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Abstract
This paper presents a new protocol, the Ordered Core Based Tree
(OCBT) protocol, which remedies several shortcomings of the Core
Based Tree (CBT) multicast protocol. We show that the CBT proto-
col can form loops during periods of routing instability, and that it
can consistently fail to build a connected multicast tree, even when
the underlying routing is stable. The OCBT protocol provably elim-
inates these deficiencies and reduces the latency of tree repair fol-
lowing a link or core failure. OCBT also improves scalability by
allowing flexible placement of the cores that serve as points of con-
nection to a multicast tree. Simulation results show that the amount
of control traffic in OCBT is comparable to that in CBT.

1 Introduction
Multicast routing protocols build routing trees for the dissemina-
tion of messages to a select group of other stations. In some
protocols, such as the Distance Vector Multicast Routing Protocol
(DVMRP) [1] and the Protocol Independent Multicast-Dense Mode
(PIM-DM) protocol [2] the receiving group is assumed to be fairly
dense and the sender initiates the multicast assuming all routers in
the network are interested in receiving the multicast. If any receiver
does not wish to receive the multicast, it must take explicit action
and send a message called apruneto remove itself from the tree.
These types of protocols are termedsender initiatedas the receivers
are not required to take any action to receive the multicast. In each
of these protocols the routing tree is formed along the shortest path
between each sender and receiver. The overhead at a routerO(n�s),
wheren is the number of multicast groups ands is the number of
sources in the group.

In both the Core Based Tree (CBT) multicast protocol [3] and in
the Protocol Independent Multicast-Sparse Mode (PIM-SM) proto-
col [4] [5], a singleshared treeis created for all sender and receivers
in the group, and receivers initiate their own connection to the tree.
In each of thesereceiver initiatedprotocols a well known router ex-
ists that accepts connection requests from other routers. This router
is known as therendezvous pointin PIM; in CBT it is called acore.
The returning acknowledgment builds a branch of the tree back to
the initiator along the reverse path of the connection request. In-
stead of forwarding each packet on a per-group per-source basis,
each data packet is instead forwarded over every on-tree link for
that group except the one on which it was received. Accordingly,
the router does not have to maintain information about each source
for each group and has instead a single entry for each group. The
router overhead is thereforeO(n), giving the shared tree approach
superior scalability. However, because each packet no longer trav-
els over its shortest path to each receiver, shared trees incur longer
average delay in the delivery of a data packet.
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During times of underlying unicast instability CBT can form loops.
Loops in a shared multicast tree are disastrous. When a data packet
enters a loop, it circulates the loop endlessly until its time-to-live
expires; as a circulating data packet passes through a router that has
an off-loop branch, the packet gets forwarded down that branch.
This leads to multiple transmissions ofeach packet in the loop to
the rest of the tree. As more traffic finds its way into the loop
this situation gets worse, as more and more off-loop transmissions
occur. Eventually, the loop can start forwarding so many packets to
the rest of the tree that all links on the tree become saturated. We
present a new protocol for the construction of shared multicast trees
that eliminates this looping problem and other problems that can
keep a multicast tree from forming in CBT. We call this protocol
the Ordered Core Based Tree protocol.

The next section describes the ways in which CBT can fail. Sec-
tion 3 describes and specifies the OCBT protocol. Section 4 pro-
vides an example of how OCBT handles link failures and is fol-
lowed in Section 5 with simulation results showing the perfor-
mance of OCBT and CBT, based on the CBT specifications of April
1996 [6]. We discuss some aspects of core placement in Section 6
before presenting our conclusions.

2 Looping in CBT
CBT [3] [7] [8] [6] forms a backbonewithin a connected group
of nodes called cores. The backbone is formed by selecting one
router, called theprimary core, to serve as a connection point for
the other cores, calledsecondary cores. Secondary cores remain
disconnected from the primary core until they are required to join
the multicast group. A router wishing to participate in the mul-
ticast session sends ajoin-requesttowards the closest core. This
request travels hop-by-hop on the shortest path to the core, forc-
ing other off-tree nodes to join the branch that the router is form-
ing. When the join-request reaches a core or an on-tree node, a
join-acknowledgmentis sent back along the reverse path, forming a
new branch from the tree to the requesting router. If the core that
is reached is a secondary core and is off-tree, it connects to a pri-
mary core using the same process. Once the tree is constructed, data
packets flow from any source to its parent and children. Each parent
node forwards the packet to all children other than the sender and to
its parent until the data packet reaches the backbone. Each packet is
then sent along the backbone and down all other branches, ensuring
that all group members receive it.

