The Ordered Core Based Tree Protocol

Clay Shields J.J. Garcia-Luna-Aceves
{clay, jj}@cse.ucsc.edu
Department of Computer Engineering
University of California—Santa Cruz
Santa Cruz, CA 95064

Abstract During times of underlying unicast instiity CBT can form loops.
This paper presents a new protocol, the Ordered Core Based TreelLoops in a shared nfiicast tree are disastrous. When a data packet
(OCBT) protocol, which remedies several shortcomings of the Coreenters a loop, it circulates the loop endlessly until its time-to-live
Based Tree (CBT) multicast protocol. We show that the CBT proto- expires; as a circulating data packet passes through a router that has
col can form loops during periods of routing instkty, and that it an off-loop branch, the packet gets forwarded down that branch.
can consistently fail to build a connected multicast tree, even whenThis leads to multiple transmissions @éch packet in the loop to
the underlying routing is stable. The OCBT protocol provably elim- the rest of the tree. As more traffic finds its way into the loop
inates these deficiencies and reduces the latency of tree repair fol-this situation gets worse, as more and more off-loop transmissions
lowing a link or core failure. OCBT also improves scalability by occur. Eventually, the loop can start forwarding so many packets to
allowing flexible placement of the cores that serve as points of con-the rest of the tree that all links on the tree become saturated. We
nection to a multicast tree. Simulation results show that thewarh present a new protocol for the construction of shared multicast trees

of control traffic in OCBT is comparable to that in CBT. that eliminates this looping problem and other problems that can
) keep a multicast tree from forming in CBT. We call this protocol
1 Introduction the Ordered Core Based Tree protocol.

Multicast routing protocols build routing trees for the dissemina-

tion of messages to a select group of other stations. In someThe next section describes the ways in which CBT can fail. Sec-
protocols, such as the Distance Vector Multicast Routing Protocol tion 3 describes and specifies the OCBT protocol. Section 4 pro-
(DVMRP) [1] and the Protocol Independent Multicast-Dense Mode Vvides an example of how OCBT handles link failures and is fol-
(PIM-DM) protocol [2] the receiving group is assumed to be fairly lowed in Section 5 with simulation results showing the perfor-
dense and the sender initiates the multicast assuming all routers irfmance of OCBT and CBT, based on the CBT specifications of April
the network are interested in receiving thelticast. If any receiver 1996 [6]. We discuss some aspects of core placement in Section 6
does not wish to receive the fitigast, it must take explicit action ~ before presenting our conclusions.

and send a message callegraneto remove itself from the _tree. 2 Loopingin CBT

These types of protocols are termshder initiatedas the receivers CBT [3] [7] [8] [6] forms a backbonewithin a connected group

are not required to take any action to receive thétioast. In each t nod lied The backb i db lecti
of these protocols the routing tree is formed along the shortest pathO odes called cores. € backbone IS formed by selecting one

between each sender and receiver. The overhead at a€uter), :ﬁute;,hc?IIeOrI theprlrlr:asrl)e/ corg o serve gs a cgnnectlon point f_or
wheren is the number of multicast groups amds the number of die on: iodefs, Catﬁ conadary cores t'?fk?n ary cores rzr?al_n_
sources in the group. sconnected from the primary core until they are required to join

the multicast group. A router wishing to participate in the mul-

In both the Core Based Tree (CBT) multicast protocol [3] and in ticast session sendsjain-requestowards the closest core. This

the Protocol Independent Multicast-Sparse Mode (PIM-SM) proto- request travels hop-by-hop on the shortest path to the core, forc-
col [4] [5], a singleshared treés created for all sender and receivers ing other off-tree nodes to join the branch that the router is form-
in the group, and receiversitiate their own onnection to the tree.  ing. When the join-request reaches a core or an on-tree node, a
In each of theseeceiver iritiated protocols a well known router ex-  join-acknowledgmeris sent back along the reverse path, forming a
ists that accepts connection requests from other routers. This routepew branch from the tree to the requesting router. If the core that
is known as theendezvous poirih PIM; in CBT it is called acore. is reached is a secondary core and is off-tree, it connects to a pri-
The returning acknowledgment builds a branch of the tree back tomary core using the same process. Once the tree is constructed, data
the initiator along the reverse path of thenmection request. In-  packets flow from any source to its parentand children. Each parent
stead of forwarding each packet on a per-group per-source basisnode forwards the packetto all children other than the sender and to
each data packet is instead forwarded over every on-tree link forits parent until the data packet reaches the backbone. Each packetis
that group except the one on which it was received. Accordingly, then sent along the backbone and down all other branches, ensuring
the router does not have to maintain information about each sourcehat all group members receive fit.

for each group and has instead a single entry for each group. Th . . .
router overhead is therefo(n), giving the shared tree approach qn the_ event of a link or node failure, t_he child node that detects
the failure follows a particular strategy in order to reconnect to the

superior scalability. However. h ket no longer trav- . .
P y. Howevergause each packet no longer tra tree. If that node’s next hop to the nearest core is through one of its

els over its shortest path to each receiver, shared trees incur longer . . ) .
average delay in the delivery of a data packet. Immediate children, it sends a message, calldashh messagéeo its

children. The flush message travels down the tree, forwarded from
This work was supported in part by the Office of Naval Research (ONR) under Grant pa_rent to. child, removing the connection betw_eer_l .the paren_t and
No. NO00014-94-1-0688 and by the Defense Advanced Research Projects Agencycm!d' This message tears down the tree to the individual receivers,
(DARPA) under Grant No. F19628-96-C-0038. which then attempt to reconnect along their best path to a core. If




Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
1997 2. REPORT TYPE 00-00-1997 to 00-00-1997
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

The Ordered Core Based Tree Protocol £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of California at Santa Cruz,Department of Computer REPORT NUMBER
Engineering,Santa Cruz,CA,95064

