lonal

.|

® SR Intermat

REX PROGRAMMER’S MANUAL

Technical Note 381R.

July 1, 1988

By: Leslie Pack Kaelbling and Nathan J. Wilson

Artificial Intelligence Center
Computer and Information Sciences Division

and

Center for the Study of Language and Information
Stanford University

APPROVED FOR PUBLIC RELEASE:
DISTRIBUTION UNLIMITED

This werk was supported in part by a gift from the System Development Foun-
dation, in part by FMC Corporation under Contract 147466 (SRI Project 7390},
in part by General Motors Research Laboratories under Contract 50-13 (SRI
Project 8662), and in part by DARPA and NASA under NASA Grant PR 5671
(SRI Project 4099).

The views and conclusions contained in this document are those of the anthors
and should not be interpreted as representative of the official policies, either
expressed or implied, of the Defense Advanced Research Projects Agency or the
United States Government.

333 Ravenswood Ave. ¢ Menlo Park, CA 94025
14157 326-6200 « TWX: 210-373-2046 » Telex: 334-486

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
01 JUL 1988 2. REPORT TYPE 00-07-1988 to 00-07-1988
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Rex Programmer’s Manual 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

SRI International,333 Ravenswood Avenue,Menlo Park,CA,94025 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THISPAGE 43
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Credits and Trademarks

Sun Workstation ® is a registered trademark of Sun Microsystems, Inc.

UNIX is a trademark of AT&T Bell Laboratories.

June, 1888
Copyright (© 1988 by Leslie Kaelbling and Nathan Wilson
Software Copyright (© 1988 by SRI International
All Rights Reserved

Contents

Introduction

1 'Tutorial Introduction to Rex

1.1 Compiling Rex Programs e e e e e e e e e e e e e e e
1.2 EXPIessiONS . « 4 v vt v v v v e
1.2.1 Value Expressions it
1.2.2 Type Expressions v i i it i it i e e et e
1.2.3 Denoting Expressions i
1.2.4 Constraining Expressions
1.3 Creating and Naming Storage Locations
1.4 Machines with State o o ol
1.5 Recursive Examples e
1.6 Current Implementation and Foture Divections

2 Reference Manual

2.1 Rex Forms. 0 e e e e e e e e e
2.1.1 Primitive-function machines L ...,
2.1.2 Utilities o L. e e

22 Modules e e e

2.3 Compiling and Running Rex Machines
2.3.1 TheCompiler i i e e e e
2.3.2 Thelinker e e e
2.3.3 TheExecutor« .. o i i e e
2.3.4 The Rex Runtime Debugger e e e e

3 Programming Examples and Exercises

31 RexExamples. o o i i i i i e e e e e e
3.2 SampleProblems e
3.3 Solutions e e e

-] < o

=1

Introduction

This manual describes Rex, a programming language for specifving machines by declara-
tively describing their behavior. The Rex language consists of a set of Lispr functions that
define primitive Rex machines and provides methods for building complex machines out of
simpler components.

A Rex machine is a synchronous abstract device that has inputs, local state, and outpnts,
all of which are storage locations. Storage locations may be thought of as wires that can he
set to certain values and whose values can be read by Rex machines. The value of a storage
location is determined by its constraint, some function of the valnes of a set (possibly empty)
of storage locatious.

A Rex machine operates by repeatedly computing a mapping from itsinputs and current
state into its outputs and next state. By hierarchically dividing a large state into small
compouents and specifying their state transitions, we can “make the combinatorial explosion
work for us”[3]. The size of the smallest component may vary from implementation to
implementation; it could be a bit, an integer, or a small enumerated type. The state
transitions are described by functions that map tuples of elements of the primitive data
types into other tuples. The new value of any given compouent could, in principle, depeud
~on all of the inputs and the entire current state of the machine, but, in practice, the
dependencies are usnally local.

Any machine that is described by Rex has the property of being real-time. By our
definition, a machine is real-time if there is a guaranteed constant bound ou the length of
time between (1) the receipt of a particular input by the machine and (2) the generation
of an output of the machine that could have depended upou that input. In the domain of
mobile robots, for example, this means that there is a constant hound on the time between
when the sensors tell the machine an obstacle is in front of it and when the machine can
activate the brakes. Symbolic computation may still take place in such a machine, but
it must be constrained to prevent a part of the program from doing arbitrary amounts
of computation without allowing other parts to run. We discuss methods for creating
such machines in a following section. By adhering to a strict discipline, it is possible to
create real-time machines in nearly any language. In Rex it is impossible not to. Rex also
simplifies the task of real-time programming by allowing dynamic symbolic specification of
static run-time structures.

As well as guaranteeing real-time performance, Rex was designed to have a simple and
clear structure to facilitate analysis and synthesis of programs with specified properties. It
is easily axiomatizable, and work has been done on formalizing epistemic (or informational)
properties of machines specified in Rex [4]. Althouglh few programmers actually prove
properties of their programs, having a simple semantics makes it easier for them to predict
what a program will do.

Higli-level Rex machine specifications are compiled into low-level machine descriptions.
The low-level descriptions are very much like hardware descriptions, specifying connections
between components and wires. We run the machines on a standard computer by generating

code that sequentially simulates the circuit described by the low-level description. Since
the low-level representation is a circuit description, Rex programs may be easily mapped to
computers with differing degrees of parallelism (from a very fine-grained processor to two
standard processors) or to custom hardware.

This paper is divided into three sections. The first, a tutorial exposition of Rex explains
how to use the Rex compiler, introduces most of the Rex constructs, and gives examples of
their use. The second section is a reference manual. It describes each construct in detail,
explains the use and invocation of Rex, and discnsses error messages that may occur during
the course of compilation. The last section consists of examples of Rex programs, and a set
of exercises and their solutions. A short appendix at the end of the document describes the
errors that can be generated by the compiler.

To aid the reader, the following typographical conventions are used throughout the
document. Examples and function definitions that are printed exactly the way they must
be typed in are printed in typewriter font. Examples are makem, int, and (+ 1 2).
Within such text italics are used as unspecified arguments of functions. Examples are
denote-ezxpr, type-ezpr, and expr. These terms are also printed in ifaflics in the normal text
folowing function definitions. In normal text italics are also used to emphasize selected
words.

1 Tutorial Introduction to Rex

This tutorial provides the user with basic information about the Rex language: how Rex
programs are compiled and executed, the types of expression allowed in the language, and
examples of the language. We describe the use of the compiler and the execution envi-
ronment prior to describing the language itself so that the reader can experiment with the
examples as they appear in the rest of the tutorial. The tutorial assumes that the reader
is familar with -CoMMoN LisP, since the current implementation of Rex is embedded in
Common Lise.

1.1 Compiling Rex Programs

This section describes how a Rex program is compiled to create a machine-code program
that simulates the machine described in the Rex program, and how to run this machine on
a Sun 3 Workstation.

A Rex program is a special kind of CoMMON LisP program. The Rex primitives, special
syntax, and special functions are all contained in a CoMMON LisP system named REX. After
loading this system, you should compile or evaluate a Rex program with the Common Lisp

v

compiler or interpreter.