In the event of a link or node failure, the child node that detects
the failure follows a particular strategy in order to reconnect to the
tree. If that node’s next hop to the nearest core is through one of its
immediate children, it sends a message,called aflush message, to its
children. The flush message travels down the tree, forwarded from
parent to child, removing the connection between the parent and
child. This message tears down the tree to the individual receivers,
which then attempt to reconnect along their best path to a core. If
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Figure 1: Looping in a disconnected subtree
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Figure 2: Deadlock or loop formation in tree formation

the next hop to the core is not through a child, the detecting node
attempts to reconnect itself by sending a rejoin-request towards the
nearest core and does not send the flush message to its children.
When the request reaches an on-tree node, that node returns a join
acknowledgment that rebuilds the branch down to the sending node.
It also sends the rejoin-request to its parent for forwarding to the
primary core. The forwarding of the rejoin-request back up the
constructed tree is a mechanism used to detect loops that may have
formed. If a node receives a rejoin-request that it originated, then
a loop has formed. The node detecting the loop removes the link
to its parent by sending a message called aquit-requestand again
attempts to rejoin. Otherwise, if the rejoin-request is received at
the primary core, that core sends a unicast acknowledgment to the
originator of the rejoin request to verify the absence of a loop. This
unicast message is needed because if a loop had formed and the
rejoin-request was lost before it was returned to the originator, then
the loop would not have been detected. However, if the originator
never receives the ack, it can assume that a loop has formed, quit
from its parent by sending a quit message, and attempt to rejoin
again.

Surprisingly, there have been no prior attempts to show that CBT is
correct, that is, that CBT creates multicast trees in finite time and
that it does not form loops. In fact, CBT does not always form a
tree. Part of the tree can remain disconnected when a router seeks
to rejoin the multicast tree in response to a failure in the link to
its parent. The router detecting the link failure attempts to maintain
the sub-tree below it while rejoining the rest of the tree by sending a
rejoin-request towards the core. If the path to the core is through an
immediate child, the sub-tree is destroyed by transmission of a flush
message. Otherwise, the rejoining router sends a rejoin-request
towards the core. If this request reaches a descendentin the sub-tree,
it is acknowledged and a link forms between the descendent and the
rejoining router, completing a loop. Figure 2 shows the topography
of a CBT sub-tree subject to this transient looping. The grey node
is attempting to rejoin along a newly formed shortest path to the
next reachable core. Because its path passes through a descendent
child, a loop is formed. This type of loop can occur even when the
underlying routing algorithm, which a CBT node uses to determine
the path to the core, does not contain loops and is said to bestable.

As a loop detection mechanism, the descendent node forwards the
rejoin request to its parent, and this message is passed up tree until
it reaches the originating router, at which point the loop is detected

and action taken to correct it. According to the CBT protocol spec-
ification of April 1996 [6], the rejoining router simply sends a quit
request to its parent to remove the loop. This correction mechanism
can fail, however, as the rejoining router takes no action to destroy
its sub-tree and instead attempts to rejoin again, possibly along the
same path forming the same loop. Each time the router reconnects
along the same path, the same loop forms. This continual looping
denies multicast service to the disconnected sub-tree, but it can be
stopped if upon detecting a loop, the rejoining router is allowed to
flush the tree by forwarding a flush message to all of its children, af-
ter which each receiver or sender on the sub-tree connects directly
to the core along the shortest path.

If the rejoining router is a secondary core that must reconnect
to the primary core, then flushing the tree does not always solve
the looping problem. In this case, flushing the tree can initiate a
race condition in which local routers attempt to join the secondary
core as it attempts to join the primary core. Upon receiving a
flush message, routers with members of their subnets desiring the
multicast immediately send a join-request on a hop-by-hop basis
towards the closest core. That could be a secondary core which
is trying to connect to the primary core. If a router that lies on
the path to the primary core has attempted to join the secondary
core, then it is possible that by the time the join request from the
secondary core, which is destined for the primary core, reaches
the router, the router will be awaiting an acknowledgment to its
own join-request. In this join-pending state the router will accept
the local core’s request, as illustrated in Figure 2. This will lead
to a temporary deadlock, until the appropriate timeouts occur. If
these timeouts occur close together and there is no mechanism for
selecting an alternate primary core, or if the receiver group near
the disconnected secondary core is dense so that each path to the
primary core is blocked, this race condition can occur many times,
leading to a long latency in reconnecting the sub-tree, if the sub-
tree is able to connect at all. A solution to this would be to force
routers receiving a flush message to back off for some period of time
before attempting to rejoin. While this would prevent the routers
from winning the race, it would also lead to long latency times for
routers attempting to rejoin the multicast tree.

The same situation that prevents proper reconstruction of the tree
following a link failure can also prevent initial construction of the
tree, and it can form a loop in a disconnected sub-tree. If a sec-
ondary core receives a join-request from a router that lies on the
path from the secondary core to the primary core, the secondary
core will be unable to form a link to the primary core as all join-
requests the secondary core sends will be stopped at the first hop
towards the joining router. In Figure 2, this occurs at the white col-
ored router between the joining router and secondary core. In this
case the race is always won by the joining router, as it has a head
start in sending its join request. As the secondary core sends a join-
acknowledgment to the router before attempting to connect to the
primary core, the nodes on the path back to the joining router will
consider themselves to be on-tree and will acknowledge the sec-
ondary core’s join-request if the acknowledgment arrives before the
secondary core’s join-request. A loop, which is undetected by CBT,
will then be formed between the router which is the first hop to the
joining router and the secondary core. Notice that this loop does not
form when secondary core is attempting to reconnect; in the case
in which reconnection is occurring the forwarding of the rejoin-
request back to the secondary router removes the loop, though the
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Figure 3: Undetected loop during tree construction
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Figure 4: Permanent loops in the core backbone

secondary core will still be unable to connect to the primary core.
If the secondary cores do not send a join acknowledgment before
sending a join-request, then deadlock can occur as described above.

