
Scenario-based comparison of Source-Tracing and Dynamic Source
Routing Protocols for Ad-Hoc Networks

Jyoti Raju J.J. Garcia-Luna-Aceves
jyoti@cse.ucsc.edu jj@cse.ucsc.edu

Computer Science Department Computer Engineering Department
University of California University of California
Santa Cruz, CA 95064 Santa Cruz, CA 95064

Abstract—We present source tracing as a new viable approach to routing in ad hoc
networks where routers communicate the second-to-last hop and distance in preferred
paths to destinations. We use two source tracing algorithms, a table-driven protocol
(BEST) in which routers maintain routing information for all destinations, and an
on-demand routing protocol (DST) in which routers maintain routing information for
only those destinations to whom they need to forward data. Simulation experiments
are used to compare these protocols with DSR, which has been shown to incur less
control overhead than other on-demand routing protocols. The simulations show that
DST requires far less control packets to achieve comparable or better average delays
and percentage of packet delivered than DSR, and that BEST achieves comparable
results to DSR while maintaining routing information for all destinations.

I. INTRODUCTION

Ad-hoc networks (or multi-hop packet-radio networks) consist of
mobile routers interconnecting hosts. The deployment of such routers
is ad-hoc and the topology of the network is very dynamic, because of
host and router mobility, signal loss and interference, and power out-
ages. Furthermore, the bandwidth available for the exchange of routing
information in ad-hoc networks is far lesser than the bandwidth avail-
able in a wired internet.

Routing for ad-hoc networks can be classified into two main types:
table-driven and on-demand. Table driven routing attempts to main-
tain consistent information about the path from each node to every
other node in the network. The Destination-Sequenced Distance-Vector
Routing (DSDV) protocol is a table driven algorithm that modifies the
distributed Bellman-Ford routing algorithm to include timestamps that
prevent loop-formation [13]. The Wireless Routing Protocol (WRP) is
a distance vector routing protocol which belongs to the class of path-
finding algorithms that exchange second-to-last hop (�����������	��
�
	
��) to
destinations in addition to distances to destinations [11]. This extra in-
formation helps remove the “counting-to-infinity” problem that most
distance vector routing algorithms suffer from [1]. It also speeds up
route convergence when a link failure occurs.

On-demand routing protocols have been designed to limit the
amount of bandwidth consumed in maintaining up-to-date routes to all
destinations in a network by maintaining routes to only those desti-
nations to which the routers need to forward data traffic. The basic
approach consists of allowing a router that does not know how to reach
a destination to send a flood-search message to obtain the path infor-
mation it needs. There are several recent examples of this approach
(e.g., AODV [14], ABR [17], DSR [10], TORA [12], SSA [5]) and the
routing protocols differ on the specific mechanisms used to disseminate
flood-search packets and their responses, cache the information heard
from other nodes’ searches, determine the cost of a link, and determine
the existence of a neighbor. However, all the on-demand routing pro-
posals to date use flood search messages that either: (a) give sources the
entire paths to destinations, which are then used in source-routed data
packets (e.g., DSR); or (b) provide only the distances and next hops
to destinations, validating them with sequence numbers (e.g., AODV)
or time stamps (e.g., TORA). One problem with source routing is that
it results in long data-packet headers as the network size increases; in

This work was supported in part by the Defense Advanced Research Projects Agency (DARPA) under
grant F30602-97-2-0338.

addition, source routing will not work with security schemes that en-
crypt headers. Protocols using sequence numbers and timestamps suf-
fer from inefficiency when nodes fail and lose state, as can happen with
high probability in ad-hoc networks.

In this paper, we analyze two source routing protocols for ad-hoc
networks that use predecessor and distance information. The first proto-
col is dynamic source tree (DST) protocol [16], which is an on-demand
routing protocol. DST acquires routes to destinations only when traffic
for those destinations arrives and there is no known route to the des-
tination. The acquired route does not have to be the shortest path; it
has to be valid and of finite metric value. DST does not use source-
routed packets or time stamps to validate distance updates. DST uses
a source-tracing algorithm similar to the one advocated in prior table-
driven routing protocols in which routers maintain routing information
for all network destinations [11], [1]. To reduce the number of loops,
the source-tracing algorithm allows for complete paths to be checked
for loops starting from the sources (hence the name source-tracing).
This source tracing is facilitated by maintaining distance and predeces-
sor of the shortest path to all known destinations, which in turn elimi-
nates the counting to infinity problem of the distributed Bellman-Ford
algorithm.