Once this has been done you evaluate the top-level function of the Rex program, using
the Rex function makem. One of the arginents to makem is a module name. This name
is used to name the resulting files and is the name argument given to the UNIX shell
commands described below. One of the results of makem is a file with the suffix .robj. This
file is referred to as the robj-file. The evaluation of makem is referred to as Rex compile time.

Once you have an robj-file it must be linked on a Sun Workstation with the shell
command rex 1nk neme. rex_1nk creates two new files: the rbin-file, with the suffix .rbin
and the rmap-file, with the suffix .rmap. The rbin-file is a binary file that contains the code
that simulates the described machine, and the rmap-file contains debugging information.
The use of the rmap-file in debugging is described in the “Compiling and Running Rex
Machines” subsection of the “Reference Manual”.

To execute the machine contained in the rbin-file you use another shell command,
rex_run -p name -0. The purpose of the flags to rex_run are described in the section
mentioned above. The execution of rex_run is referred to as Rez run time.

Introductory Example

The following is a small Rex program that expects the user to input a single number each
cycle and then outputs the square of the number:

(defun squarem (x)
{timesm x x))

(defun squarem* ()}
(out (squarem (in int))))

This example demoustrates several naming conventions used throughout the examples
in this manual. (These conventions make the code easier to interpret, but are in no way
required by Rex.) First, the suffix m indicates that the function describes a macline, i.e., it
returns some type of storage location, and probably at least some of its arguments are stor-
age locations. So in the case of squarem, the function accepts a storage location containing
an integer and returns a storage location that is constrained to contain the square of the
value in the input storage location. A second convention used in this example is the suffix
*, which usually indicates a top-level machine that can be Rex-compiled using the function
makem and that tests the function having the name that occurs before the *. In all cases
these top-level functions handle all of the runtime input and output controlled by the Rex
functions in and out, respectively.

To run the Rex program above, first compile or evaluate the definitions with CoMmon
Lisp. In general, Rex functions are of no use except as arguments to the Rex function
makem and as components of other Rex functions. Once these functions have been added to
your environment, makem can be used to create an actual Rex machine with the following
form:

{(makem (squarem*} :module “squarem" :obj "")

The :module keyword specifies a name for the output files. If no name is provided, the
name rex-mod is used. The :obj specifies the directory the robj-file will be written in. If
the keyword is not specified, then no robj-file is created. The directory "" uses the default
directory. Once the robj-file has been created it must be linked on a Sun Workstation. If
the :obj directory is not on a Sun, then the binary file must be copied over to a Sun.

The robj-file created with the previous makemis linked with the following shell command:

% rex_lnk squarem

Now the squarem machine is ready to run — execute the shell command:

% rex_run -p squarem -0

Omnce the machine is running, you are prompted for input. In this case the input is a
single integer; in response to each input, the machine outputs the square of that integer.

In this example, only one machine can result from the top-level function squarems.
Often it is more useful to write functions that can result in different machines, depending
on the values of the arguments given at Rex compile time. Hence, a Rex function actually
specifies a parameterized class of Rex machines, one of which will be produced at Rex
compile time. In effect, a Rex function specifies a family of components of a given class, for

example resistors, and when the Rex program actually needs a resistor, a particular resistor
is produced and put into the machine.

To give an example of a function that defines a class of maclines, we need to introduce
the use of !. In Rex !number creates a storage location that always has the value number.
The following function defines a class of machines that have a single input, and the outpnt
is constrained to be that input plus some constant that is determined at Rex compile time:

{defun add-constm (the~const the-input)
(plusm !the-const the-input))

{defun add-constm* (num)
(out (add—-constm num (in int))))

This function may be Rex compiled with the form
(makem (add-constm* 3) :module "add-const" :obj "")

to make a machine that always adds the value 3 to its inpnt. An add-constm machine
created this way has a single input, the-input, to which it always adds 3. An identical
top-level machine could be made from the following forms:

{defun add-values (the-inputl the-input2)
(plusm the—inputl the-input2))

(defun add-constm* (num)
(out (add-values 'mum (in int)}))?}

The only real change has been to move the ! from the subfunction into add-constm*.
However, the resulting submachine, add~values, has changed quite significantly; it now
has two inputs, and the output is constrained to contain their sum. The constant storage
location is created in add-constm*,

1.2 Expressions

Rex has four kinds of expression: value expressions, type expressions, denoting expressions,
and constraining expressions.

1.2.1 Value Expressions

Value expressions designate compile-time values that can range over the full domain of Lisp
objects. Numeric value expressions are often used as initial values of storage expressions;
other value expressions are used to control the structure of the machine being described.

=1

1.2.2 Type Expressions

Type expressions define different data-types of storage locations. In the current implemen-
tation of Rex there are four primary types: boolean (bool), integer (int), float (£loat),
and string (str). The constants for hooleans are 0b and 1b; integers are 32-bits long and
signed; floats are standard 32-bit IEEE floating point, with a sign bit, 8 bits for the ex-
ponent, and 23 bits for the mantissa; and strings are double-quoted strings of characters.
Strings are only used in very special cases, and no run-time string manipulation functions
exist for Rex.

In addition to the atomic types, it is possible to construct more complex type expressions
from atomic ones. In the current implementation of Rex, complex types are simply Lisp
lists of other types. Two types are considered to be equal if they have the same list structure
and if the corresponding atomic elements have the same primary type. Since complex types
are simply LIsP lists, standard Li1sp functions like car, cdr, cons, list, and append can
be used on type expressions.

Several Rex forms return type expressicns or declare new types. First, there is a special
Rex tupling syntax, [type-expr ... type-ezpry]. The square brackets simply perform the
list function {rom Lisp.

A second type-expression form is the function (List-type wvalue-exzpr type-expr). This
function returns a complex type that is a list of length velue-ezpr of type-exprs.

Structured data types can be declared with the {function
(define-rex-struct atom ((fleldname; type-expr,)... (fieldname, type-expry)))

The parameter, atom, is bound to the type-expression [type-expr, ...iype-expry,]. In addi-
tion, a set of selector {unctions is created. The names of the Tunctions are atom- fieldname,
...atom-~ fieldname,,. They all take a storage location of the newly defined type, atom, and
return tlie component storage location of the type-expression corresponding to the named
field. Finally, a constructor function named make-atom is created. This function returns
a storage location of type atom, with the fields set to the denoting expressions given as
arguments in the appropriate order.

The {ollowing are some examples of type expressions:

int

[[int int] floatl

(list-type 5 [bool int])

[int (list-type 5 [bool int]) booll

The following example of a complete machine specification includes complex types. This
function calculates the distance between two points:

(define-rex-struct point ((x-coord int)
(y-coord int}))

(defun distancem (pointl peint2)
(sqrtm (plusm (squarem (minusm (point-x-coord peintil) (point-x-coord point2}})
(squarem (minusm (point-y-coerd peinti1) (peint-y-coord peint2}}))})

(defun distancem* ()}
(some* ((ptl point) (pt2 point))
(== [pt1 pt2] (in [point point]})
(out (distancem pti pt2))))

1.2.3 Denoting Expressions

A denoting expression denotes a storage location, together with constraints on its behavior
with respect to other storage locations. A storage location can be of any of the types
mentioned in the previous subsection.

