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Abstract

Adaptive antenna arrays are widely used for reducing the effects of
interference and increasing capacity in mobile communications systems.
The adaptation typically consists of updating the antenna weights by
a recursive least-squares-type algorithm. We will add another adaptive
loop that greatly improves the operation when the environment for the
various links is randomly time-varying. The analysis is via stochastic
approximation type arguments. Consider a single cell system with an
(receiving) antenna array at the base station. Algorithms for tracking
time varying parameters require a balance between the need to follow
changes (implying a short memory) and the need to average the effects
of disturbances (implying a long memory). Typical algorithms seek to re-
cursively compute the antenna weights that minimize the weighted error
function (at discrete times kh, k = 1, 2 · · ·, for a small sampling interval
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h) E
∑k

l=1
αk−le2

l , where the el are the reception errors and α < 1. This
minimization is used only to get good weights, and the forgetting factor
α < 1 is used to allow tracking as conditions change. The actual perfor-
mance of the algorithm is measured by the sample average bit error rate,
and this depends heavily on the chosen value of α, as seen in simulations.
The optimal value of α can change rapidly in time, perhaps significantly
in seconds. Although the initial motivation arises in adaptive antennas,
the method can be used to improve algorithms for tracking parameters of
time varying systems, where similar issues are involved.

The additional adaptive loop tracks the optimal value of α. The adap-
tation can be based on a known pilot signal or it can be partially blind.
The antenna weights and the value of α are adapted simultaneously. We
give a stochastic-approximation-type algorithm for tracking the optimal
α, which is based on an approximation to a natural “gradient descent”
method. The algorithm is practical and can improve the performance con-
siderably. The simulations under a variety of operating conditions show
that the algorithm tracks the optimal weights and value of α very well.
In terms of average bit error rates and for all of the scenarios tested, the
new system always performs better (sometimes much better) than the
original algorithm that uses any fixed value of α. Any particular applica-
tion has special considerations. But the theoretical and simulation results
show that the approach has great promise for significantly improving the
systems.

Keywords: Stochastic approximation, tracking time-varying parameters, adap-
tive antennas, mobile communications, randomly time-varying channels.

1 Introduction

The adaptive antenna problem: Formulation. The method to be devel-
oped is applicable to the improvement of algorithms for the tracking of time-
varying parameters, and can be a useful alternative to the method developed in
[6] for the tracking of parameters of time-varying linear systems, but our devel-
opment is confined to the adaptive antenna problem since that was the original
motivation.

Adaptive antenna arrays are widely used to reduce the effects of interfer-
ence and increase capacity in mobile communications systems. Algorithms for
tracking time varying parameters require a balance between the need to fol-
low changes (implying a short memory) and the need to average the effects
of disturbances (implying a long memory). Consider a single cell system with
an (receiving) antenna array at the base station. In applications, the adapted
antenna weights are often computed by a recursive least-squares algorithm as
follows [14, 15]. One recursively computes the antenna weights that (approx-
imately) minimize the weighted error function (at discrete sampling times kh,
for small h > 0 and k = 1, 2, . . .) E

∑k
l=1 α

k−le2
l , where the el are some measure

of the reception errors and α < 1 is a “forgetting” factor [15]. The algorithm
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is initialized using some initial block of data. The value of α is held less than
unity to allow tracking of the optimal weights. This minimization is used only
to get good weights, and the forgetting factor α < 1 is used to allow tracking as
conditions change. The actual performance of the algorithm is measured by the
sample average bit error rate, and this depends heavily on the chosen value of
α, as seen in simulations. The optimal values of the weights can change rapidly
in time. The optimal value of α can also change rapidly in time, although less
fast than the weights, but still perhaps significantly in a few seconds.

We will add another adaptive loop that adaptively tracks the optimal value
of α and greatly improves the operation (as measured by average bit error
rates) when the capacities of the various links are randomly time-varying. This
additional loop (or algorithm) for adapting α is of the stochastic approximation
type and is based on an natural “gradient descent” method. The algorithm
is practical, and simulations under a variety of operating conditions show that
the algorithm not only tracks the optimal value of α very well, but that the
new system always performs better (sometimes much better), in the sense of
sample average decision errors, than the original algorithm that uses any fixed
value of α. The new adaptive algorithm for the parameter is analyzed via
stochastic approximation theory [7]. The idea is motivated by a method for
adapting the step size in stochastic approximation algorithms for the recursive
identification of the values of time-varying parameters in linear systems; see
[2], where the approach to adaptive adjustment of the step size in parameter
tracking originated, and [6] for a detailed analysis of that case via general results
in stochastic approximation, although the form of the algorithm and the systems
and averaging issues are different here, due to the nature of the application.
The individual driving terms in the stochastic approximation algorithm are not
simply noise corrupted estimates of a gradient. But over many samples they
average out to be such.