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 8
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



. Core and action taken to correct it. According to the CBT protocol spec-
Reoing ification of April 1996 [6], the rejoining router simply sends a quit
. Router request to its parent to remove the loop. This correction mechanism
Q Oniree can fail, however, as the rejoining router takes no action to destroy
roue its sub-tree and instead attempts to rejoin again, possibly along the
,,,,, — Newshores same path forming the same loop. Each time the router reconnects

Path to Core

along the same path, the same loop forms. This continual looping
denies multicast service to the disconnected sub-tree, but it can be
stopped if upon detecting a loop, the rejoining router is allowed to
flush the tree by forwarding a flush message to all of its children, af-

Figure 1: Looping in a disconnected subtree ter which each receiver or sender on the sub-tree connects directly
in in to the core along the shortest path.

m@ m' If the rejoining router is a secondary core that must reconnect

Primery Core Secondary Core to the primary core, then flushing the tree does not always solve

the looping problem. In this case, flushing the tree catate a
race condition in which local routers attempt to join thes®tary

. . . core as it attempts to join the primary core. Upon receiving a
the next hop to the core is not through a child, the detecting nOdeflush message, routers with members of their subnets desiring the

attempts to reconnect itself by sending a rejoin-request tgward_s themulticast immediately send a join-request on a hop-by-hop basis
nearest core and does not send the flush message to its childre

Cowards the closest core. That could be a secondary core which
When the request reaches an on-tree node, that node returns a join

. . IS trying to connect to the primary core. If a router that lies on
acknowledgmentthe_lt _rebunlds the b_ranch down to the sen_dlng nOOIethe path to the primary core has attempted to join the secondary
It also sends the rejoin-request to its parent for forwarding to the

fimar re. The forwarding of the reioin-r. t back the core, then it is possible that by the time the join request from the
P 0 etlry (t:odet.r ie (r)n ah nigrr? Ztejg t- e;qlues tgctr:p h Vsecondary core, which is destined for the primary core, reaches
?c?rnfegclfa n%?:iesr?ace?vc;saa ?ejolijr??eqﬁeset ?hcatﬁ)togﬁginite da{h:n%e router, the router will be awaiting an acknowledgment to its
: T * .~ own join-request. In this join-pending state the router will accept

a loop has formed. The node detecting the loop removes the I|nk0 10 N Join-p g P

to its parent by sending a message callegii-requesaind again the local core’s request, as illustrated in Figure 2. This will lead
P Y g a messag L d . 9 to a temporary deadlock, until the appropriate timeouts occur. If
attempts to rejoin. Otherwise, if the rejoin-request is received at

. ; these timeouts occur close together and there is no mechanism for
the primary core, that core sends a unicast acknowledgment to the g

. . . . lecting an altern rim r r if the receiver gr near
originator of the rejoin request to verify the absence of a loop. This s€ ec_t g an alternate primary co € 0 the receiver group nea

; " . the disconnected secondary core is dense so that each path to the
unicast message is needed because if a loop had formed and the . . . " )

o : - primary core is blocked, this race condition can occur many times,
rejoin-request was lost before it was returned to the originator, thenleadin 1o a lona latency in reconnecting the sub-tree. if the sub
the loop would not have been detected. However, if the originator g g y g !

- . tree is able to connect at all. A solution to this would be to force
never receives the ack, it can assume that a loop has formed, qui o . .
. . . .. routers receiving a flush message to back off for some period of time
from its parent by sending a quit message, and attempt to rejoin . - - .
again before attempting to rejoin. While this would prevent the routers

from winning the race, it would also lead to long latency times for
Surprisingly, there have been no prior attempts to show that CBT isrouters attempting to rejoin the multicast tree.

correct, that is, that CBT creates multicast trees in finite time and The same situation that prevents proper reconstruction of the tree
that it does not form loops. In fact, CBT does not always form a P prop

tree. Part of the tree can remain disconnected when a router seel{?”owm%i“nk fr;ulure c?n al§o prgyent |n|t|atl c(;onstt)rltjctlonlgf the
to rejoin the multicast tree in response to a failure in the link to ree, and It can form aoop In a disconnected sub-ree. 1 a sec-

its parent. The router detecting the link failure attempts to maintain on;:iha;y corti recelvesda jom-recluetit fror_n a router ”:ﬁt lies ondthe
the sub-tree below it while rejoining the rest of the tree by sending a Path from the secondary core 1o the primary core, the secondary

rejoin-request towards the core. If the path to the core is through anOre Wlt” tt)lf unable éo form a I|nk(;o th_ﬁ Enm?ry co(;e ?tsha"f‘JoTh
immediate child, the sub-tree is destroyed by transmission of aflush' ©quests In€ secondary core sends will be stopped at the Tirst hop
message. Otherwise, the rejoining router sends a rejoin-reques[owards the joining route(. I_n_Flgure 2, this occurs at the white CO'T
towards the core. If this requestreaches a descendentin the sub-tre(g,?,recj rck)‘uter bemetlan the jomlrtl)g rc;]utt_ar_ a_nd secondary_ccr)]re. Inhthlsd
itis acknowledged and a link forms between the descendentand the?""":'e_t € race Is always won y the joining router, as it has a ea
rejoining router, completing a loop. Figure 2 shows the topography start in sending its join request. As the second_ary core sends a join-
of a CBT sub-tree subject to this transient looping. The grey node ac_knowledgment to the router before attemptlng_tc_) f:onnect o the
is attempting to rejoin along a newly formed shortest path to the Primary core, the nodes on the path back to the joining router will

next reachable core. Because its path passes through a descendc‘:‘ﬁ’tns"der the:m.sglves to b? on-tree and will acknowledge the sec-
child, a loop is formed. This type of loop can occur even when the ondary core’s join-request if the acknowledgmentarrives before the

underlying routing algorithm, which a CBT node uses to determine S€¢0ndary core’s join-request. Aloop, which is undetected by CBT,

the path to the core, does not contain loops and is said stelxe yv!ll _then be formed between the router wh_lch is the _flrst hop to the
joining router and the secondary core. Notice that this loop does not