A storage location that is constrained to contain a constant value is represented by
!value-expr, where the LisP value of value-ezpr is an integer, floating point number, or
boolean ('0b ’1b). Thus, ! (+ 2 3) denotes a storage location whose value is always 5.

The second kind of simple denoting expression in Rex is actually a class of expressions
that describe primitive-function machines. Primitive-function machines are the lowest-level
building blocks of a Rex machine description and map directly to functional comnponents in
the low-level machine description. As an example, (plusm a b) denotes a storage location
that is constrained to always contain the sum of the values of the storage locations denoted
by a and b. Another commonly used primitive-function machine is (ifm a b ¢), which
denotes a storage location that is constrained to contain the value of b if the run-time value
of a is equal to 1, otherwise the value of ¢. The regular if form from Common Lisp
allows conditional machine construction at compile time, but note that the ifm construct
works entirely at run time. There are primitives for integer and floating point arithmetic
functions, boclean functions, and relational functions. By convention, an identifier namen
names a primitive-function machine related to the function name.

New function machines can be created with the standard CoMmMmoN Lisp defun forin.
Such functions are referred to as denoting functions. When doing this keep in mind which
arguments are value-expressions and which are denoting-expressions. Value-expression ar-
guments always get compiled away during Rex compilation. Typically, value-expressions
are part of a denoting-expression using the ! operator or are used to coutrol the layout of
the machine (e.g. the number of times a sub-component appears). The denoting-expression
arguments, on the other hand, indicate storage locations that will be used by the resulting
machine during Rex runtime.

Finally, square brackets can be used to create dencting expressions that denocte stor-
age locations with complex types. For example, the denoting expression [1?1b 12.3 12]
denotes a complex storage location of type [bool float int] whose value is (1b 2.3 2).

For convenience, the Rex predicate (var-p denote-ezpr) returns t if the type of the
designated storage location is bool, int, or float; and nil otherwise. An example of

where this predicate is useful is the following function, sum-structm, which sums all the
elements of any type of structure. The type of the structure is specified at compile time as
an argument to the top-level function.

(defun sum—structm (thing)
{cond ({null thing} !0}
({var-p thing) thing)
(t (plusm (sum-structm {car thing)) (sum-structm {cdr thing}}})})

{defun sum-structm* (type)
(out (sum-structm (in type}}))

As with type expressions, denoting expressions can be manipulated with standard Lisp
selection functions, like car, cdr, first, second, third..., nth. All of these are eval-
uated at Rex compile time. For run-time list selection, Rex has the form

(selectm denote-expr; denote-expry)

The run-time value of a selectm machine is the value of the nth component of denote-ezpr;,
where » is the value of denote-expr;. Denotec-expry in selectm is constrained to be a list
of identical structures. This constraint is a necessary result of the fact that a Rex denoting
expression must designate a storage location of a particular type.

1.2.4 Constraining Expressions

A consitraining ezpression designates a collection of behavioral constraints on storage loca-
tions. The constraints specify the way in which storage locations relate to other storage
locations. The basic constraining expression, referred to as structure equation, is of the form
(== denote-expr, denote-ezpry). This form constrains the storage locations designated by
the denoting expressions to be behaviorally equivalent: at every point in time, each stor-
age location in denote-ezpry is constrained to contain the same value as the corresponding
storage location in denote-ezpr,. We can use this form to name the intermediate result of
a computation, for example, (== a (plusm b c)). It is a programming error to attempt
to constrain two storage locations to be behaviorally equivalent if they are already con-
strained to behave in a way that precludes this possibility. The current implementation of
Rex imposes the slightly stronger requirement that at least one of each pair of correspond-
ing atomic storage locations in the two denoting expressions in a == form must designate
a storage location with no constraints. Thus, the form (== (plusm a b) (plusm b a})
is not allowed, even though the constraint it expresses is trivially satisfied. The storage
locations used in a structire equation can be of any type, so forms such as (== a [!1 12])
are legal. '

When complex storage locations are referred to by atoms, the operation of structure
equation is similar to unification. For example, the constraining expression

(== [a b c1] [[d e £1 gl)

10

constrains a to be a triple whose components are named by d, e, and £, and constrains g to
be a pair with components named by b and ¢. It also constrains b to be (first g), c to be
(second g}, etc. One aspect of structure equation is that confusing code like the following
is legal:

(== [a a] [[b ¢] [!3 1411)

This expression causes a to always have the value [!3 !4]; b to have the value of location
dencted by (first a), i.e. !3, and ¢ to have the value denoted by (second a), i.e., 4.
Note that for each constraint, one of the storage locations still must be unconstrained. In
addition, the length of the two arguments must be equal.

Behavioral equivalence in structure equation is often implemented in the resulting ma-
chine as actual equivalence of parts of the machine, so == can also be viewed as a way of
giving another name to a particular storage location.

Writing functions that constrain their inputs is often convenient, some LispP functions,
for example, can take a set of unconstrained inputs and a set of constrained inputs and
do nothing other than constrain the unconstrained inputs as a function of the constrained
inputs. The invocations of such contreining functions are then constraining expressions.
Top-level functions discussed previously, are an important kind of constraining function.
Such functions are nnusnal, since the storage locations they constrain are not passed as
parameters but instead are declared with the functions in and out. (See the example in the
next subsection for an example of a function that is also a constraining expression.) The
result returned by such constraining expressions is arbitrary, since the storage locations
being defined are passed as arguments to the function.

The basic constraining expression, the function ==, however, does have a defined vesult,
namely, a storage location that is behaviorally identical to the storage locations being
constrained. This feature is provided primarily for use in denoting functions so that the
resulting storage location does not have to be explicitly listed as the last form in the function.
This property of structure equation should be used sparingly and only when meaning is very
obvious. (See the following discussion of somex.)

1.3 Creating and Naming Storage Locations

Naming intermediate values in a computation is often convenient and sometimes necessary.
The 1let construct of Lisp provides that facility for value expressions. The some* construct
provides a similar facility for storage locations. The form

(some* ((atom,; type-ezpry)...{(atom, type-ezxpry))
consir-ezpry ... constr-erpr,, denote-erpr)

performs the conjunction of the constraining expressions and allows the atom;’s to be used
to name intermediate storage locations. The result of some* is the value of denote-ezpr. In
the case where constr-ezpr, also denotes the desired result (see previous subsection) the
final denole-expr is not necessary.