The second protocol, Bandwidth Efficient Source Tracing (BEST)
protocol [15] is based on source-tracing and is an extension of
WRP[11]. It uses unreliable updates and introduces a conservative ap-
proach to table-driven routing, i.e., routers send updates only under
conditions where routing table loops are suspected. Data packets in
both DST and BEST contain only the source and destination addresses
and not the entire source routes.

This paper examines the performance of DST, DSR and BEST in
simulation scenarios that mimic real world scenarios and using these
simulations to conclude that source-tracing can be the basis for a very
efficient routing protocol that maintains routing information either on-
demand or for all destinations.

Section II presents the network model used in DST and BEST. Sec-
tion III and section IV give a brief description of DST and BEST, re-
spectively. Section V uses simulations to compare the performance of
DSR, DST and BEST using the same movement model used in [3], [4]
to compare DSR with other on-demand and table-driven routing proto-
cols.

II. NETWORK MODEL

A network is modelled as an undirected graph with � nodes and�
links. Instead of having interface identifiers, a router has a single

node identifier, which helps the routing and other application protocols
identify it. In a wireless network, a node has radio connectivity with
multiple nodes using a single physical radio link. Accordingly, we map
a physical broadcast link connecting a node and its multiple neighbors
into point-to-point links between the node and its neighbors. Each link
has a positive cost associated with it. If a link fails, its cost is set to
infinity. A node failure is modelled as all links incident on the node
getting set to infinity.

For the purpose of routing-table updating, a node � considers an-

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2001 2. REPORT TYPE

3. DATES COVERED
 00-00-2001 to 00-00-2001

4. TITLE AND SUBTITLE
Scenario-based comparison of Source-Tracing and Dynamic Source
Routing Protocols for Ad-Hoc Networks

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Santa Cruz,Department of Computer
Engineering,Santa Cruz,CA,95064

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

other node � as its neighbor if � receives an update from neighbor � .
Node � is no longer node � ’s neighbor when the medium access pro-
tocol at node � sends a signal to DST indicating that data packets can
no longer be sent successfully to node � .

Both the source-routing protocols are designed to run on top of any
wireless medium-access protocol. Routing messages are broadcast un-
reliably and the protocol assumes that routing packets may be lost due
to changes in link connectivity, fading or jamming. Since DST and
BEST only require a MAC indication that data packets can no longer
be sent to a neighbor, the need for a link-layer protocol for monitor-
ing link connectivity with neighbors or transmitting reliable updates is
eliminated, thus reducing control overhead. If such a layer can be pro-
vided with no extra MAC overhead, then DST and BEST can be made
more proactive by identifying lost neighbors before data for them ar-
rives, resulting in faster convergence and decreased data packets losses.

III. DST

A node running DST maintains shortest paths in its routing tables
to all the destinations it has seen data packets for. Each entry of the
routing table contains a destination identifier � , the distance to the des-
tination ���� and the predecessor to that destination � �� . A node also
maintains a distance table which contains the routing tables reported
by all its known neighbors. A node uses the routing tables of known
neighbors along with the link costs to known neighbors to generate
its own routing table. A query table is maintained to keep track of
the flood-search messages started and forwarded for all known desti-
nations. Using information about the last time a flood search message
was started and forwarded, a node can prevent broadcasts from contin-
uing indefinitely by dropping queries that follow each other too closely
in time. A data buffer is used to store packets waiting for routes. The
packets are dropped after a timeout.

A routing message broadcasted by a node � contains a vector of en-
tries where each entry corresponds to a route in the routing table; each
entry contains a destination identifier � , the distance to the destination
���� and the predecessor to that destination � �� . DST uses two types of
routing messages: �	� ��� � ��
 and � ����
�� ��
 . Like other on-demand rout-
ing protocols, DST starts a route discovery process when it has no path
to a destination that it receives a data packet for. The route discovery
process is started by broadcasting queries to neighbors. These queries
are separated by a �	� ����

���� � � ��� ��
 � � to prevent a flood of queries
when a burst of data packets arrives at a node. A query is forwarded
hop-by-hop for a maximum of � ��� ������� hops or until it reaches
a node that has a non-infinite loop-free path to the destination. A loop-
free path is guaranteed at a node � by using the following two conditions
when picking a neighbor � as the next hop towards a destination � .

