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Abstract—Today’s Internet routing protocols either provide a single
path between each source-destination pair, or multiple paths of equal
length. Furthermore, the paths provided by RIP and OSPF are not free
of loops during times of network transition. Single-path routing algo-
rithms are inherently slow in responding to congestion and temporary
traffic bursts; consequently, the delays experienced by packets in these
networks are far from optimal. Recently, we developed a framework
for designing routing algorithms that offer “near-optimal” delays; a
key component in this framework consists of using a fast responsive
routing protocol that builds multipaths for each destination in the com-
puter network, such that they are loop-free at all times. This paper
studies the performance of MPATH (multipath routing algorithm) by
simulation and compares it against the performance of other state-of-
the-art routing algorithms.

I. I NTRODUCTION

The delays experienced in the networks that use routing
algorithms such as RIP[10] and EIGRP[1] are far from op-
timal, because these algorithms provide only single path be-
tween each source-destination pair for packet forwarding.
OSPF[14] allows a router to choose from more than one
path to the same destination only when multiple paths of
minimum cost exit, which means the full connectivity of
the network is still not used for packet forwarding. To re-
alize minimum-delay routing[4], the packet forwarding ta-
bles must represent a directed-acyclic graph instead of a tree,
with the destination as the sink node.

Recently, we described a practical framework to obtain
“near-optimal” delays [21] in dynamic networks. A key
component of this framework is a fast responsive routing al-
gorithm that computes multiple path between each source-
destination pair, such that they need not all have the same
length and are loop-free at every instant — in steady state as
well as during network transitions. By load-balancing traf-
fic over these multiple paths, congestion can be reduced and
delays can be significantly decreased. Unfortunately, most
routing algorithms do not build loop-free multiple paths.
In [8], we performed load-balancing over loop-free multi-
path computed using the distance-vector routing algorithm
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DASM [22], and reduces delays dramatically. In [21], we
presented the first link-state algorithm that computes loop-
free multipaths and used it to implement the near-optimal
framework. Recently, we introduced a new loop-free mul-
tipath routing algorithm called MPATH [19] and proved its
correctness and analyzed its complexity. In this paper, we
continue the study of MPATH by comparing its control mes-
sage overhead and convergence time through simulations
with two other routing algorithms.

The paper is organized as follows. Section II describes
the MPATH routing algorithm. Section III gives a survey
of various algorithms and provides a comparative study with
respect to MPATH. The simulation results and comparisons
are presented in Section IV. Section V provides concluding
remarks.

II. MPATH ROUTING ALGORITHM

This section illustrates the main concepts in the routing
algorithm MPATH. For detailed formal description, correct-
ness proofs and analysis, the reader is referred to [19] and
[21]. The basic approach consists of nodes first comput-
ing shortest distances to destinations and then using the dis-
tances along with certain constraints (which we call loop-
free invariants) to obtain a loop-free routing graph for each
destination. LetN represent the nodes in the network and
N i be the set of neighbors of an arbitrary nodei, and letSi

j

denote the set of next-hop choices (or successors) at node
i for forwarding packets destined to nodej. Then the goal
of MPATH is to maintain the routing graph denoted by the
link setSGj = f(m;n)jn 2 Sm

j ; m 2 Ng in presence of
changing link costs, such that it is a directed acyclic graph
at every instant. In contrast, the successor sets in OSPF is
defined asSi

j = fk 2 N i j Dk
j + lik = Di

jg, whereDi
j and

Dk
j are the shortest distances of nodesi andk to j, andlik is

cost of link(i; k). In single-path routing protocols (e.g., RIP
and EIGRP), the setSi

j is restricted to at most one member,
indicating that the routing graphSGj is a sink-tree rooted
at j. The key idea is to generalize the shortest-path trees to
shortest-multipaths; that is,Si

j = fk 2 N ijDk
j + lik = Di

jg
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is extended toSi
j = fk 2 N ijDk

j < Di
jg. Fig. 1(A)

shows an example of a network with shortest-path tree for
c in Fig. 1(B) and the shortest-multipath in Fig. 1(C).

