A PROLOG TECHNOLOGY THEOREM PROVER

Mark E. Stickel

TECHNICAL NOTE 336

Reprinted from IEEE 1984 INTERNATIONAL SYMPOSIUM
ON LOGIC PROGRAMMING

IEEE COMPUTER SOCIETY
1109 Spring Street, Suite 300
Silver Spring, MD 20910

IEEE
COMPUTER

SOCIETY &4y
PRESS @?’

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
1984 2. REPORT TYPE 00-00-1984 to 00-00-1984
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Prolog Technology Theorem Prover 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

SRI International,333 Ravenswood Avenue,Menlo Park,CA,94025 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THISPAGE 9
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Bt
e

,\R :

5,

g gy

A PROLOG TECHNOLOGY THEOREM PROVER

Mark E. Stickel

Artificial Intelligence Center
SRI International
Menlo Park, California 94025

Abstract

An extension of Prolog, based on the model climination
theorem-proving procedure, would permit production of
a logically complete Prolog technology theorem prover
capable of performing inference operations at a rate ap-
proaching that of Prolog itself.

1. Introduction

Prolog is a powerful and versatile programming lan-
guage based on theorem-proving unification and resolution
operations.

The best Prolog implementations perform inferences
at a rate that is often at least two orders of magnitude
faster than theorem provers. Some of this disparity in
speed can be accounted for by the fact that theorem provers
often perform more complex inferences than Prolog (such
as keeping results in fully simplified form and checking for
subsumption}.

However, one important reason for the higher speed of
Prolog, compared with theorem provers, is the implemen-
tation. Given the present efficiency advantage of Prolog
over theorem provers, and the fact that enormously more
powerful Prolog machines are being contemplated (up to
107 logical inferences per second {lips) as opposed to the
current best 109 — 10% lips), it is worthwhile to examine
the possibilities of adapting Prolog technology to theorem
proving.

Prolog technology could be applied to theorem prov-
ing in a number of ways. To date, the most frequently
used method of applying Prolog technology to theorem-
proving problems 1is to substantially recode the problem in
Prolog. Although performance may be high, this approach

This research was supported by the Defense Advanced Research.

Projects Agency under Contract NBOO39-80-C-0575 with the Naval
Electronic Systems Command. The vicws and conclusions contained
in this document are those of the author and should not be inter-
preted as representative of the offleial policies, either expresscd or
implied, of the Defense Advanced Research Projects Ageney or the
United States government. APPROVED FOR PUBLIC RELEASE.
DISTRIBUTION UNLIMITED.

CH2007-3/84/0000/0212 $01.00 ® 1984 IEEE

211

has significant limitations resulting from such implementa-
tion features of Prolog as unification without the “occurs
check™ and unbounded depth-first search. Also, the recod-
ing process itself is time-consuming and error prone.

Prolog technology could be used in theorem proving
by writing a theorem prover in Prolog, but this offers un-
certain advantages in comparison with writing a theorem
prover in any other language, such as LISP. Writing
a theorem prover in Prolog would certainly result in a
theorem prover whose inference operations are performed
at a markedly lower rate than Prolog’s own, since several
Prolog inference operations would have to be performed for
each theorem-proving inference operation.

Prolog, as it now exists, almost meets the require-
ments for a complete theorem prover. Thus, we propose
implementation of a slight extension of Prolog that per-
mits full thcorem proving directly. Direct modification of
a Prolog interpreter, rather than coding a thecorem prover
in Prolog, preserves the speed of the Prolog interpreter
by making extended Prolog operations be theorem-proving
operations.

We are taking a [airly conservative approach to the
extension of Prolog implementations for theorem proving.
Simple additions to the Prolog interpreter should suffice
to make the complete theorem prover—thus making the
thecarem prover easy to implement and similar to Prolog in
its use. We retain such features of Prolog as the ordering
of alternative infercnces by statically ordering assertions in
the database, the ordering of suhgoals by statically ordering
literals in assertions, and the cut operation. These features
should be useful for programming a theorem prover just
as they are for logic programming. Depth-first search.
though bounded, will continue to be employed both for
its comprehensibility and low storage requirements. Prolog
also provides a convention for procedural attachment (built-
in predicates) that should be useful in theorem proving as
well.