As a loop detection mechanism, the descendent node forwards théorm when secondary core is attempting to reconnect; in the case

rejoin request to its parent, and this message is passed up tree untih which reconnection is occurring the forwarding of the rejoin-

it reaches the originating router, at which point the loop is detected request back to the secondary router removes the loop, though the

Figure 2: Deadlock or loop formation in tree formation



If two secondary cores are attempting to form the backbone and
their branches meet in a way that forms a loop, one of two things

,,,,, - Pahof initia join request

S will happen. In the best case, join-pending nodes on each branch
. — —_— receive the request of the other. Thidlisstrated in Figure 4, where
each join-pending node chooses the hop labeled C. No loop will be
. o Q e formed as no acks will be sent; instead, each branch will wait for an

ack until they time out.

In the second case, one or both of the forming branches will meet
the other at a core or an on-tree node that is a descendent of the
core. The core or on-tree router that receives the request will
acknowledge it. The ack will travel back along the reverse path
forming the branch, possibly getting forwarded back down the other
branch that was forming as well. In this case, a loop has been
formed in the backbone that will not be detected. Any traffic
entering the loop will circle it endlessly, and each time it reaches a
router with an interface leading out of the loop, anditiddal copy

will travel down the tree to all receivers. Atidnal traffic flowing

. S O e into the loop only serves to exacerbate the situation,ltieguin
- a denial of service as the tree is flooded with the same packets
repeatedly. Figure 4 shows how the loop will form if either of any

Figure 4: Permanent loops in the core backbone of the next hop choices labeled A or B are taken.

3 The OCBT Protocol

secondary core willt§l be unable to onnect to the primary core. CBT build lticast tree f inale level of d
If the secondary cores do not send a join acknowledgment before™ " urlds a muticast ree from a single Jevel of secondary cores
hich join at a single primary core. Looping and disconnected

sending a join-request, then deadlock can occur as described abovd” )
sub-trees occur in CBT because the protocol does not enforce any

If the network is unstable during construction, the secondary core’'sordering in the way in which nodes and cores attempt to join the
attempt to join the multicast tree can again lead to undetected loopdree. In contrast, OCBT maintaindagical levelfor each node and
in the disconnected sub-tree. Assume that a router sends a joincore. The logical level is a label indicating the cores place in the
request to a secondary core, which is currently off-tree. When the hierarchy of cores. The cores’ logical levels are fixed when the core
join-request reaches the core, the core acknowledgesit and attemptis selected; the nodes levels are not fixed but are assigned when the
to join the primary core by sending a join-request of its own. If this node joins the tree. Any node or cores level is always less than or
request travels a different path due to unicast routing instability and equal to the level of its parent; OCBT uses this property to guarantee
traverses a branch of its sub-tree, the join-request will be acceptedhat no transient or permanentloops ever form in the structure of the
and acked as shown in Figure 3. The transmission of the ack will tree and that the protocol is safe and live even when routing-table
occur immediately if the receiving node is on the branch, indicated loops occur in the underlying routing protocols. OCBT has been
by path A, or as soon as the ack traveling from the core reachesshown to be free of loops at every instant and to be safe and live [9].
that point on the branch, indicated by path B. This ack will travel OCBT also reduces control traffic following a link failure, allows
back to the core and form a loop that will not be detected; traffic for flexible core placement, and does this without increasing the
will circulate within the loop endlessly, dumping repeat copies of complexity of the protocol.
data packets down each other off-loop branch as it goes by. Again,
this type of loop can only be formed during the initial build of the When a router has a member wishing to receive théicast ses-
tree; if the core is attempting to reconnect and uses a rejoin-reques8ion, it locates the nearest core and sends a join-request towards that
instead of a join-request, the loop detection mechanism will detectcore. Join-requests force any off-tree routers they reach on their
the loop when the rejoin is forwarded to the core. path to the core to forward the request and attempt to join the tree.
In OCBT, join-requests also carry a field which contains the level
There is one similar undetected loop that can form when the tree is3 node must have to safely acknowledge the request. Join-requests
constructed during times of network instability or whenam®ttary  from an off-tree router carry a level of zero to indicate that any on-
cores are attemptlng to contact different primal’y cores. In this situ- tree node or core can safe|y acknow|edge the reques[. If a node
ation it is possible that the primary core is thought to be unreachablereceives a join-request carrying a level higher than its level, it quits
by part of the secondary core group without that information having from its parent and joins the branch that the join-request is forming.
been disseminated through the rest of the group. This inconsistencyy, this way, OCBT forces lower-level branches to break to allow
can occur, due to the mechanism causing deadlock described abovene construction of higher-level branches. This prevents the cases in
if some s_econ_dary core has been unable to reach the primary corg:gT in which a node or core attempting to rejoin following a link
becauseits children blocked the connection and it is now attemptingszilure is unable to connect to a core because it is blocked by its

to reach an alternate primary core. If the br_anches be_ing formed_ bysub-tree, preventing that sub-tree from joining the main multicast
two secondary cores cross, either due to differences in the destinagge.

tion of the join-request or because of looping in the unicast routing,
a loop can be formed. If the loop is formed during the initial con- OCBT limits control messages to within a particular logical level
struction of the tree, it will be undetected and will not be removed. and distributes the processing of control messages over a larger



number of cores. When a link fails, flush messages travel down- Examination of OCBT's specifications reveals that descriptions
tree only as far as the next lower level of cores; join-requests needof some called functions are missing. In particulsliext Hop,
only travel as far as the next higher level of cores. This results in lessFind Core, Subnet MemberandSend Messagevere omitted for
traffic following a link failure than in CBT, in which flush messages brevity, but are explained below.

from near a core or rejoin messages originating far from the core
have to travel relatively long distances. More recent specifications
for CBT [6] have a single primary core that forms a point of
connection for secondary cores that stay off-tree until required to

join. This si_ngle primary core is a limiting factor to _the_ s_calability Send Messagéransmits a message to the designated recipient that
of CBT, as it must receive and respond to all passive join-requestsincludes the information specified; if the message being sent is a

traffic concentration, as cores need only respond to traffic within its of an appropriate acknowledgment cancels the timer.

logical level.