For building shortest multipaths, we require a distributed
algorithm to compute shortest distances for each source-
destination pairs. Though there are many algorithms for
shortest-path computation, we present a new shortest-path
algorithm. In link-state algorithms such as OSPF, each router
stores and forwards costs of all links in the network. It was
shown in LVA [6] and MPDA [21] that it is sufficient for
each node to store the costs of only those links that are on
the shortest path tree. Similarly in MPATH, a node stores
costs of links on its shortest path tree and a copy of each
neighbor’s shortest-path tree. However, instead of commu-
nicating link costs directly as in MPDA, nodes in MPATH
exchange distances to destinations along with the address of
the second-to-last, or predecessor, node on the shortest path
to the destination like in LPA [7]. MPATH translates this in-
formation to link costs and internally works with links rather
than distances, and when changes to topologies have to be re-
ported, the internally represented topology is translated back
to distances and predecessors. In Fig.1(B), for example,b is
the predecessor node on the shortest path froma to c. Us-
ing distances and predecessors for all nodesa, b, c andd,
the complete tree can be easily constructed at the receiving
neighbor. Fig. 2 shows information maintained at two ar-
bitrary adjacent nodesi andk. T i is the shortest path tree
of nodei andT i

k is the copy of the shortest path treeT k of
neighbork. Similarly atk, T k

i is a copy of the treeT i. The
basic distributed shortest-path algorithm is simple and is as
follows. Each nodei repeatedly executes the following two
steps until there are no more changes to its shortest-path tree
T i.

1. Construct the node’s shortest path treeT i from
the costs of the adjacent links and the shortest-
path treesT i

k reported by the neighborsk 2 N i.
2. Report the new shortest path treeT i to all its

neighbors using distances and predecessor infor-
mation.

Note that a node always has the current cost of the adjacent
link costs in step (1). However, the node has no way to val-
idate the costs of non-adjacent links reported by the neigh-
bors. Therefore, the node trusts the link-cost reported by a
neighbor as long as it is not an adjacent link and does not
conflict with the cost reported by another neighbor for the
same link. If two neighbors report the cost of the same link
which are different, the node must resolve the conflict and
choose the cost it considers most accurate. The following
conflict resolution rule is used.

“If two or more neighbors report conflicting informa-
tion regarding the same link, then the node must be-
lieve the neighbor that offers the shortest distance to
the head of the node.”
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Fig. 1. Shortest-path tree and Shortest multipath

Fig. (2) visually illustrates the resolution rule. Assume the
link (m;n) is reported by two neighborsp andq with differ-
ent link costs. Then the cost of the link(m;n) reported by
p is used to update the main table if the distanceDp

m + lip is
less thanDq

m + liq. The remarkable fact is that this greedy
approach to link-cost validation is sufficient for purging out-
dated link information from the network. We generalize that
rule to links of any costs and apply it in the context of prop-
agating partial topologies. After merging all the neighbor
trees into a composite graph, the shortest-path algorithm is
run on the graph to obtain the treeT i. The proof that the
topologyT i at each nodei converges to the correct shortest-
path tree is presented in [21]. Similar resolution rule is used
in SPTA[2] in the context of unit link costs and broadcasting
complete topology. It is not necessary to report the complete
tree as step (2) indicates; only changes to the shortest-path
tree need to be reported as described in MPDA [21].
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Fig. 2. Node information

Loop-free Invariants

Constructing the setSi
j = fkjDk

j < Di
j ; k 2 N ig is

not straight forward. The valueDk
j is not in nodei’s lo-

cal memory. It is a value communicated (directly or indi-
rectly) by the neighbork and stored in the local variable
Di
jk in the treeT i

k. Accordingly, nodei can only com-
puteSi

j = fkjDi
jk < Di

j ; k 2 N ig. However, because
of non-zero propagation delays, the values ofDk

j andDi
jk

can be inconsistent during network transitions. Similarly, the
copy of distanceDi

j at neighbork, Dk
ji, can be inconsistent

with Di
j except in steady-state. In steady-state, assume that

neighbork is usingi as a successor for destinationj. Then
Dk
j = Di

jk > Di
j = Dk

ji. LetDi
j increase to a value greater



thanDk
j due to a network event. Nodei should now usek as

a successor, but addingk in the successor setSi
j without re-

straint would result in a loop. Therefore, the neighbork must
first removei from its successor set beforei can putk in its
successor set. This requires neighbor-to-neighbor synchro-
nization. Nodei first reports its new distance to the neighbor
and can addk to its successor set only afterk acknowledges
the new distance and removesi from its successor set. To
accomplish this, we use a new variableFDi

j , called the fea-
sible distance, to compute the successor sets.FDi

j closely
follows the value ofDi

j while always satisfying the follow-
ing loop-free invariants.

FDi
j(t) � Dk

ji(t) k 2 N i

Si
j(t) = f k jDi

jk(t) < FDi
j(t)g

WheneverDi
j increases a neighbor-to-neighbor synchro-

nization is used so thatFDi
j is increase toDi

j only after the
copy ofDi

j is properly updated at the neighbors. It is proved
in [19] that the LFI conditions ensure loop-freedom of the
successor graphsSGj at all times. The algorithm MPATH
ensures that at convergenceFDi

j = Di
j = Dk

ji for all i and
j andk 2 N i, which implies that the routing graph at con-
vergence is the required shortest-multipath.