1. � offers the shortest distance to all nodes in the path from � to � .
2. the path from � to � does not contain � and does not contain any

repeated nodes.
The node that finds the required path sends back a reply update that is
forwarded back hop-by-hop to the source of the query, thus creating a
route to the destination in all the intermediate nodes it passes through.
Reply updates may arrive from multiple nodes. To prevent reply update
broadcast storms, an intermediate node does not forward a reply broad-
cast back towards the source, if the reply update does not decrease the
intermediate node’s distance to the destination. This procedure allows
the source to get multiple disjoint paths to the destination but reduces
the number of updates.

When a node � receives a data packet for a destination � it no longer
has a route to, it sends updates to all its neighbors reflecting the new in-
finite distance to � . When a neighbor � gets the update, it processes the
update. If the update implies a distance increase to a known destination,
then a new update with the changed routing tables is rebroadcasted to
the neighbor set. In this manner, the update eventually gets forwarded
to the source of the data packets. The source then uses an alternate

route, if it has any, or restarts a route discovery process.
Since DST assumes unreliable updates, it may be the case some up-

dates are lost resulting in data packet looping. To prevent data packet
looping, two more conditions are added to prevent data packet looping.
A data packet is dropped and an update is sent if

A. The data packet is sent by a neighbor that is in the path from the
present node to the destination of the data packet.

B. The path implied by the neighbor’s distance table entry is differ-
ent from the path implied in the routing table.

Permanent looping can occur when nodes are unaware of the latest
changes in their neighbor’s routing tables. The use of conditions A
and B can be explained with the help of an example shown in Fig. 1.a.
The node addresses are marked in bold font. Node � is the required
destination. The path to � implied by traversing predecessors from �
is marked in italics. Initially, all nodes have loop-free routes. The loss
of links (�����) and (� ���) and the loss of update packets from � and �
can result in a loop shown in Fig. 1.b. When � gets a data packet from
� , it finds that its distance table entry for � implies the path �!� , while
� ’s own path implies �#"$�%� which is different from �!� . Therefore due
to condition B, the data packet is dropped and a unicast routing update
is sent resulting in � setting its path to �&��� . Now, when � gets a
data packet from � , it sends a unicast update to � because � is its
successor on the path to � . This follows from condition A. When �
gets the update, it detects a loop and resets its distance to infinity, thus
breaking the loop.

IV. BEST

BEST has a routing table and distance table with the same function-
ality as in DST. BEST does not require a data buffer or a query table as
it is a table-driven routing protocol; data packets are dropped if no path
exists. The only type of packets used in BEST are updates that are un-
reliably broadcast and contain (distance,predecessor) tuples for all the
destinations. BEST differs from WRP in allowing unreliable updates
and in specifying different conditions to send updates. We focus our
description of BEST on how updates are sent, because source tracing
has been used extensively in the past in table-driven protocols [1], [11],
[7]

The processing of an update in BEST is done in the same manner as
in DST. When an update from neighbor � is received, the entries in the
distance table corresponding to neighbor � are updated. The paths to
each destination are then recomputed. BEST sends updates only if any
of the following conditions have been met.

1. A node discovers a new destination with a finite and valid path to
the destination.

2. A node loses the last path to a destination.
3. A node suffers a distance increase to a destination.
From the above conditions, it follows that an update is not sent if a

next hop to destination changes. It is also not sent if the distance to a
destination decreases. However, an update is sent when the distance to
a destination increases, because this condition has the potential to cause
a loop.

Conditions A and B used in DST are also incorporated in BEST to
prevent data packet looping. These rules are much simpler than those
introduced in STAR [8] which uses the link-state information in source
trees, rather than distance and second-to-last-hop information to a des-
tination in the tree.

V. PERFORMANCE EVALUATION

We ran simulations for two different experimental scenarios to com-
pare the average performance of DST, DSR and BEST. These simula-
tions allowed us to independently change input parameters and check
the protocol’s sensitivity to these parameters. All three protocols are
implemented in '(�*) , which is a C++ based toolkit that provides a

i

j

l

(ij)

(kij)k

(j)

(lmj)

(mj)m

j

l

(kij)k

(j)

i (ilmj)

(lmj)

m (mkij)

(a) (b)

Fig. 1. Creation of a permanent loop in BEST due to unreliable updates

wireless protocol stack and extensive features for accurately simulat-
ing the physical aspects of a wireless multi-hop network. The protocol
stack in the simulator can be transferred with a minimal amount of
changes to a real embedded wireless router. The stack uses IP as the
network protocol. The routing protocols directly use UDP to transfer
packets. The link layer implements the IEEE 802.11 standard [2] and
the physical layer is based on a direct sequence spread spectrum radio
with a link bandwidth of 1 Mbit/sec.

