
1

A Practical Approach to Minimizing Delays in Internet Routing
J.J. Garcia-Luna-Acevesy and Srinivas Vutukury x

Computer Engineering Departmenty
Computer Science Departmentx

School of Engineering
University of California, Santa Cruz, CA 95064

William T. Zaumen
Sun Microsystems Inc.,

901 San Antonio Avenue, Palo Alto, CA 94043

http://www.soe.ucsc.edu/research/ccrg/
fjj,vutukury g@cse.ucsc.edu , zaumen@eng.sun.com

Abstract—We present a practical approach to internet routing that
provides near-minimum delays over multiple loop-free paths to
destinations. The new protocol, which we call NEAR-OPT, obtains
multiple loop-free paths to destinations using long-term delay mea-
sures, and allocates destination-oriented flows over such paths us-
ing short-term delay measures to minimize delay. We compare the
performance of NEAR-OPT with traditional single-path routing
and the only known adaptation for dynamic networks of Gallager’s
minimum-delay routing algorithm. Using actual Internet traffic
traces and other traffic source models, we show that NEAR-OPT
provides delays comparable to the lower bounds achievable with
Gallager’s algorithm for static networks, provides lower delays
than implementations of Gallager’s algorithm in networks subject
to fractal traffic, and renders far smaller delays and better use of
resources than traditional single-path routing. NEAR-OPT does
not depend on any global constant and is completely distributed,
making it easy to implement as a loop-free ”distance-vector” pro-
tocol similar to Cisco’s EIGRP.

I. I NTRODUCTION

Congestion at the links and in the routers is the main cause of large
delays in the Internet. All the Internet routing protocols in use today
rely on single-path routing algorithms which not only under-utilize re-
sources, but also cannot cope with congestion as all traffic for a desti-
nation should be routed through a single successor and when that link
becomes congested its whole traffic has to be rerouted. If link costs are
made functions of congestion or delays in order to support QoS rout-
ing, routing-table entries can become unstable in single-path routing
protocols [2], [3].

To diffuse congestion and minimize delays, the routing protocol
must provide multiple paths for each destination at each router that
are loop-free at every instant and use link costs that are a function of
congestion at the links. Loop-free routing paths are crucial because
looping, even temporary looping, renders longer delays.

Many optimal routing algorithms exist, but they all assume the input
traffic and the network topology to be stationary or very slowly chang-
ing, and require global constants that guarantee convergence. This
makes optimal-routing algorithms impractical for internetworking, be-
cause Internet traffic is very bursty at any time scale, the Internet topol-
ogy may experience changes, and defining global constants that work
for all input traffic patterns are impossible to determine.

Gallager [7] proved the necessary and sufficient conditions for
minimum-delay routing and described a distributed multipath algo-
rithm that is loop-free at every instant and obtains minimum delays
when input traffic and the network topology are stationary or slowly
changing (quasi-static). The basic result shows that, to avoid oscil-
latory behavior and to achieve minimum delays, the routing protocol

0This work was supported in part by the Defense Advanced Research Projects Agency (DARPA) under
grants F30602-97-1-0291 and F19628-96-C-0038.

must provide multiple paths for each destination at each router that
are loop-free at every instant and use marginal(incremental) delays as
dynamic link costs and it must incrementally shift traffic from con-
gested links to less congested links. Segall and Sidi [11], [12] ex-
tended Gallager’s minimum-delay routing algorithm to handle topo-
logical changes using techniques developed by Merlin and Segall [9].
In this paper, we call this algorithm GSS and compare it against our
approach. These algorithms, however, are not suited for practical use
in the Internet because of two critical requirements: speed of conver-
gence and relative insensitivity of performance to variations in input
traffic. In Bertsekas and Gallager [1], an improved version of Gallager
is presented that converges quicker, but the algorithm is still limited to
small networks due to dependence on global constants.

Our basic design approach in NEAR-OPT protocol consists of first
establishing multiple loop-free paths to a destination at each router us-
ing long-term delay information, and then allocating flows to the desti-
nation over next-router choices available at each router for a destination
using short-term delay information. The complexity of implementing
NEAR-OPT is similar to the complexity of routing protocols that pro-
vide single-path routing.