11

We can use scme* to compute two values in terms of some common value, as in the
{ollowing calculation of the roots of a quadratic:

{defun rootsm {a b ¢ ri1 r2)
(some* ({radical float)
(neg-b float)
{divisor float))
== radical (sqrtm (minusm (squarem b) (timesm !4 (timesm a c)))J)
== neg-b (unary-minusm b))
== divisor (timesm !2 a))
== rl (divm (plusm neg-b radical} divisor))
== r2 (divm (minusm neg-b radical) divisor))))

In this example r1 and r2 are unconstrained storage locations that are passed as pa-
rameters to the function rootsm along with the already constrained storage locations: a,
b, and ¢. Thus any calls to the function rootsm are constraining expressions, as in the
following top-level function:

{(defun roots* ()}
{some* {(a float)

(b float)
(c float)
(ri float)
(r2 float))

{== [a b c] {irn [float float float]))

{(rootsm a b ¢ r1 r2)

(out [r1 r21)))

This program points out another interesting aspect of Rex. In most computer languages
a fatal error is generated by some mathematical expressions, including taking the square
root of a negative number. Rex, however, automatically checks for such error conditions
and avoids generating fatal errors. Thus, the above program always produces some output
for any input. If a particular input causes the output to be a function of the square root of a
negative number, (e.g., the inputs [1.0 0.0 1.0]) then the content of the output is undefined,
but the machine still returns two floating point numbers. The programmer can malke the
output always defined by testing the input to machines that may return an undefined result.
For example, here is a modified rootsm function that returns 0 for both roots if the input
would cause a negative square root to be calculated:

{(defun rootsm {a b ¢ rl 2}
{some* ({(discriminant float)
{radical float)
{neg-b float)
(divisor float))
== discriminant (sqrtm (minusm (squarem b) (timesm '4 (timesm a c¢}))))
== radical (ifm (<m discriminant 0) !0 (sqrtm discriminant))})
(== neg-b (unary-minusm b))

12

== divisor (timesm !2 a))
== r1 (divm (plusm neg~b radical) divisor))
== 2 (divm (minusm neg-b radical) divisor))))

1.4 Machines with State

All machines that we can specify using the constructs discussed so far are pure functional
machines — that is, the outputs depend only on the most recent set of inputs, independent
of previous inputs and outputs of the machine. Remember that a Rex machine acts by
repeatedly calculating a mapping from the current inputs and state to a set of outputs.
Each time period from the perception of a set of iuputs to the generation of the next
set of outputs is called a tick. Here we introduce a construct that allows us to constrain
storage locations that preserve state over time. An instance of the form (init-next value-
ezpr denote-ezpr) designates a storage location that is constrained to contain the value
of value-ezpr initially and to contain at tick ¢ + 1 the value of the location designated by
denote-ezpr at tick t. If denote-ezpr designates a complex storage location comprised of
atomic storage locations, the structure of value-ezpr must be the same as that of denote-
ezpr. Thus, (init-next (1 2 (3 4)) [a b [c d1]1) is valid if each of a, b, ¢, and
d designates an integer atomic storage location. The storage location designated by the
init-next form has the same structure as its arguments. Note that eacl time the machine
is started with rex_run, the state is reset to the value of value-expr.

An init-next form must be used whenever the state of a storage location depends on
the previous value of another storage location. To avoid race conditions, it is an error to
have the value of any storage location be directly dependent on itself; it must depend on a
previous value of that location. Thus (== x (plusm x !1)) causes an error; to specify a
machine that counts by 1, what should be written instead is

(== x (init-next 0 (plusm x !1))).

As a simple example of the use of the init-next form, we define the everm machine:

{defun everm (input)
(some* ((ever? bool))
== ever? (init-next ’0b (orm ever? input)))))

(defun everm#* ()
(out (everm (in bool})))

This machine has a single atomic storage location as a parameter. An instance of everm
denotes a storage location that contains 1b if the storage location given as input has ever
contained 1b in any previous tick, and 0b otherwise. The orm expression denotes a storage
location that contains 1b if either of its two argument locations does, and 0b otherwise.
Thus, the ever? location contains 1b if it contained 1b last time, or if the input was 1h
last time. The machine described by this definition has its output fed back into itself; the
structure is shown in Figure 1. Note that the output from this machine just after the first

13

Input Qut put
P e——Oorm — zfjfx *

ever?

Figure 1: Schematic of the everm machine

Out put

Input
ity dorm A
output

Figure 2: Schematic of the ever2m machine

1b is given is Ob, since the delay component is between the input and the output. To create
a function that responds immediately to its input, you must name the output of the orm
expression and output that storage location, instead of the one denoted by the init-next
expression, as follows:

(defun ever2m (input)
(some* ((output bool))

(== output (orm input (init-next ’0b output)})))

(defun everZm* ()
{out (ever2m (in bool)}))

The structure for this machine is given in Figure 2. Note that the only change has been
to swap the order of the init-next and the orm functions.

1.5 Recursive Examples

In this section we present more complex examples that illustrate the use of all constructs
discussed in this tutorial.

14

plusm

plusm

AV

n +c o 33—

plusm OQutput

&

Figure 3: Schematic diagram of the machine specified by (sum-list* 4)

The first example uses a recursive definition to describe a machine that sums the contents
of a list of atomic storage locations. The length of the list may vary at compile time, but
is fixed in the run-time machinery.

(defun sum-listm (List)
(if (= (length list) 1)
(car list}
(plusm (car list) (sum-listm (cdr 1list)}))))

(defun sum-listm* {length)
(out (sum-listm (in (list-type lemgth int)))))

The sum-listm function defines a class of machines that takes any size of list of either
integers or floats and returns the sum of the elements of the list.! This definition corresponds
very closely to the Lisp defirition of a function that sums a list of numbers. Note, that all
of the recursion is done at compile time. A schematic version of the machine created by the
invocation (sum-listm* 4) is shown in Figure 3.

In the second example we present two parameterized denoting functions for selecting the
nth element of a list. One of them does the selection at compile time; the other at run time.
H the selection occurs at compile time, no run-time structure for selection is generated; if
it occurs at run time, it generates a linear address-decoding network.

(defun compile-time-select* (index length type)
(out (nth index (in (list~type length type))})))

(defun recur-select (current-index index list)
(if (= 1 (length list))
{car list)
(ifm (>=m 'current-index index)

'If we were implementing this in parallel hardware, it would be more efficient Lo use a combining scheme
that has log(length) depth.

15

(car 1list)
(recur-select (+ current—-index 1) index (edr list)))))

(defun run-time-select (index 1list)
(recur—-select O index list))

{defun run—time-select* (length type)
{some* ((the—-index int)
(the-list (list-type length type)))
== [the-index the-list] {in [int (list-type length type)]))
(out (run-time-select the-index the-list))))

The function compile-time-select* has both a value-expression parameter and a de-
noting-expression parameter. The value-expression indicates the index of the element of the
denoting-expression that is always returned by a given instance of compile-time-select.
If the index is 0 or below, then the first element is returned. If the index is greater than
the length of the list, then the last element is returned. Note that the abstract submachine
created by compile-time-select* has a single input, namely 1ist, while the function has
two parameters.

The function run-time-select, on the other hand, has two denoting-expression pa-
rameters. The component created by this function has two inputs: 1ist and index (which
selects the element of 1ist to return). A machine that selects from a set of four integers is
shown in Figure 4.

1.6 Current Implementation and Future Directions

We have implemented a Rex compiler that runs in any standard implementation of CoMMON
Lisp. It generates low-level structural descriptions that may be fed into a back-end that
generates optimized MCG68020/MC68881 code to simulate the structure in software. We
have used this system to generate programs that control SRI’s mobile robot.

Rex is very similar to hardware description langnages [2] and so lends itself particularly
well to implementation on various parallel architectures. On a fine-grained parallel machine
such as the Connection Machine [1], each primitive function element and delay element could
be mapped to a processor. The routing would have to be set up once before the machine
began running and could remain static after that. In principle, Rex machine descriptions
could also be run on multiple, medium-sized processors by partitioning the circuit into as
many pieces as there are processors.