To run DSR in CPT, we ported the DSR code available in the �
��
[6] wireless release. There are two differences in our DSR implemen-
tation as compared to the implementation used in [3]. Firstly, we do
not use the ����
 � �
	� �
 �
 listening mode in DSR. We, however, im-
plement the promiscuous learning of source routes from data packets.
This follows the specification given in the Internet Draft of DSR. Our
reason for not allowing promiscuous listening is that, besides introduc-
ing security problems, it cannot be supported in any IP stack where
the routing protocol is in the application layer and the MAC protocol
uses multiple channels to transmit data. The second difference in our
implementation is that since the routing protocol in our stack does not
have access to the MAC and link queues, we cannot reschedule packets
that have already been scheduled over a link (for either DSR, DST or
BEST). Tables I and II show the constants used in the implementation
of DSR and DST, respectively.

TABLE I

CONSTANTS USED IN DSR SIMULATION

Time between ROUTE REQUESTS 500 msec
(exponentially backed off)
Size of source route header carrying 4 � +4 bytes
carrying � addresses
Timeout for Ring 0 search 30 msec
Time to hold packets awaiting routes 30 sec
Data buffer size 50 pkts

TABLE II

CONSTANTS USED IN DST SIMULATION

Query send timeout 5 sec
Time out for ring 0 search 30 msec
Data packet timeout 30 sec
Data buffer size 50
MAX HOPS 17

A. Scenarios used in comparison

We compared DSR, DST and BEST using two types of scenarios.
In both scenarios, we used the “random waypoint” model described in

[3]. In this model, each node begins the simulation by remaining sta-
tionary for pause time seconds and then selects a random destination
and moves to that destination at a speed of 20 m/s. Upon reaching the
destination, the node pauses again for pause time seconds, selects an-
other destination, and proceeds there as previously described, repeating
this behavior for the duration of the simulation. We used the speed of
20m/s (72 km/hr), which is the speed of a vehicle, because it has been
used in simulations in earlier papers [3], [4] and thus provides a basis
for comparison with other protocols. All simulations are run for 900
seconds. In both scenarios, we used a 50 node ad-hoc network, moving
over a flat space of dimensions 7 X 6 miles (11.2 X 9.7 km) and ini-
tially randomly distributed with a density of approximately one node
per square mile.

Two nodes can hear each other if the attenuation value of the link
between them is such that packets can be exchanged with a probabil-
ity � , where ����� . Attenuation values are recalculated every time a
node moves. Using our attenuation calculations, radios have a range of
approximately 4 miles (135 db).

B. Metrics used

In comparing the protocols, we used the following metrics:
� Packet delivery ratio: The ratio between the number of packets

received by an application and the number of packets sent out by
the corresponding peer application at the sender.

� Control Packet Overhead: The total number of routing packets
sent out during the simulation. Each broadcast packet/unicast
packet is counted as a single packet.

� Hop Count: The number of hops a data packet took from the
sender to the receiver.

� End to End Delay: The delay a packet suffers from leaving the
sender application to arriving at the receiver application. Since
dropped packets are not considered, this metric should be taken
in context with the metric of packet delivery ratio.

Packet delivery ratio gives us an idea about the effect of routing policy
on the throughput that a network can support. It also is a reflection of
the correctness of a protocol.

Control packet overhead has an effect on the congestion seen in the
network and also helps evaluate the efficiency of a protocol. Low con-
trol packet overhead is desirable in low-bandwidth environments and
environments where battery power is an issue.

In ad-hoc networks it is sometimes desirable to reduce the trans-
mitting power to prevent collisions. This will result in packets taking
more number of hops to reach destinations. However, if the power is
kept constant, the distribution of the number of hops data packets travel
through is a good measure of routing protocol efficiency.

