
Speci�cation and Analysis of a Reliable Broadcasting

Protocol in Maude�

Grit Denkery, J.J. Garcia-Luna-Acevesz, Jos�e Meseguery,

Peter Csaba �Olveczkyy, Jyoti Rajuz, Brad Smithz,

Carolyn L. Talcottq

y Computer Science Laboratory, SRI International, Menlo Park, CA 94025, USA

fdenker,meseguer,peterg@csl.sri.com

z Computer Engineering Department, University of California, Santa Cruz, CA 95064, USA

fjj,jyoti,bradg@cse.ucsc.edu

q Computer Science Department, Stanford University, Palo Alto, CA 94305, USA

clt@sail.stanford.edu

1 Introduction

The increasing importance, criticality, and complexity of communications software makes
very desirable the application of formal methods to gain high assurance about its cor-
rectness. These needs are even greater in the context of active networks, because the
diÆculties involved in ensuring critical properties such as security and safety for dynami-
cally adaptive software are substantially higher than for more static software approaches.

There are in fact many obstacles to the insertion of formal methods in this area,
and yet there is a real need to �nd adequate ways to increase the quality and reliability
of critical communication systems. As a consequence, in spite of the existence of good
research contributions in formal approaches to areas such as distributed algorithms and
cryptographic protocols, in practice new systems are developed for the most part in a
traditional engineering way, using informal techniques, and without much to go by before
detailed simulations or an actual implementation except for pseudocode and informal
speci�cations.

The present work reports on an ongoing case study in which a new reliable broadcast-
ing protocol (RBP) currently under development at the University of California at Santa
Cruz (UCSC) has been formally speci�ed and analyzed, leading to many corrections and
improvements to the original design. Indeed, the process of formally specifying the pro-
tocol, and of symbolically executing and formally analyzing the resulting speci�cation,
has revealed many bugs and inconsistencies very early in the design process, before the
protocol was implemented.

RBP performs reliable broadcasting of information in networks with dynamic topol-
ogy. Reliable broadcasting is not trivial when the topology of the network can change

�Supported by DARPA through Rome Laboratories Contract F30602-97-C-0312, by DARPA and

NASA through Contract NAS2-98073, by OÆce of Naval Research Contract N00014-96-C-0114, and by

National Science Foundation Grants CCR-9505960 and CCR-9633363.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1999 2. REPORT TYPE

3. DATES COVERED
 00-00-1999 to 00-00-1999

4. TITLE AND SUBTITLE
Specification and Analysis of a Reliable Broadcasting Protocol in Maude

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Santa Cruz,Department of Computer
Engineering,Santa Cruz,CA,95064

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

due to failure and mobility. The aim is to ensure that all nodes that satisfy certain
connectedness criteria receive the information within �nite time, and that the source
is noti�ed about it. The protocol should furthermore incur as low latency and as few
messages as possible.

The amount of e�ort required in the formal speci�cation and analysis process has
been moderate, and it has been relatively easy for the researchers at UCSC to learn and
use the speci�cation formalism involved, so that the formal speci�cation task has indeed
been carried out in a joint way by researchers at SRI International, Stanford, and UCSC.

Re
ecting upon the reasons for the success of this experiment, we can mention the
following:

� Early insertion of the formal method. In this way, maximum bene�t can be ob-
tained, since the design can be corrected very early, before heavy implementation
e�orts have been spent.

� Simplicity and intuitive appeal of the formalism. The formalism involved, namely
rewriting logic [12], is very simple and it is very well suited for specifying distributed
systems, in which local concurrent transitions can be speci�ed as rewrite rules.

� Executability. Rewriting logic speci�cations are executable in a rewriting logic
language such as Maude [3]. This means that the formal model of the protocol
becomes an executable prototype, that can be directly used for simulating, testing
and debugging the speci�cation.

� Formal analysis. Since the behavior of a communications protocol is highly con-
current and nondeterministic, a particular simulation run only exhibits one among
many possible behaviors. Therefore, although direct execution can already reveal
many errors and inconsistencies, a much greater con�dence on the correctness of the
design can be gained by formal analysis techniques in which all possible behaviors|
up to termination, or up to a certain depth, or up to satisfaction of a speci�c state
condition|are analyzed in detail. This can be done in Maude by means of exhaus-
tive execution strategies that achieve a form of \model checking" analysis of the
state space.