If the network is unstable during construction, the secondary core’s
attempt to join the multicast tree can again lead to undetected loops
in the disconnected sub-tree. Assume that a router sends a join-
request to a secondary core, which is currently off-tree. When the
join-request reaches the core, the core acknowledges it and attempts
to join the primary core by sending a join-request of its own. If this
request travels a different path due to unicast routing instability and
traverses a branch of its sub-tree, the join-request will be accepted
and acked as shown in Figure 3. The transmission of the ack will
occur immediately if the receiving node is on the branch, indicated
by path A, or as soon as the ack traveling from the core reaches
that point on the branch, indicated by path B. This ack will travel
back to the core and form a loop that will not be detected; traffic
will circulate within the loop endlessly, dumping repeat copies of
data packets down each other off-loop branch as it goes by. Again,
this type of loop can only be formed during the initial build of the
tree; if the core is attempting to reconnect and uses a rejoin-request
instead of a join-request, the loop detection mechanism will detect
the loop when the rejoin is forwarded to the core.

There is one similar undetected loop that can form when the tree is
constructed during times of network instability or when secondary
cores are attempting to contact different primary cores. In this situ-
ation it is possible that the primary core is thought to be unreachable
by part of the secondary core group without that information having
been disseminated through the rest of the group. This inconsistency
can occur, due to the mechanism causing deadlock described above,
if some secondary core has been unable to reach the primary core
because its children blocked the connection and it is now attempting
to reach an alternate primary core. If the branches being formed by
two secondary cores cross, either due to differences in the destina-
tion of the join-request or because of looping in the unicast routing,
a loop can be formed. If the loop is formed during the initial con-
struction of the tree, it will be undetected and will not be removed.

If two secondary cores are attempting to form the backbone and
their branches meet in a way that forms a loop, one of two things
will happen. In the best case, join-pending nodes on each branch
receive the request of the other. This isillustrated in Figure 4, where
each join-pending node chooses the hop labeled C. No loop will be
formed as no acks will be sent; instead, each branch will wait for an
ack until they time out.

In the second case, one or both of the forming branches will meet
the other at a core or an on-tree node that is a descendent of the
core. The core or on-tree router that receives the request will
acknowledge it. The ack will travel back along the reverse path
forming the branch, possibly getting forwarded back down the other
branch that was forming as well. In this case, a loop has been
formed in the backbone that will not be detected. Any traffic
entering the loop will circle it endlessly, and each time it reaches a
router with an interface leading out of the loop, and additional copy
will travel down the tree to all receivers. Additional traffic flowing
into the loop only serves to exacerbate the situation, resulting in
a denial of service as the tree is flooded with the same packets
repeatedly. Figure 4 shows how the loop will form if either of any
of the next hop choices labeled A or B are taken.

3 The OCBT Protocol
CBT builds a multicast tree from a single level of secondary cores
which join at a single primary core. Looping and disconnected
sub-trees occur in CBT because the protocol does not enforce any
ordering in the way in which nodes and cores attempt to join the
tree. In contrast, OCBT maintains alogical levelfor each node and
core. The logical level is a label indicating the cores place in the
hierarchy of cores. The cores’ logical levels are fixed when the core
is selected; the nodes levels are not fixed but are assigned when the
node joins the tree. Any node or cores level is always less than or
equal to the level of its parent; OCBT uses this property to guarantee
that no transient or permanent loops ever form in the structure of the
tree and that the protocol is safe and live even when routing-table
loops occur in the underlying routing protocols. OCBT has been
shown to be free of loops at every instant and to be safe and live [9].
OCBT also reduces control traffic following a link failure, allows
for flexible core placement, and does this without increasing the
complexity of the protocol.

When a router has a member wishing to receive the multicast ses-
sion, it locates the nearest core and sends a join-request towards that
core. Join-requests force any off-tree routers they reach on their
path to the core to forward the request and attempt to join the tree.
In OCBT, join-requests also carry a field which contains the level
a node must have to safely acknowledge the request. Join-requests
from an off-tree router carry a level of zero to indicate that any on-
tree node or core can safely acknowledge the request. If a node
receives a join-request carrying a level higher than its level, it quits
from its parent and joins the branch that the join-request is forming.
In this way, OCBT forces lower-level branches to break to allow
the construction of higher-level branches. This prevents the cases in
CBT in which a node or core attempting to rejoin following a link
failure is unable to connect to a core because it is blocked by its
sub-tree, preventing that sub-tree from joining the main multicast
tree.

OCBT limits control messages to within a particular logical level
and distributes the processing of control messages over a larger



number of cores. When a link fails, flush messages travel down-
tree only as far as the next lower level of cores; join-requests need
only travel as far as the next higher level of cores. This results in less
traffic following a link failure than in CBT, in which flush messages
from near a core or rejoin messages originating far from the core
have to travel relatively long distances. More recent specifications
for CBT [6] have a single primary core that forms a point of
connection for secondary cores that stay off-tree until required to
join. This single primary core is a limiting factor to the scalability
of CBT, as it must receive and respond to all passive join-requests
from the entire multicast tree. OCBT has no similar single point of
traffic concentration, as cores need only respond to traffic within its
logical level.