Average end-to-end delay is not an adequate reflection of the delays
suffered by data packets. A few data packets with high delays may
skew results. Therefore, we plot the cumulative distribution function
of the delays. This plot gives us a clear understanding of the delays

suffered by the bulk of the data packets. Delay also has an effect on the
throughput seen by reliable transport protocols like TCP.

C. Performance results

C.1 Scenario 1

Scenario 1 mimics the behavior of an emergency network or a net-
work set up for military purposes. Scenario 1 is almost identical to to
the one presented in [3], barring any differences due to implementation
of the MAC protocols.

We have 20 random data flows, where each flow is a peer-to-peer
constant bit rate (CBR) flow with a randomly picked destination and the
data packet size is kept constant at 64 bytes. Data flows were started
at times uniformly distributed between 20 and 120 seconds and they
go on till the end of the simulation at 900 seconds. We did 7 runs of
the simulation where each run had different sets of source-destination
pairs. The total load on the network is kept constant at 80 data packets
per second (40.96 kbps) to reduce congestion. Our rationale for doing
this is that increasing the packet rate of each data flow does not test
the routing protocol. On the other hand, having flows with varying
destinations does so. We also vary the pause times: 0, 30, 60, 120, 300,
600 and 900 seconds as done in [3].

Fig. 2.a shows the control packet overhead for varying pause times.
An obvious result is that the control packet overhead for all the three
protocols reduces as the pause time increases. BEST and DST are about
34 % better than DSR at pause time zero. At low rates of movement,
DST is a clear winner with one third the control packet overhead of
BEST and one tenth the control packet overhead of DSR. Clearly, the
fact that the updates in DST contain the entire routing table, means that
nodes running DST have a higher chance of knowing paths to destina-
tions for whom no route discovery has been performed in the past. We
are able to mimic the behavior of table-driven routing protocols in low
topology change scenarios, in that we almost have information about
the entire topology with very few flood searches.

As shown in Fig. 2.b, the percentage of data packets delivered is al-
most the same for DST and BEST. At lower pause times, DSR has the
same packet delivery ratio as DST and BEST. However, as the pause
time decreases, DSR suffers due to data packets getting dropped at the
link layer, indicating that the routes provided in the source routes are
not correct any more. At lower pause times, links get broken faster.
Even though this results in higher control overhead, the routes ob-
tained are relatively new. As mentioned earlier, we keep the load on
the network constant. Since this load is divided among a large num-
ber of flows, we see very little congestion and therefore most packets
get through at higher pause times during which the topology is close to
static.

For Fig. 2.c we collated the hop count values for data packets during
all pause times and plotted the hop distribution. All three protocols have
almost the same number of one hop packets, indicating that the zero hop
query is very effective in getting routes to neighbors. However, for the
number of hops greater than one, we see that BEST performs the best.
This is expected of a table driven routing protocol that tries to maintain
valid routes at most times. DST’s behavior is slightly worse than BEST.
DSR on the other hand sends packets through longer routes. This is a
direct consequence of the fact that after the initial query-reply process
DSR pretty much uses the route it caches, without trying to better them.

Fig. 2.d shows the cumulative delay of all the protocols. The graphs
shown are logarithmic in time to accommodate the wide variation. We
see that BEST performs better than DSR or DST, with DST being very
close. Almost all packets are sent within 4 seconds in BEST and within
8 seconds in DST. Some packets in DSR take almost 30 seconds. This
is because a packet is allowed to stay in a buffer for a maximum of 30
seconds before it is dropped. These are packets that found the path just
in time.

C.2 Scenario 2

To Internet

Fig. 3. Scenario 2

Scenario 2 mimics the applications of ad-hoc networks as wireless
extensions to the Internet. In this case, one or two nodes act as points of
attachment of the ad-hoc network to the Internet. Accordingly, all Inter-
net traffic travels to and from the attachment points as shown in Fig. 3.
To model this situation, we pick one node as the point-of-attachment
to the Internet for a simulation run of 900 seconds and we do five such
runs and plot our results. During each run, the sender node first estab-
lishes a low rate connection (5.85 kbps) with the point-of-attachment.
Immediately after the forward connection is established, the backward
connection is started from the point-of-attachment to the sender. This
connection has a higher rate of 40.96 kbps. Each pair of connections
lasts for 300 seconds. In each epoch of 300 seconds, we start seven
pairs at random times. This setup closely resembles number of nodes
accessing the Web through the point-of-attachment. We run our sim-
ulations for two pause times, 0 (continuous movement) and 900 (no
movement).