Formal Methodology

The formal methodology underlying our approach can be summarized by stating that a
small amount of formal methods can go a long way. Approaches requiring full mathemat-
ical veri�cation of a system can be too costly. Proof e�orts should be used judiciously and
selectively, carefully choosing those properties for which a very high level of assurance is
needed. But there are many important bene�ts that can be gained from \lighter" uses
of formal methods, without necessarily requiring a full-blown proof e�ort.

The general idea is to have a series of increasingly stronger methods, to which a
system speci�cation is subjected. Only after less costly and \lighter" methods have been
used, leading to important improvements and corrections of the original speci�cation, is
it meaningful and worthwhile to invest e�ort on \heavier" and costlier methods. Our
approach is based on the following, increasingly stronger methods:

1. Formal speci�cation. This process results in a �rst formal model of the system, in
which many ambiguities and hidden assumptions present in an informal speci�ca-
tion are clari�ed.

2. Execution of the speci�cation. If the formal speci�cation is executable, it can be
used directly for simulation and debugging purposes, leading to increasingly better
versions of the speci�cation.

3. Formal model-checking analysis. Errors in highly distributed and nondeterministic
systems not revealed by a particular execution can be found by more a sophis-
ticated model-checking analysis that considers all behaviors of a system from an
initial state, up to some level or condition. In this way, the speci�cation can be
substantially hardened, and can even be formally veri�ed if the system is �nite-
state.

4. Narrowing analysis. By using symbolic expressions with logical variables, we can
carry out a symbolic model-checking analysis in which we analyze all behaviors not
from a single initial state, but from the possibly in�nite set of states described by
a symbolic expression. Some of these analyses are already a special type of formal
proof.

5. Formal Proof. For highly critical properties it is also possible to carry out a formal
proof of correctness, which can be assisted by formal tools such as those in Maude's
formal environment [4].

Up to now, we used methods 1{3 in the present case study, reaping important bene�ts
from this use. In the future we may use methods 4 and 5 for selected purposes. The above
case study is part of a broader e�ort to use rewriting logic and Maude in the context
of active networks and network security. Related studies include: formal speci�cation
and analysis of cryptographic protocols [7]; work by Denker and Millen using Maude to
specify the CAPSL and CIL speci�cation languages [8]; and joint work with Carl Gunter
and Yao Wang at the University of Pennsylvania on the formal analysis in Maude of an
active-network algorithm written in the PLAN language [10].

The rest of the paper is as follows. In Section 2 we explain the key ideas of the RBP
protocol and discuss its informal and formal speci�cations. In Section 3 we then discuss
our use of methods 2{3 to further increase our assurance by means of execution and
model-checking formal analysis. We �nish the paper in Section 4 with some concluding
remarks about our experience, and about future work.

2 Informal and Formal Speci�cation of the RBP

2.1 Informal Speci�cation

Little work exists on reliable broadcast protocols in dynamic networks. Most broad-
cast protocols are based on the PI and PIF protocols [17, 16], and all the broadcasting
protocols for dynamic topologies extending these are based on the routing protocol by
Merlin and Segall [11], which incurs too much communication to be attractive for, say,
a wireless network [9]. It is the goal of our speci�cation e�ort to come up with a more
general approach (in terms of mobility of nodes) and more eÆcient protocols for reliable
broadcasting in dynamic networks than exists so far. The starting point of our e�ort
was an informal draft speci�cation of the protocol given in [9]. We will refer to this
description throughout the text as the original pseudocode.

In the following we illustrate part of the somewhat abbreviated version of the informal
speci�cation given in [9], which describes the proposed protocol for dynamic topologies.

The network is modeled as an undirected connected graph, where each node knows its
neighbors but does not know anything more about the topology. In dynamic networks
links can fail and come up. The objective of the protocol is to broadcast the message
from a source node to all the nodes in the network and to give feedback to the source.