For notational simplicity only, we update both the weights and α at the
same instants kh, k = 1, 2, · · ·. Let K denote the number of antennas. Let xi,j,k

denote the complex (baseband) output of antenna i at time kh that is due to
mobile j: it is the sum of components ri,j,k and ni,j,k, due to the signal and noise,
resp. Define xi,k =

∑
j xi,j,k, the output of antenna i due to all mobiles and

noise. Define rj,k = {ri,j,k; i}, the vector-valued output of the Kantennas due
to the signal from mobile j. Define Xk = {xi,k, i}. The weight vector depends
on the mobile whose transmission is being tracked. Henceforth, we work with
the algorithm for a fixed mobile, say, j0. (The procedure is duplicated for each
mobile.) For the selected mobile j0, let wi,k denote the complex weight assigned
to antenna i at time (k + 1)h and define the vector W k = {wi,k, i ≤ K}.

The weighted array output at (k+1)h is �{
∑

i w
∗
i,kxi,k+1} = �{(W ∗

k)
′Xk+1},

where � denotes the real part and ∗ denotes the complex conjugate, and this is
used to estimate the transmitted signal symbol. Henceforth, to simplify the no-
tation, we concatenate the real and imaginary (�) components. Let the unbarred
quantities, such as Xk = (�Xk,�Xk), etc., denote the concatenated values.
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A typical algorithm for adapting the weights. Let {sk} denote a real-
valued pilot or training sequence (from mobile j0). It is assumed that the
training sequence is known at the receiver. Simulations show that the algorithm
to be presented also reduces the errors with only periodic use of a known pilot
signal, with “blind” adaptation used in between. The development is confined
to the known pilot signal case. For α ∈ (0, 1) and fixed weight vector W , define
the errors ek(W ) = sk −W ′Xk and the discounted error

Jk(α,W ) =
k∑

l=1

αk−lek(W )2. (1.1)

Typically α < 1 to allow tracking of changing circumstances. A typical algo-
rithm in applications [15] recursively computes the weight that minimizes (1.1)
for some apriori fixed value of α. The weight Wk(α) that minimizes (1.1) is

Wk(α) = Pk

k∑
l=1

αk−lXlsl, Pk = Q−1
k , Qk =

k∑
l=1

αk−lXlX
′
l . (1.2)

Define ek+1 = sk+1 −W ′
kXk+1. The Wk(α) can be computed recursively by [8]

Wk+1(α) = Wk(α) + Lk+1(α)ek+1,

Lk+1(α) =
Pk(α)Xk+1

α + X ′
k+1Pk(α)Xk+1

,

Pk+1(α) =
1
α

[
Pk(α) −

Pk(α)Xk+1X
′
k+1Pk(α)

α + X ′
k+1Pk(α)Xk+1

]
.

(1.3)

Comments concerning (1.3). The procedure is initialized by using (1.2)
for some value of k > 2K and α = 1. Then, under the usual conditions on
the additive noise (Gaussian, nondegenerate covariance matrix, independent in
time, independent of the signal), the matrix inverse Pk is well defined with
probability one. Since α < 1, the effect of the initialization wears off as k → ∞.
In applications, a dominant influence on the weights is the Doppler phase of
the signal, which can change very rapidly, since the carrier wavelengths are very
small. Owing to this and to the fact that α < 1, the weights can change rapidly.

The term el(W ) is the difference between the desired signal and the weighted
(with weight W ) output of the array at lh and is used to compute the Wk(α)
in (1.3). The term ek+1(Wk(α)) is the difference between the desired signal and
the optimally weighted output of the array at (k + 1)h. Of greater interest in
applications is the bit or decision error. Suppose, for simplicity in the discussion,
and to coordinate with the simulations, that the signal sk takes the binary values
±1.1 Then, for large k the pathwise average of the bit errors

1
4k

k∑
l=1

[sign [W ′
l (α)Xl+1] − sl]

2 (1.4)

1Any finite signal set could be used.
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is an appropriate measure of performance. The results of simulations of this
algorithm for mobile communications were reported in [15].

On the value of α. The value of (1.4) can be quite sensitive to the value of
the forgetting factor α, as can be seen from the numerical data in Section 5. If
the mobiles are not moving and the variance of the additive noise is constant,
then the optimal value of α will be unity. If the mobiles (particularly the one
being tracked) are moving rapidly and the additive noise level is small, then
the optimal value of α will be relatively small. In practice, the optimal value
might vary rapidly, perhaps changing significantly many times per second, as
the operating conditions change. Our aim is the development of a practical
algorithm for adapting α; i.e for tracking its current optimal value. It is based
on an intuitively reasonable gradient descent idea. The simulations presented
in Section 5 show the rapid response of the adaptive procedure.

