
Differentiating Congestion vs. Random Loss:
A Method for Improving TCP Performance

over Wireless Links
Christina Parsa J.J. Garcia-Luna-Aceves

Computer Engineering Department
Baskin School of Engineering

University of California
Santa Cruz, California 95064

chris, jj@cse.ucsc.edu

Abstract—Recent research has focussed on the problems associ-
ated with TCP performance in the presence of wireless links and
ways to improve its performance. We present an extension to TCP
Santa Cruz which improves TCP performance over lossy wireless
links. TCP has no mechanism to differentiate random losses on the
wireless link from congestion, and therefore treats all losses as con-
gestive. We present a simple method in which our protocol is able to
differentiate these random losses, thereby avoiding the rate-halving
approach taken by standard TCP whenever any loss is detected. We
compare the performance of our protocol against TCP Reno and
demonstrate higher throughput and lower end-to-end delay with
our approach.

I. I NTRODUCTION

The use of wireless information devices to access the
Internet and the WWW, in particular, is an ever-increasing
practice of mobile users world-wide, resulting in the need
for reliable client-server communication over wireless
links. Unfortunately, the de-facto Internet protocol for
reliability, TCP, has severe performance problems when
operated over wireless links [12][2][11]. Recent research
has focussed on the problems associated with TCP perfor-
mance in the presence of wireless links and ways to im-
prove its performance. The key issue lies at the very heart
of TCP’s congestion control algorithms: namely, packet
loss is the only detection mechanism for congestion in
the network. Wireless links are inherently lossy and in
addition to random losses, they suffer from long periods
of fading as well. TCP has no mechanism to differenti-
ate these losses from congestion, and therefore treats all
losses as congestive by reducing its transmission window
(and in effect halving the throughput of the connection).
Many proposals to improve TCP performance have fo-
cussed on hiding wireless losses from TCP by perform-
ing retransmissions of any lost data before TCP notices
the loss [1][3][6][4][5][11]. There is far less research on
methods for TCP to differentiate between losses due to
congestion and those due to noise on a wireless channel

This work was supported in part at UCSC by the Office of Naval Re-
search (ONR) under Grant N00014-99-1-0167.

[7] [9]. In this paper we extend our protocol TCP Santa
Cruz [10] to identify losses due to congestion from those
caused by a lossy wireless link. Because it cannot be
assumed that a reliable link layer or some other method
of error recovery exists at the wireless interface, methods
of discovering random wireless losses at the TCP source
must be in place. Once losses are identified as random,
there is no need to reduce TCP’s transmission rate be-
cause the losses are not due to congestion. TCP Santa
Cruz monitors the queue developing over a bottleneck
link and thus determines whether congestion is increas-
ing in the network; it can then identify losses as either
congestive or random and respond appropriately. Another
proposed method to identify wireless losses at the source
[9] uses variation in RTT measurements as an indication
of congestion in the network. Our method does not use
RTT and as a result is better suited for this application be-
cause RTT measurements cannot differentiate between an
increase due to congestion on the forward path or on the
reverse path.

II. TCP SANTA CRUZ

TCP Santa Cruz [10] is a new implementation of TCP
that detects not only the initial stages of congestion in the
network, but also identifies the direction of congestion,
i.e., it determines whether congestion is developing in the
forward or reverse path of the connection. TCP Santa
Cruz is then able to isolate the forward throughput from
events such as congestion that may occur on the reverse
path. Congestion is determined by calculating the relative
delay that one packet experiences with respect to another
as it traverses the network; this relative delay is the foun-
dation of our congestion control algorithm. The relative
delay is used to estimate the number of packets residing
in the bottleneck queue; the congestion control algorithm
keeps the number of packets in the bottleneck queue at a
minimum level by adjusting the TCP source’s congestion
window. The congestion window is reduced if the bot-

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2000 2. REPORT TYPE

3. DATES COVERED
 00-00-2000 to 00-00-2000

4. TITLE AND SUBTITLE
Differentiating Congestion vs. Random Loss: A Method for Improving
TCP Performance over Wireless Links

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Santa Cruz,Department of Computer
Engineering,Santa Cruz,CA,95064

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

4

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

tleneck queue length increases (in response to increasing
congestion in the network) beyond a desired number of
packets (n). The window is increased when the source
detects additional bandwidth availability in the network
(i.e., after a decrease in the bottleneck queue length). TCP
Santa Cruz can be implemented as a TCP option by uti-
lizing the extra 40 bytes available in the options field of
the TCP header. A complete description of the protocol is
given in previous work [10].