We have two things in mind in presenting this design
for a Prolog technology theorem prover (PTTF). The first
is that it employs highly efficient Prolog fechnology in its
implementation. The sceond is that it is a fechnology
theorem prover in the same way that TECH was a lechnol-
ogy chess player|4|. It is a “brute force” theorem prover

b

(hat relies less on detailed analysis than on high-speed ex-
ccution of small logical steps. The capability of a PTTP
would inerease substantially as Prolog machine technology
Progroesses.

We are enrrently experimenting with the concept of
a P'TIP that uses an extended Prolog interpreter {without
all the I’rolog built-in predieates) written in LISP with the
samre unifieation and substitution code employed in our
athier theorem-proving rescarch. This allows experimenta-
tinn with extended unification algorithms, but means that
we do not vet have the eflicicney of a teue PTTP because
the Prolog-style substitution representation is not being
used.

2. A Minimal Prolog Technology Theorem Prover

Altheugh Prolog uses unilieation and resolution for its
matehing and inference processes, it cannot be regarded as
a full-fledgad theorem prover. The deficiencies! lic in three
ATs:

s Unilieation withoul the occurs cheek
o Incomplete inference system
e Unbounded depth-first search strategy.

We will examine cach of these problems in more detail and
affer minimal solutions o them, The result will be the
design of a minimal TTP,

2.1 Unilieation

Prolog matehing differs from the theorem-proving
anification operation in only one respect: the absence in
the former of the ocenrs cheek. In the theorem-proving
unification operation, a variahle is permitted to he instan-
tintedd to o term onby iT the variable dacs not occur in the
term. ‘This restriction climinates the creation of infinite
torms. The logical importance of this restriction is evident
from the fact that without the oceurs eheck it is possible to
“prove” that Y3y (.) implies Iy¥e. Pz, y).2 To prove
this invalid result in Prolog, we mateh the skolemized form
P{sk2(), ¥} of the goa) Iy¥e Pz, y) and the skolemized
form P, sk1(£)) of the assertion ¥z3y.P(z, y). This match
is suecessful withont the oceurs check.

It is eloar ihat adding a straightforward occurs check
fo Prolog matehing wonld impose unacceptable perfor-
manee penalties on the operation of many logic programs.
Tlhe lesser deduclion depth and term complexity in iypi-
eal theorem-proving applications would probably make it
acceptable to add the occurs check. Furthermore, there

I\While these are deficiencies from the standpoint of theorem proving,
they arc often assets in logie programming because they increasc
cflicicney or comprchensibility of Prolog programa.

2] am indebted to Bob Moore for this observation,

212

are some casily verified cireumstances in which the occurs
cheek Is unnecessary. \When matching a goal with a elause
head, it is unnecessary to perforin the oceurs cheek for the
first. variable binding; it is also unnccessary il the goal or
the clause head has no variable occurring more than once.
Usce of the occurs cheek could be controlled by a run-time
or compile-time swilch.

An alternalive approach to using the occurs check
iu cach matehing operation is a provision for cirecking at
the completion of a proof to verify that ne inlinite term
was ereaied in the course of that proof.? Note that this ap-
proach requires that all bindings created during the course
af a proofl he available for checking upon its completion.
Thiz may not be the case for some Prolog implementations,

Fither of these approaches should be ecasy to incor-
porate in an implementation of Prolog. There is a trade-off
involved in the choiee of approacl. The first adds overhead
to encl anifiention hut immediately blocks inferences using
inlinile tepms. The second has little or no overhead for each
unifieation but may permit many inferences to be drawn
alter an infinife term is ereated; these inferences could have
Leen eut off by immediately using the oceurs check.

2.2 lnference System

Ag is well known, the inference system used in Prolog
is complete only for Horn sets of clauses, i.e., sels of elauses
in which there is no more than ene positive literal in each
clanse. We present a method of extending the Prolog in-
fereneoe system o a complete inferencee system (hat retains
mest of the character and efficiency of Prolog dednetion.

