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Abstract

Low-dimensional flow dynamical systems are susceptible to instabilities after long-
time integration. In this paper, we investigate the stability of such two-dimensional
models constructed from Karhunen-Loeve expansions for flows past a circular cylin-
der. We first demonstrate that although the short-term dynamics may be predicted
accurately with only a handful of modes retained, instabilities arise after a few
hundred vortex shedding cycles. We then propose a dissipative model based on a
spectral vanishing viscosity (SVV) diffusion convolution operator as an effective way
of stabilizing low-dimensional Galerkin systems.

Key words: Dynamical systems, artificial viscosity, stability, Galerkin projections,
non-linear Galerkin, low-dimensional
PACS: 37E99, 65P99

1 Introduction

Proper orthogonal decomposition (POD) is a methodology that first identifies
the few most energetic modes in a time-dependent system, and second provides
a means of obtaining a low-dimensional description of the system’s dynamics
[1]. A particular effective approach is the method of snapshots, first proposed
in [2] for flow systems, that makes the method easy to implement in practice.
POD has been successfully implemented in conjunction with experimental
(e.g., [3–6,?]) as well as with numerical studies (e.g., [7,2,8–12]) in thermal
convection, shear layers, cavity flows and external flows, to mention just a
few.
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In some of the aforementioned studies ad hoc viscosity models have been in-
corporated to produce stable simulations (e.g., [11] for cavity flows) while in
others there was no explicit stabilization technique incorporated (e.g., [7] for
cylinder flows). In particular, as the number of modes increases above a cer-
tain threshold the POD-based model seems to be stable at least for short-time
integration. The stability of the model, however, is strongly dependent on the
flow geometry and regime, while most of the fixes for one flow are not effective
in another flow. Also, most of the studies so far have addressed short-term dy-
namics while instabilities may arise after thousands of convective time units.

From the theoretical standpoint, it is well known that the system of ordinary
differential equations derived from the Galerkin projection of a dissipative
PDE may be unstable for the long-term dynamics, see [13]. A potential ap-
proach to restore dissipation back to the low-dimensional system is nonlinear
Galerkin projection, which is based on concepts of approximate inertial mani-
folds, see ([14], [15] and [16]). For fully discrete systems, the nonlinear Galerkin
method has been shown to be stable for the long-term dynamics but some sen-
sitivity to initial data was also revealed, see [17]. In practice, this method works
effectively as we have recently shown in [18] using a low-dimensional system
constructed from experimental (Particle Image Velocimetry) data. However,
we have encountered several other reduced flow model systems for which such
stabilization proved inadequate. We will demonstrate this behavior in the fol-
lowing.

In this paper, we present an alternative stabilization strategy based on the
spectral vanishing viscosity (SVV) method. SVV was first introduced in [19]
in the context of constructing monotonicity preserving discretizations to hy-
perbolic conservation laws. More recently, it has been employed successfully
in formulating alternative large-eddy simulation (LES) approaches [20]. Also,
in [21], the Legendre spectral vanishing method was shown to effectively con-
trol the Gibbs phenomenon, while in [22], the SVV approach was employed in
two-dimensional simulation of waves in stratified atmosphere.

The spectral vanishing viscosity approach guarantees an essentially non-oscillatory
behavior although some small oscillations of bounded amplitude may be present
in the solution. This theory is based on three key components:

(1) A vanishing viscosity amplitude which decreases with the mode number;
(2) A viscosity-free spectrum for the lower, most energetic modes; and
(3) An appropriate viscosity kernel for the high-wave numbers.

SVV is especially suitable for hierarchical discretizations such as the proper
orthogonal decomposition where global energetically-ordered modes are in-
volved. This implies that SVV preserves the inherent energetic scale sepa-
ration while it also maintains monotonicity of the total variation bounded
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Fig. 1. Computational domain.

(TVB) kind by controlling the high-frequency components. This effective reg-
ularization is determined by parameters whose range is given directly by the
theory for advection-dominated systems. More recent work has extended the
method to superviscosity formulations, first by Tadmor [23] and later by Ma
[24,25], in order to extend the range of the viscosity-free spectrum.

In the following, we first demonstrate a few cases where instabilities arise and
subsequently we introduce the SVV method and present asymptotically stable
results by incorporating SVV.

