,l+1

∆̄a
i

]

va,n
i,l+1.

This last expression simply discounts the summands up to the first arrival at
or after kδn, and then discounts the rest according to the beginning of the
associated interarrival interval. With a little extra algebra, such forms can be
used to extend (A4.1) and (A4.2), but we prefer to avoid the extra detail here.
See [10, 13] for other uses of such discounting in convergence theorems.

Example 4.3. Consider a situation where “arrival events” to queue i occur at
integral multiples of ci > 0, and an “arrival event” at time µci, µ = 1, 2, . . . ,
has value nνa,n

i,µci
, where the νa,n

i,µci
have mean v̄a

i . Suppose that the νa,n
i,µci

are
m-dependent. By “arrival event” at µci of value nνa,n

i,µci
, we mean that this

amount of data is ready to be transferred to the queue at that time, but due to
bandwidth limitations it arrives at a rate ndi over an interval of time νa,n

i,µci
/di.

Let νa,n
i,µci

≤ dici. Define λ̄a
i = 1/ci and let va,n

i,kδn
denote the amount that actually

arrives at time kδn. Then the “tail” of (4.1) is zero and (4.1) is well-defined
and bounded. This example can readily be generalized, the main point being
that bandwidth limitations and input control mechanisms will usually assure a
maximum (true, not average) arrival rate of O(n).

Discussion of the process (4.2) for the departures. Suppose that the
process L(·) is a finite-state ergodic Markov chain in continuous time with sta-
tionary probabilities Π(j). Then there are positive constants C, λ such that for
l ≥ k

∣

∣En
kδn

I{L(nν lδn)=j} − Π(j)
∣

∣ ≤ Ce−λnν(l−k)δn .
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Then (4.2) is bounded by

C
δn

1 − eλnνδn
≈ C

1

λnν
.

This bound also holds for a large set of semi-Markov processes. More generally,
L(·) could be a mixing process for which Cd,0,n

kδn
(j) goes to zero uniformly in

(k, ω) as n → ∞.

Auxiliary remarks concerning (A4.2). In the next section, (A4.2) will be
used in connection with the process

Cd,1,n
i,kδn

(j) = − 1

n

∞
∑

l=k

En
kδn

[

Id,n
i,lδn

Ir,n
i,lδn

− nδnri(j, x̄
n[lδn])

]

I{Ln[lδn]=j}, (4.5)

where we define
ri(j, x̄) = λ̄d

i (j)qi(j, ui(j, x̄))ui(j, x̄). (4.6)

Fix k and redefine µk,n
i,1 δn and µk,n

i,2 δn be the times of the first two completions
of packet transmissions from queue i at or after time kδn that were accepted at
the receiver. Consider the expression

En
[kδn]

µk,n
i,2

∑

l=µk,n
i,1

+1

[

Id,n
i,lδn

Ir,n
i,lδn

− nδnri(j, x̄
n[lδn])

]

I{Ln[lδn]=j}. (4.7)

For the moment, suppose that qi(j, ui(j, x̄)) = 1 for all i, j, x̄. Then the expected
time interval between completed packet transmissions in the current scheduling
interval (conditioned on the data to [kδn]) is just the inverse of the rate and is

1

nλ̄d
i (j)u

n
i (j, x̄n[lδn])

. (4.8)

This is

Qn
i,lδn

(j) =
1

nδnλ̄d
i (j)u

n
i (j, x̄n[lδn])

(4.9)

multiples of the basic measurement unit δn. Hence

En
[kδn]

(

µk,n
i,2 − µk,n

i,1

)

nδnλ̄d
i (j)ui(j, x̄

n[lδn]) =
En

[kδn]

(

µk,n
i,2 − µk,n

i,1

)

Qn
i,lδn

(j)
= 1. (4.10)

The sum over the indicator functions Id,n
i,lδn

Ir,n
i,lδn

in (4.7) is also unity. Hence

(4.7) equals zero. The result is similar if µk,n
i,1 δn and µk,n

i,2 δn are the times of any
successive completions of packet transmissions in the scheduling interval. We
can conclude that for all k, ω, the sum