Other differences between CBT and OCBT include changes in the
mechanism by which nodes destroy the connection formed with
their parent. OCBT replaces thequit requestof CBT with a quit
notice, and in OCBT nodes sending the quit request do not wait
for an acknowledgment before leaving the tree. In contrast, under
CBT, nodes must wait for an acknowledgment from the parent
before leaving the tree. OCBT uses a keep-alive mechanism to
detect lost quit-notices and flush messages instead of using explicit
acknowledgments. Aparent-assertmessage is included in OCBT
to insure that consistent state information is maintained between
nodes. A parent keeps track of reception of keep-alive packets from
its children. In the event that the parent does not receive a keep-
alive from a child in a set period of time, it sends a parent assert
message to ascertain if the child still is its child; if no reply or a
negative reply to a parent assert is received, the child is assumed
to have quit. This guarantees eventual consistent information about
the state of the link between child and parent, even if messages are
lost. Because no node accepts or forwards an on-tree data packet
from an off-tree link, no data packets are received twice, even if a
quit-notice or flush message is lost.

OCBT is quite similar in complexity to the original CBT. OCBT
takesO(n) to create a spanning tree, wheren is the number of
links in the spanning tree and is dependent on the network, core
placement and multicast group members. The load on the routers is
only marginally increased. In addition to the state variable required
for CBT, each on-tree router in OCBT is additionally required to
track its level and to maintain level information for each of its
children, as well as a marker as to whether that child has transmitted
a keep-alive packet recently.

OCBT’s specification is shown in Figure 5. Function names are in
bold. A call to another function or the name of a particular type
of message is capitalized. Parameters that are part of a received
message are initalics. Names of the variables maintained within
the node are plain, lower case.

Each of the cores and routers maintains variables representing the
state of the node in regard to OCBT’s operation. Each node has
an entry for its OCBT state (on-tree or off-tree or join-pending,
and core or non-core), level, parent, the core it last attempted to
reach, and a list maintaining the list of the node’s children and their
level. Core nodes also have one additional state variable, which is
the logical level of their parent. This entry is used to track the core
state in case it is coerced to a higher level; if for some reason it
receives a flush message from its parent, it can flush all children of
level greater than the original core level and return to that level.

Examination of OCBT’s specifications reveals that descriptions
of some called functions are missing. In particular,Next Hop,
Find Core, Subnet MemberandSend Messagewere omitted for
brevity, but are explained below.

Subnet Memberdetermines whether the router has some member
on its local network wishing to receive the multicast; if it does, this
function returns true.

Send Messagetransmits a message to the designated recipient that
includes the information specified; if the message being sent is a
join-request,Send Messagealso starts the timeout timer. Receipt
of an appropriate acknowledgment cancels the timer.

Next Hop examines the unicast routing table and returns the neigh-
bor node on the next hop to take towards a given destination.

Find Core returns the nearest core of a specified level; if level 0 is
specified, it returns the closest core of any level.Find Core was
omitted as the actual OCBT code depends on the means used to
distribute core information. If some means of scoping is desired,
Find Core may not return the closest core, but instead one that
lies within the scoped area.Find Core changes the node variable
core ; each timeFind Core is called,core is updated to whatever
it returns. In addition to locating cores,Find Core also detects
partitions in the network when higher-level cores are unreachable
and instigates a partition-recovery mechanism. In order to do this,
it maintains a list of cores that have been contacted but failed to
respond; this list is cleared when the node is joining and receives an
ack.

4 Tree Maintenance in OCBT
OCBT builds a distribution tree in which each member has a logical
level equal to or less than its parent. The logical level changes
only at a core or agraft. Grafts occur where a lower-level branch
is broken to make way for a higher level branch to form, and the
lower level branch is maintained below the break. Figure 6 shows
the structure of an OCBT tree. The large nodes are cores and show
their levels. The smaller black nodes are on-tree nodes and have the
link to their parent labeled with their level. The striped node is a
graft node which formed when the(n + 1)-level branch broke to
allow the(n+ 2)-level branch to connect to the(n+ 2) core.

When a link failure requires recovery of the tree, cores and grafts
respond in different manners. A core attempts to reconnect for its
children; a graft flushes the tree below it and expects a core or
receiver below it to attempt reconnection. Figure 7illustrates this by
showing the state of the tree after a link failure. Following the link
failure, the(n + 1)-level core and the leftmost level-n core would
each attempt to reconnect to their higher-level core. If the network
remained partitioned and the(n+2)-level core was unreachable, the
multicast tree would form up to the(n+1)-level core, which would
then wait until the partition was corrected to rejoin the multicast
tree.

5 Simulation Results
To examine the performance of CBT and OCBT in a realistic man-
ner, we created a simulation of each protocol using a simulation
package� that supports protocol layering. These simulations ran
on top of a unicast routing layer that implemented the distributed

�The protocols presented in this paper were simulated using the C++ Protocol
Toolkit (CPT) by Rooftop Communications Corp. of Los Altos, CA.