Outline of paper. The adaptive algorithm, motivated by the work in [6] on
tracking the parameters of linear time-varying systems, will be described in Sec-
tion 2. The adaptive procedure finds the proper balance between the averaging
of the noise effects (i.e., larger α) and the ability to track (i.e., smaller α).
There are two levels of adaptation. One is that which estimates the the opti-
mal antenna weights, given α, and the other adapts α to optimize the overall
performance. The precise model that defines the xj,k will be given in Section
3. The simulation results in Section 5 clearly demonstrate the utility of the
approach and behavior of the algorithm under a variety of challenging operat-
ing conditions, with different INR (interference to noise) and SINR (signal to
interference plus noise) ratios. The algorithm is a form of stochastic approxima-
tion with “state-dependent” noise [7]. Its behavior can be well approximated by
the solution of a mean ODE (ordinary differential equation), and a theoretical
justification for the adaptation properties is in Section 4.

2 The Adaptive Algorithm for α

Simulations for the signal model of Section 3 indicate that for large k the func-
tion

∑k
l=1 Ee2

l (Wl(α))/k is strictly convex and continuously differentiable in
α. The value increases sharply as α increases beyond its optimal value, and
increases (although more slowly) as α decreases below its optimal value. It
is somewhat insensitive to α around the optimal value. Finite difference esti-
mators, as in (2.3), for the difference intervals that we use, provide excellent
approximations to the derivatives.

The algorithm for adapting the weights and α. Let δ > 0 be a small
difference interval, let αk denote the value of α at the kth update, and define
α±
k = αk ± δ/2. The update formula for αk will be given below. The algorithm
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(1.3) is run for both α±
k . Define the two sets of recursions, for β = + or −:

eβk+1 = sk+1 − [W β
k ]′Xk+1,

W β
k+1 = W β

k + Lβ
k+1e

β
k+1,

Lβ
k+1 =

P β
k Xk+1

αβ
k + X ′

k+1P
β
k Xk+1

,

P β
k+1 =

1

αβ
k

[
P β
k −

P β
k Xk+1X

′
k+1P

β
k

αβ
k + X ′

k+1P
β
k Xk+1

]
.

(2.1)

For either case, β = + or −, the solution to (2.1) can be written as

W β
k = Pk

[
k∑

l=1

αβ
l · · ·α

β
k−1Xlsl

]
, P β

k =
[
Qβ

k

]−1

, Qβ
k =

k∑
l=1

αβ
l · · ·α

β
k−1XlX

′
l

(2.2)
where αk · · ·αk−1 = 1. The computation is about twice what is required for
the classical algorithm (1.3). Owing to the discounting in (2.2), the effects on
W β

k of the sample taken at time lh decreases geometrically as k − l → ∞. W β
k

minimizes
k∑

l=1

αβ
l · · ·α

β
k−1e

2
l (W ).

Truncated weights. With appropriate initialization, under typical conditions
on the noise, the inverse matrix in (2.2) is well defined with probability one,
and very large values of the weights rarely occur in applications or in our sim-
ulations. If a large value did occur, it would be truncated or ignored. We will
use truncated weights in the antennas and in the algorithm for updating α,
For some large number L and β = + or −, truncate the components of W β

k to
the interval [−L,L]. Denote the truncated values by Ŵ β

k . For large enough L,
truncation will rarely occur. Define the errors êβk = sk+1 − Ŵ β

k Xk+1.
For small µ > 0, the adaptive algorithm for α is the finite difference form

αk+1 = αk − µ
[ê+

k ]2 − [ê−k ]2

δ
. (2.3)

αk is constrained to the interval [α, α] ∈ (0, 1), where α (resp., α) can be as
close to zero (unity, resp.) as desired. The use of the finite difference in (2.3)
avoids stability issues associated with the derivative form, and yields a more
robust algorithm. The simulations were not sensitive to the value of δ if it was
small (say, δ ≤ .02). In typical applications, the individual values of the êβk
are not “noisy” estimates of the error; hence classical approaches to stochastic
approximation would not be useful. But averaged over many samples, they
“average out” to be such, as seen in Section 4. For decision making purposes,
any value Ŵ+

k , Ŵ−
k , or a convex combination, can be used.
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If the values of αl are fixed at α and the process Xk is stationary, then for
small δ > 0 the stationary expectation of the coefficient of µ in (2.3) should
be close to the derivative of the expectation with respect to α. The intuitive
idea behind the algorithm is that, although the optimal value of α might change
“fast, ” it changes much more slowly than that of W , so that we are essentially
in a stationary state. In this case, we clearly have a stochastic algorithm driven
by a process whose values are estimates of the negative of a gradient. In ap-
plications, the process Xk can rarely be considered to be stationary or ergodic.
For example, with the data model of Section 3, the Doppler phases are the dom-
inant influences on the error. These phases can change rapidly over time. But,
even then, as seen in Section 4, the desired averaging will occur. The overall
conclusion is that, for small µ, the algorithm for adapting α behaves as a (finite
difference approximation to a) gradient descent algorithm, which is what we are
aiming for.