III. A PPLYING TCP SANTA CRUZ TO WIRELESS

LINKS

As congestion develops in a wired network, data pack-
ets fill the network links. If the rate of data entering
the network continues to increase, data packets fill the
network queues until the queues reach capacity and the
routers begin to drop packets. In other words, losses due
to congestion are preceded by an increase in the network
bottleneck queue. The basic methods used to detect con-
gestion in TCP Santa Cruz are easily applied to networks
containing wireless links and are ideal for distinguishing
congestion versus random loss in a network which may or
may not contain a wireless link.

TCP Santa Cruz easily identifies a congestive loss as
one which is preceded by an increase in the bottleneck
queue length. A wireless loss, on the other hand, can
be identified as a random loss that isnot preceded by a
buildup in the bottleneck queue. TCP Santa Cruz moni-
tors changes in the bottleneck queue over an interval equal
to the amount of time it takes to transmit one window of
data and receive acknowledgments corresponding to all
the packets transmitted in the window. Figure 1 shows
how the protocol counts intervals of queue buildup. The
protocol starts in statecount = 0 which means we have
not noticed an interval in which the bottleneck queue
increased. Once an interval experiences an increase in
queue length, we transition to the statecount = 1. An in-
terval with a decrease or steady queue size causes a tran-
sition back. Finally, if a loss occurs in statecount = 2, we
conclude that the loss was due to congestion. At that point
the congestion avoidance algorithm is followed and the
sender’s transmission window is reduced in half. How-
ever, if a loss is not preceded by at least two consecutive
intervals of increasing queue length, we infer that it is a
random loss and the congestion avoidance algorithm is
not followed and the transmission window is maintained
at its current size. We have chosen the constraint of two
intervals of increasing queue length (instead of just one)
as the signal for congestion in order to avoid any noise in
the network. It remains an area of future work to evalu-
ate this value. TCP Santa Cruz reduces the transmission
rate only when congestion is identified as the cause of lost
packets, otherwise, wireless losses can simply be quickly
retransmitted without a reduction in the data transmission
rate.

COUNT = 0 COUNT = 1

DEC/STEADY

INC

DEC/STEADY DEC/STEADY

INC

INC

COUNT = 2

Fig. 1. State diagram for monitoring buildup of network queue interval

IV. PERFORMANCERESULTS

We have implemented TCP Santa Cruz in the NS net-
work simulator [8] and compared its performance to TCP
Reno over the network shown in Figure 2. The network
consists of a wired network segment connected to a base
station with an interface to a wireless LAN. Losses are
randomly applied to the wireless link with an exponen-
tial distribution. The bandwidth delay product (BWDP)
of this network is 480 Kbits (6 1Kbyte packets) and the
queue at the base station is set to accommodate up to 12
1Kbyte packets.

����
����
����
����
����
����
����

����
����
����
����
����
����
����10Mbps

wired wireless

5 msec delay

Exponential Loss

Fixed TCP Source ReceiverBase Station

1 msec

2 Mbps

Fig. 2. Network used for simulations.

A. Random losses without network congestion

In this experiment we perform FTP transfers from the
fixed host to the wireless receiver and examine the opera-
tion of TCP Santa Cruz compared to TCP Reno for a low
wireless bit error rate of1 � 10

�6. At this rate, on the
average, 1 out of every 125 packets are dropped on the
wireless link for both the Santa Cruz and Reno transfers.
Each simulation is run for 60 seconds.

Figure 1 showed how TCP Santa Cruz counts the con-
secutive intervals over which it notices a bottleneck queue
increases in order to determine if congestion is present
when a loss is detected. Figure 3 shows thecount value
for this state diagram as the FTP transfer progresses.
Since the value ofcount is rarely equal to two, we would
expect nearly all losses on the wireless link to be consid-
ered as random by the protocol; in other words, once the
losses are discovered, we expect the protocol to simply
retransmit most losses without reducing the transmission
window.