16

© o

~~ ¢y = =

the-index
—@ @
3 —-|>>=
L o [
=
2 —i>>=
=P e [
—» ifm
1 —|>>=
S i1fm J
—D

ifm

Out put

Figure 4: Schematic of the machine specified by {(run-time-selectm* 4 int)

17

2 Reference Manual

2.1 Rex Forms

This section describes all of the standard Rex forms. Examples of many these fornis are
given in the preceding tutorial and in the problems and solutions that follow this section.
All of these forms contain at least one denoting expression. In the syntax given they are
all referred to as denote-ezpr. If there are further restrictions on the type of the denoting
expression, it is given either in the paragraph at the beginning of each subsection or as
part of the form description. Boolean storage locations refer to storage locations that can
contain thie values Ob or 1b. Numeric storage locations refer to storage locations having an
integer or a float value.

2.1.1 Primitive-function machines

Tlie family of primitive-function machine specifiers
(primfn denote-expry ... denote-expr,)

denotes locations constrained to always contain the result of applying the function associated
with primfn to the values of the locations denoted by denote-expr ...denote-ezxpr,. By
convention, an identifier namem names a machiue specifier intuitively related to the function
name. The denoting expressions created from primitive-function machine specifiers all
denote atomic storage locations; they also require atomic storage locations as argnments.
Following is a discussion of the primitive-functiou machine specifiers currently available in
Rex.

Arithmetic Operators

All of the arithmetic forms require numeric storage locations as arguments and refer to
numeric storage locations. If tlie binary operators in this section are given one int and one
float, the int is coerced to a float and the result is a float. If the arguments are of the
same type, then the result is the same type as the arguments.

(plusm denote-ezpr; denote-ezpry) Denotes a storage location constrained to coutain the
sum of the values of denote-ezpry and denote-ezprs.

(minusm denote-ezpry denote-ezpr;) Denotes a storage location constrained to contain the
difference of the values of denote-ezpr; and denote-ezprs.

(timesm denote-ezpry denote-ezpr;) Denotes a storage location coustrained to contain the
product of the values of denote-ezpr, and denote-ezpr;.

18

(divm denote-ezpr; denote-expry) Denotes a storage location constrained to contain the
rounded quotient of the values of denote-ezpr; and denote-exprs. If denote-expry has
a value of 0 then the result is undefined, but no error is generated.

(modm denote-expr; denote-ezpry) Denotes a storage location constrained to contain the
value of denote-ezpr; modulo the value of denote-eapry. Both denote-ezpr; and denote-
ezpra must be of type int. Modulo is defined in Rex to be the number, z, between
0 and denote-ezprp—1 such that the relation k{denote-ezprs}+2z =denote-ezpr; holds
for some integer £.

(sqrtm denote-ezpr) Denotes a storage location counstrained to contain the square root of
the value of denote-ezpr. If denote-expr is negative then the result is undefined but
no error is generated.

(unary-minusm denote-expr) Denotes a storage location constrained to contain the nega-
tion of the value of denote-ezpr.

(absm denote-ezpr) Denotes a storage location that contains the absolute value of denote-

expr.

Bit Operators

The following operators all require and denote integer storage locations.

(bitandm denote-erpr; denote-ezprs)} Denotes a storage location constrained to contain
the bit-wise and of denote-expr; and denote-ezprs.

(bitcompm denote-ezpr) Denotes a storage location constrained to contain the bit-wise
complement of denote-ezpr.

(bitiorm denote-ezpry denote-ezpr;) Denotes a storage location constrained to contain
the bit-wise inclusive or of denote-expr; and denote-ezprs.

(bitxorm denote-ezpr; denote-exrpr;) Denotes a storage location constrained to contain
the bit-wise exclusive or of denote-ezpr; and denote-ezpr,. ‘

(1shm denote-erpr; denote-expr) Denotes a storage location constrained to contain denote-
ezpr; shifted left by denote-expry bits. Bits shifted off the left end are lost, and the
new bits on the right are set to 0.

(rshm denote-erpry denote-ezprs) Denotes a storage location constrained to contain denote-
ezpn shifted right by denote-ezprs bits with sign extension. Bits shifted off the right
end are lost, and the new bits on the right are set to 0 if denote-ezpr; was positive
and 1 if it was negative.

19

Trigonometric Operators

The trigonometric operators accept any numeric storage locations as input and denote
storage locations of the same type. When floats or a mixture of floats and integers are
used, angle measurements are assumed to be in radians. When only integers are used
the trigonometric machines implement functions that use a scaled representation for real
values. Integer angles are expressed in terms of RAUs (robot angular units) — the value
of an angular argument can range from 0 to 4096, with 7 radians equal to 2048 RAUs.
The outputs of sinm, cosm, and tanm range from positive to negative 4096, being the range
[-1,1] scaled by 4096. The inputs to atan2m may be anything but are similarly scaled.
The results of the inverse functions are angles in RAUs, so it always remains the case that

flare-f(z)) = =.

(sinm denote-expr) Denotes a storage location constrained to contain the sine of the value
of denote-expr.

(cosm denote-ezpr) Denotes a storage location constrained to contain the cosine of the
value of dencte-ezpr.

(atan2m denote-expry denote-ezpry) Denotes a storage location constrained to contain the
arctangent of the quotient of the values of denote-ezpr; and denote-ezpr,. The signs of
the values of denote-ezpr; and denote-exprs are used to derive quadrant information.

Boolean Operators

The representation of boolean values in Rex is 1b for true and Ob for false. The use of
any other values in functions that take boolean arguments is undefined. The following
primitive-function machine specifiers require that the contents of the argument locations be
boolean values. The contents af the denoted locations are boolean as well.

(orm denote-ezpr, denote-expra) Denotes a storage location constrained to contain the dis-
junction of the values of denote-ezpr; and denote-ezprs.

(andm denote-ezpr; denote-ezpry) Denotes a storage location constrained to contain tle
conjunction of the values of denote-ezpry and denote-ezprs.

(notm denote-ezpr) Denotes a storage location constrained to contain the negation of the
value of denote-ezpr.

Relational Operators

The following primitive-function machine specifiers express relational functions on the values
of storage locations. All of these functions denote storage locations of type bool. The
function equalm accepts any two expressions that denote storage locations with the same
structure. Two complex storage locatious are considered equal if all corresponding atomic

20

elements of the structure have the same value. The other relational operators accept only
numeric or boolean storage locations. If one of the inputs is an int and the other is a
float, then the int is coerced to a float and their values are comnpared. When equalm js
used on complex storage locations, corresponding atomic elements are similarly coerced.

(equalm denote-ezpr, denote-ezpr:) Denotes a storage location constrained to contain 1b
if the values of denote-expr; and denote-exzprs are equal, 0b otherwise,

(not-equalm denote-expr; denote-exprs) Denotes a storage location constrained to con-
tain 1b if the values of denote-ezpr; and denote-ezpry are not equal, Ob otherwise.