Add Child (child,level)
Add Child to List (child, level)
Send Message (Join Ack,child, level)

Break Branch (source, message level,
core, originator)

Send Message (Quit-Notice, parent)
if (state = On-Tree Core) or
(state = Join-Pending Core)
parent level =message level

parent = Next Hop (core)
if (On Child List (parent))
Remove Child from List (parent)

Add Child (source, message level)
send message (Join-Request, parent,

message level, core, originator)
if (state= On-Tree Core)
state = Join-Pending Core

else
state = Join-Pending

Forward Message(type, source)
for each child
if (child ! = source)
Send Message (type, child)

if (parent! = source)
Send Message (type, parent)

Join Tree (level)
if state = Join-Pending Core
parent = Next Hop (Find Core(level + 1))
Send Message (Join-Request, parent,

level + 1, core)
else /* level = 0 */
parent = Next Hop (Find Core(level))
Send Message (Join-Request, parent,

level, core)
state = Join-Pending

Multicast Message(type, level)
for each child on list
if ( level= 0) or (level< child level )
Send Message (type, child, level)

Quit Tree ()
parent = null
if (state = On-Tree Core)
or (state = Join-Pending Core)
parent level = core level
state = off-tree core

else
state = off-tree
level = 0

halt /* do not return */

Remove Children(level)
for each child on list
if ( level= 0) or (level< child level )
Remove Child from List (child)

if (child list = null)
and not (Subnet Receiver)
Quit Tree

else
return to calling function

Remove Child(child)
Remove Child from List (child)
if (child list = null) and
not (Subnet Receiver)
Send Message (Quit-Notice, parent)
Quit Tree

else
return to calling function

Send Data(source, data)
if (source = parent) or
(On Child List (source))
Forward Message (data, source)

else
drop the packet and
do not forward to subnet

Join-Pendingor
On-Tree Router (message type, message level,

source, core, originator)
case (message type)
Join-Request
if (on child list (source))
Remove Child from List (source)
if (message level> level)
Break Branch (message level,

core, originator)
else
if (state = On-Tree Router)
Add Child (level)

else
Add Child to List (source)

Quit-Notice
if (on child list (source))
Remove Child (source)

Flush Message
if (source= parent)
Forward Message (Flush Message,source)
Remove Children (0)
/* only reached if above function returns */
level = 0
Join Tree (level)

Join Ack
if (state = Join-Pending Router)
if (source= parent)
and (message level>= level)
level =message level
Forward Message (Join Ack, level,source)

Data
Send Data (data, source)

Off-Tree Router (message type, message level,
source, core, originator)

case (message type)
Join-Request
parent = Next Hop (core)
level = message level
Send Message (Join-Request, parent,

level,core)
state = Join-Pending

Join-Pending Coreor
On-Tree Core (message type, message level,

source,core,originator)
case (message type)
Join-Request
if (on child list (source))
/* previous quit-notice was lost */
Remove Child from List(source)

if (message level<= level)
Add Child (source, level)

else
if (message level> parent level)
Break Branch (message level,

core, originator)
else
if (On-Tree Core)
Add Child (source, parent level)

else
if (originator = self)
/*message looped - unicast instability */
Send Message (Quit-Notice, parent)
Send Message (Flush Message,source)
parent level = level + 1
parent = Next Hop (Find Core(level + 1))
Send Message (Join-Request, parent,

level + 1,core)
else
Add Child to List (source, message level)

Quit-Notice
if (on child list (source))
Remove Child (source)

Flush Message
if (source= parent)
Multicast Message (flush message, level)
Remove Children (level)
/* only reached if above function returns */
state = Join-Pending Core
Join Tree (level)

Join Ack
if (Join-Pending Core)
if (source= parent)
and (message level> level)
parent level =message level
foreach child on list
if (child level> core level) and
(child level<= parent level)
send message (Join Ack, child, parent level)

state = On-Tree Core
Data
if (On Tree Core)
Send Data (data, source)

Off-Tree Core (message type, message level,
source, core, originator)
case (message type)

Join-Request
if (message level<= level)
Add Child (source,level)
parent = Next Hop (Find Core(level + 1))
parent level = level +1
Send Message (Join-Request, parent,

level + 1,core)
else
Add Child to List (source, message level)
parent = Next Hop (core)
parent level =message level
Send Message (Join-Request, parent,

message level, core)
state = Join-Pending Core

On Time Out
case (state)
Join-Pending Core
if (parent level> core level + 1)
for each child on list
if (child level> level)
Remove Child from List (child)

if (child list ! = null) or (Subnet Member)
parent = Next Hop (Find Core(level + 1))
parent level = level + 1
Send Message (Join-Request, parent,

level, core)
else
parent = null
parent level = level
state = Off-Tree Core

Join-Pending Router
for each child on list
Remove Child from List (child)

parent = null
level = 0
if (Subnet Member)
Join Tree (0)

else
state = Off-Tree Router

On Parent Link Failure
case (state)
On-Tree Coreor
Join-Pending Core
Multicast Message (Flush Message, level)
for each child
if (child level> level)
Remove Child from List (child)

if (Subnet Member) or (child list! = null)
state = Join-Pending Core
Join Tree (level)

else
parent = null
parent level = level
state = Off-Tree Core

On-Tree Router or
Join-Pending Router
Forward Message (Flush Message, parent)
for each child
Remove Child from List (child)

level = 0
if (Subnet Member)
Join Tree (level)

else
parent = null
state = Off-Tree Router

Figure 5: OCBT Protocol Specification
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Figure 6: HCBT Tree

Bellman-Ford algorithm and used routing information from the uni-
cast layer. Using this simulation we measured the end-to-end delay
of data packets traversing the tree, the number of messages of each
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Figure 7: Link Failures

type sent before and after a link failure, and the number of times
CBT formed of transient loops requiring explicit action from CBT
to remove. In addition, each case in which a CBT sub-tree was un-
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Figure 8: Arpanet Simulation Topography

able to reconnect to the tree, as shown in Figure 2, was recorded.
We also recorded the number of times OCBT did not form transient
loops when CBT would have.