III. C OMPARISON WITH OTHER ALGORITHMS

A. Distance-vector algorithms

RIP[10] is based on the Distributed Bellman-Ford (DBF)
algorithm for computing the shortest-paths to destinations.
In networks that use RIP, nodes exchange only distances to
destinations and have no knowledge of the network topology,
and due to lack of this information they suffer from the in-
famouscounting-to-infinityproblem[2]. Several techniques
have been proposed to tackle this problem. DUAL[5], which
is the algorithm used in EIGRP [1], uses diffusing computa-
tions [3]. In addition to DUAL, several algorithms based
on distance vectors have been proposed that use diffusing
computation to overcome the counting-to-infinity problem
of DBF [17], [13], [12], [22]. Jaffe and Moss[12] allow
nodes to participate in multiple diffusing computation of the
same destination, which requires use of unbounded counters.
In contrast, DUAL restricts a node to participate in only one
diffusing computation at any one time for any destination.
All these routing algorithms provide only one loop-free path
to the destination. Zaumen and Garcia-Luna-Aceves [22]
presented DASM, which is the first distance-vector algo-
rithm that provides loop-free multipaths. DASM is shown
to perform better than DUAL, which was previously the best
distance-vector algorithm. All the algorithms mentioned
above use diffusing computations that potentially span the
whole network. In contrast, MPATH uses only single-hop

synchronization, i.e., a node needs xto synchronize only with
its neighbors. It is interesting to see how these synchroniza-
tion mechanisms influence the convergence times. For this
reason, we chose DASM as the candidate routing algorithm
based on distance vectors with whih to compare MPATH.

B. Link-state algorithms

In link-state algorithms, full topology information is
flooded through the network. When periodic updates are
made as in the case of near-optimal routing, the overhead
is very high. Routing protocols based on topology-broadcast
(e.g., [18], [15] ) incur too much communication overhead,
which forces the network administrators to partition the net-
work into areas connected by a backbone. This makes OSPF
complex in terms of router configuration required. A couple
of routing algorithms have been proposed that operate using
partial topology information (LVA [6],ALP [9]) to eliminate
the main limitation of topology-broadcast algorithms.

In the above link-state algorithms nodes distinguish new
and old link information using sequence numbers, which are
not only an added overhead but also require to be reset o oc-
casions. Instead of sequence numbers, MPATH uses a novel
update rule to distinguish old and new information. Like the
link-state algorithms MPATH is free from count-to-infinity
problem. In OSPF, multiple equal-cost paths are computed
to each destination if they exist. However, these paths are not
loop-free during network transitions, and even if short-lived,
these loops may cause incorrect link-cost measurements. In
contrast, MPATH maintains multiple paths that need not be
of equal cost and which are loop-free at every instant.

Several distributed shortest-path algorithms [11], [16], [7]
have been proposed that use the distance and second-to-last
hop to destinations as the routing information exchanged
among nodes. These algorithms are often called path-finding
algorithms or source-tracing algorithms. Though they ex-
change distances like the distance-vector algorithms, they
are akin to link-state algorithms because they internally
maintain path information obtained using the predecessor in-
formation; distance-vector algorithm have no knowledge of
network topology. These algorithms eliminate DBF’s count-
ing to infinity problem using the path information. Some
of them [7] are more efficient that any of the routing algo-
rithms based on link-state information proposed to date. Fur-
thermore, LPA [7] is loop-free at every instant, but provides
only one path. MPATH is the first path-finding algorithm
that builds multiple loop-free paths. As in LPA, the synchro-
nization in MPATH is geared towards providing loop-free
paths.

IV. SIMULATION RESULTS

The simulations compare the control overhead and con-
vergence times of MPATH, topology broadcast and DASM.
The reason for choosing topology broadcast is that it is the



approach used in OSPF, for which commercial implemen-
tations exist and it provides multiple paths of equal length.
Its convergence time is fairly constant and depends on the
diameter of the network. Ideally, MPATH should approach
the convergence times of topology broadcast, that is, the ex-
tra time needed to enforce loop-freedom should be negli-
gible. We expect MPATH to have far less message over-
head, because of its reliance on only partial topology infor-
mation. On the other hand, DASM is the only prior distance-
vector routing algorithm that provides loop-free multipaths
to each destination, and has been shown to be more effi-
cient than DUAL, which is used in EIGRP. DASM achieves
loop-freedom through diffusing computations that span the
whole network. In contrast, MPATH uses only neighbor-to-
neighbor synchronization. It is interesting to see how con-
vergence times are effected by the synchronization mecha-
nisms. Also, it is not obvious how the control message over-
heads of DASM and MPATH compare.