∑∞
l=µk,n

i,1
+1 part of (4.5) is zero. Hence,

∣

∣

∣
Cd,1,n

i,kδn
(j)

∣

∣

∣
≤ C1/n (4.11)
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for some constant C1.
Now, admit the possibility of rejections, but with qi(j, ui(j, x̄)) being either

greater than some positive number or else zero, corresponding to no power. Re-
define µk,n

i,1 δn and µk,n
i,2 δn to be the times of the first two completions of packet

transmissions from queue i at or after time kδn that were accepted at the re-
ceiver. The time between completed transmissions in the scheduling interval
is still (4.8). Thus the left side of (4.10) is just the conditional mean num-
ber of packets transmitted per acceptance at the receiver. Since this equals
1/qi(j, ui(j, x̄

n[lδn])), (4.7) still equals zero.
We will also have use for the process defined by (see (5.4))

δnri(j, x̄
n[kδn])

∞
∑

l=k

En
kδn

[

Π(j) − I{Ln(lδn)=j}

]

, (4.12)

where ri(j, ·) was defined in (4.6). For future use, define the replacement for
ri(j, ·) when the channel is only partially known:

re
i (j, je, x̄) = λ̄d

i (je)qi(j, je, ui(je, x̄))ui(je, x̄). (4.13)

Time required for channel estimation. Suppose that part of the scheduling
interval is taken by estimation of the channel state, and that no actual packet
transmissions can take place then. The rates of concern are over the entire
scheduling interval. Thus, without changing the end result, we can account for
the time required for estimation by simply adjusting the rates appropriately.
[I.e., effectively spreading the estimation time over the scheduling interval.]

5 Stability Proofs

5.1 Example 2.1 With Known Channel State

The form of the perturbed Liapunov function. Let V (·) be a Liapunov
function for the fluid model (3.8) under a chosen control u(j, x̄) in that (A5.1)
and (A5.6) hold. The actual Liapunov function which is used for the physical
problem will differ by a small perturbation. The stability analysis will use
(A4.1)–(A4.3) in addition to the following assumptions. If V (x̄) is a polynomial,
which is the form used in the next section, then the cases of Examples 4.1–4.3 all
hold. The case where the actual number arriving in any time interval is bounded
by n times the interval, modulo a small error, is also covered (assuming that
(A4.1) holds). This latter form would hold if the connection to the queue of
the arrival process, however bursty, was subject to a either a token bank type
controller, or to bandwidth limitations of O(n). (A5.4)–(A5.6) are to hold for
the chosen controls. Condition (A5.8) and the last part of (A5.2) are needed
since we ultimately work with the scheduling intervals.
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The conditions might seem formidable at first sight. But they are reasonable,
as seen from Examples 4.1–4.3 and the results in the next section. Recall the
definition of stability, uniformly for large n, given in the Introduction.

A5.1. V (·) is a continuous nonnegative real-valued function of x̄ which goes to

infinity as x̄ → ∞. Its partial derivatives up to second order are continuous.

The gradient is denoted by Vx̄(·) and the Hessian by Vx̄x̄(·).

A5.2. The rate of arrivals is O(n) in the following sense. There are constants

Ci such that (all with probability one for each k, n, µ),
[

Ān
i (kδn + δn) − Ān

i (kδn)
]

≤ C1,

nEn
kδn

[

Ān
i (kδn + δn) − Ān

i (kδn)
]

≤ C2,

nEn
kδn

[

Ān
i (kδn + δn) − Ān

i (kδn)
]2 ≤ C3,

En
µ∆̄s,n

[

Ān
i (µ∆̄s,n + ∆̄s,n) − Ān

i (µ∆̄s,n)
]2 ≤ C4∆̄

s,n.

A5.3. For each i and positive ρ̄ and |ρ| ≤ ρ̄ < ∞,

lim sup
|x̄|→∞

|Vx̄i(x̄ + ρ)|
|Vx̄i(x̄)| < ∞,

lim sup
|x̄|→∞

|Vx̄x̄(x̄ + ρ)|
|Vx̄x̄(x̄)| < ∞.

A5.4. lim
|x̄|→∞

|Vx̄x̄(x̄)|
|V ′

x̄(x̄)b(x̄, u(x̄))| = 0.