For our simulations we used the Arpanet topology shown in Fig-
ure 8, which contains 47 nodes and 69 edges. We examined the per-
formance of OCBT and CBT under realistic conditions: the links on
the network were configured to run at 200 kilobits per second, with
a 1 millisecond delay betweenhops; the unicast routing updates oc-
curred four times as frequently as the CBT and OCBT keep-alive
messages. We chose this update period to allow the unicast routing
time to disseminate routing information; this was important because
one indication of a link failure was a change in the unicast routing
table. We selected two receiver groups for the simulation - a dense
group consisting of all nodes and a sparse group consisting of 11
widely distributed nodes. The same single source was used with
each receiver group.

For each run of the simulation, we chose a particular set of cores
using what is probably the same “trivial heuristic” used by Bal-
lardie [3], that is, looking at a picture of the network we picked
distributed nodes of relatively high degree to serve as cores. For
OCBT, the cores were divided into two logical levels. We con-
structed the CBT backbone before allowing receivers to connect
even though the current protocol specification does not; we did this
because of the difficulty CBT has in connecting secondary cores
to the primary cores. Building each of the trees for each receiver
group, we measured the construction costs in terms of the traffic re-
quired. We then sent a stream of data packets from the source to
all receivers and recorded the delay each data packet encountered.
Finally, we made each link in the network fail individually and mea-
sured the number of messages required to reconnect the tree and any
loops that were formed.

In our simulation, link failures were detected in two ways. First,
failure of a parent or child to respond to a set number of keep-alive
messages created the link-down condition. Second, every time a
message was sent, the unicast routing was checked to see if the
next hop to the destination had changed. Changes in the next hop
information reflect a change in the underlying unicast routing that
came about as result of a link failure. This allowed the protocol to
detect link failures before the set number of keep-alive messages
were lost.

The simulations used the 12 different core sets shown in Figure 1,
with the results summarized in Table 2. Each run shows the average
performance of OCBT and CBT for a sparse and dense receiver
group for the selected core set. The delay and the variance of the
delay are normalized to the delay and variance of a source based

Run Level 1 Level 2
Number Cores Cores

1 3 40 34 15 33 26
2 32 33 40 26
3 40 26 32 33 3 40
4 2 10 46 8 37
5 33 15
6 26 33 40
7 40 26 32 33 15
8 26 44 18 30
9 40 26 32 33 2 10 46
10 37 2 46
11 14 24 31 45 15 30
12 17 44 31 34 32

Table 1: Cores used in simulation

Run Build Repair Average Delay Trans. Disconn. Loops
# Messages Messages Delay Variance Loops Subtrees Prevented
1
OCBT 71 4.4 1.5 2.5 - - 0
CBT 70 14.2 1.5 2.7 0 9 -
2
OCBT 72.5 4.2 1.4 2.0 - - 0
CBT 68 4.4 1.4 1.9 0 17 -
3
OCBT 71 4.3 1.3 1.6 - - 0
CBT 73 4.4 1.9 3.5 0 19 -
4
OCBT 80 5.5 1.2 1.5 - - 0
CBT 72 4.5 1.7 3.0 0 18 -
5
OCBT 72 5.2 1.3 1.6 - - 0
CBT 70 15.3 1.2 1.6 0 17 -
6
OCBT 70 4.5 1.5 2.1 - - 0
CBT 66 10.9 1.5 2.1 1 18 -
7
OCBT 79.5 4.3 1.6 2.8 - - 0
CBT 69 12 1.6 2.4 1 13 -
8
OCBT 80 7.4 1.4 1.8 - - 0
CBT 69 4.1 1.4 1.8 0 10 -
9
OCBT 78.5 4.5 1.6 3.0 - - 4
CBT 73 21.4 1.2 0.5 1 11 -
10
OCBT 75 6.0 1.7 3.1 - - 2
CBT 72 4.9 1.2 0.5 0 23 -
11
OCBT 87.5 5.9 1.2 1.5 - - 2
CBT 71 4.1 1.5 2.1 0 20 -
12
OCBT 75 4.8 1.4 1.8 - - 0
CBT 68 3.6 1.4 1.8 0 12 -
Average
OCBT 76 5.1 1.43 2.1 - - .67
CBT 70 8.7 1.46 2.0 .25 15.6 -
Source 72 1.00 1.00
.95 C.I.
OCBT 72.7-79.3 4.5-5.7 1.3-1.5 1.7-2.5 - - 0.0-1.5
CBT 68.7-71.5 4.9-12.4 1.3-1.6 1.4-2.6 0.0-0.5 12.8-18.4 -

Table 2: OCBT vs. CBT

tree. The source based tree was created using CBT with a single
core located at the sender for the same two receiver groups. The
delay results were then averaged. The Transient Loops entry for
CBT shows the number of transient loops that were able to be
corrected. The Disconnected Subtree column shows the number
of times a CBT sub-tree was unable to reconnect to the main tree
following a link failure. The Loops Prevented entry shows the
number of loops caused by instability in the unicast routing that
OCBT detected and which would have formed transient loops in
CBT.