The dynamic case requires the handling of connecting and disconnecting network
sections. If a new link (i; b) is established and i and b reside in di�erent, unconnected
parts of the network, then messages that have been sent to i must be forwarded to b

and vice a versa. For example, if i has heard the latest message from source j, and b

has not yet heard it because it had no physical path to j, then i forwards this message.
There can be more than one message in a network. For example, di�erent partitions of
the network can have di�erent messages which are in transit, and those messages might
be forwarded to another partition when a new link comes up. Thus, each node has to
store the latest number of a message with respect to a speci�c source node. Similarly, all
other information, like the state of a node or its parent, is parametric in the source node.
Thus, most of the node attributes have the source node as parameter. In particular, the
following attributes form the data structure of a node: (1) a set of direct neighbors and
several attributes which store information with respect to a given source node j. These
are: (2) a
ag which speci�es whether the node is active or passive for j (i.e., a node is
active if it has sent the latest message of j to its neighbors and has not yet received all
acknowledgements); (3) a parent for messages from j, that is, the node from which it got
�rst the latest message of source j; (4) the latest message number of messages from j;
and (5) the state of a neighbor with respect to j, i.e., a
ag which speci�es whether the
node is active or passive for a neighbor with respect to a message from j. A node i being
active for a neighbor k with respect to a message from a source node j means that i has
forwarded j's message to neighbor k but still waits for an acknowledgement from k.

Because of space limitations we only explain the behavior of network nodes upon the
receipt of a message. The full speci�cation tackles the cases of acknowledgements, link
deletion and link addition as well, and can be found in [6].

The reaction of node i upon receipt of message m from p depends on the message
number. In accord with the pseudocode suggested by in [9], we use the following notation
to refer to attributes: N i denotes the neighbors of node i (nbs), and for source node j ST i

j

denotes the state of node i (state(j,)), sij denotes the parent of i (parent(j,)), SQi
j

denotes the last sequence number of i (seqNo(j,)), and ST i
jk denotes the state of i with

respect to neighbor k (nbState(j,k,)). Figure 1 presents a pseudocode speci�cation of
the behavior later formalized in Maude for receiving a message: There are three main
cases for receiving a message.

1. If a node repeatedly receives the current message (i.e., SQi
j = m), then it only

replies with an acknowledgement to the sender.

2. If a node receives a newer message (SQi
j < m) or a message from a node for which

it has no current message number (as it is the case if a new link comes up), then
it stops an earlier di�usion source and starts a new one with the newer message.
The node from which it got the latest message becomes the parent (sij := p).
It forwards the newer message to all neighbors other than p and waits for their
acknowledgement. In case there are no more neighbors, it can acknowledge the
receipt of the message.

3. If a node receives an older message (SQi
j > m), then its reaction depends on its

state. If the node is still active, then it extends the ongoing di�usion computation

if SQi
j = m

send ackm to p for source j

if (SQi
j < m or SQi

j is not de�ned)
sij := p, SQi

j := m; ST i
jp := passive

if i has at least one more neighbor other than p

ST i
j := active, ST i

jk := active for all k 2 N i
� p;

send message m for source j to all k 2 N i
� p

if N i = p

ST i
j := passive, send ackm for source j to p

if ST i
j = active and SQi

j > m

ST i
jp := active, send message SQi

j for source j to p

if ST i
j = passive and SQi

j > m

ST i
j := active, sij := i, ST i

jp := active;

send message SQi
j for source j to p.

Figure 1: Receiving a message.

by notifying the sender about the newest message. If the node is already passive,
then it starts a local di�usion computation with itself as the source.

2.2 Formalization Process

There are many fuzzy requirements and much implicit knowledge in most informal spec-
i�cations, such as in the starting point of our speci�cation e�ort, a speci�cation writ-
ten in natural language and pseudo-code. The formalization part of the speci�cation
process aims at clarifying those requirements and making essential implicit knowledge
explicit. For example, during the formalization process we realized that it was not clear
whether one should take into account scenarios where an acknowledgment from node i

to j may be received before the message sent from i to j. In other words, are mes-
sages/acknowledgments sent from i to j received in the same order as they are sent?
This important aspect was not mentioned in the informal speci�cation and provides an
example of how the formalization e�ort helps to make implicit assumptions explicit. Af-
ter discussing the matter it became clear that the implicit intention was in fact that the
order of messages is preserved along a channel.