Comment on the properties of the algorithm for small µ. The algo-
rithm (2.1) and (2.3) has two levels. The optimal weight Wk is tracked by (2.1),
while the optimal forgetting factor α is tracked by (2.3). The actual stochastic
approximation algorithm is (2.3), where the step size µ is small. The quantities
(Xk, Ŵ

±
k , sk, L

±
k , P

±
k ) play the role of “state-dependent noise” [7]. Clearly, there

are several time scales, and the “noise” has a complicated structure. Neverthe-
less, results from the theory of stochastic approximation in [7, Chapter 8] can be
used to analyze the algorithm. In applications, the performance is a great deal
less sensitive to the value of µ in (2.3) than the original algorithm (2.1) is to
the choice of α. Under broad conditions, the algorithm performs well, with αk

being nearly optimal, and the bit error rate reduced in comparison with (1.3),
with any fixed value of α. See Section 5.

The behavior of (2.3) for small µ is determined by a mean ODE, whose right
hand side is a “local” average of the coefficient of µ in (2.3). Loosely speaking,
since the αk sequence varies much more slowly than do the “driving noises,” one
can compute this local average by assuming that αk is fixed. Let En denote the
expectation conditioned on the data to sampling time nh. Suppose that there
is a function g(α) and m such that

1
m

n+m−1∑
l=n

En
[ê−l ]2 − [ê+

l ]2

δ
≈ g(α)

for large n and m, where αl is held fixed at α. Then the mean ODE is α̇ = g(α)
[7, Chapter 8]. See Section 4 for more detail.

3 The Physical Model for the Mobiles

We now specify the class of physical models more precisely. The averaging in
the stochastic approximation argument depends on the structure of the observa-
tions {Xk}. We work with a class that is commonly used in adaptive antennas.
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It covers interesting and important applications and well illustrates the essential
ideas. The exact models for communications systems tend to be very compli-
cated. There are issues of synchronization at many levels (e.g., chip, bit, packet),
possible interference between sources, the type of modulation used, non ideal
filters, whether matched or otherwise, and so forth. We will use a common rep-
resentation (quite similar to that in [15]) for the sequence of bits at the output
of the antennas, in baseband form and after processing, and supposing perfect
synchronization.

In order to keep the analysis and simulations from getting too complicated
and to focus on the essential issues of adaptation, the simulations were restricted
to an array of three antennas and the mobiles move in two dimensions. The
three antennas are evenly spaced with spacing d > λj/2 for all j, where λj is the
carrier wavelength of mobile j. Nevertheless, the results concerning averaging
and asymptotics hold for any number of antennas and for full three dimensional
motion.

Line of sight (LOS) model. First consider the model where the the received
signals from the tracked and the main interfering mobiles are not scattered,
but received on the “line of sight.” There are several strong interfering mobiles
plus additive noise. The additive noise is Gaussian and white in time. Part
of the (complex-valued) additive noise might be due to additional interferers
with scattering. If the scattering is “uniform” (i.e., Rayleigh fading), then the
associated noise component can be taken to be independent across the antenna
elements since d > λj/2 for all j [4, 10]. All that we require is that the noise be
nondegenerate in that the covariance matrix is non singular. In the simulations,
it was taken to have independent components.

The tracked and interfering mobiles are in the far field so their transmitted
electromagnetic wave can be assumed to be a plane wave at the antenna array.
The signal amplitude at the receiver from mobile j at time k is 1/d2

j,k, where dj,k
is the distance to a reference antenna in the array [4]. We assume a narrowband
signal (carrier frequency 	 signal bandwidth) so the signal does not change
appreciably over the time that it takes to traverse the antenna array. The pilot
signal sk, for the tracked or desired user, is assumed known. It is finite-valued
and i.i.d., and is independent of the signals from the other mobiles.2 In practice,
there would be either a training period or reference signals sent periodically, as
part of the desired users synchronization signal.

2The independence is used to simplify some calculations. It is only required that the
distribution of {sn+k+l, l = 1, 2, . . .} conditioned on the data to time nh converge weakly to
the unconditional distribution as k → ∞, uniformly in n.

8



���

�

�
��

� �
��

� �
��

�
� �� �

����
����

�

�
�

�
�

�
�

�
�

�
�

��

���	












�

1 2 3
d d

w1 w2 w3

+

φ

γ

plane wave

mobile

Figure 3.1. A Three Antenna Array.

The (complex-valued) antenna signature of a mobile corresponding to a plane
wave of carrier wavelength λ arriving at an angle φ to the normal to the plane of
the antennas (see Figure 3.1) is given by the vector (antenna 1 is the reference
antenna)

c(φ, λ) =
[
1, exp

(
−i

2π
λ
d sinφ

)
, exp

(
−i

2π
λ

2d sinφ

)]
. (3.1)

There is an obvious extension for arbitrary K.
The Doppler frequency of mobile j at time kh is

ωd
j,k = −2π

λj
vj,k cos(φj,k − γj,k), (3.2)

where γj,k is the angle of travel of mobile j (see the figure), vj,k its speed, and
φj,k the angle of arrival of its plane wave. The (complex-valued here) component
of the received signal at the antenna array at sampling time kh due to mobile j
is given by

rj,k =
sj,k
d2
j,k

[
exp i ψd

j,k

]
c(φj,k, λj), (3.3)

where ψd
j,k = ψj(0) +

∫ kh

0
ωd
j (s)ds, the Doppler phase at time kh, sj,k is the

signal from mobile j, ψj(0) is the initial phase, dj,k is the distance between
mobile j and the array, and λj is the carrier wavelength for mobile j. Thus
sk = sj0,k, where we recall that j0 denotes the tracked mobile.