A5.5. lim sup
|x̄|→∞

|Vx̄(x̄)|
|V ′

x̄(x̄)b(x̄, u(x̄))| < ∞.

A5.6. lim sup
|x̄|→∞

V ′
x̄(x̄)b(x̄, u(x̄)) < 0.

A5.7. lim
|x̄|→∞

|Vx̄(x̄)|
V (x̄)

= 0.

A5.8. Define ∆Ān(µ∆̄s,n) = Ān(µ∆̄s,n+∆̄s,n)−Ān(µ∆̄s,n). For some C5 < ∞,

lim sup
|x̄|→∞

sup
µ

En
µ∆s,n

∣

∣Vx̄i

(

x̄ + ∆Ān(µ∆̄s,n)
)
∣

∣

∣

∣∆Ān(µ∆̄s,n)
∣

∣

|Vx̄i(x̄)| ≤ C5∆̄
s,n,
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Define δĀn
kδn

= Ān(kδn) − Ān[kδn]. Then for each i

lim sup
|x̄|→∞

sup
k

En
[kδn]

∣

∣Vx̄x̄(x̄ + δĀn
kδn

)
∣

∣

|Vx̄x̄(x̄)| < ∞.

There is c0(∆̄
s,n) which goes to zero as ∆̄s,n → 0 such that

lim sup
|x̄|→∞

sup
k

En
[kδn]

∣

∣Vx̄i(x̄ + δĀn
kδn

) − Vx̄i(x̄)
∣

∣

|Vx̄i(x̄)| ≤ c0(∆̄
s,n).

See also the remarks at the end of Section 6, concerning discontinuous con-
trols.

Theorem 5.1. Assume the model of Example 2.1, (2.1), (A3.1), (A3.3), (A4.1)–
(A4.3) and (A5.1)–(A5.8) . Let the channel state be known. Then x̄n(·) is stable,

uniformly for large n.

Proof. The proof proceeds as usual in stability studies. One defines a Liapunov
function and then shows that it has the required supermartingale property for
large x̄. Since the queue-state process is not Markovian, the perturbed Lia-
punov function method as described in [8] will be used. We start by using
the Liapunov function V (·) for the fluid approximation and then “correct” it
to eliminate undesirable terms in its expansion. Since arrivals and departures
from the queues take place only at integral multiples of δn, we start by looking
at the queues at those times. Ultimately, we will need to look at the queues at
the starting times of the scheduling intervals, since those are the only times at
which the controls can change.

Define
Θn

i,k = va,n
i,kδn

Ia,n
i,kδn

+ Id,n
i,kδn

, Θn
k =

∑

i

Θn
i,k.

A truncated Taylor series expansion yields

En
kδn

V (x̄n(kδn + δn)) − V (x̄n(kδn)) =

1

n
En

kδn

∑

i

Vx̄i(x̄
n(kδn))

[

va,n
i,kδn

Ia,n
i,kδn

− Id,n
i,kδn

Ir,n
i,kδn

]

+
1

n2
O(1)En

kδn

∣

∣Vx̄x̄(x̄n(kδn) + θn
kδn

/n)
∣

∣

∑

i

[

va,n
i,kδn

Ia,n
i,kδn

− Id,n
i,kδn

Ir,n
i,kδn

]2

,

(5.1)
where |θn

kδn
| ≤ Θn

k . The first order terms in (5.1) depend on the random indicator
functions of the arrival, service and acceptance events, as well as on the random
batch sizes. We will need to replace these random variables by their “averages,”
and this is the role of the perturbations.

For all i, j, define the Liapunov function perturbations

δV a,n
i (kδn) = Vx̄i(x̄

n(kδn))Ca,n
i,kδn

, (5.2)
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δV d,1,n
i (j, kδn) = Vx̄i(x̄

n(kδn))Cd,1,n
i,kδn

(j), (5.3)

δV d,0,n
i (j, kδn) = Vx̄i(x̄

n(kδn))ri(j, x̄
n[kδn])Cd,0,n

kδn
(j), (5.4)

where ri(·) is defined in (4.6). Define the “perturbed” Liapunov function

V n(kδn) = V (x̄n(kδn)) +
∑

i

δV a,n
i (kδn) +

∑

i,j

δV d,1,n
i (j, kδn)

+
∑

i,j

δV d,0,n
i (j, kδn).