Section II formulates the minimum-delay routing problem. Sec-
tion III discusses Gallager’s minimum-delay routing algorithm and its
drawbacks. Section IV describes NEAR-OPT routing which adapts
techniques in Gallager’s algorithm to the Internet while overcoming
its drawbacks. Section V present simulation results that demonstrate
the advantages of NEAR-OPT over single-path routing and Gallager’s
algorithm under dynamic traffic conditions.

II. PROBLEM FORMULATION AND BACKGROUND

The minimum-delay routing problem can be formulated as follows
[7]. A computer networkG = (N;L) is made up ofN routers andL
links between them. Each link is bidirectional with possibly different
costs in each direction.

Letrij � 0 be the expected input traffic, measured in bits per second,
entering the network at routeri and destined for routerj. Let tij be the
sum ofrij and the traffic arriving from the neighbors ofi for destination
j. Finally, let routing parameter�ijk be the fraction of traffictij that
leaves routeri over link (i; k). Assume that the network does not lose
any packets. Then, from conservation of traffic we have

tij = rij +
X
k2Ni

tkj�
k
ji (1)

whereN i is the set of neighbors of routeri.
Let fik be the expected traffic, measured in bits per second, on link

(i; k). Becausetij�
i
jk is the traffic destined for routerj on link (i; k)

we have the following equation to findfik.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1999 2. REPORT TYPE

3. DATES COVERED
 00-00-1999 to 00-00-1999

4. TITLE AND SUBTITLE
A Practical Approach to Minimizing Delays in Internet Routing

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Santa Cruz,Department of Computer
Engineering,Santa Cruz,CA,95064

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

5

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2

fik =
X
j2N

tij�
i
jk (2)

Note that0 � fik � Cik whereCik is the capacity of link(i; k) in
bits per second.

Property 1: For each routeri and destinationj, the routing parameters
�ijk satisfy the following conditions:

1. �ijk = 0 if (i; k) =2 L or i = j. Clearly if the link does not exist,
there will be no traffic on it.

2. �ijk � 0. Negative amount of traffic cannot, of course, be allo-
cated.

3.
P

k2Ni �
i
jk = 1. All traffic must be allocated.

Let Dik be defined as the expected number of messages or packets
per second transmitted on link(i; k) times the expected delay per mes-
sage or packet, including the queuing delays at the link. We assume
that messages are delayed only by the links of the network andDik

depends only on flowfik through link(i; k) and link characteristics
such as propagation delay and link capacity.Dik(fik) is a continuous
and convex function. The total expected delay per message times the
total expected number of message arrivals per second is given by

DT =
X

(i;k)2L

Dik(fik) (3)

Note that the router traffic flow sett = ftijg and link flow set
f = ffikg can be obtained fromr = frijg and� = f�ijkg. DT

can therefore be expressed as a function ofr and� using (1) and (2).
The minimum-delay routing problem can now be stated as follows: For
a given fixed topology with link capacitiesCik and input traffic flow
setr, and delay functionDik(fik) for each link(i; k), the minimiza-
tion problem consists of computing the routing parameter set� such
that the total expected delayDT is minimized.

III. A M INIMUM DELAY ALGORITHM

To solve the minimization problem described in the previous sec-
tion, Gallager [7] derived the necessary and sufficient conditions and
described an algorithm to compute routing parameter set� such that
those conditions are satisfied. To find the conditions, first obtain the
partial derivatives of the total delayDT of (3) with respect tor and�,
that is,

@DT

@rij
=
X
k2Ni

�ijk[D
0
ik(fik) +

@DT

@rkj
] (4)

@DT

@�ijk
= tij [D

0
ik(fik) +

@DT

@rkj
] (5)

whereD0
ik(fik) =

@Dik(fik)

@fik
and is called as marginal or incremental

delay. @DT

@ri
j

is the marginal distance from nodei to j. The Gallager

theorem is stated here for discussion.
Theorem 1:(Gallager[7]): The necessary condition for a minimum

of DT with respect to� for all i 6= j and(i; k) 2 L is

@DT

@�ijk
=

�
= �ij �ijk > 0
� �ij �ijk = 0

(6)

where�ij is some positive number, and the sufficient condition to min-
imizeDT with respect to� is for all i 6= j and(i; k) 2 L is