The results demonstrate that the major advantage of OCBT is its
loop freedom and its ability to correctly reconstruct a multicast
tree following a link failure. In our simulations, a CBT sub-tree
was frequently unable to reconnect to the multicast tree following
a link failure as described in section 2. As each set of simulation
runs included 138 runs of the CBT protocol, and an average of
15.6 disconnected sub-trees were formed during those runs, we
found a disconnection rate of 11.3% under the current protocol



specifications [6]. Clearly, a routing protocol that is unable to find a
correct path when one exists one time out of nine is hardly suitable
for use in a large Internet.

The message count for the CBT protocol was kept artificially low in
situations when a sub-tree was unable to reconnect, as our simula-
tion enforced a timeout period for any rejoining node that detected
a loop. Had those routers been allowed to attempt to connect as
quickly as possible, the total number of messages would have been
much higher. In addition, we formed the CBT backbone before the
receivers were allowed to join; this also lowered the total message
count as it prevented situations in which a secondary core could not
connect to the primary core.

On average, OCBT requires some additional work to build the tree,
but once it is constructed the traffic required to maintain the tree
is reduced. Intuitively, one might expect the OCBT tree to require
less traffic to build, as lower-level cores remain in an off-tree state
until they receive a join-request. If a particular core never receives a
request for the multicast session, it can remain off-tree and no traffic
is required to build the tree out to it. However, we found that the
OCBT takes slightly more messages to form the multicast tree than
that of the version of CBT we tested. This is because many children
tried to connect in close succession to lower-level cores that were
off-tree. As these lower-level cores sent join acks to the joining
nodes before attempting to reach a higher-level core, many links
were formed between the core and its new children. The lower-
level core was then forced to break some of these existing links to
reach the higher-level core. Links formed this way required five
messages to form - two for the initialnode to core join, two for the
link to form from between the lower-level core and the higher-level
core, and one quit-notice sent from the child to its former parent as
it was coerced to join the higher-level branch that was forming.

OCBT did reliably reform the tree after a link failure with fewer
messages than CBT. The branches of the CBT tree can grow fairly
long, and messages can be required to traverse the entire length of
the branch in the event of a link failure. If the failure is near the bot-
tom of the branch and a rejoin occurs, CBT requires that a passive
rejoin be forwarded the length of the branch to the primary core,
which then sends a unicast message to the originator acknowledg-
ing the passive rejoin-request to ensure that there is no loop formed.
As the unicast message does not necessarily traverse the multicast
tree on its return to the originator, we did not include it in our mes-
sage count as it may not contribute to on-tree congestion.

Similarly, if the failure is near the backbone and the branch is
flushed, then the flush must travel the length of the branch to the
receivers which then send a join-request back to a core, resulting
in messages traversing the branch twice. OCBT reduces the traffic
requirements in both cases. OCBT does not require that a rejoin-
request be forwarded to the highest-level core; instead it only travels
as far as the next higher core as required to rejoin the tree. The flush
message cannot destroy a branch all the way from the highest-level
core down to the receivers as control traffic is limited to a single
logical level.

As expected, the multicast trees produced by CBT and OCBT
produce more delay in delivering packets than do source-based
trees. This can be seen intuitively as the path a packet would take in
a core based tree might not be the shortest to each receiver since
it must detour to pass through a core. The actual delay from a
source to a receiver is dependenton core placement, as no additional

delay will be incurred if the core lies on the shortest path. With
poor core placement in an OCBT tree, this could be exacerbated
as the packet may be routed further off the shortest path to pass
through several cores. In our simulation, the delays experienced
by data packets in OCBT were on average about 43% greater than
the delay experienced by a packet from a source-based tree. Data
packets sent over the tree formed by CBT experienced an average
delay about 46% greater than the source based tree. Using OCBT,
it is possible that this could be reduced by making each source a
lower level core. Nearby nodes would then connect directly to the
source, while nodes further away would receive the multicast over
the shared backbone.

Both CBT and OCBT construct and operate a fixed tree. This
has the clear drawback of requiring all data packet transmissions
to traverse specific links in the network, regardless of congestion.
This can createhot spotsat cores that must handle an excessive
amount of traffic. CBT is more susceptible to hot spots, particularly
at the primary core which must receive and reply to each passive
rejoin request. Using more cores can alleviate hot spots somewhat,
as this spreads the traffic over more cores, though this does not
reduce the traffic at CBT’s primary core. OCBT is more amenable
to use of additional cores, and does not require any single core to
answer messages from the entire multicast group. Another partial
solution to congestion over fixed links is to allow children to quit
from their parents and connect on a shorter path to the core if one
becomes available. This in fact was first suggested by Ballardie for
CBT [7], but has not yet been included in our simulation. Another
improvement to be investigated will be to make each source a local
core so that near by nodes can join directly to it, reducing the delay
to those nodes.