(5.5)

By the definition (5.2) and that of Ca,n
i,kδn

, we can write

En
kδn

δV a,n
i (kδn + δn) − δV a,n

i (kδn) =

− 1

n
Vx̄i(x̄

n(kδn))En
kδn

[

va,n
i,kδn

Ia,n
i,kδn

− nδnv̄a
i λ̄a

i

]

+ O(1)En
kδn

∣

∣Vx̄x̄(x̄n(kδn) + θa,n
kδn

/n)
∣

∣

∣

∣

∣
Ca,n

i,kδn+δn

∣

∣

∣

|Θn
k |

n
,

(5.6)

where |θa,n
kδn

| ≤ Θn
k . Note that when (5.6) is added to (5.1) the part va,n

i,kδn
Ia,n
i,kδn

of the ith component of the first order term in (5.1) is effectively replaced by the
“mean value” δnv̄a

i λ̄a
i . The desire for such a replacement of the random terms

by the averages motivated the forms selected for Ca,n
i,kδn

and the perturbation
(5.2). Analogous considerations hold for the other perturbations.

Conditions (A4.1), the first two parts of (A5.2), and the second part of
(A5.3), imply that for large x̄n(kδn) the last term in (5.6) is

O(δn) |Vx̄x̄(x̄n(kδn))| (5.7)

By the second parts of (A5.3) and (A5.8), for large x̄n[kδn] we have (note that
the conditioning in the expectation in (5.8) is on the data to time [kδn] and not
to time kδn)

O(δn)En
[kδn] |Vx̄x̄(x̄n(kδn))| = O(δn) |Vx̄x̄(x̄n[kδn])| . (5.8)

By (A5.4), this last term can be bounded by

δnρ(x̄n[kδn])
∣

∣V ′
x̄(x̄n[kδn])b(x̄n[kδn], u(j, x̄n[kδn])

∣

∣, (5.9)

where lim|x̄|→∞ ρn(x̄) = 0. Using, in addition, the third line of (A5.2), the last
term of (5.1) can also be bounded by the form (5.7).

Expanding (5.3) and using the definition (4.5) of Cd,1,n
i,kδn

(j) and that of ri(j, x̄)
in (4.6) yields

En
kδn

δV d,1,n
i (j, kδn + δn) − δV d,1,n

i (j, kδn) =

1

n
Vx̄i(x̄

n(kδn))En
kδn

[

Id,n
i,kδn

Ir,n
i,kδn

− nδnri(j, x̄
n[kδn])

]

I{Ln[kδn]=j}

+ O(1)En
kδn

∣

∣

∣
Vx̄x̄(x̄n(kδn) + θd,1,n

kδn
/n)

∣

∣

∣

∣

∣

∣
Cd,1,n

i,kδn+δn
(j)

∣

∣

∣

|Θn
k |

n
,

(5.10)
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where |θd,1,n
kδn

| ≤ Θn
k . By (4.11), the first part of (A5.2), and the second part

of (A5.3), for large x̄n(kδn) the last term of (5.10) can be represented by the
form (5.7). When (5.10) is added to (5.1) we see that the we see that the

terms Id,n
i,kδn

Ir,n
i,kδn

are replaced by the “averaged” value δnri(j, x̄
n[kδn]), when

the channel state is given.
We need only “average out” the I{Ln[kδn]=j} in (5.10), the terms that are

due to the random channel variations. This will be facilitated by use of the
perturbation (5.4). Expanding (5.4) and using the definition (4.2) yields

En
kδn

δV d,0,n
i (j, kδn + δn) − δV d,0,n

i (j, kδn)

= δnVx̄i(x̄
n(kδn))ri(j, x̄

n[kδn])
[

En
kδn

I{Ln[kδn]=j} − Π(j)
]

+ ǫn
i,kδn

(j),
(5.11)

where the “error term” ǫn
i,kδn

(j) is

En
kδn

[

Vx̄i(x̄
n(kδn + δn))ri(j, x̄

n[kδn + δn]) − Vx̄i(x̄
n(kδn))ri(j, x̄

n[kδn])
]

×Cd,0,n
kδn+δn

(j).