D0
ik(fik) +

@DT

@rkj
�

@DT

@rij
(7)

2

Equation (4) shows the relation between node’s marginal distance
and the marginal distances of neighbors to a particular destination.
Equations (5), (6) and (7) indicate that underperfect load balanc-
ing, ie., when routing parameter set� gives the minimum delay, the
marginal distances through neighbors in the successor set are equal,
and the marginal distances through neighborsnot in the successor set
are higher than those in the successor sets. LetDi

j denote the marginal
distance@DT =@r

i
j from i to j. Let lik denote the marginal delay

D0
ik(fik) as the cost of the link fromi to j. Let Sij be the set of

neighbors through which routeri forwards traffic towardsj. Now the
minimum delay routing problem becomes one of determining routing
parametersf�ijkg at each nodei for each destinationj, such that the
following equations are satisfied.

Di
j =

X
k2Ni

�ijk(D
k
j + lik) (8)

Sij = fkj�ijk > 0 ^ k 2 N ig (9)

Di
j � Dk

j + lik k 2 N i (10)

(Dp
j + lip) = (Dq

j + liq) p; q 2 Sij (11)

(Dp
j + lip) < (Dq

j + liq) p 2 Sij q =2 Sij (12)

Gallager [7] describes a distributed routing algorithm for stationary
and quasi-stationary networks based upon the above equations. Segall
and Sidi [11], [12], extended Gallager’s basic algorithm to handle topo-
logical changes. We refer to this algorithm as GSS. A detailed descrip-
tion of Gallager’s algorithm and its extensions handling topological
changes are presented in [7], [11]. GSS, however, is not practical for
several reasons. A major drawback of GSS is that a global step size�
needs to be chosen and every router must use it to ensure convergence;
because this constant depends on the traffic pattern, it is impossible
to determine one in practice that works for all input traffic pattern.
In GSS, the routing parameters are directly computed and the multi-
ple loop-free paths are indirectly implied by the routing parameters in
(9). The computation of routing parameters in GSS is, for all practi-
cal purposes, a very slow process because it is a destination-controlled
process; i.e., the destination must initiate every iteration that adjusts the
routing parameters at every router, making the algorithm slow converg-
ing and useful only for quasi-static routing, where traffic and topology
are static long enough for all routers to adjust their routing parame-
ters between changes. In a network with a large diameter, each itera-
tion will take a time proportional to the diameter of the network and
a number of messages proportional to number of links. Depending
on the global constant�, several iterations are needed to converge to
the final routing tables. The number of iterations needed for conver-
gence tends to be large for a small�, and small for a large value of
�. However,� cannot be made arbitrarily large to reduce number of
iterations and to speed up convergence, because the algorithm may not
converge at all for large�. Hence, GSS is basically a method for ob-
taining lower bounds under stationary traffic rather than an algorithm
for use in practical networks. In the next section, we show how the
theory and technique available in the Gallager method can be adapted
to practical networks, while overcoming its drawbacks.

IV. N EAR-OPTIMUM DELAY ROUTING

We noted that in GSS the computation of the routing parameter set�
was slow converging and works only in the case of stationary or quasi-
stationary traffic. In the Internet, traffic is hardly stationary and per-
fect load balancing is neither possible nor necessary. Anapproximate

3

load balancing scheme based on some heuristic which can be quickly
adapt to dynamic traffic is actually sufficient to minimize delays sub-
stantially. The key idea in our approach is that multiple paths arefirst
computed by other means and then routing parameters are assigned to
each successor using some heuristics, i.e., the process of computing
successor sets is decoupled from computation of routing parameters.
This gives NEAR-OPT the ability to quickly respond to traffic bursts
using short-term metrics while providing shortest paths based on long-
term metrics. So in our approach, we approximate (8) to (12) with the
following:

Di
j = minfDk

j + likjk 2 N
ig (13)

Sij = fkjDk
j < Di

j ^ k 2 N
ig (14)

�ijk = 	(k;Ai
j ; B

i
j) k 2 N i (15)

whereAi
j = fDp

j + lipjp 2 N ig andBi
j = f�ijpjp 2 N ig. We

observe that (13) is the Distributed Bellman-Ford (DBF) equation for
computing the shortest path and (14) is the successor set that includes
the neighbors that are closer to the destination than the node itself.
Note that this automatically includes the neighbor that offers the short-
est path. The function	 in (15) is a heuristic function that finds the
routing parameters.