Subnet Memberdetermines whether the router has some member
on its local network wishing to receive the ficast; if it does, this
function returns true.

Next Hop examines the unicast routing table and returns the neigh-
Other differences between CBT and OCBT include changes in thebor node on the next hop to take towards a given destination.
mechanism by which nodes destroy the connection formed with B ) )
their parent. OCBT replaces thpiit requesibf CBT with a quit Find Core returns the nearest core of a specmeq level; if level O is
notice and in OCBT nodes sending the quit request do not wait spe_cified, it returns the closest core of any levéind Core was
for an acknowledgment before leaving the tree. In contrast, underoMmitted as the actual OCBT code depends on the means used to
CBT, nodes must wait for an acknowledgment from the parent d[strlbute core information. If some means of scoping is desired,
before leaving the tree. OCBT uses a keep-alive mechanism tofind Core may not return the closest core, but instead one that
detect lost quit-notices and flush messages instead of using explicifi€S Within the scoped areind Core changes the node variable
acknowledgments. Aarent-assermessage is included in OCBT pore ;each tlmeFlr_u_:i Coreis ca_lled,core .|s updated to whatever
to insure that consistent state information is maintained betweenit "€turns. In addition to locating coregjnd Core also detects
nodes. A parent keeps track of reception of keep-alive packets fromPartitions in the network when higher-level cores areeaghable
its children. In the event that the parent does not receive a keep-2Nd instigates a partition-recovery mechanism. In order to do this,
alive from a child in a set period of time, it sends a parent assert it Maintains a list of cores that have been contacted but failed to

message to ascertain if the child still is its child; if no reply or a respond; this list is cleared when the node is joining and receives an

negative reply to a parent assert is received, the child is assumed°k-
to have quit. This guarantees eventual consistent information abouy 1vee Maintenance in OCBT

the state of the link between child and parent, even if messages Ar$HCBT builds a distribution tree in which each member has a logical
lost. Because no node accepts or forwards an on-tree data packglye| equal to or less than its parent. The logical level changes

from an off-tree link, no data packets are received twice, even if a only at a core or ayraft. Grafts occur where a lower-level branch
quit-notice or flush message is lost. is broken to make way for a higher level branch to form, and the
: U : - lower level branch is maintained below the break. Figure 6 shows
OCBT is quite similar in complexity to the original CBT. OCBT

N plexity 9 the structure of an OCBT tree. The large nodes are cores and show

takesO(n) to create a spanning tree, whereis the number of .
links in the spanning tree and is dependent on the network corethe'r levels. The smaller black nodes are on-tree nodes and have the
' link to their parent labeled with their level. The striped node is a

placemenj[ and r_mlcast group mempers. The load on Fhe routers s graft node which formed when the + 1)-level branch broke to
only marginally increased. In addition to the state variable required allow the(n + 2)-level branch to connect to the + 2) core

for CBT, each on-tree router in OCBT is ationally required to '
track its level and to maintain level information for each of its \When a link failure requires recovery of the tree, cores and grafts
children, as well as a marker as to whether that child has transmittedrespond in different manners. A core attempts to reconnect for its
a keep-alive packet recently. children; a graft flushes the tree below it and expects a core or

, ification is sh - . . receiver below it to attempt reconnection. Figuiliuatrates this by
OCBT's specification is shown in Figure 5. Function names are in showing the state of the tree after a link failure. Following the link

bold. A call to another function or the name of a patrticular type failure, the(n + 1)-level core and the leftmost levelcore would

of message |s“ca_p|tallzed. Parameters_ that are |_oart_ ofa r?C?'Vegach attempt to reconnect to their higher-level core. If the network
message are |na_1llcs. Names of the variables maintained within .04 partitioned and tiie+2)-level core was unreachable, the
the node are plain, lower case. multicast tree would form up to the: + 1)-level core, which would

Each of the cores and routers maintains variables representing théhen wait until the partition was corrected to rejoin the multicast
state of the node in regard to OCBT’s operation. Each node hastree'

an entry for its OCBT state (on-tree or off-tree or join-pending, 5 simulation Results

and core or non-core), level, parent, the core it last attempted ©0q gxamine the performance of CBT and OCBT in a realistic man-
reach, and a list maintaining the list of the node’s children and their e we created a simulation of each protocol using a simulation
level. Core nodes also have one diddal state variable, whichis  hackags that supports protocol layering. These simulations ran

the logical level of their parent. This entry is used to track the core g, top of a unicast routing layer that implemented the distributed
state in case it is coerced to a higher level; if for some reason it

receives a flush message_from its parent, it can flush all children of *The protocols presented in this paper were simulated using the C++ Protocol
level greater than the original core level and return to that level. Toolkit (CPT) by Rooftop Communications Corp. of Los Altos, CA.