In developing a YT, we should eonsider only those
meanx for extending Proleg’s inference systenr that per-
mit highly cflicicnt Prolng implementation teeliniques fo be
usvil. We observe that one of the most important reasons
for the high speed of well-engineered Prolog implementa-
tions iz the eflicieney of their representation for variable
substitudions. TTis representation is made possible both
by the depth-first search strategy and by Prolog™s use of a
form of input resolution as its inferenee procedure,

Two metheds for handling substitutions are used
in eanventional resolution theorem proving, The simple
method is Lo Tully Torm resolvents by applying the unifying
substitution to the parent clauses. This is far more expen-
sive in both titne and space than Prolog inference.

The second method is the struclure-sharing approach
[1]. in which a resolvent is represented by the parents plus
the wnifying substitution. Whenever the resolvent must
be examined {e.g., for printing or resolution with another
clause), it is traversed with variables being implicitly re-
placed by their substitution values. This method consumes
far less space than the simple method of fully forming the

3[first heard this siggestion from David Warren.

resolvents, but is still not very efficient in time, compared
with Prolog. The reason for this relative incfliciency is
¢lear.

In general resolution, 2 variable of an input clause
may have more than one value per use of the clause in a
deduction beeause the elause is implicitly reused whenever
a deseendant clause is used more than once. For example,
il we resolve P{z) and =Py} V Qly} setling y to z, we
obtain QQ(r). This resolvent can now he used twice to
derive the empty clause from —@Q{e) v ~@(b). But this
means that two instanees of Pz), Pla} and P(t), have
been implicitly used in the proof, even though Pz} was
used explicitly only once. The substitution representation
must accommodate these multiple variable values, whereas
in Prolog the variable © can be implemented as a stack
location containing |a pointer to] its single current value.
The problem of multiple variable values does not oceur in
inpul resolution becaunse derived clauses can only be used
once, I i is assumed that each input clause is treated as a
new clause with distinet variables as it is used, each variable
will have only a single value in a single deduetion.

This suggests that a good approach to building a
PTIP is to employ a complete inferenee system that is
an iuput procedure. Probably the simplest is the model
climination procedure [7, 8. [Actually, what we are propos-
ing here is mure closely related Lo the problem-reduction-
oriented MESON procedure {8, 9], but we will use the lerm
madel climination (ME) because it is more familiar and the
AMLSON procedure is derived from the ME procedure.)

The ME procedure requires only the addilion of the
lollowing inferenee operation (e Prolog to constitute a com-
plete inference system for the first-order predicate ealeulus:

If the current goal matches the complement of
one of its ancestor goals, then apply the mateh-
ing substitution and treat the current goal as if
it were solved.

This added inference operation is the ME reduction
operation. The normal Prolog inference operation is the
ME ertenston operation. The two together comprise a
complete inference system.

An important Lhing lo note is that this is a com-
plete wference system that does nol require the theorem-
proving facloring operation, Basing an extension of Prolog
on another form of model eliminalion, cquivalent to Sl-~
resolition [6[, would require an additional factoring opera-
tion that would instantiate pairs of goals fo be identical.
ider's Prolag-like interpreter for non-Horn clauses (2] also
requires factoring. " (ITowever, we have nol vet addressed
Eder’s concern regarding the type of search space redun-
dancy that resulls in two proofs, not just one, of 3z.P(z)

from P(a) v P(b).)

For several reasons we regard factoring as an un-
desirable operation to add. Adding another inference
operation requires [urther decision-making about how to

213

order possible inference operations, Unlike the extension
operation that operates on the current goal and an input
clause, and the reduction operation that operates on the
current goal and an ancestor goal that is available on the
stack, the lactoring operalion must operate on the current
goal and an unsolved subgoal of an ancestor goal that is
nol itsell an ancestor goal, i.e., a goal that is not currently
being solved and thuy is not on the stack, exeept in the
list of remaining unopened subgoals of its parent goal. The
factoring operation, though necessary for completeness of
many infereace systems, has a tendency to instantiate goals
excessively, thereby climinating any possibility of solution,

The reduction operation is a form of reasoning by
contradietion. If, in trying to prove I?, we discover that P
i« true if Qis true (i.e..Q O F)and also that @ is true if ~F
i true (i.e., =F D Q), then P must be true, The rationale
i that P is either true or false; il we assume that P is [alse,
then @ must be true and hence P must also be true, which
i a contradiction; therefore the hypothesis that P is false
must be wrong and P must be true.