(5.12)
Rewrite (5.12) as

En
kδn

[

Vx̄i(x̄
n(kδn + δn)) − Vx̄i(x̄

n(kδn))
]

ri(j, x̄
n[kδn])Cd,0,n

kδn+δn
(j)

+ En
kδn

Vx̄i(x̄
n(kδn + δn))

[

ri(j, x̄
n[kδn + δn]) − ri(j, x̄

n[kδn])
]

Cd,0,n
kδn+δn

(j).

(5.13)
Using (A5.1), the first two parts of (A5.2), the second part of (A5.3), and the

fact that Cd,0,n
kδn+δn

(j) goes to zero uniformly in k, ω, as n → ∞, yields that for
large x̄n(kδn) the first term of (5.13) is bounded by (5.7).

Summing (5.1), (5.6), (5.10), (5.11), and summing over the canonical channel
state j and queue index i, yields

En
kδn

V n(kδn + δn) − V n(kδn)

≤ δn

∑

i

Vx̄i(x̄
n(kδn))bi(x̄

n[kδn], u(x̄n[kδn]) + ǫn
kδn

, (5.14)

where ǫn
kδn

is the sum of (5.7) and the second term of (5.13). In (5.14), Vx̄i(·)
and its derivatives are evaluated at x̄n(kδn), but the control terms are evaluated
at x̄n[kδn].

The second term of (5.13) is zero unless a new scheduling interval begins at
time kδn + δn. The smoothness condition (A4.3) together with the first parts of

all of (A5.2), (A5.3), and (A5.8), and the fact that Cd,0,n
kδn+δn

(j) → 0 uniformly
in k, ω, implies that for large x̄n[kδn] the conditional expectation En

[kδn] acting

on the second term of (5.13) is bounded by

ǫ′nIn
kδn

|Vx̄i(x̄
n[kδn])| ∆̄s,n, (5.15)

where ǫ′n is a nonrandom sequence that goes to zero as n → ∞ and In
kδn

is the
indicator function of the event that a new scheduling interval starts at kδn + δn.
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Sum (5.15) over kδn in the µth scheduling interval: i.e over k such that
[kδn] = µ∆̄s,n. This yields

En
µ∆̄s,nV n(µ∆̄s,n + ∆̄s,n) − V n(µ∆̄s,n)

≤ δnEn
µ∆̄s,nδn

∑

k:[kδn]=µ∆̄s,n

V ′
x̄(x̄n(kδn))b(x̄n(µ∆̄s,n), u(x̄n(µ∆̄s,n)))

+ En
µ∆̄s,n

∑

k:[kδn]=µ∆̄s,n

ǫn
kδn

.

(5.16)
Then use the third part of (A5.8) and the first parts of (A5.2) and (A5.3) to
replace the Vx̄i(x̄

n(kδn)) in (5.16) by Vx̄i(x̄
n(µ∆̄s,n)), modulo an error which

is bounded by c0(∆̄
s,n)|Vx̄i(x̄

n(µ∆̄s,n))| for large x̄n(µ∆̄s,n). Finally, use the
bounds (5.9), (5.15), and the bound (A5.5), to dominate the error terms and
write, for large x̄n(µ∆̄s,n) and large n,

En
µ∆̄s,nV n(x̄n(µ∆̄s,n + ∆̄s,n)) − V n(x̄n(µ∆̄s,n))

≤ ∆̄s,nV ′
x̄(x̄n(µ∆̄s,n))b(x̄n(µ∆̄s,n), u(x̄n(µ∆̄s,n)))/2,

(5.17)

If the V n(·) on the left hand side of (5.18) were V (·), then (using the fact
that V (x̄) → ∞ as |x̄| → ∞) the proof would be completed, since then by (A5.6)
V (x̄n(µ∆̄s,n)) would have the supermartingale property for large enough n and
queue-state values. In any case, the process V n(µ∆̄s,n) has the supermartingale
property for large n and queue-states x̄n(µ∆̄s,n). Furthermore, for some C < ∞,

∣

∣V n(µ∆̄s,n) − V (x̄n(µ∆̄s,n))
∣

∣

≤ C
∣

∣Vx̄(x̄n(µ∆̄s,n))
∣

∣

∑

i





∣

∣

∣
Ca,n

i,kδn

∣

∣

∣
+

∑

j

∣

∣

∣
Cd,0,n

kδn
(j)

∣

∣

∣
+

∑

j

∣

∣

∣
Cd,1,n

i,kδn
(j)

∣

∣

∣



 .