Figure 4(a) shows the congestion window for TCP
Santa Cruz. We notice that the congestion window never
drops to half of its value when these losses occur on the
wireless link, verifying that, in this simulation, TCP Santa
Cruz correctly identifies all losses as random losses and
not due to congestion. There is one instance, however,
around timet = 16 when there is a TCP timeout. This is

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 10 20 30 40 50 60

co
ng

es
tio

n
st

at
e

Time(sec)

TCP-Santa Cruz: congestion state

TCP-SC

Fig. 3. Congestion state of TCP Santa Cruz

because a retransmitted packet is once again dropped on
the wireless link.

This simulation is run withn = 4, which means that
the TCP Santa Cruz will try to fill the bit pipe and main-
tain an extra 4 packets in the bottleneck queue (at the
base station). The graph shows that TCP Santa Cruz in-
deed maintains its window around 10 packets, exactly
the BWDP (6 packets) plus the extra 4 packets in the
queue. This steady value of the congestion window is
directly correlated to the number of packets in the bot-
tleneck queue. In Figure 4(b), on the other hand, we
show the congestion window for TCP Reno, which os-
cillates wildly between 1 and 25 packets (and at times up
to 60 packets during the Fast Recovery phase). The vari-
ation in the congestion window is directly responsible for
the long end-to-end delays experienced by transfers using
TCP Reno.

Figures 5(a) and (b) show the delay experienced by
each packet through the network. We see that the delay
experienced by packets in TCP Santa Cruz is roughly half
the delay with TCP Reno. In addition, the variance in de-
lay is an order of magnitude smaller. Because Reno keeps
so many packets in the bottleneck queue, each packet ex-
periences a considerable amount of queueing before it is
transmitted over the wireless link. The only time pack-
ets experience low delay is immediately following either
a timeout (when the congestion window is reduced to one
segment) or after a fast retransmit (when the congestion
window is cut in half). Shortly thereafter the queue again
builds and the delay once again increases.

With respect to throughput it is important to mention
that for this error rate TCP Reno does not experience an
appreciable reduction in throughput because it is able to
recover most errors via the fast retransmission mechanism
and therefore is able to keep its window large enough to
fill the bit pipe of the connection.

B. Various error rates

Next we perform simulations for a variety of wireless
link error rates. We demonstrate that because our algo-
rithm identifies random losses on the wireless link, it out-
performs Reno both in terms of throughput and end-to-
end delay. Figure 6(a) shows the throughput achieved by
Santa Cruz and Reno in the presence of increasing error
rates on the wireless link. The wireless error rate is in-

creased from1 � 10
�6 (corresponding to 1 packet loss

per 125 packets) to1 � 10
�5 (corresponding to 1 packet

loss per 12.5 packets). TCP Santa Cruz provides higher
throughput than Reno in all cases. In fact, the throughput
of Santa Cruz does not drop significantly until very high
error rates (1 packet per 12.5). This drop is due to the fact
that so many of the retransmissions are also subsequently
dropped. The current code in this case defaults to a time-
out for the second retransmission, but it would be possible
to check on the status of the retransmitted packet when-
ever an ACK arrives because Santa Cruz keeps a times-
tamp for every transmission. This would improve perfor-
mance for these catastrophic error rates.

Figure 6(b) shows how the end-to-end delay changes
as the error rates increase. The reason Reno’s delay de-
creases for the first three points is that as more time is
spent in timeouts, the bottleneck queue decreases and sub-
sequent packet experience a smaller delay. At the rate
1/12.5 packet loss Reno experiences a very large delay
variance because packets either make it through quickly
with a small bottleneck queue, or they experience a long
delay due to timeouts. The delay in Santa Cruz is fairly
steady until the large error rate. At this time so many
dropped packets are also dropped on the retransmission
that timeouts are experienced as well.

V. CONCLUSION

We have shown through simulation that TCP Santa
Cruz is able to maintain high throughput over the wire-
less link for a range of error rates because it does not re-
duce its sending rate when the losses are determined to
be random losses on the wireless link. TCP Reno, on the
other hand, can make no such distinction and as a result
shows reduced performance, even when link error rates
are low. Packets transmitted with TCP Santa Cruz also
experience a lower end-to-end delay and delay variation
from source to receiver because the protocol keeps the
bottleneck queue at a minimum level and does not create
the oscillations in bottleneck queue length that is typical
of the TCP Reno transmission pattern.

The advantage of our approach is that we are able to
correct for losses on a wireless link at the source without
relying on help from the link layer (either in the form of
a reliable link layer or FEC) or a proxy agent at a base
station. The method of using relative delays to determine
congestion and to monitor the increasing or decreasing
congestion in the network is well-suited to this problem.
The alternative, RTT monitoring, cannot take into account
the effects of congestion on the reverse path as a con-
tributing factor to increased RTT measurements.