The performance metrics used for comparison are the con-
trol message overhead and the convergence times. The simu-
lator is an event-driven real-time simulator called CPT. Sim-
ulations are performed on the CAIRN topology, which was
also used in [20]. The topology is flat and we do not use
area aggregations in the simulations. There is no reason to
believe that the presence of areas would favor one routing
algorithm over others.

Two types of events are triggered in the network: link-
status changes and link-cost changes. Link failures and link
recovery events are classified as link-status changes. In prac-
tice, links and nodes are highly reliable and change status
much less frequently than link costs which are a function
of the traffic on the link. We do not simulate node failures
because of the problems resulting due to loss of sequence
numbers by the nodes, which only effect the functioning of
topology broadcast here. Special reset protocols that dis-
cover sequence numbers should be implemented for topol-
ogy broadcasting based on sequence numbers.

We also restrict link-status changes to a single change; that
is, only one link failure or link recovery can occur at any
time during the measurement interval. Because the links and
nodes in the network are highly reliable, simultaneous mul-
tiple topological changes are much less likely to occur and it
is reasonable to assume that tables converge between topo-
logical changes. However, link costs of multiple links can
change simultaneously and repeatedly before the tables con-
verge to the latest costs. This is the case when near-optimal
delay routing of [21] is used, in which the link costs are peri-
odically measured and reported. For these reasons, we sim-
ulate only single link-status changes and multiple link-cost
changes.

Link-status changes:Each link in turn is made to fail and
then recover, and the control message overhead and conver-
gence times are measured in each case. The worst-case and

the averages of control message overhead and convergence
times for link failures and link recoveries are given in Table
1. Figs. (3)-(6) give the performance figures for each event.
For brevity, the performance curves for topology broad-
cast are labeled “TOPB”. For link failures and recoveries
MPATH has lower average message overhead than TOPB,
which is due to the use of partial topologies in MPATH,
compared to full topologies in TOPB. However, MPATH
incurs a higher worst-case message overhead than TOPB,
because of the synchronization used in MPATH to provide
loop-freedom. MPATH has larger overhead (in bytes) than
DASM under link recoveries, because neither invokes syn-
chronization, but MPATH exchanges predecessor informa-
tion in addition to distances. However, DASM requires more
messages under link-failures because of the multihop syn-
chronization that DASM uses. The same argument can be
applied for the convergence times.

TABLE 1

Control messages (bytes)
Worst-case Avg Std-dev

Link failures
TOPB 555.00 555.00 0.00
DASM 3312.00 1052.70 792.19
MPATH 1160.00 443.29 266.06

Link recoveries

TOPB 552 552 552
DASM 1120.0 353.41 266.43
MPATH 944 423.52 230.95

Link-cost changes

TOPB 9384.00 9384.00 0.00
DASM 11520.00 10050.93 742.10
MPATH 6856.00 5272.53 702.51

Convergence times (ms)
Worst-case Avg Std-dev

Link failures
TOPB 1.46 1.20 0.14
DASM 3.30 2.16 0.78
MPATH 2.02 1.11 0.42

Link recoveries

TOPB 1.46 1.20 0.14
DASM 1.48 0.97 0.39
MPATH 1.52 1.08 0.37

Link-cost changes

TOPB 5.48 5.48 0.00
DASM 9.82 7.75 0.71
MPATH 6.46 4.87 0.77

Multiple link-cost changes: When near-optimal routing
framework is implemented, multiple links change costs. To
study the protocol overhead under such scenarios, multiple
simultaneous link costs are changed and the performance is
measured. Link costs are chosen randomly within a range.
The average message overhead and convergence times are
shown in the Table 1. MPATH has lower worst-case and av-
erage message overhead than TOPB and DASM. MPATH
has lower worst-case and average convergence time than
DASM. The average convergence time for MPATH is also
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lower than TOPB. Only in the case of worst-case conver-
gence time, MPATH showed a higher value than in TOPB,
which is again due to synchronization used in MPATH.

V. CONCLUDING REMARKS

The performance of a new loop-free multipath routing al-
gorithm called MPATH [19] is compared with two state-of-
the-art routing algorithms. The algorithm has low control
message overhead because of its reliance on reporting only
partial topology information. By virtue of its one-hop syn-
chronization, the convergence times of the algorithm are bet-
ter than those of distance-vector routing algorithms that use
diffusing computation that potentially span the entire net-
work. The multiple successors at a node made available by
the algorithm can be used for traffic load-balancing and can
prove valuable in the internet for handling congestion and
minimizing delays.
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