2 Mathematical Formulation

2.1 Direct Numerical Simulation

We consider here flow past a circular cylinder for which both two- and three-
dimensional POD models have been constructed in [7] and [26], respectively.
These models were stable for tens and even hundreds of shedding cycles
without incorporating any stabilization scheme. We will examine the stabil-
ity of these flows; in particular for the concepts developed here we consider
two-dimensional uniform flow past a circular cylinder at Reynolds number
Re = 100 and Re = 500.

The computational domain is shown in figure 1. Uniform steady or time-
dependent boundary conditions are imposed at the inflow boundary Γ1. Uni-
form velocity is also imposed on Γ3 and Γ4 while on Γ2 the zero Neumann con-
dition on velocity is imposed. On the cylinder surface Γ5 the no-slip boundary
condition is prescribed. Converged solutions were obtained using the spectral/hp
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Fig. 2. Instantaneous vorticity contours at Re=100 (upper) and Re=500 (lower).

element method [27]. Typical results that show the differences in spatial scales
in terms of vorticity at Re=100 and Re = 500 are shown in figure 2.

2.2 POD Models

We employed 50 snapshots of DNS data in order to construct the low-dimensional
models using the proper orthogonal decomposition. We briefly review this pro-
cedure next.

Let us decompose the total flow field V as

V(x, t) = U0(x) + u(x, t)

where U0 is the time-averaged field.

Then, we extract the POD modes, based on the DNS data, which are eigen-
vectors of a covariance matrix C; its elements are computed as follows

ci,j = ıu(x,ti)·u(x, tj)dx =
∫
(

u(x, y, ti)u(x, y, tj)+v(x, y, ti)v(x, y, tj)
)

dx dy ,

where u, v are the two components of the velocity vector u. This is the snap-
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Fig. 3. POD eigenvalues for Re = 100 (+) and Re = 500 (∗).

shot method formulation, see [28–30]. The matrix C represents the correlation
between temporal points since the spatial variable has been integrated out.
We then compute the eigenvectors of the above covariance matrix, denoted by
a, and the POD modes denoted by φ(x, y). Specifically, the vector φ(x, y) is
given by

φu(x, y)j =
N
∑

i=1

aj(ti)u(x, y, ti)

φv(x, y)j =
N
∑

i=1

aj(ti)v(x, y, ti)

where N is the total number of snapshots, φu and φv are the components of
the vector φ(x, y), and j is the mode index. The corresponding eigenvalues
are ordered and plotted in figure 3 for Re = 100 and Re = 500.

We employ the hierarchical POD modes obtained from the DNS data as a basis
to represent the velocity field. In addition, we employ a Galerkin projection
of the Navier-Stokes equations onto spatial modes to obtain the system of
ordinary differential equation that governs the dynamics of the system.

We express the two-dimensional field u as the linear combination of the POD
modes

u(x, y, t) =
N
∑

j=1

φu(x, y)jaj(t),

v(x, y, t) =
N
∑

j=1

φv(x, y)jaj(t),
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where aj(t) are the unknown coefficients. The Galerkin projection of the
Navier-Stokes equations gives

∫

φ ·
(

∂V

∂t
+ (V · ∇)V +∇p− 1

Re

∇2V

)

dx = 0 (1)

where the projection vector is φ = [φu, φv]
T , extracted from DNS. We use the

divergence-free eigenmodes so the pressure term inside the domain is elimi-
nated via integration by parts. Also the Dirichlet and the outflow conditions
imposed at the boundaries lead to the vanishing of contributions from the
pressure on those boundaries in the integration by parts procedure.

The Galerkin projection leads to the dynamical system:

∂aj(t)

∂t
= f(a) (2)

with a = [a1, a2, . . .]. The term f(a) includes the convective and viscous terms
and has the form:

f(a) =−
(
∫

φj∇ · (φiφk)dx
)

aiak

−
(

1

Re

∫

∇φj∇φidx +
∫

φj∇ · (φiU0)dx +
∫

φj∇ · (U0φi)dx
)

ai

−
(
∫

φj∇ · (U0U0)dx +
1

Re

∫

∇φj∇U0dx
)

.

In the following we investigate the time evolution of the modal coefficients
aj(t), j = 1, 2, . . .; we also refer to aj as the “mode” j.

3 Instability of POD Flow Models

First we present results from the long-time integration of the Re = 100 case
with steady uniform inflow. It was found in [7] that a 6-mode POD system
gives accurate results in comparisons with the original DNS data, at least
for the short-time dynamics. Indeed, various reduced models we tested again
with N ≥ 6 are stable after short-time integration, and in fact for times up to
several hundreds of shedding cycles. Our experiments, however, show that all
models are asymptotically unstable. For example, a 6-mode model is steady
for to to 40 shedding cycles (about 200 convective time units) as shown in
figure 4 but it diverges for time t > 200. As the number of modes increases
the stability of the model is enhanced. So, a 10-mode model is stable for up to
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Fig. 4. Re=100: Time history showing the onset of instability (bifurcation) in the
6-mode POD model.