Of particular interest is the typical case where the wave numbers 2π/λj are
very large so that small variations in the mobility of the mobile can lead to large
changes in the Doppler frequency.3 The model is close to what was used in [15].

3The signal Xk can be based either on TDMA or CDMA. In the latter case, it is measured
after the matched filters, which use the signature of the desired user.
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The scattering model. When scattering of the transmitted signal from many
rapidly changing reflectors is important, a common model for the part of the
antenna outputs that is due to the signal is a multipath form of (3.3), where each
component is multiplied by a complex-valued random variable. For example,

rj,k =
q∑

l=0

hj,k−l

d2
j,k−l

sj,k−l

[
exp iψd

j,k−l

]
cj,k−l,

where hj,k is a complex gain, correlated in the time parameter k, and indepen-
dent of the observation noise, the angle of arrival, distance to the array, and
angle of travel.

There is no mathematical problem in handling the general delay model, but
the simulations concerned only the so called flat fading form which is

rj,k =
hj,ksj,k
d2
j,k

[
exp iψd

j,k

]
cj,k. (3.4)

The complex-valued hj,k model the time-varying effects of many independent
scattering objects. It is rarely the case in practice that more than one delay
path is considered [13] and furthermore the case (3.4) is often used ([1, 3, 11],
for example).

First, consider a “Rayleigh” channel. The autocorrelation function of the
hj,k, for each j, is usually assumed to be a zeroth order Bessel function of the
first kind as in Rj(kh) = J0(ωd

j kh) [4]. The mathematical arguments that are
required to justify the stochastic approximation averaging can be carried out
under this assumption. But, for purposes of simulation, the autocorrelation
function is often approximated by that of an autoregressive process [5, 13].4

Then the model for each channel is taken to be

hj,k+1 = βj,khj,k + gj,kξj,k, (3.5)

where ξj,k is i.i.d. complex-Gaussian with variance unity and independent across
the channels. The real number gj,k is chosen so that E|hj,k|2 = 1, assuming
that the real number 0 < βj,k < 1 is fixed and the process stationary. For the
Rayleigh channel, βj,k is chosen to roughly match the desired autocorrelation,
and it will depend on the Doppler frequency [5].

A “Ricean” channel models the case where both the LOS and the scattering
components are significant [9, 12]. In this case the term hj,k is replaced by
q1 + q2hj,k, for positive constants qi such that q1 + q2 = 1.

4 Convergence

Comments on Stochastic Approximation. Only simple results from SA
theory are needed. Consider the vector-valued iteration θn+1 = θn+µYn, where

4The reference assumed a constant Doppler frequency, and ours is time-varying.
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µ is small positive number and the set {Yn, n < ∞} is uniformly integrable.
Define the process θµ(·) by θµ(t) = θn for t ∈ [nµ, nµ + µ). Then {θµ(·)} is
tight in the Skorohod topology [7]. Let En denote the expectation conditioned
on the data to iterate n. Suppose that there is a continuous function g(·) such
that

E

∣∣∣∣∣ 1
m

n+m−1∑
l=n

EnYl − g(θn)

∣∣∣∣∣ → 0 (4.1)

uniformly in any finite nµ interval, as m → ∞, µ → 0 and µm → 0. Then all
weak sense limits of θµ(·) satisfy the ODE θ̇ = g(θ), with θ(0) = θ0. The full
theory is in [7, Chapter 8].

Suppose that for each ρ > 0 there is Yρ,n such that {Yρ,n, n < ∞} is uni-
formly integrable and supn E|Yn − Yρ,n| ≤ ρ and let there be a continuous
function gρ(·) such that (4.1) holds for Yρ,n and gρ(·) used. Then θ̇ = gρ(θ)+κ,
where |κ| ≤ ρ. If gρ(·) converges to a continuous function g(·), uniformly on each
bounded set, then the mean ODE is θ̇ = g(θ). What is not quite standard in
the averaging is that the effects of both noise and the “trigonometric” Doppler
phase need to be accounted for.

Approximation of the algorithm (2.3). For each integer M , define fM (·)
by

fM (Xl, αl; k −M ≤ l ≤ k) = PM,k

[ k∑
l=k−M

αl · · ·αk−1Xlsl

]
,

PM,k = Q−1
M,k, QM,k =

k∑
l=k−M

αl · · ·αk−1XlX
′
l .