(>m denote-expr, denote-ezpry) Denotes a storage location constrained to contain 1b if the
value of denote-expr) is greater than the value of denote-ezpr;, Ob otherwise.

(>=m denote-ezpr denote-expr;) Denotes a storage location constrained to contain 1b if
the value of denote-expr; is greater than or equal to the value of denote-expry, 0b
otherwise.

(<m denote-ezpr denote-exprs) Denotes a storage location constrained to contaiu 1D if the
value of denote-expr is less than the value of denote-expry, Ob otherwise.

(<=m denote-expr; denote-ezpry) Denotes a storage location constrained to coutain 1h if
the value of denote-expr is less than or equal to the value of denote-exprs, Ob other-
wise.

Conditional Operator

Run-time conditional expressions are implemented through the ifm machine constructor.
The first argument location must contain a boolean value; the others can be any denoting
expressions that have the same type. The result is the same type as the arguments.

(ifm denote-ezpr, denote-ezpry denote-ezprs) Denotes a storage location constrained to
contain the value of denote-ezpry if the value of denote-expr, is 1b, otherwise the
value of denote-ezprs.

Conversion Operators

(float-to-intm denote-ezpr) Denotes a storage location of type float constrained to
contain the integer closest to the value of denote-ezpr. If the fractional portion is
exactly .5, then the closest even integer is returned.

(int-to-floatm denote-ezpr) Denotes a storage location of type float constrained to
contain the value of the given atomic integer storage location, denote-ezpr.

2]

Complex Storage Locations and Type Constructors

Ldenote-expr, ...denote-ezpr,1 Denotes the complex storage location that is the list of
the storage locations denoted by denote-expry ...denote-expr,.

Ltype-expr; .. .type-expr,] Denotes the complex type expression that is the list of types
type-expry ... type-expry.

(list-type value-ezpr type-ezpr) Denotes a complex type expression that is a value-ezpr
element list of type-expr.

(define-rex-struct atom {({fleldname, type-ezpry)... fleldname, type-ezpr,)) Binds atom
to [type-expr; ...type-expr,]. In addition, selector functions are created with the
names atom-fieldname; through atom-fieldname, which take a storage location that
has the type atom and return the appropriate constituent storage location. Finally,

a constructor function, make-atom is created which expects one argument for each
fieldname in the same order and of the appropriate type.

(var-p denote-expr) Returns t if denote-expr is of type bool, int, or float.

(var-type denote-expr) Returns tlie type of denote-ezpr.

Other Rex Forms

The remaining Rex forms are presented briefly here. For further clarification, see the tutorial
section of this manual.

(== denote-expr, denote-exprs) Constrains the storage locations denoted by denote-expn
and denote-ezprs to be behaviorally equivalent.

(somex ((atom; type-expr)...(atomy type-expry)) constr-expr; ... constr-ezpr, denote-expr)

Generates £ new storage locations, with names atom, ... atom; of the types specified
by type-ezpr ... type-expry, respectively, and imposes the conjunction of the con-
straints of constr-ezpr ... constr-ezpr, on them. The atom, ... atomy denote storage
locations and may be used as storage expressions within the scope of the some* form.
The result of the entire form is the final denote-ezpr. If the form is not being nsed as
a denoting expression or the final constraining expression is also a structure equation,
then the final denoting expression may be omitted.

(init-next wvalue-expr denote-ezpr) Denotes a storage location that is constrained to con-
tain value-ezpr initially and to contain at tick ¢ + 1 the value at tick ¢ of the loca-
tion denoted by denote-ezpr. Currently, strings may not be used in any part of an
init-next expression.

22

2.1.2 Utilities

The forms described in the preceding sections are sufficient for writing any Rex machine
constructor. We have included a small set of utilities as well, to simplify programming,.
Since each of these utilities is implemented in Rex, we include the code in the section
“Programming Examples and Exercises” as an example of Rex programming.

To simplify the use of nunieric constants, we use the notation !value-expr as an abhre-
viation for the constructor of a machine that has a constant output equal to the value of
value-ezpr. It is equivalent to the form

(some* ((x type)) (== x (init-next wvalue-ezpr x)})).

For convenience in manipulating numeric values, we include the following machine con-
structors:

(minm denotle-expr, denote-ezpry) Denotes a storage location that contains the minimum
of denote-expr) and denote-ezprs.

(maxm denote-expr, denote-ezpry) Denotes a storage location that contains the maximum
of denote-ezpry and denote-ezprs.

(signm denote-expr) Denotes a storage location that contains the value 1 if denote-ezpr
is greater than zero, 0 if it is equal to zero, and -1 if it is less than 0.

To select one storage location out of a set of storage location, there is the following
function:

(selectm denote-expr; denote-ezpry) Denotes the denote-expr th element of denote-expry.
Note that denote-ezpry must be a list of denoting expressions that all denote storage
locations of the same type.

The next two Rex form are complex conditionals similar to CoMMoON LIsP’s case and
cond statements. The primary differences are that a default expression must always exist,
and each consequent is only a single denoting expression.

(casem denote-ezpr, (case-ezpr; denote-ezpr;)...(case-expr, denote-expry) denote-expry)
The case expressions in this form are either a single denoting expression or a list of
one or more dencting expressions. This form operates by comparing the value of the
selector denoting expression, denote-exprs, with the denoting expressions in each of
the case expressions. The first case expression that has a denoting expression that is
equalm (numberically equivalent} to the selector denoting expression is chosen, and
the value of its consequent denoting expression is used as the value of the storage
location denoted by the casem expression. If none of the denoting expressions in the
case expressions are equalm to the selector expression, then denote-ezpry is used as
the value of the storage location denoted by the casem expression.

23

(condm (denote-expry dencte-exzpre)...(denote-ezpry, denote-expren,) denole-expry)
All of the denote-ezpry’s must denote storage locations of type bool. In addition, all
the denote-ezpr.’s and denote-ezpry must be of the same type. The condm form ex-
amines the value of each of the denote-ezpry’s in turn. The first one whose value is
1b is selected and the value of corresponding denote-ezpr, is used as the value of the
storage Jocation denoted by the entire expression. If no denote-expr, has a value of 1b
then the value of denote-expry is used as the value of the denoted storage location.

2.2 Modules

To facilitate inodular programming, a program can use an already compiled program as a
component. Such submachines are called modules. The input and output of modules are
defined with the in function and the out function. FEach of these [unctions shounld appear
only once in the program for the module. A module is included in a second Rex program
with the defmodule form. Tle module is then called using the name of the module as
though it were a function. Note that each time the module is used a new instance of its
machine is created.

(in type-expr) Defines the structure of the input of a module to be type-expr.
(out denote-ezpr) Defines the output of a module to be dennie-expr.

(defmodule module-name) Adds the machine named module-name to the current envi-
ronment as a constraining function that can be called by the program. The name
of the constraining function is the symbol module-name. Such functions expect two
arguments. The first is the input whose type is declared in the in form within the
module definition. The second is the output whose type is declared in the out form.
Module-name can be either a string or an atom.