500 shedding cycles, i.e. more than 3,000 convective time units, but eventually
all modes diverge as shown in figure 5. In particular, a bifurcation to a new
asymptotic state is shown. However, for the first 50 shedding cycles the POD
predictions are in very good agreement with the DNS data as shown in figure
6.

The exact onset of instability depends on the number N of modes retained in
the reduced model as well as on the Reynolds number. At the higher Reynolds
number (Re = 500) the onset of instability arises earlier even for a higher-
order model. For example, in figure 7 we show the time history of the modes
for a 20-mode POD model. The instability here sets in at about 100 shedding
cycles into the time integration. This result is typical of several other models
we constructed for the uniform steady inflow.

However, not all low-dimensional systems are asymptotically unstable. Our
experiments show that forced systems, i.e. systems with an imposed time scale
through external forcing, may be stable at all times. To this end, we consider
the flow past a cylinder again at Re = 500 but with a small sinusoidal velocity
component added at the inflow, with 10% amplitude forced at the Strouhal
frequency. The resulting POD system predicts the expected lockin state, in
agreement with DNS, and it is stable [31]. In figure 8 we show the time history
for the same set up and parameters as in figure 7. It shows stability at the
time of the instability onset of the flow described in 7 but also at much longer
times (not shown here). The Galerkin model in the unsteady inflow case is
based on a modification of the system of equations (2) to include a penalty
term that facilitates the time-dependent boundary conditions in the reduced
POD system.
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Fig. 5. Re=100: Time history showing the onset of instability (bifurcation) in the
10-mode POD model.

4 The Spectral Vanishing Viscosity Model

Tadmor [19] first introduced the concept of spectral vanishing viscosity (SVV)
using the inviscid Burgers’ equation

∂

∂t
u(x, t) +

∂

∂x

(

u2(x, t)

2

)

= 0, (3)

subject to given initial and boundary conditions. The distinct feature of solu-
tions to this problem is that spontaneous jump discontinuities (shock waves)
may be developed, and hence a class of weak solutions can be admitted. Within
this class, there are many possible solutions, and in order to single out the
physically relevant one an additional entropy condition is applied, of the form

∂

∂t

(

u2(x, t)

2

)

+
∂

∂x

(

u3(x, t)

3

)

≤ 0. (4)

In low-dimensional systems it has been found that unstable behavior is asoci-
ated with multiple spurious steady states [13], and this is consistent with the
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Fig. 6. Re=100: Phase portrait for the first 50 shedding cycles for the 10-mode
model. The lines denote POD predictions and the triangles DNS data.

above observation. Tadmor (1989) introduced the spectral vanishing viscos-
ity method, which adds a small amount of mode-dependent dissipation that
satisfies the entropy condition, yet retains spectral accuracy. It is based on
viscosity solutions of nonlinear Hamilton-Jacobi equations, which have been
studied systematically in [32]. Specifically, the viscosity solution for the Burg-
ers’ equation has the form

∂

∂t
u(x, t) +

∂

∂x

(

u2(x, t)

2

)

= ε
∂

∂x

[

Qε
∂u

∂x

]

, (5)

where ε(→ 0) is a viscosity amplitude and Qε is a viscosity kernel. Convergence
may then be established by compactness estimates combined with entropy
dissipation arguments [19]. To respect spectral accuracy, the SVV method
makes use of viscous regularization and equation (5) may be rewritten in
discrete form (retaining N modes) as in our POD model

∂

∂t
uN(x, t) +

∂

∂x

[

PN

(

u2(x, t)

2

)]

= ε
∂

∂x

[

QN ∗
∂uN

∂x

]

, (6)

9



420 440 460 480 500 520 540

−2
0
2

a 1

20 mode

420 440 460 480 500 520 540

−2
0
2

a 2

20 mode

420 440 460 480 500 520 540

−0.5

0

0.5

a 3

420 440 460 480 500 520 540

−0.5

0

0.5

a 4

420 440 460 480 500 520 540

−0.5

0

0.5

a 5

420 440 460 480 500 520 540

−0.5

0

0.5

a 6

420 440 460 480 500 520 540

−0.1
0

0.1

a 7

420 440 460 480 500 520 540
−0.2
−0.1

0
0.1

a 8

420 440 460 480 500 520 540

−0.1

0

0.1

a 9

t
420 440 460 480 500 520 540

−0.1

0

0.1

a 10

t

Fig. 7. Re=500; steady inflow: Time history showing the onset of instability (bifur-
cation) in the 20-mode POD model.