(4.2)

Define W β
M,k = fM (Xl, α

β
l ; k−M ≤ l ≤ k) for β = +,−. Under the assumptions

on the additive noise, the matrix inverse will exist for all αl ∈ [α, α], w.p.1, for
large M (> 2K). In fact, for any ρ > 0,

lim
M→∞

sup
k

P
{∣∣∣W β

M,k −W β
k

∣∣∣ ≥ ρ
}

= 0. (4.3)

For any δ0 > 0, on the open X-set where the determinant of QM,k is > δ0 for all
possible α-values, fM (·) is continuous in (Xl, αl; k−M ≤ l ≤ k). The probability
of the X-set where the determinant is > δ0 goes to one as δ0 → 0. On the set
where the determinant is zero, let the pseudoinverse replace the inverse, so that
the “inverse” is defined and continuous for all {Xl, k −M ≤ l ≤ k} and values
of the αl in the allowed range.

Now, truncate the components of fM (·) to the interval [−L,L], for large L,
as was done to get the Ŵk. Let f̂M (·) and Ŵ β

M,k denote the truncations. Then,
for each ρ > 0,

lim
M→∞

sup
k

P
{∣∣∣Ŵ β

M,k − Ŵ β
k

∣∣∣ ≥ ρ
}

= 0. (4.4)
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Define êβM,k+1 = sk+1 − [Ŵ β
M,k]

′Xk+1. Then

sup
M→∞

sup
k

E
∣∣∣[êβk ]2 − [êβM,k]

2
∣∣∣ = 0.

Let m (it can go to infinity and depend on µ) be such that µm → 0 as µ → 0
and m > max{M, 2K}. Let 0 ≤ k − n ≤ m. Replacing αl, . . . , αk−1, in the
Ŵ β

M,k by αn yields an error that goes to zero (in mean) uniformly in k as µ → 0.
For β = +,−, we have

E

∣∣∣∣(êβM,k

)2

−
(
êβM,k(αn used)

)2
∣∣∣∣ → 0

uniformly in n, k,m, as mµ → 0. This replacement of the αl, n ≤ l ≤ n + m by

αn will be used henceforth, whenever convenient. Consider En

[
êβM,k

]2

. Owing
to the assumptions on the additive Gaussian noise, the conditional expectation
is a smoothing operation. In fact, there are continuous functions FM (·) (with
components bounded uniformly in M , for each L) such that, modulo an error
that goes to zero uniformly in n, m, in k such that k − n ≤ m, and in the
conditioning data, as µ → 0, with the replacement of the αl, n ≤ l ≤ n + m by
αn,

En

[(
êβM,k

)2
∣∣∣∣αβ

n, dj,l, φj,l, ψ
d
j,l; j, k −M ≤ l ≤ k

]
= FM

(
αβ
n, dj,l, φj,l, cosψd

j,l, sinψd
j,l; j, k −M ≤ l ≤ k

)
.

(4.5)

Furthermore,
sup

M→∞
sup
k

E
∣∣∣[êβk ]2 − [êβM,k]

2
∣∣∣ = 0. (4.6)

The limit in (4.6) holds uniformly in all non anticipative α-sequences whose
values are confined to [α, α]. Thus, according to the comments on SA in the
beginning of the section, to get the mean ODE, we can approximate by working
with (4.5), with M fixed, but arbitrarily large.

An approximation for the d, φ. For slowly varying dj,l, φj,l, we can replace
them in (4.5) by dj,n, φj,n, without loss of the essential features of the algorithm.
For example, let the velocity be approximately 100 km/hr with dj,0 = 1 km. In
one second there are typically over 1000 samples taken, and the distance has
changed by about 3%, a very small fraction of the typical percentage change in
the Doppler phase. Similarly, the angle of arrival usually changes very slowly
in comparison with the Doppler phase.

Let F β
M,n,k denote the value of (4.5) with the substitution of dj,n, φj,n for

dj,l, φj,l. Suppose that there are continuous functions fM (·) such that

lim
m→∞

sup
n

E
1
m

∣∣∣∣∣
n+m−1∑

l=n

EnF
β
M,n,l − fM (αβ

n, dj,n, φj,n)

∣∣∣∣∣ = 0. (4.7)
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Then by the SA result at the beginning of the section, for large M the mean
ODE is well approximated by

α̇ = [fM (α−, d, φ) − fM (α+, d, φ)]/δ ≡ gM (α, d, φ). (4.8)

Details for (4.7) will now be filled in for some basic cases.