It is well documented that routing algorithms based on DBF suffer
from severe performance problems due to count-to-infinity and looping
problems [13]. To confront these problems NEAR-OPT uses diffusing
computations first described by Dijkstra-Scholten[5], and extends the
basic mechanism to permit multiple successors per node for each desti-
nation. Because of space limitation, to see how NEAR-OPT computes
Di
j andSij , the reader is referred to a detailed description and correct-

ness proof of an algorithm called DASM [14]. To understand the key
point of this paper it is sufficient to know that NEAR-OPT computes
Sij such that the successor graph to the destinationj implied by them
is loop-free at every instant.

A. Handling Network Congestion

With variable traffic, the flows over links are continuously changing,
causing continuous link cost changes. To respond to these changes,
queuing delays at the links should be measured periodically and rout-
ing paths recomputed accordingly. However, frequent recomputation
of routing paths consumes excessive bandwidth and computation re-
sources because of which routing path changes should only be done
at sufficiently long intervals. Unfortunately, a network cannot be re-
sponsive to short-term traffic bursts if only long-term updates are used.
Therefore, NEAR-OPT performs two types of link-cost updates: short-
term updates which are made everyTs seconds, and long-term updates
which are made everyTl seconds. In generalTs << Tl. The long-term
updates are designed to handle long-term traffic changes and result in
updating the successor sets at each router, such that the new routing
paths are the shortest paths.

The short-term updates made everyTs seconds are designed to han-
dle short-term traffic fluctuations that occur between long-term routing
path updates and are used to compute the routing parameters�ijk in
(15) at each router; successor sets and, therefore, successor graphs do
not change. Since traffic allocation heuristic in (15) is a function of the
congestion at the links it effectively reduces traffic on congested links
and increases traffic on less congested links.	 in general can be any
function that satisfies Property 1, but to get maximum performance it
must be made a function of the marginal distances through the succes-
sors. Various heuristics can be used to compute the routing parameters;
we present one such heuristic later in this section.

Unlike � in GSS,Tl andTs are local constants that are set indepen-
dently at each router. Also, they need not be static constants and can be
made to vary according to level of congestion at the node. The value

Algorithm IH
(1) For eachk =2 Sij set

�ijk 0.
(2) If jSij j = 1, then fork 2 Sij set

�ijk 1.
(3) If jSij j > 1, then for eachk 2 Sij set

�ijk

1�
Di
jk

+li
kP

m2 Si
j

(Di
jm

+lim)

(jSi
j
j�1)

.

End IH

Fig. 1. Heuristic for initial load assignment.

of Tl, however, should be such that it is sufficiently longer than the
time it takes for NEAR-OPT to compute shortest paths. The long-term
update periods should be phased randomly at each router, because of
the problems that would result due to synchronization of updates [2].

In the minimization problem in Section III the link-cost metric used
is themarginal delay, which is the rate of change of delay with respect
to flow through the link. That is, ifDik(fik) is the delay of link(i; k)
as a function of flow in the link, then the marginal delay isD0

ik(fik) =
@Dik

@fik
. In NEAR-OPT, therefore, we use marginal delays for link costs.

For the purposes of simulations and providing intuition we have ap-
proximated the link behavior to anM=M=1 queue. We, therefore,
obtain the following formula for marginal delay at a link [2], where�ik
is the propagation delay of link(i; k).

D0
ik(fik) =

Cik

(Cik � fik)2
+ �ik (16)

Although (16) is useful for describing the intuition in NEAR-OPT,
it is limited because links are hardlyM=M=1 in real networks due to
the characteristics of the traffic over the links. Accordingly, in real im-
plementation of our approach, the marginal delay of a link,D0

ik(fik),
should be computed on-line by measuring traffic and the delays at the
link. Segall [11] and Cassandras [4] suggests some practical techniques
for estimatingD0

ik(fik). Average link costs are measured over two dif-
ferent intervals; link costs measured over short periodTs are used for
routing parameter computation and link costs measured over long pe-
riod Tl are used for routing path computation.