In Prolog, when a goal is entered, a choice point is
cstablished at which the alternatives are matching the goal
with the heads ol all the clauses and executing the body of
the elause if the mateh is suceessful. In this extension of
Proleg, we must also consider the additional alternatives of
matching the entercd goal with each of its ancestor goals.
For each such successful match, we proceed in the same
manner as il we had matched the goal with the head of a
unit clause (a clanse with an empty body).

In Prolog, when a goal is exited, the goal, instantiated
by the current substitulion, has been proved. In this ex-
tension of Prolog, when a goal is exited, all that has been
proved is the inztantintion of the goal disjoined with all the
anceslor goals used in reduction operations in the process
of “proving” the goal. Thus, in the example of proving P
from @ D F and =P D Q, expressed in Prolog by

P - q.
- 7p.
?- p‘ H

when goal q is exited, £V @2, but not @, has been proved,
The top goal, when exited, has been proved; there are no
ancestor goals whose negation could have been assumed in
trying to prove the top goal.

One of the implementation requirements imposed by
the addition of the reduction operation is that ancestor
goals must be accessible. This precludes some optimizations
such as a tail-recursive-call optimization that reuses the
top staek frame when the next step is determinate and
thus erases the current goal so that it cannot be used in
a reduction operation.

There are two additional prerequisites for using this
inference syslem. First, contrapositives of the assertions
must be furnished. For cach assertion with n literals, n
Prolog assertions must be provided so that each literal is

the head of one of the Prolog assertions. The order of the
literals in the clause body ean be freely specified by the
user, as for ordinary Prolog assertions.

The second additional prerequisite relates to a fea-
ture of theorem proving that is absent in Prolog deduction:
indefinite answers. Prolog, when provided with the goal
P(z). will attempt to generate all terms ¢ such that P{Y) is
definitely known to be true. In non-llorn clause theorem
pro¥ing, there may be indefinite answers,

For example, consider proving 3r.P(z) from Pla) v
P(b). [n our extension to Prolog, this can be expressed as

plal == ~p(b).
plb) - =p{a).
2- p(X).

This set of assertions and the (leﬁcril)éd inference pro-
cedure are still insufficient to solve the problem beeause
term ¢ for which it is definitely known that.
To solve problems with indefinite answers, it
to wdd the negation of the query as another
assertions if the query has a literals),

there 15 no
F8) is true.
is necessary
assertion {n

In this example, addition of the Prolog assertion
—p(Y) results in the finding of two proofs (one in which
p(X]is matehed with p(a) and =p{Y) is matched with =p(b},
one in which p{N} matehed with p(b} and ~p{Y) is matehed
with =p(a)). The answer to the query is thus Pla) v P(b),
Le., either Pla) or £(b) {or both) is true, but ncither P(a)
nor [’{b) has been proved. In general, indefinite answers are
disjunctions of instances of the query. One instance of the
guery is ineluded for cach use of the query in the deduction
(the vse of the query as the initial list of goals and cach use
of the negation of the query).

2.3 Scarch Strategy

Even if the preblems of unification without the gecurs
check and an tneomplete inference system are solved, or
are irrelevant for a partienlar problem, Prolog is still un-
satisfactory as a theorem prover because of its unbounded
depth-first search strategy.

Consider the problem of proving that, in a monoid,
if £ X zis the identity element Tor every z, then X is
commutative. This is often formulated in terms of the
ternary predicale P, where Pz, y,z) means ¢ X y = z
(this is quite consistent with Prolog relational programming
style). The problem can then be expressed in Prolog by the
following assertions and goal:

piX,e,X) SGrxXxe==x
ple,X,X). %exXz=1zx
p(X.Xe). DBrxr=e
pla,b,c). %Baxb=c
p(U,Z W) - p(X,Y,U), p(Y,Z,V), p(X,V,W). % assoe. 1

P(X,V,"v) - p(X|Y1U)1 P(Y:er); p(U,Z,\V] % assoc. 2_‘

% p(b,a,c}. Zhxa=c

214

For this problem, Prolog's lack of the occurs check in
unilication and incomplete inference system do not matter,
beeause no nenconstant funclion symbals appear and the
set of clawses is a Horn set. However, Prolog will still
fail to solve the problem beeause its unbounded depth-first
search strategy will cause infinite recursion using the first
associativity rule.