Proof of (4.7): The LOS model. Recall that the signals are assumed to be
i.i.d. and binary-valued. The main issue in the verification of (4.7) concerns the
effect of the Doppler frequency in (3.3). As noted above, we suppose that the
dj,k, φj,k are constant, with values d, φ, resp. Set αn = α. First, suppose that
the Doppler frequencies from all mobiles are constant and mutually incommen-
surate; that is ωd

j (t) = ωd
j for all j. If l−n is large enough (with µ(l−n) small),

then F β
M,n,l in (4.7) depends only on α± and on the values of the trigonometric

arguments of FM (·). It is not random. If hωd
j is small for all j, then there are

many samples per cycle for each j. Then for large m the sum in (4.7), namely,

1
m

n+m−1∑
l=n

EnF
β
M,n,l, (4.9)

is very close to

fM (αβ , d, φ) = EFM (αβ , d, φ, cos(ψj − ωd
j lh), sin(ψj − ωd

j lh); j, 0 ≤ l ≤ M),
(4.10)

where the ψj are independent and uniformly distributed on [0, 2π]. Then (4.7)
will hold approximately, with an error that goes to zero as hωd

j → 0. Note that
of ωd

j = 100 and h = 10−4, then hωd
j = .01, which tells us that the assumed

smallness is not usually restrictive.
Now drop the assumption that h is small. Then the sampling of the Doppler

phase (mod 2π) is “course, ” and one has the possibility of the samples taking
only a few values. But this will “rarely” occur in the following sense. For
notational simplicity, and without loss of generality, let ψj(0) = 0. Then (4.5)
is

FM

(
αβ , d, φ, cosωd

j lh, sinωd
j lh; j, k −M ≤ l ≤ k

)
.

For all but a null set of {ωd
j , j}, (4.10) is the limit of (4.9), as m → ∞. There

will be problems in special cases; e.g., where some ωd
jh/2π is rational. But

even there the approximation will be often good, barring special cases where
the samples of the trigonometric functions take very few values.

Next suppose that the Doppler frequencies vary randomly as independent
random walks. In particular, let the Doppler phase for mobile j at the lth
sample be ψj(0) + bj lh + Bj(lh), where the Bj(·) are mutually independent
Wiener processes, perhaps with different variances. Then for large l − n, for
purposes of evaluating (4.7), the value of (4.9) can be well approximated by the
representation

EFM

(
αβ , d, φ, cosψd

j,l, sinψd
j,l; 0 ≤ l ≤ M, j

)
,
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where ψd
j,l = ψj − bj lh + Bj(lh), the ψj are mutually independent, uniformly

distributed on [0, 2π], and independent of the Bj(·).

The scattering cases. The analysis is nearly identical to that above. Write
hj,l = hR

j,l + ihI
j,l in terms of the real and imaginery components. In (4.5), with

the replacement of the αl, n ≤ l ≤ n + m by αn, condition the expectation on
the hj,l also to yield

En

[(
êβM,k

)2
∣∣∣∣αβ

n, dj,l, φj,l, ψ
d
j,l, hj,l; j, k −M ≤ l ≤ k

]
.

Then the cosψd
j,l in FM (·) is replaced by the real part of hj,le

iψj,l , namely,
hR
j,l cosψd

j,l − hI
j,l sinψd

j,l, and the sinψd
j,l is replaced by the imaginary part

hR
j,l sinψd

j,l + hI
j,l cosψd

j,l. The rest of the details are very similar to those for
the simpler LOS case and are omitted.

5 Simulations

Unless otherwise noted, the direction and velocity of each mobile evolved as
a semi-Markov process, each moving independently of the others. They were
constant for a short random interval, then there was sudden acceleration or
deceleration in each coordinate, and so forth. Only the Doppler frequencies for
the various mobiles are plotted, since they are the most important factors in
the adaptation of α. The number of strong interfering mobiles (NI) is either
one or three. Mobile 2 is always the desired one, the one whose signal we
are tracking. We used µ = .0008, δ = .002, h = 4 × 10−5 seconds, and the
carrier frequency is 800 × 108 Hz. In each case, the signal amplitude at the
receiver of each interfering mobile was approximately the same, and each was
approximately one fourth that of the desired mobile. This represents a large
interference. Changing the value of µ up or down by factor of four had little
effect on the overall performance, demonstrating the insensitivity to µ (relative
to that with respect to α) noted in Section 2. For example, for the run of Figure
1 dividing µ by four leads to a smoother graph for α, and the transient period
for the discontinuity at t = .6 becomes about 0.1 second.

The LOS cases will be discussed first. Define, as usual (measured at the
input to each antenna),

SINR = 10 log
Pdes∑NI

i=1 Pi + 2σ2
, INR = 10 log

∑NI

i=1 Pi

2σ2
,

where Pdes and Pi are the signal powers (at the antenna) of the desired and ith
interfering mobile, resp., and σ2 denotes the variance of the real and complex
parts of the additive noise. The most important factor in the determination
of the optimal value of α at any time is the Doppler shift, although the values
are also affected by the SINR and INR. In each case, results from a single
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run are presented. But the adaptation, errors, and relative performances, were
consistent in all runs taken.