B. Assigning Flows to Successor Sets

We now describe how�ijk in (15) are computed using	. When
Sij is computed for the first time or recomputed again due to long-
term route changes, traffic should be freshly distributed among the
successors. In this case, since traffic is not already distributed the al-
location heuristic function	 is a function of only the marginal dis-
tances through the successor set. That is (15) reduces to the form
f�ijkg = 	(k; fDp

j + lipjp 2 N ig). When a new successor setSij
is computed, algorithm IH in Fig. 1 is first used to distribute traf-
fic over the successor set. Note thatf�ijkg computed in IH satisfy
Property 1. Furthermore, when more than one successor is present, if
Di
jp + lip > Di

jq + liq for successorsp andq, then�ijp < �ijq . The
heuristic makes sense because the greater the marginal delay through
a particular neighbor becomes, the smaller the fraction of traffic that is
forwarded to that neighbor.

After the first flow assignment is made over a newly computed suc-
cessor set using algorithm IH, a different flow allocation heuristic algo-
rithm AH shown in Fig. 2 is used to adjust the routing parameters every
Ts seconds until the successor set changes again. The heuristic func-
tion	 computed in AH is incremental and, unlike IH, is a function of
current flow allocation on the successor sets and the marginal distances

4

AlgorithmAH

(1) FindDij
min minfDi

jk + lik jk 2 S
i
jg.

Let k0 be the neighbor that offers this minimum.
That isDij

min = (Di
jk0

+ lik0).
(2) Letaijk Di

jk + lik �Dij
min for eachk 2 Sij .

(3) Let� 1
2
minf

�i
jk

ai
jk

jk 2 Sij ^ a
i
jk 6= 0g

(4) For eachk 6= k0 ^ k 2 S
i
j set�ijk �ijk ��� aijk

(5) Fork = k0 set�ijk �ijk +
P

q2Si
j

�� aijq.

End AH

Fig. 2. Heuristic for incremental load adjustment.

1

0 2

3

4

97

6 8

5

flow 1,3 flow 2

flow 0,2 flow 3 flow 1

flow 0

(a)

a

b c d

e

flow 3
flow 0

flow 0
flow 3

flow 1

flow 2

flow 2

flow 1

(b)

Fig. 3. The network models used in simulations

through the successors. AH also preserves property 1 at every instant.
In AH traffic is incrementally moved from the links with large marginal
delays to links with the least marginal delay. The amount of traffic
moved away from a link is proportional to how large the marginal de-
lay of the link is compared to the best successor link. The heuristic
tends to eventually distribute traffic in such a way that the marginal
delays of all the successors are equal which is indeed the necessary
condition in the Gallager theorem.

V. SIMULATIONS

In this section, we address the average performance of NEAR-OPT,
which is a direct consequence of its use of multiple loop-free paths
and the flow allocation heuristic. We performed a series of simula-
tions to compare the delay and throughput of NEAR-OPT, GSS and a
single-path routing algorithm DUAL[8] under identical settings. We
chose DUAL for comparative study because it provides loop-free sin-
gle paths at every instant and it is an algorithm being used in an ex-
isting Internet routing protocol, EIGRP [6]. Furthermore, DUAL has
been shown to converge faster than the traditional topological broad-
cast protocols (e.g., OSPF) after link-cost changes [13], and constitutes
a better single-path routing approach with which to compare NEAR-
OPT.

The network topology models for which we present simulation re-
sults in this paper are shown in Fig. 3. These small network topology
was chosen to speed up simulations while not favoring NEAR-OPT,
and have some similarities with the sparse connectivity of routers in
the Internet. All the links have the same link capacity of 1.0Mbs. The
propagation delay of the links is 10�s. The long-term update periodTl
is set at 1.0s, while the short-term update periodTs is set at 0.1s. We
used (16) for the marginal delay in our simulations for simplicity and
it does not favor any particular algorithm.