The bracketed term on the right is bounded. This and (A5.7) imply that

V n(µ∆̄s,n) = V (x̄n(µ∆̄s,n))(1 + cn
1 )

where cn
1 is arbitrarily small for large x̄n(µ∆̄s,n) and large n. By [8, Chapter 6,

Theorem 2], the stability, uniformly for large n and queue-state values follows
from this, the fact that lim|x̄|→∞ V (x̄) = ∞, and the fact that by (A5.6) there is
ǫ > 0 such that right hand side of (5.18) is less than −ǫ∆̄s,n for large queue-state
values.

Example 2.1: Partially unknown channel. The development is nearly the
same. In (A4.3), use qi(j, je, ·) and ui(je, ·) in lieu of qi(j, ·) and ui(j, ·), resp.

The function Cd,1,n
i,kδn

(j), defined in in (4.5), is replaced by

Cd,1,n
i,kδn

(j, je) =

− 1

n

∞
∑

l=k

En
kδn

[

Id,n
i,lδn

Ir,n
i,lδn

− nδnre
i (j, je, x̄

n[lδn])
]

I{Ln[lδn]=j,Le,n[lδn]=je},
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where re(j, je, ·) is defined in (4.13). In (A5.6), replace b(·) by the be(·) of
(3.17) or (3.18). Then, under the assumptions of Theorem 5.1, but with (A3.5)
replacing (A3.3), the conclusion of the theorem holds. The proof is nearly
identical to that of Theorem 5.1.

5.2 Example 2.2 With Partially Known Channel State

Consider the case of Theorem 3.3, where control over the bit length was also
allowed. Modify the remarks in the last paragraph of the previous subsection
by defining be(·) by (3.22) or (3.23) and redefining re

i (·) to be

re
i (j, je, x̄) = λ̄d

i (je)qi(j, je, ui(je, x̄))vi(je, x̄)ui(je, x̄).

Then the conclusions of the theorem hold. Again, the proof is nearly identical
to that of Theorem 5.1.

6 Examples and Sufficient Conditions

Admissible controls. The power and time allocations might be subject to
constraints. For example, a minimum amount of power might be required no
matter what the channel state, if the queue is not too small. There might be an
upper limit on the power. The power might be constrained to a set of discrete
multiples of some basic unit, as when the bit interval is controlled to be such
a discrete multiple of a basic unit, and there is a lower bound on the signal to
noise ratio at the receiver, if the allocated power is not zero. An admissible

power allocation satisfies whatever constraints there are and (2.1) (and (2.2)
as well where appropriate). Depending on the case, one of the following three
conditions will be used.

A6.1. Example 2.1, known channel state. There is an admissible non-

state-dependent power allocation {ūi(j), i ≤ K}, all j, such that
∑

i ūi(j) = ū
and for all i

λ̄a
i <

∑

j

λ̄d
i (j)ūi(j)qi(j, ūi(j))Π(j). (6.1)

A6.2. Example 2.1, partially known channel state. There is an ad-

missible non-state-dependent power allocation {ūi(je), i ≤ K}, all je, such that
∑

i ūi(je) = ū and for all i

λ̄a
i <

∑

j,je

λ̄d
i (je)ūi(je)qi(j, je, ūi(je))Π(je|j)Π(j)

=
∑

je

λ̄d
i (je)ūi(je)q̄i(je, ūi(je))Πe(je).