2.3 Maude Speci�cation

The protocol is speci�ed in rewriting logic [12, 13, 14, 15]. Rewriting logic is an executable
logic which extends algebraic speci�cation techniques to concurrent and reactive systems.
Among its possible advantages over other executable speci�cation formalisms are its
being based upon a natural and well-known formalism, its natural integration of static
and dynamic system aspects, the abstract modeling of communication, and its possibility
to de�ne execution strategies in the logic itself [1, 3, 2, 5]. All these advantages are fully
supported by the Maude rewriting logic language [3]. Rewriting logic seems particularly
suitable for specifying communication protocols, including those used for security. Such
protocols are complex enough to warrant prototyping and their operational nature �ts

very well with the executable character of rewriting logic. The use of rewriting logic for
the speci�cation and analysis of security protocols is shown in [7].

Maude Basics

We brie
y outline the syntactic key features of Maude that are essential for our case study.
We model a distributed system con�guration as a soup (multi-set) of concurrent objects
and messages that behave according to a set of rewrite rules describing the behavior of
individual objects. Maude allows to declare object-oriented classes with the following
syntax

class C | a1: S1, ... , an: Sn

where C is the name of the class, and each ai is an attribute identi�er, and Si is the sort
inside which the values of the attribute identi�er ai must range. An object in a given
state is represented as a term <O: C|a1: v1, ... , an: vn>, where O is the object's
name or identi�er, C is its class, the ai's are the object's attribute identi�ers, and the
vi's are the corresponding values. Message-constructing operators are introduced with
the keyword msg. We can think of a system as a \soup" in which objects and messages

oat, so that any objects and messages can at any time come together and participate
in a concurrent transition corresponding to a communication event of some kind.

De�ning Network Nodes and Messages

We de�ne the following class in Maude, which speci�es the nodes of the network.

class Node | nbs : OidSet, states : IdStatusPFun,

parents : IdIdPFun, seqNos : IdIntPFun,

nbsStates : IdIdStatusPFun .

The set of neighbors is a set of object identi�ers. The other attributes are par-
tial functions, that is, for a given source node identity, they deliver the state (states
: IdStatusPfun), the identity of the parent (parents : IdIdPFun), the latest sequence
number (seqNos : IdIntPFun), or, for each neighbor the state of the neighbor (nbsStates
: IdIdStatusPFun). We modeled these data types in Maude by de�ning pairs and tu-
ples which have as the �rst parameter always the identity of the source node. Partial
functions are sets of pairs or triples. A variety of constants and operators is de�ned for
these sorts. Details can be found in [6].

Assume the following node instance:

< i : Node | nbs : set(k,l), states : state(j,active),

parents : parent(j,k), seqNos : seqNo(j,5),

nbsStates : nbState(j,l,active) >

Node i has two neighbors, k and l. Currently, i is active in a di�usion computation for
source j. The latest message it got from j has the number 5, and i already forwarded
this message to its neighbor l without having yet received an acknowledgement. Thus, i
is in an active neighbor state for l with respect to source j.

The main messages in the system are: (1) sending and acknowledging a message
(number) from a source node between network nodes; and (2) establishing and deleting
links between nodes. We can formalize this in Maude by de�ning messages:

msg msg_To_From_Src_ : MachineInt Oid Oid Oid -> Msg .

msg ack_To_From_Src_ : MachineInt Oid Oid Oid -> Msg .

msg newlink : Oid Oid -> Msg .

msg failure : Oid Oid -> Msg .

In the following, to give a
avor for how RBP is formalized, we describe one of the
rules for the dynamic RBP. The full speci�cation is given in [6].

Receiving a message

As we pointed out before, there are three main cases for receiving a message.
If a node repeatedly receives the current message (i.e., SQi

j = m), then it only replies
with an acknowledgement to the sender. This corresponds to the Maude rule

rl [RepeatRecCurrentMsg] :

< A : Node | nbs : nbs(B,OIDSET),

states : IDSTATUSPFUN,

parents : IDIDPFUN,

seqNos : seqNos(seqNo(C,M),IDINTPFUN),

nbsStates : IDIDSTATUSPFUN >

(msg M To A From B Src C)

=>

< A : Node | nbs : nbs(B,OIDSET) >

(ack M To B From A Src C) .

The lefthand side of the rule de�nes the precondition for the �ring of the transition.
In the above rule we require that at least one node and one message have to be in the
network. The node with name A (A is a variable) has a neighbor B and the latest message
number A heard from a source C was M. If M is also the currently received message number
from source C, then it reacts by sending an acknowledgement back to B. The receiving
node doesn't change its state.