The program below uses a submodule that adds a list of four floats to create a class of
machines that take a list of four-tuples of floats and returns a list of the sum of each of the
four-tuples. The submodule is defined and Rex-compiled with the following forms:

(defun sum-listm (list)
(if (null list)
0
(plusm (car list) (sum-listm (cdr list)))))

(defun sum-listm* (length type)
{out (sum-listm (in (list-type length type)))))

(makem (sum-list* 4 float) :module "plus-4-float' :obj "" :opt t)

24

The Rex compilation creates the files plus-4-float.mod and plus-4-float.robj in
the current directory. The file with the .mod suffix is the module-declaration, and contains a
description of the inputs required and outputs provided by a sum-1ist machine that works
on lists of four float storage locations. Note that the above functions define a class of
machine that sum the elements of any list of numbers. A machine that suins a list of four
floats is selected by the arguments given within the function makem.

This machine can now be used to create a four-tuple adder:

(defmodule plus-4-float)

(defun sum-four-tuples (list)
(some* ((output float))
(cond ((equal (length list) 1)
{plus-4-float (car list) output)
output)
{t (plus-4-float (car list) output)
(cons output (sum-four-tuples (cdr 1list)))))))

(defun sum-four-tuples* (number)
(out (sum-four-tuples (in (list-type number (list-type 4 float))))}))

The submodule defined previously is used as the constraining function plus-4-float.
The types of its two arguments are deterinined by the types of the in and out forms when
the module was compiled. Note that the same module can be used more than once in a
program as demonstrated by the recursive call to sum-four-tuples. Each time the machine
from a module is used, it represents a different copy of that machine with separate state.
The function sum-four-tuples can now be Rex-compiled to create a machine that accepts
a particular length of list of four-tuples. The following form creates one that accepts a list
of three four-tuples and, lience, returns a list of three floats:

(makem (sum-four-tuples* 3) :module "sum-3-four-tuples" :obj "" :opt t)

2.3 Compiling and Running Rex Machines

Currently only one working system implements the described version of Rex. The Rex
compiler is written in CoMMON LisP and has been used successfully under four differ-
ent implementations of CoMMoN Lisp. The circuit simulation programs can only be run
on Sun Workstations that support the MC68020 and MC68881 floating point coprocessor
instruction set.

25

2.3.1 The Compiler

Rex compilation is done with the special CoMMON Lisp function makem. The syntax for
makem is

(makem constr-ezpr :module module-name { :list dest-directory} { :obj desl-direclory}
{ :main boo!l} { :name bool} { :no-verify bool} { :opt lool} { :picky bool}
{ :silent bool}) '

The argument consir-ezpr is a top level constraining expression. The keywords sur-
rounded with {}’s are optional. The keywords have the following effects:

:module The argument, module-name, is a string or atom that is used as the prefix
when making the interface and object file. The default is rex-mod.

:list The argument, dest-directory, is a string that is used as the path to the directory
where the user wants a file containing the MC68020 assembly code listing for the
machine to be written. If this keyword is omitted, then no assembly listing is
generated.

:0bj The argument, dest-directory, is a string that is used as the path to the directory
where the user wants the object code to be written. If this keyword is omitted.
then just the interface file and no object code file is created.

:name If the argument is non-nil, then each node in the intermediate LisP repre-
sentation of the Rex machine is given a descriptive name in its variable identifier
(var-id) field. This option can be used for debugging purposes, but requires
some Lknowledge of the intermediate LiSP representation of Rex machines. The
default is nil.

:no-verify If the argument is non-nil, then the compiler does not check the module
interface of the current program or of any submodules. Since the module interface
is not updated, the circuit depth and parallelism calculations of programs that
use this module will be wrong. This option allows the compiler to run faster, but
is somewhat risky since incompatibilities between modules can cause the linker
to fail or incorrect programs to be generated. In general, this option should only
be used if the user is certain the input or output structure of the new module
will not change. The default is nil.

:opt If the argument is non-nil, then the compiler generates optimized code. This
process increases compile time somewhat, but in general greatly improves the
speed of the macline simulation. One case for which you should turn this opti-
mizer off is for functions that include many module calls and little actual com-
putation. The default is nil.

:picky If the argument is non-nil, then whenever the compiler finds that it needs to
coerce an int to a float, it executes a cerror instruction. This allows the user
to make all such coercions explicit. The default is nil.

:silent If the argument is non-nil then the compiler only prints out the names of
any files that it writes and mentions if the module-declaration was changed.

26

Otherwise, the compiler prints out various useful statistics on the program it
is compiling and asks the user if it should update the module-declaration when
appropriate, The statistics include the number of thines each primitive Rex ma-
chine is used; the depth of the circuit (i.e., the greatest number of calculations
between an input and an output dependent on that input); and an estimation of
the degree of parallelism of the described circuit. The default for this keyword
is mil.

To create the machine code for the sum-four-tuples* Rex machine, evaluate the form:

(makem (sum-four-tuples* 3) :module "three-four-tuples"
tobj "a-sun:/usr/foo/rex/"
‘main t
topt t)

This will create a file named three-four-tuples.robj in the directory /usr/foo/rex on
the Sun, a-sun.

2.3.2 The Linker
Once the object code file has been generated, it must be linked. Linking can be done on a
Sun with the UNIX shell command rex_1nk. The syntax for this command is

rex_1nk module-name

If the argument module-name has a suffix (i.e. is of the form *.*), then rex_1nk looks for
a file with that name. If no file is found or the argument has no suffix, then rex_1nk looks for
a file with the name module-name.robj. If this module has any submodules then the robj-
files for these modules must be present in the same directory as the module being linked. If
an appropriate file is found along with all the needed .robj files for any modules that are
used, rex1Ink generates two new files: the executable binary file module-prefiz .rbin and
the debugging-information file module-prefir .rmap.

Tor our example, once the two files, plus-4-float.robj and 'three-four-ﬂ:uples .robj,
are in the same directory, they can be linked with the UNIX command

Tex lunk three-four-tuples
Yielding the files three-four-tuples.rbin and three-four-tuples.rmap.

2.3.3 The Executor

Once rex 1nk has been run, the resulting machine, module-prefiz.tbin, can be run in an
interactive mode using the UNIX shell command rex_run. The syntax for rex_run is

27

rexrun -p name {-d0tr} { -o name }

The flags surrounded by {} are optional. The flags have the following interpretations:

-p name Indicates that the program in the rbin-file neme should be run. This is the
only flag that is required.

-d Invokes the Rex run-time debugger described in the next section.

-0 Causes the storage locations given to the out function in the top-level function
for the entire program to be printed out every tick. Since information on the
type of these outputs is not always available, the values are printed in both int
and float versions. bools are printed as ints with the value 1 or 0, and strs
are printed as ints that represent the address of the string in memory.

-t Causes the length in milliseconds of each tick to be printed after each tick is
completed.

-r Causes rex_run to feed the data in a log-file to the program as input. Currently
the only way to generate a log-file is with rex_ex using the -1 flag. (See the
description of rex_ex below.)

-0 name Indicates the name of the log-file to be used for the -r flag. If this flag is
used, then the -r flag must be used. If the -r flag is specified but the -o flag is
not used, then the program looks for the file /home/dr4/flakey/in _record.log.
If this file does not exist, rex_run exits with an appropriate error.