(6.2)

29



A6.3. Example 2.2, including partially known channel state and bit
interval control. There is an admissible non-state-dependent power and time

allocation {ūi(je), v̄i(je), i ≤ K}, all je, such that
∑

i ūi(je) = ū,
∑

i v̄i(je) = 1,
and for all i

λ̄a
i <

∑

je

λ̄d
i (je)v̄i(je)ūi(je)q̄i(je, ūi(je))Πe(je). (6.3)

6.1 Example 2.1: Known Channel State

Example 6.1. Consider Example 2.1, and assume (A6.1) with known chan-
nel state. For some p > 1 (which need not be an integer), define V (x̄) =
∑

i ai(x̄i)
p+1, ai > 0. Then at the scheduling times µ∆̄s,n with queue state x̄

the derivative V ′
x̄(x̄)b(x̄, u(x̄)) equals

(p + 1)
∑

i

ai (x̄i)
p



λ̄a
i −

∑

j

λ̄d
i (j)ui(j, x̄)qi(j, ui(j, x̄))Π(j)



 . (6.4)

The perturbed Liapunov function (5.5) has the form

V n(kδn) =
∑

i

ai [x̄n
i (kδn)]

p+1
+

∑

i

[x̄n
i (kδn)]

p
cn
i (kδn),

where the cn
i (·) are bounded, uniformly in k, n, ω. The Liapunov function

method seeks a control that makes (6.4) as negative as possible for large x̄.
Thus, for each j maximize

∑

i

aiλ̄
d
i (j)ui(j, x̄)qi(j, ui(j, x̄)) (6.5)

over the admissible controls. If qi(j, ui(j, x̄)) ≡ 1, then the maximization is
equivalent to applying the maximum possible (i.e., subject to the constraints)
power to

argmax
i

{

ai(x̄i)
pλ̄d

i (j)
}

. (6.6)

If there is power left over, then apply it to the next best, etc. The control
given by (6.6) will be discontinuous. If qi(j, ui(j, x̄)) ≡ 1 and there are no
constraints, then for each channel state j the sets of constant control value will
be convex with piecewise planar boundaries. The theorems of Section 5 require
smooth controls. But, just smooth it in a small neighborhood of the sets of
discontinuities. Alternatively, see the remarks in Subsection 6.3 which show
how to extend the proof to allow discontinuous controls. Under the conditions
on the input and channel processes, all of the other conditions of Theorem 5.1
hold. Hence, (A6.1) is sufficient for stability.
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If there are constraints on the power allocation or if qi(j, ·) is not identically
unity, then the problem is more complicated. We need to maximize (6.5) over
the possibilities. But (A6.1) is still sufficient for stability.

Note on optimization. The Liapunov function can be considered to be the
(total or relative) cost function for an optimal control problem [7]. In the present
case, due to the error terms in (5.16), the cost criteria associated with V (·)
cannot be precisely identified. But for the V (·) of this example the dominant
component is the negative of (6.4). Let qi(j, ui(j, x̄)) ≡ 1. Then, the larger p
is, the more weight is given to the largest queue, for all channel states. One
can select the value of p to balance fairness (essentially equal allocations to the
queues) with a desire to avoid some queues being much longer than others.

Example 6.1, a two-dimensional case. Let ai = i, all i. Consider a two-
queue and two-channel state example and let qi(j, ui(j, x̄)) ≡ 1, with no con-
straints on the power allocation. Let λ̄d

1(1) > λ̄d
2(1), and λ̄d

1(2) < λ̄d
2(2). For

channel state 1, apply all power to queue 1 when

x̄1

x̄2
≥

[

λ̄d
2(1)

λ̄d
1(1)

]1/p

. (6.7)

For channel state 2, apply all power to queue 2 when

x̄2

x̄1
≥

[

λ̄d
1(2)

λ̄d
2(2)

]1/p

. (6.8)

As p → ∞, the switching lines move to the diagonal.

An alternative Liapunov function. Now consider the Liapunov function
V (x) =

∑

i[x̄i + ci]
p+1. With equal ci, this gives results that are closer to the

numerically computed optimal controls for cost rate min{x̄1, x̄2}. For the two-
queue- and two-channel-state example above, The inequalities (6.6) and (6.7)
are replaced by

x̄1 + c1

x̄2 + c2
≥

[

λ̄d
2(1)

λ̄d
1(1)

]1/p

, (6.9)

x̄2 + c2

x̄1 + c1
≥

[

λ̄d
1(2)

λ̄d
2(2)

]1/p

. (6.10)

Here the cost rate is less sensitive to differences in the x̄i unless they are large.