The minimal solution to the problem is to use
bounded rather than unbounded depth-first search.
Backiracking when reaching the depth bound will eause the
entire search space, up to a specified depth, to be searched
compictely,

Because the search space size grows exponentially as
the depth bound increases, assigning too large a depth
hound for a particular problem may result in an enormous
amntint of wasted effort, and the amount of effort expended
before discovering a proof will be highly dependent on the
specified depth bound. The obvious solution to this prob-
lem is to run a PTTP with inereasing depth bounds—first
one tries to find a prool with depth I, then 2, ete. We
will call this the staged depth-first search strategy. Because
of the exponential growth of the size of the search spacc
as the depth bound increases, the cost of searching all of
levels {,... n before first finding a proof at level n+ 1 will
probably not be unaceeptably high relative to the cost of
just scarching at level n 4+ 1.1

Rather then make all inferences up to level n, we
should make only those that have some chance of resulting
in a proof by level n. Because each as yet unsolved goal will
require at least one inference step to solve it, we should not
perform any inference step that would reselt in there being
more unsolved goals than there are levels remaining belore
the depth hound is reacled.

This approach has some other consequences for logie
programming. The use of depth-bounded search changes
the meaning of failure from “not provable™ to “not prov-
able within depth beund™, thus requiring rejection or
modification of the treatment of failure as negation. The
use of depth-bounded search with increasing depth bound
also will cause side effeets to be repeated, beeause dedue-
tien steps oceurring in the level n search will be repeated
in the level 7 + | search,

4:‘\:a:aummg that lhc search space hu a uniform branching factor b,
S(bon) =" 40" 4. 4+ B2 4 bis the number of inferences made in
exhaustively searching through level n and S5S(,n] = b7 + 2071 4

<+ (n = 1) + nb is the cumulative number of inferences made
in exhaustively searching through level 1,2,...,n. Then Si{b,n +
1} ="+ 4 §(b, n) = 6"F! 4 55(b,n) —35(1; n—1)and .S‘(b n+
1) — 85{b,n) = 6"t} — §5(b,n — 1) = b*(b—} - 3@;
b’:‘;_'l) implying that the cost of exhaustively searching through level

n + 1 usually greatly execeds the accumulated costs of exhaustively
searching through all of the previous levels.

3. Refinements

3.1 Goal Acceptability

The ME procedure justifies the completeness of our
extension of Prolog even if some goal states are disallowed.
Let us call a goal currently being worked on (either it
or one of its subgoals is the current goal) an open goal.
An unopened goal is a goal not yvet open in the current
deduction, A closed goal is a goal that has been exited in
the current deduction.

Qur extension of Prolog remains complete even il we
allow Lhe current goal to be [ailed under any of the lollowing
circumnstances:

s Two unopened goals [rom the same clause are com-
plementary

e A goal is identieal to an ancestor goal

e A roal extended upon is complementary to an an-
cestor goal.

The first rule is justified because, in that situa-
tion, a tautologous instance of the clause is being used.
Completeness is preserved il tautologous input clauses
are not used. The second rule requires a more detailed
justification, but in essence states that it is unnecessary to
attempt to solve a goal while in the process of attempting
to solve that same goal. The third rule merely affirms that
it is unnccessary to attempt to solve a goal that is com-
plementary to an ancestor goal by any means other than
the reduction operation.

Because the search space in theorem proving is
generally exponential, it is always worth considering criteria
[or [ailing goals, so that the exponentially many derivative
deductions can be eliminated. However, the desire to cut
off deductions must be balanced agaiust the cost of apply-
ing the check to determine whether the present deduction
is acceptable according to the criteria,

The ME procedure applicability tests enumerated
above ean be expensive to apply. Breavse each inference
operation is potentially capable of instantiating any goal,
one of the eonditions for unacceptability may become true
for a pair of goals alter any inference operation. Thus, after
each inference operation we would have to check each pair
of unopened goals from the same clause for complemen-
tarity, and each goal and its ancestor goals for identity ana
complementarity. The latter is O(n?}, where n is the num-
ber of ancestor goals.