3 Analysis Techniques using Maude

3.1 Validation with the Default Interpreter

A major advantage of rewriting logic speci�cations is that they can be validated im-
mediately by executing test cases to provide quick feedback on the speci�cation. This
prototyping possibility comes for free. We used this feature every time the speci�cation
was modi�ed, and often encountered errors quite easily on quite simple test examples
(such as a network of three nodes). In this validation e�ort, we executed the test cases
using Maude's default interpreter, which simulated some arbitrary run of the protocol for
a given initial state of a network. The validation e�ort helped eliminate errors of syntax
and of thought; furthermore, the built-in Maude facilities for tracing an execution were
useful for discovering where the error occurred. This validation and correction cycle led
to substantial improvements on, and a clear formalization of, the basic ideas of the start-
ing informal protocol. In particular, it was agreed upon that the following follows from
the informal speci�cation:

1. A node should acknowledge all its \siblings" when it has received something (mes-
sage or acknowledgment) from all its neighbors.

2. A node should acknowledge its \parent" node when it has received acknowledg-
ments from all its neighbors except the parent.

As a �rst form of analysis, our �nal version of the protocol based on these ideas was
validated using Maude's default interpreter. The extensive testing always returned the
expected (and hoped-for) result.

3.2 Formal Analysis of the State Space

To substantially increase our con�dence in the speci�cation before any costly attempt at
a formal proof of correctness, the speci�cation can be subjected to close formal analysis
using the meta-programming features of Maude to explore all states and behaviors that
can nondeterministically reached from an initial state. Since the speci�cation should be
terminating, one could apply a strategy that explores all possible rewrite paths from some
given initial state. In particular, we wrote a strategy for �nding every non-rewritable
state reachable from the initial state. For non-terminating systems, this setting can be
modi�ed to give e.g., every state which is reachable in less than 50 one-step rewrites from
some initial state.

We experimented with di�erent, increasingly complex, versions of the protocol. For
example, executing the speci�cation using an exhaustive strategy on a clique with three
nodes did not produce the hoped-for result, namely a singleton set of irreducible states.
Instead, the set of irreducible con�gurations reachable from the clique of three nodes
included a term which indicated a deadlock before the expected end of one round of
the protocol. A simple analysis of the output explained the error. If a node a is both
\grandparent" and \sibling" to a node b, then, according to the ideas underlying the
protocol, there is a deadlock as follows: Node c cannot acknowledge its parent a before
it has received the \parent-acknowledgment" message from its child b. Node b cannot
acknowledge its parent c before it has received an acknowledgment from its sibling a.
And a cannot acknowledge c before it has received something (which in this case only
can be an \parent-acknowledgment" message) from c!

Using Maude's meta-programming features, the user may himself de�ne the rewrite
strategies, thereby analyzing the speci�cation in various ways. Although we only needed
the quite straightforward exploratory analysis to invalidate our �rst version, this capabil-
ity is very useful for analyzing various executions and extracting the relevant information
from these automatically. Using the information from the exploratory analysis, the group
came up with a new improved version of the protocol.

4 Concluding Remarks

The e�ort of formally specifying RBP for dynamic networks using the executable speci-
�cation language Maude brought to light several weaknesses of the original pseudocode
[9]. However, the analysis is not yet �nished. For the moment, the following problems
were identi�ed and solved:

1. As described above we could eliminate a deadlock situation in the given protocol.

2. The pseudocode on which we based our �rst speci�cation of the dynamic RBP was
incomplete. In several places it was not clear what are the assumptions about node
attributes.

3. A description of initial state was missing, and so was the termination condition for
the protocol.

4. Moreover, the original pseudocode was incomplete with respect to how attributes
are updated.

5. Some cases were left out in the original speci�cation.

6. Other essential errors could be detected using the strategies. For example, given a
test scenario with three nodes a; b, and c where b has the neighbors a and c, a is a
source nodes which sends message number one and the link between a and b breaks
down. Running the protocol with this initial con�guration using an exhaustive
search strategy delivers three di�erent states of which one is a correct state, the
second one reveals an undesired behavior and the third one showed an error in the
original pseudocode which has been corrected in the current version.