Comparison with optimal controls. The following figure gives the optimal
switching surfaces for the same problem with λ̄d

1(1) > λ̄d
2(1), λ̄d

2(2) > λ̄d
1(2),

obtained by numerical solution of the limit control problem using the methods
of [9]. The system is (3.8) with white noise of various intensities added. The
qualitative form of the controls did not depend on the intensity of the noise.
The cost rate is k(x) = max{x1, x2} for the left-hand figure and

∑

i xi for the
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right-hand figure. The total cost was either of the ergodic or discounted form,
with little difference between them in the form of the controls. The slopes for
the linear cost rate tend to be larger than those for the max{x1, x2} criterion.
Equivalently, for the linear cost rate we put more emphasis on using the most
efficient channel and less on attaining closeness of the queues. Mixtures of the
criteria yield intermediate switching curves. Note the similarity of the controls
to the forms given by ((6.7), (6.8)) and ((6.9), (6.10)).
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all power to queue 2

all power to queue 1

use most
efficient channel

u1(1) = all power
u2(2) = all power

x2

x1 x1

x2

Switching curves for the optimal control:
k(x) = max{x1, x2} and

∑

i xi.

Partially unknown channel state. Assume (A6.2) in lieu of (A6.1) and refer
to the comments at the end of Subsection 5.1. The method is precisely the same,
except that the control is based on the estimate je and not on the unknown true
channel state j.

6.2 Example 2.2

Use V (x̄) =
∑

i ai(x̄i)
p+1. Then (6.4) is replaced by

(p + 1)
∑

i

ai(x̄i)
p



λ̄a
i −

∑

j

λ̄d
i (je)ui(je, x̄)vi(je, x̄)q̄i(je, ui(je, x̄))



 (6.11)

and (6.5) by
∑

i

aiλ̄
d
i (je)ui(je, x̄)vi(je, x̄)q̄i(je, ui(je, x̄)) (6.12)

The method is exactly the same as for Example 2.1. For example, suppose
that q̄i(je, ui(je, x̄)) ≡ 1. Then, in the absence of constraints apply as much
power and time as possible to

argmax
i

{

ai(x̄i)
pλ̄d

i (je)
}

. (6.13)
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6.3 Discontinuous Controls

Under additional conditions, the smoothness condition on ui(j, ·) in (A4.3) can
be dropped. This will be illustrated by the case of Example 6.1, where there
are no constraints and qi(j, u) = 1 for all i, j, u. The smoothness was used only
in dealing with (5.12). Let us use the decision rule (6.6). Let ij(x̄) denote the
value of i for which ui(j, x̄) = ū when the channel state is j and the queue state
is x̄. By the other conditions of Theorem 5.1, the contribution of (5.12) to the
error term in (5.16), summed over i, j, can be approximated by

ū
∑

j

En
µ∆̄s,nVx̄ij (x̄n(µ∆̄s,n+∆̄s,n))

(x̄n(µ∆̄s,n + ∆̄s,n))

×λ̄d
ij(x̄n(µ∆̄s,n+∆̄s,n))(j)C

d,0,n

µ∆̄s,n+∆̄s,n(j)

− ū
∑

j

En
µ∆̄s,nVx̄ij(x̄n(µ∆̄s,n))

(x̄n(µ∆̄s,n))λ̄d
ij(x̄n(µ∆̄s,n))(j)C

d,0,n

µ∆̄s,n+∆̄s,n(j),

(6.14)

plus an error which is strictly dominated by 1/8 times the right side of (5.17)
for large x̄n(µ∆̄s,n) and n. By the conditions of Theorem 5.1, the (sum over j
of the) difference between the jth summands of the two terms in (6.14) is also
strictly dominated by 1/8 times the right side of (5.17) for large x̄n(µ∆̄s,n) and
n. Then the form (5.17) can still be obtained for large x̄n(µ∆̄s,n) and n.

Further development is beyond our scope here.
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