There are two solutions to the high cost of these ap-
plicability tests. The first is to develop an implementation
that can perform these tests cheaply. One method would
be to keep track of which pairs of goals could eonceivably
be instantiated to identity or complementarity and eheck

215

only those pairs. Howcever, this would make it more difficult
to adapt present Prolog implementations to be a PTTP.

The sczond solution is to restrict the applicability
tests, Tirst, we would eliminate the test for complemen-
tarity of unopened goals from the same clause. Besides
saving the effort of performing the test, this eliminates the
reguiretnent for accessing unopencd goals. The checking of
a goal and its ancestor goals for identity and complemen-
tarilty ean be resiricted to the case where the goal is the
current goal; this is done after instantiation by the sub-
stitution for the contemplated inference operation. This
single check is still quite successful in cutting off search at
less cost {linear in the number of ancestor goals) than the
fuller check.

Another possible effort-saving restriction on the ap-
plicability tests would be to perform them less frequently

than after every infereuce operation.

The previous theorem prover that most closely
resembles a PTTP {in operation but not in implementation
or speed) is an implementation of the ME procedure by
Fleisig et al [3]. They concluded that ME was a competi-
tive procedure: neither the MEE theorem prover nor a unit
preference and set-ol-support resolution theorem prover
they also developed strongly dominated the other for their
examples. Their ME theorem prover uses [ull acecptability
checking and a bounded depth-first search strategy. Unlike
our staged depth-first search strategy, a single depth hound
is'given by the user, making performance very sensitive to
the depth bound.

The Fleisig theorem prover also provides for cutolls by
allowing restrictions to be placed on the depth of function
nesting, the number of open goals (or number of ancestor
goals) in a deduction, the number of uses of particular
clauses in a deduetion, and the number of uses of clauses
of specified length in a deduction. Such cutoffs ean also
be emploved in a PTTP. Although they may ultimately
be necessary to reduce the size of the exponential search
space for diflicult problems, we are somewhat wary of such
cutoffs because they are sensitive parameters whose values
are difficult to assign. To be useful, the cutofls must be
assigned small values, but not so small as to preclude all
proofs. When there are many such parameters, there may
be little guidance on which parameter values to alter to
admit more inferences when no proof is found with one set
of parameter values.

3.2 Extended Unification

It is sometimes quite uselul to extend the unification
algorithm, For example, building associativity and/or com-
mutativity into the unification algorithm can result in
significantly improved performance. Extended unification
can also be used for helping to produce systems that reason
elfectively with cquality, taxonomies, ordering, ete. |11].
Kornfeld’s work on building uses of cquality into Prolog

to support object-oriented programming is a further ex-
ample [5). Unlike his work however, full support for ex-
tended unificalion must accommodate the possible presence
of multiple unifiers. This means additional alternalives at
cach choice point—alternative unifiers as well as alterna-
tive inferences, The clearest implementation of this would
require that all alternative unifiers for an inference be tried
before the next alternative inference is tried. It would also
be useful to have an additional cut operation that cuts off
slternative unifiers but not alternative inferences.

3.3 Operation Ordering

We retain the operation ordering of Prolos {solving
subgoals from lelt to right; using clauses in order from the
datalase) for familiarity, comprehensibility, and program-
mability. However, the addition of the reduction opera-
tion means that the reduction operation must be fitted in
somewhere among the other operations. It must be decided
whether reduction operations should be performed before,
after, or interleaved with extension operations (e.g., after
all extensions by unit clauses). This can bespecified a priorr
or, perhaps, Tor each predicate £ by including a clause “p -
reduce.” in the procedure for P at the point where we wish
reduclion operations to be attempted [which could also
make reduction optional). The order of reduction opera-
tions among themselves must also be decided—Tfor example,
whether to reduce by the shallowest or deepest ancestor
goals first.

It is also worlh pointing out that it is unnecessary
to consider alternative inference operations if a reduelion
operation is possible where the two goals are already com-
plementary (the cmptly substitution unifies their atoms) or
if an extension operation by a unit clause instantiates only
the clause and not the goal. Discarding alternative in-
ference operations in these situations ean save substaniial
efforl.