Add Child (child,leve)
Add Child to List child, leve)
Send Message (Join Ackhild, leve)

Break Branch (source, message level,
core, originatol)
Send Message (Quit-Notice, parent)
if (state = On-Tree Core) or
(state = Join-Pending Core)

parent level =message level
parent = Next Hopdore)
if (On Child List (parent))

Remove Child from List (parent)
Add Child (source, message leyel
send message (Join-Request, parent,

message level, core, originajor
if (state= On-Tree Core)

state = Join-Pending Core
else

state = Join-Pending

Forward Message(type, sourcg
for each child
if (child ! = sourcg
Send Messagey(pe child)
if (parent! = sourcg
Send Messagey(pe parent)

Join Tree (leve)
if state = Join-Pending Core
parent = Next Hop (Find Core(level + 1))
Send Message (Join-Request, parent,
level + 1, core)
else /* level =0 %/
parent = Next Hop (Find Corleve))
Send Message (Join-Request, parent,
level core)
state = Join-Pending

Multicast Message(type, level
for each child on list
if (level=0) or (evel < child level )
Send Messagey(pe child, leve))

Quit Tree ()
parent = null
if (state = On-Tree Core)
or (state = Join-Pending Core)
parent level = core level
state = off-tree core

else
state = off-tree
level =0

halt /* do not return */

Remove Children(level
for each child on list
if (level=0) or (evel < child level )
Remove Child from List (child)
if (child list = null)
and not (Subnet &ceiver)
Quit Tree
else
return to calling function

Remove Child(child)

Remove Child from Listchild)

if (child list = null) and
not (Subnet Rceiver)
Send Message (Quit-Notice, parent)
Quit Tree

else
return to calling function

Send Data(source, data
if (source = parent) or
(On Child List (source))
Forward Messagal@ta, sourci
else
drop the packet and
do not forward to subnet

Join-Pendingor

On-Tree Router (message type, message level,

source, core, originatgr
case [nessage type
Join-Request
if (on child list (source)
Remove Child from Listgourcg
if (message leveb level)
Break Branchfiessage level
core, originatoy
else
if (state = On-Tree Router)
Add Child (level)
else
Add Child to List sourcg
Quit-Notice
if (on child list (source)
Remove Child¢ource
Flush Message
if (source= parent)
Forward Message (Flush Messageurcg
Remove Children (0)
/* only reached if &ove function returns */
level =0
Join Tree (level)
Join Ack
if (state = Join-Pending Router)
if (source= parent)
and fnessage leveb= level)
level =message level
Forward Message (Join Ack, leveburcg
Data
Send Datadata, sourcg

Off-Tree Router (message type, message level,

source, core, originatgr
case [nessage type
Join-Request

parent = Next Hopdore)

level =message level

Send Message (Join-Request, parent,
levelcore)

state = Join-Pending

Join-Pending Coreor
On-Tree Core (message type, message level,
source,core,originatgr
case [nessage type
Join-Request
if (on child list (sourcg)
/* previous quit-notice was lost */
Remove Child from Lisgource
if (message levet = level)
Add Child (source level)
else
if (message levet parent level)
Break Branchrfiessage level,
core, originatol)
else
if (On-Tree Core)
Add Child (source, parent levgl
else
if (originator = self)
/*message looped - unicast insilétl */
Send Message (Quit-Notice, parent)
Send M ge (Flush N PRIrCe
parent level = level + 1
parent = Next Hop (Find Core(level + 1))
Send Message (Join-Request, parent,
level + 1,core)

else
Add Child to List Source, message leyel
Quit-Notice
if (on child list (sourcg)
Remove Child §ource
Flush Message
if (source= parent)
Multicast Message (flush message, level)
Remove Children (level)
/* only reached if dove function returns */
state = Join-Pending Core
Join Tree (level)
Join Ack
if (Join-Pending Core)
if (source= parent)
and (nessage leveb level)
parent level =message level
foreach child on list
if (child level > core level) and
(child level <= parent level)

send message (Join Ack, child, parent level)

state = On-Tree Core
Data
if (On Tree Core)
Send Datadata, sourcg

Off-Tree Core (message type, message level,
source, core, originatgr
case (nessage type
Join-Request
if (message levet = level)
Add Child (sourcelevel)
parent = Next Hop (Find Core(level + 1))
parent level = level +1
Send Message (Join-Request, parent,
level + 1,core)
else
Add Child to List Source, message leyel
parent = Next Hopdore)
parent level =message level
Send Message (Join-Request, parent,
message level, core
state = Join-Pending Core

Figure 5: OCBT Protocol Specification

Figure 6: HCBT Tree

On Time Out

case (state)
Join-Pending Core

if (parent level>> core level + 1)

for each child on list
if (child level > level)
Remove Child from List (child)

if (child list ! = null) or (Subnet Member)
parent = Next Hop (Find Core(level + 1))
parent level = level + 1
Send Message (Join-Request, parent,

level, core)

else
parent = null
parent level = level
state = Off-Tree Core

Join-Pending Router
for each child on list
Remove Child from List (child)
parent = null
level =0
if (Subnet Member)
Join Tree (0)
else
state = Off-Tree Router

On Parent Link Failure

case (state)
On-Tree Coreor
Join-Pending Core
Multicast Message (Flush Message, level)
for each child
if (child level > level)
Remove Child from List (child)
if (Subnet Member) or (child list = null)
state = Join-Pending Core
Join Tree (level)
else
parent = null
parent level = level
state = Off-Tree Core

On-Tree Router or
Join-Pending Router
Forward Message (Flush Message, parent)
for each child
Remove Child from List (child)
level =0
if (Subnet Member)
Join Tree (level)
else
parent = null
state = Off-Tree Router

Figure 7: Link Failures

Bellman-Ford algorithm and used routing information from the uni- type sent before and after a link failure, and the number of times
cast layer. Using this simulation we measured the end-to-end delayCBT formed of transient loops requiring explicit action from CBT
of data packets traversing the tree, the number of messages of eacto remove. In addition, each case in which a CBT sub-tree was un-