where the star (∗) denotes convolution and PN is a projection operator. QN is
a viscosity kernel, which is only activated for high wave numbers. In Fourier
space, this kind of spectral viscosity can be efficiently implemented as multi-
plication of the Fourier coefficients of uN with the Fourier coefficients of the
kernel QN , i.e.,

ε
∂

∂x

[

QN ∗
∂uN

∂x

]

= −ε
∑

M≤|k|≤N

k2Q̂k(t)ûk(t)eikx,

where k is the wave number, N the number of Fourier modes, and M the
wavenumber above which the spectral vanishing viscosity is activated. In the
POD context, we also assume that this implementation of convolution is valid
in the modal space.

Originally, Tadmor (1989) used

Q̂k =











0, | k |≤M

1, | k |> M,
(7)
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Fig. 8. Re=500; oscillatory inflow: Time history showing stability for the 20-mode
POD model.

with εM ∼ 0.25 based on the consideration of minimizing the total-variation
of the numerical solution. In subsequent work, however, a smooth kernel was
used, since it was found that the C∞ smoothness of Q̂k improves the resolution
of the SVV method. For Legendre pseudo-spectral methods, Maday et al. [33]
used ε ≈ N−1, activated for modes k > M ≈ 5

√
N , with

Q̂k = e
−

(k−N)2

(k−M)2 , k > M. (8)

In order to see the difference between the convolution operator on the right-
hand-side in equation (6) and the usual viscosity regularization, following Tad-
mor [34], we expand as

ε
∂

∂x

[

QN ∗
∂uN

∂x

]

= ε
∂2uN
∂x2

− ε
∂

∂x
[RN(x, t) ∗ ∂uN

∂x
] (9)
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where

RN(x, t) ≡
N
∑

k=−N

R̂k(t)eikx; R̂k(t) ≡











1− Q̂k(t) |k| ≥M

1 |k| < M
(10)

The extra term appearing in addition to the first standard viscosity term
makes this method different. It measures the distance between the spectral
(vanishing) viscosity and the standard viscosity. This term is bounded in the
L2 norm similarly to the spectral projection error. In this paper we refer to
the viscosity as vanishing as the theory requires that

ε ≈ 1

N θlogN
, θ ≤ 1

and thus ε→ 0 for the high-resolution limit.

At this point it is also instructive to compare the spectral vanishing viscosity
to the aforementioned spectral eddy-viscosity introduced by Kraichnan [35]
and modified by Chollet-Lesieur [36,37]. The latter has the non-dimensional
form [37]

ν(k/N) = K
−3/2
0 [0.441 + 15.2exp(−3.03N/k)], K0 = 2.1 (11)

Comparing the Fourier analog of this eddy-viscosity employed in LES [36]
to the viscosity kernel Qk(k,M,N) introduced in the SVV method, figure 9
shows both viscosity kernels normalized by their maximum value at k = N .
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For SVV two different values of the cut-off wavenumber are considered, i.e.,

M = C
√
N for C = 0 and C = 5, (12)

and are shown in the plot of figure 9. In particular, the solid line can be
thought of as a stability barrier above which monotonicity and thus stability
is not guaranteed. On the other hand, the dash line can be thought of as
an accuracy barrier below which the convergence of the method is affected.
This range has been used in most of the numerical experiments so far (see
for example [33],[22],[20]) and is consistent with the theoretical results [19]. In
the plot it is shown that, in general, the two forms of viscosity have similar
distributions but the SVV form does not affect the first one-third or one-
half of the spectrum (viscosity-free portion) and it increases faster than the
Kraichnan/Chollet-Lesieur eddy-viscosity in the higher wave numbers range,
e.g. in the second-half of the spectrum.

The implementation of the SVV in the POD models (equation (2)) is similar
to the implementation of Fourier methods presented above or the spectral/hp
element discretization in [20]. In particular, the system of ordinary differential
equations is enhanced as follows

∂aj(t)

∂t
= f(a)− h(a), (13)

where f(a) has the form presented in equation (3), and h(a) contains the
viscosity convolution kernel, i.e.

h(a) = εQ̂j

[

∫ ∂U0

∂x

∂φj

∂x
dx +

N
∑

i=1

ai(t)
∫ ∂φi

∂x

∂φj

∂x
dx

]

. (14)

In this derivation, integration by parts is used and the fact that boundary
contributions vanish because of the specific boundary conditions employed.
In view of equation (14), we can see that only the higher modes, i.e. mode
numbers greater than M , will be affected by the viscosity kernel.