A. Experiment I

In this experiment we compare NEAR-OPT, GSS and DUAL under
stationary traffic. The flows are exponential with constant rate. Flow-0
starts at router 9 and is destined for router 0. Flow-1 starts at router 8
and is received at router 1. Flow-2 and flow-3 are intervening flows,

0

50000

100000

150000

200000

250000

300000

10 20 30 40 50 60 70 80 90 100

A
vg

. d
el

ay
s

in
 m

ic
ro

se
co

nd
s

Time in seconds

Experiment I

DUAL

NEAR-OPT

GSS

GSS
NEAR-OPT

DUAL

Fig. 4. Avg. delays under stationary traffic

0

50000

100000

150000

200000

250000

10 20 30 40 50 60 70 80 90 100

A
vg

. d
el

ay
 in

 m
ic

ro
se

co
nd

s

Time in seconds

Experiment II

DUAL

GSS

NEAR-OPT

GSS
NEAR-OPT

DUAL

Fig. 5. Avg. delays under variable traffic

that start at routers 5 and 4 respectively and are received at routers 0
and 1, respectively. The flow in the link is obtained by measuring the
number of bits (data and control) that are transmitted on the link in a
time interval. The link capacities, propagation delays and data packet
sizes are kept constant and are the same for all algorithms.

The delays obtained for NEAR-OPT, GSS and DUAL for flow-0
are shown in the Fig. 4. We observe that NEAR-OPT and GSS signif-
icantly outperform DUAL, because of the use of multiple paths. We
see that GSS performs better than NEAR-OPT, but the delays from
NEAR-OPT are within 20% of those of GSS. An important observa-
tion from this experiment is that the response of NEAR-OPT to a step
function is far better than GSS. In this case, the step function consists
of starting a given flow at time 0. The reason NEAR-OPT has a much
less underdamped response to drastic changes in input traffic is that the
propagation of routing information is much faster in NEAR-OPT than
in GSS. Another observation is that the difference in delays obtained in
NEAR-OPT and GSS after GSS attains the initial flow assignments on
the routers is always smaller than the initial deficit in GSS. This pre-
dicts that NEAR-OPT should have a favorable performance over GSS
when either traffic is very bursty or the topology experiences drastic
changes. Note that NEAR-OPT’s performance compared to DUAL
can be even better if the connectivity, ie., the average node degree is
higher, because then NEAR-OPT can use more successors.

5

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

0 5000 10000 15000 20000 25000 30000 35000

A
vg

. d
el

ay
 in

 M
ill

is
ec

on
ds

Throughput in Kilobits

Experiment III

GSS

NEAR-OPT

DUAL

GSS
NEAR-OPT

DUAL

Fig. 6. Throughput comparison

B. Experiment II

This experiment studies the responsiveness of the protocols under
bursty traffic by repeating Experiment I using ON-OFF traffic pattern
for the flows. The delays obtained for flow-0 are shown in Fig. 5 for
NEAR-OPT, GSS and DUAL. We observe that GSS and NEAR-OPT
again outperformed DUAL by virtue of multiple paths. NEAR-OPT’s
better performance under variable traffic is due to the slower propa-
gation of long-term path information in GSS. Note that the network
on which this simulation is performed is small; in a more realistic
topology the slow convergence of GSS becomes more pronounced and
comparatively NEAR-OPT performs even better than this experiment
shows. This experiment indicates that the basic intuition in NEAR-
OPT’s design is correct, i.e., building loop-free paths using long-term
delay information first and then assigning flows based on heuristics is
appropriate, because the latency of making routers agree on loop-free
paths dominates the latency of the local flow assignment decisions at
each router.

C. Experiment III

In this experiment, we measure throughput of NEAR-OPT, GSS and
DUAL. The throughput of the network is the total data delivered by
all flows in the network in a given time interval. Fig. 3(b) shows the
network and the flows used in this experiment. We use smaller network
because it is easy to saturate the network. The flows use ON-OFF
traffic with exponential distribution during the ON period. Fig. 6 shows
that, for a given delay, a much greater throughput and hence greater
network utilization can be achieved in NEAR-OPT than in GSS and
DUAL.