Run Level 1 Level 2
Number Cores Cores
1 34034 153326
2 3233 40 26
3 4026 3233 340
4 21046 837
5 33 15
6 26 33 40
7 4026 3233 15
8 264418 30
9 4026 3233 21046
10 37 246
11 14 24 31 45 15 30
12 17 44 31 34 32

Table 1: Cores used in simulation

Figure 8: Arpanet Simulation Topography Run Build  Repair Average Delay Trans. Disconn. Loops
# Messages Messages Delay Variance Loops Subtrees Preyented
N 1
able to reconnect to the tree, as shown in Figure 2, was recorded. OCBT 71 44 15 25 - - 0
We also recorded the number of times OCBT did not form transient SeT o w21 2r 08 :
loops when CBT would have. OCBT 725 4.2 14 20 - - 0
CBT 68 4.4 14 1.9 0 17 -
. . . . 3
For our simulations we used the Arpanet topology shown in Fig- OCBT 7 43 13 16 . . 0
ure 8, which contains 47 nodes and 69 edges. We examined the per- 4CBT 73 44 19 35 0 19 -
formance of OCBT and CBT under realistic cétiwhs: the links on OCBT 80 55 12 15 - - 0
the network were configured to run at 200 kilobits per second, with oeT e 45 17 30 0 18 ;
a 1 millisecond delay betwedrops; the unicast routing updates oc- OCBT 72 5.2 13 16 - - 0
curred four times as frequently as the CBT and OCBT keep-alive BT oo 1812 160 ;
messages. We chose this update period to allow the unicast routing ggET gg 1%59 12 gi : 5 0
time to disseminate routing information; this was important because 7 ’ ' ’
one indication of a link failure was a change in the unicast routing ggET 7699-5 ‘1‘-23 113 z"‘f : 1 N
table. We selected two receiver groups for the simulation - a dense 8
it ioti OCBT 80 7.4 1.4 1.8 - - 0
group cc_ms_lstlng of all nodes and a sparse group consisting of _11 BT 60 Al i 18 o 10 0
widely distributed nodes. The same single source was used with 9
. OCBT 785 4.5 16 3.0 - - 4
each receiver group. CBT 73 214 12 05 1 11 -
10
For each run of the simulation, we chose a particular set of cores OCBT 75 6.0 17 3.1 - - 2
. . s e CBT 72 4.9 1.2 05 0 23 -
using what is probably the same “trivial heuristic” used by Bal- 1
lardie [3], that is, looking at a picture of the network we picked ggET s o2 11§ 13 5 0 2
distributed nodes of relatively high degree to serve as cores. For 12
i H H OCBT 75 4.8 1.4 1.8 - - 0
OCBT, the cores were divided into two I_oglcal Ieyels. We con- CBT s 36 14 18 o . :
structed the CBT backbone before allowing receivers to connect Average s o1 143 21 o
e . - - OCBT 3 . . - - .
even though the current protocol specification does not; we did this CBT 70 87 146 20 25 156 .
because of the difficulty CBT has in connecting secondary cores Sg%ﬂgf 72 100 100
to the primary cores. Building each of the trees for each receiver OCBT 727793 4557 1315 1725 - - o015
group, we measured the construction costs in terms of the traffic re- CBT 687715 49124 1316 1426 0005 128184
quired. We then sent a stream of data packets from the source to Table 2: OCBT vs. CBT

all receivers and recorded the delay each data packet encountered. . . .
Finally, we made each link in the network fail individually and mea- tree. The source based ree was created using CBT with a single

sured the number of messages required to reconnectthe tree and arz(,}pre located at the sender for the same two receiver groups. The
loops that were formed. elay results were then averaged. The Transient Loops entry for

CBT shows the number of transient loops that were able to be
In our simulation, link failures were detected in two ways. First, corrected. The Disconnected Subtree column shows the number
failure of a parent or child to respond to a set number of keep-alive of times a CBT sub-tree was unable to reconnect to the main tree
messages created the link-down condition. Second, every time &ollowing a link failure. The Loops Prevented entry shows the
message was sent, the unicast routing was checked to see if theumber of loops caused by institly in the unicast routing that
next hop to the destination had changed. Changes in the next ho@CBT detected and which would have formed transient loops in
information reflect a change in the underlying unicast routing that CBT.
came about as result of a link failure. This allowed the protocol to
detect link failures before the set number of keep-alive message
were lost.

SThe results demonstrate that the major advantage of OCBT is its
loop freedom and its ability to correctly reconstruct a multicast
tree following a link failure. In our simulations, a CBT sub-tree
The simulations used the 12 different core sets shown in Figure 1,was frequently unable to reconnect to the multicast tree following
with the results summarized in Table 2. Each run shows the average link failure as described in section 2. As each set of simulation
performance of OCBT and CBT for a sparse and dense receiverruns included 138 runs of the CBT protocol, and an average of
group for the selected core set. The delay and the variance of thel5.6 disconnected sub-trees were formed during those runs, we
delay are normalized to the delay and variance of a source basefbund a disconnection rate of 11.3% under the current protocol



specifications [6]. Clearly, a routing protocol that is unable to find a delay will be incurred if the core lies on the shortest path. With
correct path when one exists one time out of nine is hardly suitablepoor core placement in an OCBT tree, this could be exacerbated
for use in a large Internet. as the packet may be routed further off the shortest path to pass
The message count for the CBT protocol was kept artificially low in through several cores. In our simulation, the delays experienced
by data packets in OCBT were on average about 43% greater than

situations when a sub-tree was unable to reconnect, as our simula[-he delay experienced by a packet from a source-based tree. Data
tion enforced a timeout period for any rejoining node that detected ackets sent over the tree formed by CBT experienced an average
a loop. Had those routers been allowed to attempt to connect aéj