Our future work will focus on evaluating the perfor-
mance of our approach when congestion and random
wireless losses occur simultaneously. The difficulty lies
in identifying random losses that occur during periods of
peak congestion.

0

10

20

30

40

50

60

0 10 20 30 40 50 60

nu
m

be
r

of
 p

kt
s

Time(sec)

TCP-Santa Cruz: Congestion window

TCP-SC

0

10

20

30

40

50

60

0 10 20 30 40 50 60

nu
m

be
r

of
 p

kt
s

Time(sec)

TCP-Reno: Congestion window

TCP-Reno

(a) (b)

Fig. 4. Congestion window, BER of10�6 (a)TCP-Santa Cruz (b) TCP Reno

0
50

100
150
200
250
300
350
400
450
500

0 10 20 30 40 50 60

de
la

y
(m

se
c)

Time(sec)

TCP-Santa Cruz: packet delay

TCP-SC

0
50

100
150
200
250
300
350
400
450
500

0 10 20 30 40 50 60

de
la

y
(m

se
c)

Time(sec)

TCP-Reno: packet delay

TCP-Reno

(a) (b)

Fig. 5. End-to-end delay per packet, BER of10
�6 (a) TCP-Santa Cruz (b) TCP Reno

200

400

600

800

1000

1200

1400

1600

1800

1/125 1/87 1/50 1/12.5

T
hr

ou
gh

pu
t(

K
bp

s)

Packet Error Rate

Average Throughput

TCP-SC
TCP Reno

20

30

40

50

60

70

80

90

100

110

1/125 1/87 1/50 1/12.5

T
im

e(
m

se
c)

Packet Error Rate

Average Delay and Variance

TCP-SC
Reno

(a) (b)

Fig. 6. TCP Santa Cruz and Reno for different error rates (a) Throughput (b) Delay and variance

REFERENCES

[1] A. Bakre and B. R. Badrinath. I-TCP: indirect TCP for mobile
hosts. InProc. 15th IEEE Int’l Conf. on Distributed Computing
Systems, pages 136–43, Vancouver, BC, Canada, May 1995.

[2] H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. Katz. A
comparison of mechanisms for improving TCP performance over
wireless links.IEEE/ACM Transactions on Networking, 6(5):756–
69, Dec. 1997.

[3] H. Balakrishnan, S. Seshan, and R. Katz. Improving reliable trans-
port and handoff performance in cellular wireless networks.ACM
Wireless Networks, Dec. 1995.

[4] Kevin Brown and Suresh Singh. M-TCP: TCP for mobile cellular
networks. InComputer Communication Review, volume 27 No. 5,
pages 19 – 43, Oct., 1997.

[5] R. Caceres and L. Iftode. Improving the performance of reli-
able transport protocols in mobile computing environments.IEEE
Journal on Selected Areas in Communications, 13(5), 1995.

[6] H. Chaskar, T.V. Lakshman, and U. Madhow. On the design of
interfaces for TCP/IP over wireless. InMILCOM ’96 Conference
Proceedings, volume 1 No. 3, pages 199–203, Oct. 1996.

[7] J. Cobb and P. Agrawal. Congestion or corruption? a strategy for
efficient wireless TCP sessions. InProceedings IEEE Symposium
on Computers and Communications, June 1995.

[8] S. McCanne and S. Floyd. Ns network simulator. http://www-
nrg.ee.lbl.gov/ns/.

[9] N.K.G.Samaraweera. Non-congestion packet loss detection for
TCP error recovery using wireless links. InIEE Proceedings-
Communications, volume 146, pages 222–30, Aug. 1999.

[10] C. Parsa and J.J. Garcia-Luna-Aceves. Improving TCP congestion
control over internets with heterogeneous transmission media. In

1999 International Conference on Network Protocols, pages 213–
21. IEEE, Oct. 1999.

[11] C. Parsa and J.J. Garcia-Luna-Aceves. Improving TCP perfor-
mance over wireless networks at the link layer.ACM Mobile Net-
works and Applications Journal, 5(1):57–71, 2000.

[12] J.B. Postel. Transmission Control Protocol. Technical report, SRI
Network Information Center, September 1981. RFC 793.