D. Experiment IV

This experiment repeats experiment II, but uses actual Internet traf-
fic traces obtained from Lawrence Berkeley National Laboratory [10].
Fig. 7 shows the results when traffic traces extracted from traffic trace
LBL-PKT-4 are used for flows 0, 1, 2 and 3. We can see that NEAR-
OPT outperforms GSS and DUAL which is expected from the results in
Experiment II and III, because traffic is only made more bursty in this
experiment. This points to the fact that GSS is basically a method for
obtaining lower bounds under stationary traffic, and that NEAR-OPT is
fast enough to take advantage of multiple paths with very bursty traffic
and can dramatically increase performance in current internets.

34000

36000

38000

40000

42000

44000

0 100 200 300 400 500 600 700 800 900

A
vg

. d
el

ay
 in

 m
ic

ro
se

co
nd

s

Time in seconds

Experiment IV

NEAR-OPT

GSS

DUAL

NEAR-OPT
GSS

DUAL

Fig. 7. Avg. delays for flow-0 under internet traffic

VI. CONCLUSIONS

We have presented a practical approach to near-minimum delay
routing in computer networks and in the Internet. We first described
Gallager’s method to derive the lower bounds for delays that are the-
oretically possible. We pointed out the drawbacks of the algorithms
directly based on Gallager’s method, namely, slow convergence and
requirement of a global constant� for ensuring convergence and recti-
fied them in our algorithm.

Simulation results show that NEAR-OPT performs significantly bet-
ter than single-path routing, and that NEAR-OPT performance comes
within a small percentage range of the lower bound delays under sta-
tionary traffic, and that under varying traffic conditions, NEAR-OPT
performs better than GSS.

In closing, it must be emphasized that, although theoretically min-
imum delays cannot be achieved in practice simply because of the la-
tencies involved in propagation of routing information, NEAR-OPT
demonstrates that far better performance can be obtained using practi-
cal approaches similar to those already used in the Internet for single-
path routing.

REFERENCES

[1] D. Bersekas and R. Gallager. Second Derivative Algorithm for Minimum Delay Distributed Routing
in Networks.IEEE Trans. Commun., 32:911–919, 1984.

[2] D. Bersekas and R. Gallager.Data Networks. Prentice-Hall, 1992.
[3] D. Bertsekas. Dynamic Behavior of Shortest-Path Algorithms for Communication Networks.IEEE

Trans. Automatic Control, 27:60–74, 1982.
[4] C.G. Cassandras, M.V. Abidi, and D. Towsley. Distributed Routing with Onn-Line Marginal Delay

Estimation.IEEE Trans. Commun., 18:348–359, March 1990.
[5] E.W.Dijkstra and C.S.Scholten. Termination Detection for Diffusing Computations.Information

Processing Letters, 11:1–4, August 1980.
[6] D. Farinachi. Introduction to enhanced IGRP(EIGRP).Cisco Systems Inc., July 1993.
[7] Robert G. Gallager. A Minimum Delay Routing Algorithm Using Distributed Computation.IEEE

Trans. Commun., 25:73–84, January 1977.
[8] J.J. Garcia-Luna-Aceves. Loop-Free Routing Using Diffusing Computations.IEEE/ACM Trans.

Networking, 1:130–141, February 1993.
[9] P. M. Merlin and A. Segall. A Failsafe Distributed Routing Protocol.IEEE Trans. Commun.,

27:1280–1287, September 1979.
[10] V. Paxson, P. Danzig, J. Mogul, and M. Schwartz. http://ita.ee.lbl.gov/html/traces.html.Lawrence

Berkeley National Laboratory, July 1997.
[11] A. Segall. The Modeling of Adaptive Routing in Data Communication Networks.IEEE Trans.

Commun., 25:85–95, January 1977.
[12] A. Segall and M. Sidi. A Failsafe Distributed Protocol for Minimum Delay Routing.IEEE Trans.

Commun., 29:689–695, May 1981.
[13] W. Zaumen and J.J. Garcia-Luna-Aceves. Dynamics of Link-State and Loop-Free Distance-Vector

Routing Algorithms.Journal of Internetworking, 3:161–188, 1992.
[14] W. T. Zaumen and J.J. Garcia-Luna-Aceves. Loop-Free Multipath Routing Using Generalized Dif-

fusing Computations.Proc. IEEE INFOCOM, March 1998.