) . delay about 46% greater than the source based tree. Using OCBT,
quickly as possible, _the total number of messages would have beer?t is possible that this could be reduced by making each source a
muc_h higher. In addition, we form_ed the CBT backbone before the lower level core. Nearby nodes would then connect directly to the
receivers were allowed to join; this also lowered the total message_ o while nodes further away would receive thdticast over
count as it prevented situations in which a secondary core could notthe sha{red backbone
connect to the primary core. '

Both CBT and OCBT construct and operate a fixed tree. This
has the clear drawback of requiring all data packet transmissions
to traverse specific links in the network, regardless of congestion.
This can creatéot spotsat cores that must handle an excessive
amount of traffic. CBT is more susceptible to hot spots, particularly
at the primary core which must receive and reply to each passive
rejoin request. Using more cores can alleviate hot spots somewhat,
as this spreads the traffic over more cores, though this does not
reduce the traffic at CBT’s primary core. OCBT is more amenable
to use of additional cores, and does not require any single core to
answer messages from the entire multicast group. Another partial
solution to congestion over fixed links is to allow children to quit
from their parents and connect on a shorter path to the core if one
becomes available. This in fact was first suggested by Ballardie for

On average, OCBT requires some additional work to build the tree,
but once it is constructed the traffic required to maintain the tree
is reduced. Intuitively, one might expect the OCBT tree to require

less traffic to build, as lower-level cores remain in an off-tree state
until they receive a join-request. If a particular core never receives a
request for the multicast session, it can remain off-tree and no traffic
is required to build the tree out to it. However, we found that the

OCBT takes slightly more messages to form the multicast tree than
that of the version of CBT we tested. This is because many children
tried to connect in close succession to lower-level cores that were
off-tree. As these lower-level cores sent join acks to the joining

nodes before attempting to reach a higher-level core, many links
were formed between the core and its new children. The lower-

level core was then forced to break some of these existing links to h . . . d
reach the higher-level core. Links formed this way required five CBT [7], but has not yet been included in our simulation. Another

messages to form - two for the initiabde to core join, two for the improvement to be investigated will be to make each source a local
link to form from between the lower-level core and the higher-level COre SO that near by nodes can join directly to it, reducing the delay

core, and one quit-notice sent from the child to its former parent as © those nodes.

it was coerced to join the higher-level branch that was forming. e glightly increased number of messages required in the construc-

OCBT did reliably reform the tree after a link failure with fewer tion of the tree is a very small price to pay for OCBT compared to
messages than CBT. The branches of the CBT tree can grow fairly!tS major advantage: it works correctly. CBT, in contrast, is incor-
long, and messages can be required to traverse the entire length dCt and does notalways form a complete multicast tree during con-
the branch in the event of a link failure. If the failure is near the bot- Struction or following a link failure. Permanent, undetected loops
tom of the branch and a rejoin occurs, CBT requires that a passivec@n form in CBT that can cause complete saturation of every link
rejoin be forwarded the length of the branch to the primary core, N the tree containing the loop. This is clearly an undesirable char-
which then sends a unicast message to the originator acknowledg@cteristic of CBT; OCBT suffers from no similar detrimental traits
ing the passive rejoin-request to ensure that there is no loop formedand can be used safely. In addition, in a tree with many link failures,
As the unicast message does not necessarily traverse the multica§#CBT's reduced repair costs actually makes the amortized cost of
tree on its return to the originator, we did not include it in our mes- construction lower than CBT.

sage count as it may not contribute to on-tree congestion. 6 Core Placement

Similarly, if the failure is near the backbone and the branch is There are a number of issues concerning the placement of cores in
flushed, then the flush must travel the length of the branch to thethe network and the distribution of information about the core lo-
receivers which then send a join-request back to a coreltiggu  cation. Currently, we assume that some mechanism for distributing
in messages traversing the branch twice. OCBT reduces the trafficcore information is universally available and that each router can
requirements in both cases. OCBT does not require that a rejoin-find the address and level of any core. In reality, this is neither
request be forwarded to the highest-level core; instead it only travelsdesirable nor possible. A leaf router within the United States has
as far as the next higher core as required to rejoin the tree. The flusHittle use for information hout local cores in other countries, nor
message cannot destroy a branch all the way from the highest-levetloes it have the space to maintain what could be large core lists.
core down to the receivers as control traffic is limited to a single Instead, some mechanism for leaf nodes to discover local cores and
logical level. for lower-level cores to become aware of nearby higher-level cores
] is needed. This could take the form of a multicast group server able
As expected, the multicast trees produced by CBT and OCBT y, respond with the ideities of local cores, similar to the DNS ser-
produce more delay in delivering packets than do source-baseq;i.q.
trees. This can be seen intuitively as the path a packetwould take in
a core based tree might not be the shortest to each receiver sincélternatively, cores could follow a distributed scheme for dissemi-
it must detour to pass through a core. The actual delay from anating their location and level, broadcasting or flooding their iden-
source to areceiver is dependenton core placement, as itioadd tity and location with an increasing time-to-live oveach of their



interfaces, or they could join a riigast group that existed solely  the multicast tree will be formed correctly and will reform correctly
for the purpose of core location dissemination. Cores need onlyfollowing a link or node failure.

know the addresses of the same level and next higher-level cores, s
some method of limiting the core information that gets distributed
is desirable. Multicast distribution schemes could also work well in
a situation in which the multicast was being limited to a particular
scope that is, limiting the area of the network in which the multi-
casttree forms. Each level of cores in the scoped area could have it
own local multicast address. A scheme similar to this was proposed
in HPIM [10]. The issue of core information distribution is an area
of future work for OCBT and other protocols based on shared trees.