The slightly increased number of messagesrequired in the construc-
tion of the tree is a very small price to pay for OCBT compared to
its major advantage: it works correctly. CBT, in contrast, is incor-
rect and does not always form a complete multicast tree during con-
struction or following a link failure. Permanent, undetected loops
can form in CBT that can cause complete saturation of every link
on the tree containing the loop. This is clearly an undesirable char-
acteristic of CBT; OCBT suffers from no similar detrimental traits
and can be used safely. In addition, in a tree with many link failures,
OCBT’s reduced repair costs actually makes the amortized cost of
construction lower than CBT.

6 Core Placement
There are a number of issues concerning the placement of cores in
the network and the distribution of information about the core lo-
cation. Currently, we assume that some mechanism for distributing
core information is universally available and that each router can
find the address and level of any core. In reality, this is neither
desirable nor possible. A leaf router within the United States has
little use for information about local cores in other countries, nor
does it have the space to maintain what could be large core lists.
Instead, some mechanism for leaf nodes to discover local cores and
for lower-level cores to become aware of nearby higher-level cores
is needed. This could take the form of a multicast group server able
to respond with the identities of local cores, similar to the DNS ser-
vice.

Alternatively, cores could follow a distributed scheme for dissemi-
nating their location and level, broadcasting or flooding their iden-
tity and location with an increasing time-to-live overeach of their



interfaces, or they could join a multicast group that existed solely
for the purpose of core location dissemination. Cores need only
know the addresses of the same level and next higher-level cores, so
some method of limiting the core information that gets distributed
is desirable. Multicast distribution schemes could also work well in
a situation in which the multicast was being limited to a particular
scope, that is, limiting the area of the network in which the multi-
cast tree forms. Each level of cores in the scoped area could have its
own local multicast address. A scheme similar to this was proposed
in HPIM [10]. The issue of core information distribution is an area
of future work for OCBT and other protocols based on shared trees.

After the cores are identified and a means of determining the loca-
tion of nearby cores is established, the issue arises of whether or
not to build a backbone of cores prior to allowing any leaf nodes
or lower level to connect. In OCBT this is not strictly necessary,
although it can help prevent some worst case behavior, in which the
highest-level cores are forced to break many existing links if other
connections are made before the backbone forms. In CBT it is not
necessary unless one wants to be certain that secondary cores can
join the tree. In OCBT the backbone is formed by choosing one
core of the highest-level to be a connection point for all of the other
highest-level cores. This core undergoes a temporary promotion to
one level higher then the rest of the highest level cores. The other
highest-level cores then join the promoted core.

The core placement in OCBT has an important effect on the per-
formance of the protocol in terms of the amount of control traf-
fic generated and the delay imposed on data packet delivery. This
is true in CBT and PIM-SM as well. While determining optimal
core placement remains an open problem, there have been sugges-
tions made as to methods of migrating cores to provide better ser-
vice [11] [10]. We believe that core placement can be made a mat-
ter of policy rather than optimality if the scope of the multicast is
limited at each level. The flexibility of adding additional cores in
OCBT supports this approach. Core placement and migration are
important issues for our future work.

7 Conclusions
We have described an ordered extension to CBT, called OCBT, that
increases scalability, reduces repair latency, completely eliminates
loops, and is provably correct in forming a multicast tree. By dis-
tributing cores throughout the network and by maintaining logical
level information, OCBT allows for a flexible multicast group in
which the core structure does not have to be fixed in advance. The
distribution of cores reduces the amount of repair traffic by limiting
the distance over which repair messages have to travel to within the
logical level.

OCBT eliminates the loops and disconnected sub-trees that occur
in the CBT protocol [9]; our simulation results corroborate our
verification work. The cost of OCBT is a slight increase in the initial
number of messages required to construct the multicast tree. This is
somewhat balanced by a reduction in the amount of traffic required
to repair the tree following a link failure, and a guarantee that the
tree will reform correctly. The increase in tree construction traffic
is a result of the mechanism that breaks lower-level tree branches
to allow formation of a higher-level branch; in some cases, this
mechanism also adversely affects the number of messages it takes to
repair a failure in the tree. On average, however, OCBT reconstructs
the tree with less traffic than CBT and does so correctly; in all cases

the multicast tree will be formed correctly and will reform correctly
following a link or node failure.

The delay induced in end-to-end packet delivery by OCBT is com-
parable to that of CBT: both increase the average delay by about
50% over the delay of a source-based tree. The actual delay in-
curred is dependent on the location of the cores. It may be possible
to reduce the delay in OCBT trees by making each source a local
core. Nearby nodes would then be able to connect directly to the
source, minimizing their perceived delay, while more remote re-
ceivers would connect via the shared tree.

The relative number of messages and delay induced by CBT and
OCBT are hardly indicative of the overall performance of each
protocol. The Core Based Tree protocol is incorrect; it does not
prevent or detect looping nor does it consistently build a correct
multicast tree. The correct construction of the multicast tree in all
instances and the guarantee of loop freedom in the Ordered Core
Based tree protocol make it superior in operation to CBT; it is only
an added bonus that it does so with a reduced amount of control
traffic. The changes that make OCBT perform correctly and more
efficiently than CBT are simple and extensible; work done on the
placement of cores and security mechanisms for CBT are applicable
to OCBT with little or no modification. The need for a scalable
multicast routing protocol in the Internet of the future highlights the
importance of a shared tree protocol; OCBT meets that need with
correct and efficient performance.
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