The simplest case is in Figure 1, where there is just one interferer and SINR =
5.3 db, INR = 1.3 db. The SINR is rather large, especially in view of the fact that
it is measured after detection (e.g., in CDMA, after multiplying by the spreading
sequence of the tracked mobile). Since the actual mobility and noise data can
vary quite a bit, even over short time intervals, it is important not to ignore
difficult cases. The top two figures plot the Doppler frequencies (in radians per
second vs. time measured in seconds) of the two mobiles. For high Doppler
frequencies, the optimal α is low, and conversely for low values, as expected.
The algorithm tracks the optimal value very well. Mobile 2 starts with a high
Doppler frequency (corresponding to a velocity of approximately 150 km/hr),
which then decreases suddenly at t = .6 sec., then decreases more slowly, and
finally increases slightly. The behavior of α is typical for all simulations with
this mobility for mobile 2. It initially oscillates about α = .85, which is very
close to the optimal value for the associated Doppler frequency. Then, when
the Doppler frequency drops to about 200 radians/sec, α increases quickly, and
then continues to increase (on the average) as the Doppler frequency continues to
drop. At t = 1, the Doppler frequency rises slightly and then remains constant.
Except for the brief transient periods, the values of α are close to the optimal.
When smaller µ is used, the paths of α are smoother, the transient period longer,
all of which is intuitively reasonable, but the overall performance is very similar.

The sample number of bit errors divided by the number of samples to date
(i.e., (1.4), the sample mean error probability) is in Figure 2. The fixed-α cases
are for the classical mean square algorithms (1.3), with the chosen value of α
used. The lowest (or best) line is for the adapted case, the one slightly above is
for fixed α = .84, and the highest for fixed α = .96. Clearly, if a fixed value of
α is to be used, then the errors depend heavily on its value. The adapted case
was always the best, no matter what the mobilities. If the value of α is fixed,
then a larger value is better for the second half of the run, which accounts for
the decrease in the top curve there. In fact, for all cases in Figure 1 there were
few errors after about t = .6.

For the case of Figure 1, and in general, the results are relatively insensitive
to the Doppler frequencies of the interfering mobiles. This is true since the
signals from the different mobiles are mutually independent: In particular, note
that, in (1.2) and (2.1), the sj,k sequences for the non tracked mobiles are
independent of that for the tracked mobile, which would make expressions such
as (4.9) less sensitive to the nontracked mobiles than to the tracked mobile. In
some cases, there is a fixed value of α such that (1.3) performs nearly as well
as the adaptive algorithm. But even then, the optimal fixed value changes with
the environment. While lower fixed values are better for the cases of Figures
1-4, the higher fixed values would be better if the tracked mobile moved more
slowly (as in the case of Figure 9). Generally, the Doppler frequency will change
many times in the course of a transmission, and any fixed value cannot be even
nearly optimal all of the time.

An increase in the variance of the additive noise leads to larger errors and
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a larger value of the optimal α, as expected, since it is optimal to do more
“noise averaging.” There is a fairly short “memory” in these algorithms, so the
randomness in the noise sequence has a significant affect on α. The behavior is
smoother if smaller µ is used. Despite the fact that the αn-plots are wilder than
those in Figures 1 and 3, the adaptive algorithm still outperforms the classical
algorithm.

Now, consider the case of Figure 3, where there are three strong interfering
mobiles, SINR = 0.5 db, and INR = 7.9 db. Again, the optimal value of α was
tracked well. The average bit errors are plotted in Figure 4. The error values for
the fixed value α = .84 were nearly as good as the adaptive algorithm. Again,
there were few errors after about t = .6.

Another example of good tracking appears in Figure 5, where the Doppler
frequency of the tracked mobile varies in a sawtooth fashion. The algorithm
again produces nearly optimal α. The interfering mobiles are as in Figure 3.
The bit error rates are in Figure 6. Clearly, the adaptive algorithm is better.
In this case, for the fixed-α algorithm, the α = .96 case starts off better than
the α = .84 case, since the Doppler frequency is relatively low. The comparison
reverses itself as the Doppler frequency ranges from low to high and back again.
See also Figures 7 and 8, where the Doppler frequency of the tracked mobile
decreases in a linear manner. Figure 9 corresponds to the case where the tracked
mobile is moving at a (slow !) speed of about 14.5 km/hour. Here, for the fixed-
α algorithm, the larger value is better.

The results under Raleigh or Ricean scattering were similar, except that the
errors were larger, due to the larger effective noise.
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Figure 1: NI = 1.
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Figure 2: Average pathwise bit errors for Figure 1.
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Figure 3: NI = 3.
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Figure 4: Average pathwise bit errors for Figure 3.
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Figure 5: Sawtooth Doppler frequency, NI = 3.
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Figure 6: Pathwise average bit errors for Figure 5.
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Figure 7: Linear Doppler frequency, NI = 1.
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Figure 8: Pathwise average bit errors for Figure 7.
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Figure 9: Desired mobile moves at 14.5 km/hr in constant direction, NI = 3.
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