. - . The relative number of messages and delay induced by CBT and
After the cores are identified and a means of determining the loca--g1 are hardly indicative of the overall performance of each

tion of nearby cores is established, the issue arises of whether O'iorotocol. The Core Based Tree protocol is incorrect: it does not
not to build a backbone of cores prior to allowing any leaf nodes ,revent or detect looping nor does it consistently build a correct
or lower level to connect. In OCBT this is not strictly necessary, mjicast tree. The correct construction of the multicast tree in all
although it can help prevent some worst case behavior, in which thejctances and the guarantee of loop freedom in the Ordered Core
highest-level cores are forced to break many existing links if other gasad tree protocol make it superior in operation to CBT: it is only
connections are made before the backbone forms. In CBT it is oty 5qded bonus that it does so with a reduced amount of control
necessary unless one wants to be certain that secondary cores Cahsiic. The changes that make OCBT perform correctly and more
join the tree. In OCBT the backbone is formed by choosing one eficiently than CBT are simple and extensible; work done on the
core of the highest-level to be a connection point for all of the other placement of cores and security mechanisms for CBT are applicable
highest-level cores. This core undergoes a temporary promotion toqg OCBT with little or no modification. The need for a scalable
one level higher then the rest of the highest level cores. The othermyticast routing protocol in the Internet of the future highlights the
highest-level cores then join the promoted core. importance of a shared tree protocol; OCBT meets that need with
correct and efficient performance.

gf’he delay induced in end-to-end packet delivery by OCBT is com-
parable to that of CBT: both increase the average delay by about
50% over the delay of a source-based tree. The actual delay in-
curred is dependent on the location of the cores. It may be possible
éo reduce the delay in OCBT trees by making each source a local
core. Nearby nodes would then be able to connect directly to the
source, minimizing their perceived delay, while more remote re-
ceivers would connect via the shared tree.

The core placement in OCBT has an important effect on the per-

formance of the protocol in terms of the amount of control traf- REFERENCES

fic generated and the delay imposed on data packet delivery. This 1. S. E. DeeringMulticast routing in a datagram internetworkPhD

is true in CBT and PIM-SM as well. While determining optimal thesis, Stanford University, Palo Alto, California, Dec. 1991.

core placement remains an open problem, there have been sugges-2- D. Estrin, D. Farinacci, V. Jacobson, C. Liu, L. Wei, P. Sharma,

tions made as to methods of migrating cores to provide better ser- ~ nd A. Helmy, “Protocol independent multicast-dense mode (PIM-

vice [11] [10]. We believe that core placement can be made a mat- DM): Protocol specification,” Internet Draft draft-ietf-idmr-pim-dm-

o . o . . spec-01.txt, U.S.C, L.BI., CISCO, January 1996.

Itiir:igdpgltlzyagﬂ;:\gra?hoepftlltran)a?ilil;yc;]; t(:(:(i-:‘disrtl:g;) g(caicci)ifti(t:;;n::lgrt:: ?r: S 3 A Ballardie, P. Francis, and J. Crowcroft, “Core based trees (CBT),” in
o A . Proc.of the ACM SIGCOMM93San Francisco, California), pp. 85—

OCBT supports this approach. Core placement and migration are g5 Acwm, Sept. 1993.

important issues for our future work. 4. S. Deering, D. Estrin, D. Farinacci, M. Handley, A. Helmy, V. Jacob-

) son, C. Liu, P. Sharma, D. Thaler, and L. Wei, “Protocol indepen-
7 Conclusions dent multicast-sparse mode (PIM-SM):protocol specification,” Inter-
We have described an ordered extension to CBT, called OCBT, that net Draft draft-ietf-idmr-pim-sm-spec-02.txt, XEROX, USC, CISCO,
increases scalability, reduces repair latency, completely eliminates UCL, LBL, UMICH, May 1996.

loops, and is provably correct in forming a hicast tree. By dis- 5. S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C. Liu, and L. Wei,
tributing cores throughout the network and by maintaining logical “An architecture for wide-area multicast routing,” Rroc.of the ACM
level information, OCBT allows for a flexible multicast group in SIGCOMMS4 (London, UK), pp. 126-135, Sept. 1994.

which the core structure does not have to be fixed in advance. The 6. A.Ballardie, S. Reeve, and N. Jain, “Core based trees (CBT) multicast
distribution of cores reduces the amount of repair traffic bytiitg protocol specification,” Internet Draft I-D, University College London,

. . . e April 1996. Work in progress.
the distance over which repair messages have to travel to within the . ) prog i - .
logical level 7. A. Ballardie, A New Approach to Multicast Communications in a

Datagram Internetwork PhD thesis, University College London,
University of London, London, U.K., 1995.

8. A. Ballardie, “Core based trees (CBT) multicast architecture,” Inter-
net Draft I-D, University College London, February 1996. Work in
progress.

9. C. Shields, “Ordered core based trees,” Master’s thesis, University of
California, Santa Cruz, Santa Cruz, California, June 1996.

OCBT eliminates the loops and disconnected sub-trees that occur
in the CBT protocol [9]; our simulation results corroborate our
verification work. The costof OCBT is a slightincrease in the initial
number of messages required to construct the multicast tree. This is
somewhat balanced by a reduction in the amount of traffic required
to repr_:lir the tree following a ”r_‘k failure,. and a guarante_e that the 10. M. Handley, J. Crowcroft, and I. Wakeman, “Hierarchical protocol
tree will reform correctly. The increase in tree construction traffic indepenent multicast (HPIM).” University College London, November
is a result of the mechanism that breaks lower-level tree branches 1995,

to allow formation of a higher-level branch; in some cases, this 11, K. Calvert, R. Madhavanand, and E. Zegura, “A comparison of two
mechanism also adversely affects the number of messagesittakesto  practical multicast routing schemes,” Tech. Rep. GIT-CC-94/25, Col-
repair a failure in the tree. On average, however, OCBT reconstructs lege of Computing, Georgia Institute of Tewlogy, Atlanta, Georgia
the tree with less traffic than CBT and does so correctly; in all cases ~ 30332-0280, February 1994.