In order to contrast the effect of SVV to simply adding artificial viscosity in
the POD model we have also performed simulations with model; the total
(non-dimensional) viscosity in this case is mode-dependent and given by

νk =











1
Re

k ≤M

1
Re

+ C exp−( k−N

k−M
)2 k > M

(15)

where, M is the cut-off wavenumber as before and C is a constant.
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Re(modes used) Artificial Viscosity Spectral Vanishing Viscosity

Cut-off (M) Constant (C) Cut-off (M) Constant (ε)

100 (6 modes) 4 0.008333 4 0.0137

100 (10 modes) 6 0.04 6 0.00822

500 (6 modes) 2 0.083333 2 0.24167

500 (12 modes) 8 0.166666 10 0.12954961443

500 (20 modes) n/a n/a 16 0.0320520703

Table 1
Parameters used in the stabilization schemes.

This artificial viscosity model is chosen to have the exponential effect that
SVV has, so to that the higher modes affected the most.

5 Stability of SVV-POD Flow Models

Here we demonstrate the stabilization effect of SVV by revisiting the flow
examples already presented in section 2 for cylinder flow. The parameters of
the SVV model were chosen guided by the theoretical estimates and also by
obtaining the best agreement with the original data for the first 50 shedding
cycles. A summary of the parameters used is presented in table 1.

We first consider the case Re = 100 and examine the phase portraits ob-
tained for all modes for the first 1000 shedding cycles. The model with the
smallest number of modes that predicts accurately the short-term dynamics
corresponds to N = 6. However, over the span of 1000 shedding cycles there
is loss of stability of this specific model as mentioned earlier (see figure 4). In
figure 10 we show the phase portrait corresponding to the first 1000 shedding
cycles; clearly the initial good agreement with the DNS data is eventually
lost. Stability is recovered, however, if the SVV correction is incorporated. In
figure 11 we plot again the phase portrait (over 1000 shedding cycles) of the
6-mode system with the SVV model included. We see that a stable limit cycle
is established in agreement with the DNS data.

Similar results are valid for the models with higher modes. Here, we compare
the two viscosity formulations to illustrate what is different with SVV. In figure
12 we first show the results for the 10-mode POD system using the artificial

viscosity for stabilization. In figure 13, we present the same results but with
the SVV model employed. We see that the agreement of the POD predictions
with the DNS original data is uniformly good for all modes in contrast with
the artificial viscosity model. The latter shows a small divergence which is
even greater at longer times (not shown here). Also, the higher modes are
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Fig. 10. Re=100: Phase portrait for the 6-mode model without explicit dissipation.
The lines denote POD predictions and the triangles DNS data.

−4 −2 0 2 4
−4

−2

0

2

4

a 2

6 mode

−4 −2 0 2 4

−0.5

0

0.5

a 3

6 mode

−4 −2 0 2 4

−0.5

0

0.5

a 4

−4 −2 0 2 4
−0.4

−0.2

0

0.2

0.4

a 5

a
1

−4 −2 0 2 4
−0.4

−0.2

0

0.2

0.4

a 6

a
1

Fig. 11. Re=100: Phase portrait for the 6-mode model with SVV. The lines denote
POD predictions and the triangles DNS data.
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Fig. 12. Re=100: Phase portrait for the 10-mode model using the artificial viscosity
model. The lines denote POD predictions and the triangles DNS data.

excessively damped. In order to compare the stabilization of this technique
with the stabilization effect of the nonlinear Galerkin method, we plot in figure
14 corresponding results from a nonlinear Galerkin model, see [38] for details.
The nonlinear Galerkin model is constructed based on six dominus (also known
as masters) and four servus (also known as slaves) POD modes. We see from
the phase portrait that this approach is inadequate in obtaining asymptotically
stable results although it has improved the results compared to Galerkin-only
projection. The same conclusions have been obtained from results with several
other dominus-servus combinations not shown here.