Details can be found in [6]. The analysis is not �nished yet. Our current implemen-
tation works �ne for general test cases using a default strategy. But abnormal behavior
appears when we run the protocol with an exhaustive search strategy which traverse all
possible behaviors. This test cases are currently under investigation and will lead to
changes in the protocol pseudocode. Moreover, further test cases in which link addi-
tions and deletions are combined with sending one or more messages are currently under
investigation.

We have some further suggestions concerning other cases in the pseudocode which we
have not implemented yet. We are currently discussing those suggestions.

References

[1] M. Clavel. Re
ection in general logics, rewriting logic, and Maude. PhD thesis,
University of Navarre, 1998.

[2] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Mart��-Oliet, and J. Meseguer. Metalevel
computation in Maude. In Proc. 2nd Intl. Workshop on Rewriting Logic and its
Applications, Electronic Notes in Theoretical Computer Science. Elsevier, 1998.

[3] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Mart��-Oliet, J. Meseguer, and J. Que-
sada. Maude: Speci�cation and Programming in Rewriting Logic. Computer Science
Laboratory, SRI International, Menlo Park, 1999. http://maude.csl.sri.com.

[4] M. Clavel, F. Dur�an, S. Eker, and J. Meseguer. Building equational proving tools
by re
ection in rewriting logic. In Proc. of the CafeOBJ Symposium '98, Numazu,
Japan. CafeOBJ Project, April 1998. http://maude.csl.sri.com.

[5] M. Clavel and J. Meseguer. Re
ection and strategies in rewriting logic. In
J. Meseguer, editor, Proc. 1st Intl. Workshop on Rewriting Logic and its Appli-
cations, volume 4 of Electronic Notes in Theoretical Computer Science. Elsevier,
1996.

[6] G. Denker, J. J. Garc��a-Luna-Aceves, J. Meseguer, P. C. �Olveczky, Y. Raju,
B. Smith, and C. Talcott. Specifying a reliable broadcasting protocol in Maude.
Technical report, Computer Science Laboratory, SRI International, Menlo Park,
1999. Available at http://www.csl.sri.com/~denker/pub_99.html.

[7] G. Denker, J. Meseguer, and C. Talcott. Protocol Speci�cation and Analysis in
Maude. In N. Heintze and J. Wing, editors, Proc. Workshop on Formal Methods
and Security Protocols, 25 June 1998, Indianapolis, Indiana, 1998.

[8] G. Denker and J. Millen. CAPSL Intermediate Language. In N. Heintze and
E. Clarke, editors, Workshop on Formal Methods and Security Protocols (FMSP99),
Trento, Italy, 1999. Available at http://www.csl.sri.com/~denker/pub_99.html.

[9] J. J. Garcia-Luna. Reliable broadcasting in computer networks, 1998. Manuscript,
UC Santa Cruz.

[10] M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Nettles. PLAN: A Packet
Language for Active Networks. In Proceedings of the Third ACM SIGPLAN In-
ternational Conference on Functional Programming Languages, pages 86{93. ACM,
1998.

[11] P. M. Merlin and A. Segall. A failsafe distributed routing protocol. IEEE Trans.
Commun., 27(9):1280{1288, 1979.

[12] J. Meseguer. Conditional rewriting logic as a uni�ed model of concurrency. Theo-
retical Computer Science, 96:73{155, 1992.

[13] J. Meseguer. A logical theory of concurrent objects and its realization in the Maude
language. In G. Agha, P. Wegner, and A. Yonezawa, editors, Research Directions in
Concurrent Object-Oriented Programming, pages 314{390. MIT Press, 1993.

[14] J. Meseguer. Rewriting logic as a semantic framework for concurrency: a progress
report. In Proc. Concur'96, volume 1119 of Lecture Notes in Computer Science.
Springer-Verlag, 1996.

[15] J. Meseguer. Research directions in rewriting logic. In U. Berger and H. Schwichten-
berg, editors, Computational Logic, NATO Advanced Study Institute, Marktoberdorf,
Germany, July 29 { August 6, 1997. Springer-Verlag, 1998.

[16] A. Segall. Distributed network protocols. IEEE Trans. Info. Theory, 29(1):25{35,
1983.

[17] A. Segall and B. Awerbuch. A reliable broadcast protocol. IEEE Trans. Commun.,
31(7):896{901, 1983.