The fullest possible benefit of this would he oblained
if alf reduction and unit exlension operations were cheeked
first to determine whether the current goal can be solved
immediately without further instantiation before perform-
ing any inference operation that cither further instantintes
the current goa! or adds subgoals. This suggests a two-pass
procedure for attempting to solve a goal: checking atices-
tor goals for cxael complementarity and for subsuming unit
clauses; then, if that fails, performing the normal inference
operations.

3.4 Additional Inference Operations

It is possible to consider adding more inference opera-
tions to a PTTP beyond the extension and reduction opera-
tions it minimally requires. We have already considered and
rejected the idea of including a factoring operation.

216

A more uscful operation to add may be the graph con-
struction procedure C-reduetion operation [10]. If the cur-
rent goal matches a elosed goal in the current deduction, the
substitution ean be applied and the current goal considered
as solved, provided that all the ancestor goals used in redue-
tion operations to solve the closed goal are also ancestors
of the current goal. The C-reduction operation is similar
to the factoring operation, but is superior to it Leeause,
since it matehes the current goal with a closed goal rather
than an unopened goal, (1) unopened goals need not be ex-
amined and (2) it is less likely to cause over-ingtantiation
beenuse the closed goal has heen solved whereas in the case
of factoring, neither goal has been solved and instantiating
them to be identical may make them unsolvable.

4. Conclusion

We have presented the design of s minimat
Prolog technology thearem prover and numerous possible
refinements. Further experimentation will determine how
worthwhile thix concept is. Numerous quesitons, of course,
remain. We have based our design on the ME procedure
breause that appears fo be the pracedure best suited {o the
use of present Prolog-style implementation. Is this the most
effective procedure for us? How useful is it when viewed ag
a logic programming language? Will the lack of subsump-
tion, equality reasoning, or other features impose too great
a limit on its effeetiveness? If necessary, how ¢an we add
sueh features while retaining the speed advantage?

[n any case, production of a PTTP would result in a
theorem prover eapable of performing inferences at a far
greater speed than before and offering prospeets of even
greater speed as Prolog machine lechnology progresses, {t
15 surely a coneept that is worth exploring.

Acknowledgments

The author would like to thank Fernanclo Pereira,
Mabry Tyson, and David Warren for their helpful com-
ments on an earlier draft of this paper.

References
(1] Bover, R.S. and J S. Moore. The sharing of strue-
ture in theorem-proving programs. In B. Meltzer and
D. Michie (eds.). Machine fnlelligence 7. Edinburgh
University Press, Edinburgh, Scotland, 1972,
Ider, G. A PROLOG-like interpreler for non-llorn
clauses, DAL Rescarch Report No, 26, Department

of Artificial Intelligence, University of Edinburgh,
Edinburgh, Scotland, September 1076.

Fleisig, S., D. Loveland, AK. Smiley IIf, and D.L.
Yarmush. An implementation of the medel elimination

[2]

13]

[10]

Iy

prool procedure. J. ACM 21, 1 (January 1974), 124~
139.

Gillogly, J.J. The technology chess program. Artificial
Intelligence 8, 3 (Fall 1972), 145-163.

Kornleld, . W.A. Equality for Prolog. Proc.
Eighth Internalional Joint Conference on Arlificial
Intelligence, Karlsruhe, West Germany, August 1983,

Kowalski, R. and D. Kuehner. Linear resolution with
selection function. Arlificial Intclligence 2(1071), 227 -
260.

Loveland, D.W. A simplified format for the model
climination procedure. J. ACA 16, 3 (April 1069),
349- 363.

Loveland, D.W. Aulomated Theorem Proving: A
Logieal Dasis. North-Holland, Amsterdam, The
Netherlands, 1978,

Loveland, D.W. and M.Il, Stickel. The hole in goal
trees: some guidance from resolution theory. Proe.
Third International Joinl Conference on Artificial
Infelligenee, Stanford, California, August 1973, 153~
161. Reproduced in [EEE Transactions on Compulers
€-25, (April 1976), 335-341,

Shostak, R.E. Reflutation graphs. Artificial
Infelligence 7, L (Spring 1976), 51-G.

Siickel, M.E. Theory resolution: building in nonequa-
tional theories. Proc. AAAL-83 National Conference
on Artificial Intelligence, Washington, D.C., August
1933,

217