For the higher Reynold number, Re = 500, for which the POD Galerkin
system bifurcates at earlier times SVV can effectively stabilize the simulation.
In figure 15 we plot the phase portrait of the first nine modes for the first

1000 shedding cycles in the simulation. We see that a limit cycle is predicted
in excellent agreement with the DNS data. To appreciate the effect of SVV in
the current simulation we also present in figure 16 the corresponding results
without SVV from the pure POD Galerkin system for the same time period,
which clearly diverges. In this case the cut-off mode was set to M = 16
and the viscosity kernel ε = C/N was set as shown in table 5. Using the
artificial viscosity approach to stabilize the POD Galerkin model does not
lead to accurate results.
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Fig. 13. Re=100: Phase portrait for the 10-mode model using the SVV model. The
lines denote POD predictions and the triangles DNS data.

In order to also investigate the effect of SVV on the higher modes we plot
separately in figures 17 and 18 the phase portraits up to the 17-th and 20-th
mode, respectively. We see that after the cut-off mode M = 16 some inaccu-
racies are introduced, which are more pronounced in the modes 18, 19 and 20.
However, the amplitude of those modes is bounded at all times in contrast to
the high POD modes of the reduced system without stabilization.

Finally, we note that even lower dimensional systems at Re = 500 with trun-
cations corresponding to N = 6 and N = 12 are stable and give accurate
results for the SVV parameters shown in table 5.

6 Summary and Discussion

We have developed a new approach to stabilizing reduced order models de-
rived from Galerkin projections of evolution equations. Specifically, here we
have considered the external flow past a cylinder and investigated the stability
of the limit (shedding) cycle obtained from a POD-based Galerkin system at
two values of Reynolds number. We have found that in the current long-term
time integration employed all Galerkin models are asymptotically unstable.
However, in previous similar studies, where short to modest length time in-
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Fig. 14. Re=100: Phase portrait for the 10-mode model using the nonlinear Galerkin
method. The lines denote POD predictions and the triangles DNS data.

tegration was involved, it was assumed that such models are asymptotically
stable. This instability does not always manifest itself as an explosive growth
that leads to blow-up but as a bifurcation that leads to another limit cycle.
The precise onset of this bifurcation depends on the number of modes retained
in the model and the Reynolds number as well as the flow geometry.

The classical way of incorporating artificial viscosity to stabilize low-order
models does not guarantee stability and affects greatly the accuracy of the so-
lution. On the other hand, nonlinear Galerkin projection, although potentially
effective for the right combination of dominus-servus modes, is not robust; in
the cases we considered here it simply prolonged the onset of the instability.
The spectral vanishing viscosity (SVV) method we implemented is an effec-
tive and robust stabilization scheme. It employs a convolution viscosity kernel,
which is parametrized by a viscosity amplitude and a cut-off wavenumber.
The theory does not give the precise values of these parameters but provides
a stability range in terms of barriers. Above a certain value of the cut-off no
stability is guaranteed whereas below a low threshold the accuracy of the low
most energetic modes is affected. The viscosity amplitude scales inversely pro-
portional to the mode number, i.e. ∝ C/N , where the constant C is problem
dependent. Here it was chosen on the basis of matching the model’s short-term
dynamics with the original data.
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Fig. 15. Re = 500: Phase portrait of the first 9 modes in the 20-mode SVV-POD
system (lines) compared to the DNS data (symbols).

We have defined here asymptotic stability as stability for the first 1000 shed-
ding cycles somewhat arbitrarily. It is possible that after a much longer time
interval an instability is developed. To this end, we investigated this question
and found that for the 6-mode system, which can be integrated easily for very
long time, stability was achieved for more than 1.25 million convective time
units. For the other models some small divergence was detected after sev-
eral thousands of shedding cycles but a small change in the SVV parameters
could improve the results. Clearly, more theoretical work is needed towards
this direction to provide simple guidelines to the practitioners of this method.

The SVV nonlinear stability theory is based on the treatment of the inviscid
Burgers equation originally proposed by Tadmor [19] for Fourier discretiza-
tion. We can justify its use in the current context only heuristically and have
been motivated by success in other applications [22,20]. However, a rigorous
justification for low-dimensional models derived from Galerkin projections is
currently missing and thus we do not have much insight into the effectiveness
of SVV. The extra term appearing in equation (9), in addition to the standard
viscosity term, is perhaps the key but its optimum form may depend on the
specific dissipative PDE considered. Future work should address these issues,
and also investigate the dissipation spectrum in detail for larger systems with
higher number of modes so that a sufficient dissipation range exists.
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Fig. 16. Re = 500: Phase portrait of the first 9 modes in the 20-mode POD only
system (lines) compared to the DNS data (symbols).
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