Fig. 4.a and Fig. 4.b show the results for the case of continuous
movement. We see that BEST has almost double the control packet
overhead of DST or DSR. The protocol is essentially reacting to the
high rate of topology changes. The traffic does not seem to influence
the behavior of BEST, because the same information needs to be main-
tained no matter what point-of-attachment is used. DSR and DST have
almost the same behavior in terms of control overhead. DSR performs
well in this traffic pattern, because with every flood search towards the
point-of-attachment, the point-of-attachment learns the reverse path to
the source from the source route accumulated in the queries. Another
reason is that the fast changing topology forces out stale routes from
DSR caches. This also results in DSR sending about 10 % more data
packets than DST or BEST as shown in Fig 4.b.

Fig. 4.c and Fig. 4.d show us the results for the static case. This
scenario is important because it resembles a static community network,
e.g., households with wireless routers used to reach the Internet through
an access point. In this case, BEST incurs about 3 times more con-
trol overhead than DST, whereas DSR incurs 14 times more control
overhead than DST. DST performs this well because the entire network
knows the path to the point of attachment with a single flood search.
Since there are no topology changes, there is no need for another flood
search. BEST also performs much better for a static network than for
a dynamic one. No topology changes mean no table driven updates af-
ter the initial updates sent when the network comes up. The surprising
result is the really bad behavior by DSR, most of which seems to be
driven by increase in flood searches caused by old routes. A similar
behavior is seen in terms of the ratio of data packets received. DST and
BEST lose very few packets, while DSR seems to lose about 50% of
them. As congestion due to control packets increases, we observe more
and more data packets being dropped.

VI. CONCLUSIONS

We presented source tracing as an approach to achieve efficient rout-
ing in ad hoc networks using either on-demand routing or table-driven

0

2000

4000

6000

8000

10000

12000

14000

16000

0 100 200 300 400 500 600 700 800 900

N
um

be
r

of
 c

on
tr

ol
 p

ac
ke

ts

Pause time in seconds

Control packets for varying mobility

DSR
DST

BEST

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900

P
er

ce
nt

ag
e

of
 d

at
a

pa
ck

et
s

re
ce

iv
ed

Pause time in seconds

Percentage of data packets received for varying mobility

DSR
DST

BEST

(a) (b)
Number of control packets sent Percentage of data packets received

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5

P
er

ce
nt

ag
e

of
 d

at
a

pa
ck

et
s

Number of hops

Hop distribution

DSR
DST

BEST

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100

P
er

ce
nt

ag
e

of
 d

at
a

pa
ck

et
s

Delay in seconds

Cumulative distribution of delay

DSR
DST

BEST

(c) (d)
Hop count distribution Cumulative delay distribution

Fig. 2. Results for 20 sources picking random destinations for peer-to-peer flow

routing protocols. Simulations were used to compare DST, BEST and
DSR, which is one of the most efficient on-demand routing protocols.
The results showed that DST provides comparable average delays and
packet delivery ratios while incurring far less control overhead than
DSR or BEST. In our first scenario, which closely resembled an ad-
hoc scenario for a battlefield or an emergency situation, DST had about
one-tenth the control overhead of DSR while delivering packets with
the same efficiency as BEST, which is table-driven. BEST, has about
one-third the control overhead of DST while having the best results for
hop count and delay. For the second scenario, which is comparable to
community networks accessing the Internet via wireless links, DSR had
almost 14 times more overhead than DST, which suggests that DST is
an ideal solution for static community networks. In static networks, the
poor performance of DSR in terms of delay and throughput suggests
that it needs a mechanism to flush out stale routes in static scenarios. In
scenario 2, BEST has double the overhead of DSR and DST when all
the nodes are moving. This suggests that a table-driven routing proto-
col is a wrong choice for scenarios with high topology change and few
destinations. On the other hand, BEST delivers almost all the packets
and has one fourth the control overhead of DSR for the static version
of scenario 2, which implies that it may be used as a solution for com-
munity networks, though DST is a better option.

Given that BEST provided good results for application-oriented met-
rics like hop count and delays, which are of vital significance for QoS

sensitive flows, it appears that an ideal routing protocol would have to
use table-driven updates for certain sources and on-demand approach
for others. This can be achieved with the proper combination of source
tracing rules.

REFERENCES

[1] S.P.R. Kumar C. Cheng, R. Reley and J.J. Garcia-Luna-Aceves. A Loop-Free Extended Bellman-
Ford Routing Protocol without Boumcing Effect. ACM Computer Communications Review,
19(4):224–236, 1989.

[2] IEEE Computer Society LAN MAN Standards Committee. Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications. The Institute of Electrical and Electronics Engi-
neers, 1997. IEEE Std 802.11.

[3] J. Broch et. al. A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Proto-
cols. In Proc. ACM MOBICOM 98, Dallas, TX, October 1998.

[4] Per Johansson et. al. Scenario Based Performance Analysis of Routing Protocols for Mobile Ad-Hoc
Networks. In Proc. ACM Mobicom’99, Seattle, Washington, August 1999.

[5] R. Dube et. al. Signal Stability-Based Adaptive Routing (SSA) for Ad-Hoc Mobile Networks. IEEE
Pers. Commun., February 1997.

[6] Kevin Fall and Kannan Varadhan. ns notes and documentation. The VINT Project, UC Berkeley,
LBL, USC/ISI and Xerox PARC, 1999. Available from http://www-mash.cs.berkeley.edu.

[7] J.J. Garcia-Luna-Aceves and S. Murthy. A Path Finding Algorithm for Loop-Free Routing.
IEEE/ACM Trans. Networking, February 1997.

[8] J.J. Garcia-Luna-Aceves and M. Spohn. Source-Tree Routing in Wireless Networks. In Proc. IEEE
ICNP 99, 7th International Conference on Network Protocols, Toronto, Canada, 1999.

[9] Z. Haas and M. Pearlman. The Performance of Query Control Schemes for the Zone Routing Proto-
col. In Proc. ACM SIGCOMM ‘98, Vancouver, British Columbia, August 1998.

[10] D. B. Johnson and D. A. Maltz. Dynamic Source Routing in Ad-Hoc Wireless Networks. Mobile
Computing, 1994.

[11] S. Murthy and J.J Garcia-Luna-Aceves. An Efficient Routing Protocol for Wireless Networks. ACM
Mobile Networks and Applications Journal, 1996.

0

2000

4000

6000

8000

10000

1 2 3 4 5

N
um

be
r

of
 c

on
tr

ol
 p

ac
ke

ts

Run number

Number of control packets

DSR
DST

BEST

20

25

30

35

40

45

50

55

60

1 2 3 4 5

P
er

ce
nt

ag
e

of
 d

at
a

pa
ck

et
s

Run number

Percentage of data packets received

DSR
DST

BEST

(a) (b)
All nodes moving

Number of control packets sent Percentage of data packets received

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5

N
um

be
r

of
 c

on
tr

ol
 p

ac
ke

ts

Run number

Number of control packets

DSR
DST

BEST

30

40

50

60

70

80

90

100

1 2 3 4 5

P
er

ce
nt

ag
e

of
 d

at
a

pa
ck

et
s

Run number

Percentage of data packets received

DSR
DST

BEST

(c) (d)
Static topology

Number of control packets sent Percentage of data packets received

Fig. 4. Results for single point of attachment

[12] V. D. Park and M. S. Corson. A Highly Adaptive Distributed Routing Algorithm for Mobile Wireless
Networks. In Proc. IEEE INFOCOM’97, Kobe, Japan, April 1997.

[13] C. E. Perkins and P. Bhagwat. Highly Dynamic Distance-Sequenced Distance-Vector(DSDV) for
mobile computers. Computer Communication Review, 24(4):234–244, October 1994.

[14] C. E. Perkins and E. M. Royer. Ad Hoc On-Demand Distance Vector Routing. In Proc. of IEEE
WMCSA’99, New Orleans, LA, 1999.

[15] J. Raju and J.J. Garcia-Luna-Aceves. A comparison of on-demand and table driven routing for
ad-hoc wireless networks. In Proc. ICC 2000, June 2000.

[16] J. Raju and J.J Garcia-Luna-Aceves. Efficient On-Demand Routing Using Source-Tracing in Wire-
less Networks. In Proc. IEEE Globecom 2000, November 2000.

[17] C.K. Toh. Associativity-Based Routing for Ad-Hoc Mobile Networks. Wireless Personal Commu-
nications Journal, Special Issue on Mobile Networking and Computing Systems, Kluwer Academic
Publishers, 4(2):103–109, Mar. 1997.