The program rex_ex is a specialized version of rex_run that is useful only for running
programs that control Flakey, the SRI mobile robot. It can be used only with programs
whose input type is in_buf and whose output type is out _buf. These two types are defined
in the Lisp file robot_header.rex. The syntax for rex_ex is

rex_ex -p name {-dtlrnPBSTF} {-o name} {-s lang voc}

The flags surrounded by {} are optional. The flags have the following interpretations:

-p name Indicates that the program in the rbin-file name should be run. This is the
only flag that is required. Note the constraints on the program’s input type aud
output type discussed above.

-d Invokes the Rex run-time debugger described in the next section.

-t Causes the length in milliseconds of each tick to be printed after each tick is
completed.

-1 Causes rex_ex to create a compact record of the inputs the robot gets during an
execution of rex_ex. These files are called log-files. Currently this is the only
way to create log-files.

-r Causes rex_ex to feed the data in a log-file to the program as input. This flag
should not be used with the -1 flag.

28

-o name Indicates the name of the log-file to be used for the -r or -1 flags. If
this flag is used with the -1, flag a log-file is created called neme.log. If this
flag is used with the -r {lag, then rex_ex looks for the file name.log in the
current directory and uses it to run the program. If the -r or the -1 flag is
specified but the -o flag is not used, then the program looks for or creates the
file /home/dr4/flakey/in record.log. If this file does not exist, rex_run exits
with an appropriate error.

-n Causes rex_ex to set up a socket and start an ethernet server to control network
communication between Flakey and another machine on the network.

-s lang voc Causes the speech recognizer to load the speech grammar lang.1df and
the user vocabulary file voc.voc. These files should be on a disk of the PC
controlling the speech recognizer.

-P -B -S -T -F These flags are all related to controlling the display for programs
that nse Flakey’s vision system.

2.3.4 The Rex Runtime Debugger

The Rex run-time debugger allows the programmer to control the execution of a Rex pro-
gram and to mounitor the values of different storage locations during run time. I the -d
flag is used in either rex_run or rex_ex, then just before the program is executed the first
time, the program goes into the debugger. This is signified by the prompt

Bugm>

From this prompt you caun perform any of a set of commands described below. The
commands fit into three basic categories. One set of commands controls the execution of
the program. With these commands you can continue the program until it terminates in
the usual way, or step from tick to tick. The second set of commands allows yon to print
and trace the values of predesignated storage locations. The final set of commands allows
you to control the way in which these values are printed. The storage locations that can be
printed or traced are specified by the programmer explicitly in the Rex program, usiug the
special Rex function name. The syntax of name is the following:

(name name denote-ezpr) Assigns the name name to denote-ezpr for use by the debugger.
Name can be either a string or an atom. The value is denote-ezpr. If the user tries
to name two storage locations identically, name automatically adds as many x’s to the
end of name as needed to make the name unique. Note that this name function is
totally separate from the :name keyword used in makem.

For example, if we replace the top-level function sum-four-tuples#* with

(defun sum-four-tuples* (number)

(out (name ’sum-out (sum-four-tuples (in (list-type number (list-type 4 float}))}}))

29

and recompile, then the storage location resulting from this call to sum-four-tuples can be
examined during run time. In addition to the explicitly named storage locations, a special
storage location named tick always contains the number of the most recently executed tick.

The debugger has the following commands:

Execution Control Commands:

s number Steps number Rex ticks and returns to the debugger. If number is omitted,
then a single Rex tick is executed. If any storage locations are heing traced, they
are printed after each tick.

go LExecutes the machine until it is interrupted or it runs out of input data. If any
_storage locations are being traced they are printed after each tick.

Tracing and Printing Commands:

trace Should be followed by a list of the names of storage locations named with the
Rex function name. These names are added to the truce-table. When the machine
is executed, after each tick the values of all storage locations whose names appear
in the trace-table are printed out. The storage locations are printed out in the
order they appear on the trace-table. In addition to being printed on the screen,
the trace outpnt is sent to a file named trace.log. Even thongh name tries to
avoid name conflict by adding x’s to the end if two storage locations are given
the same name, two storage locations can still have the same nawme if they are
in different submodules. This is especially common if a module with named
storage locations is used more than once in a program and this resnlts in more
than one instance of that module. If there is a name conflict of this type, the
different storage locations can be referred to by the name followed by a space and
a number between 1 and the number of times the name appears. The number
depends on the order in which the storage locations appear in the rmap-file. If
there is a name conflict and no number is specified, the first (number 1) storage
location is traced.

trace-all Causes all the storage locations you have named and the additional location,
tick, to be traced.

untrace Should be followed by a list of the names of storage locations already in the
trace-table. For each name, the first occurrence of that name is removed from
the trace-table.

clear Clears the trace-table.

list Lists the trace-table.

trace-qualifier Expects the name of a single boolean storage location. The values of
the storage locations named in the trace-table are only printed when the location
contains 1b.

print Should be followed by a list of the names of storage locations named with Rex
function name. The current values of these storage locations are immediately
printed. If this is done before the program has ever been run, all the storage
locations will contain 0.

30

defined reg-ezp Lists all the names that can be added to the trace-table that match
the regular expression reg-ezp. If reg-exp is omitted, then all the names are
printed. If reg-ezp is of the form *reg-ezp, then all names ending with this second
reg-exp are listed. The command operates similarly for the form reg-exzp*.

Formating Commands:

enable-fat-numb causes numbers to be printed with greater precision.
disable-fat-numb causes numbers to be printed compactly.

enable-header causes a line containing the names in the trace-table to be printed
when the machine is started. The names on the screen have the same spacing as
the numbers that are being traced. Initially, headers are enabled.

disable-header causes no header line to be printed. This is useful if the trace.log
file is going to be analyzed by a prograin that expects only numbers for input.

In addition to the above commands the Rex run-time debugger has a history mechanism.
History in the debugger works similarly to history in the UNIX C-shell. The forms that
work are !'!, V4 - and !siring. History modification is not permitted. The history
length is always 19 and history is preserved over runs in the file .bugm_history. The current
history can be printed with the debugger command h.

31

3 Programming Examples and Exercises

3.1 Rex Examples

This section contains the Rex code for the machine specifiers discussed previously in the
subsection on Rex utilities.

The following are machines that compute minimum, maximuin, and absolute value:

(defun minm (x y)
(ifm (<m x y)
x

y))

(defun maxm (x y)
(ifm (Om x y)
x

y))

(defun absm (x)
(ifm (<m x '0)
(unary-minusm x}

x})

The following is a selector for structured storage locations. Note that all of the recursion
in these definitions happens at compile time.

(defun select-recurm {current-index index list)
(if (= 1 (length list))

(car list)
(ifm (>=m 'current-index index)
{car list)

(select-recurm {1+ current-index) index {cdr list)))))

(defun selectm {index list)
(select-recurm O index list))

This machine constructor creates a family of running-sum machines with differing initial
values:

{defun running-sum (init input)
{some* ({sum int))
(== sum (init-next init (plusm sum input)))
sum) }

(defun running-sum* (init)
(out (running-sum init (in int))))

32

Given a list of length length and an item, output a 1 if item is equal to one of the
elements of the list, and 0 otherwise:

(defun memberm {item list)
(if (null list)
120b
{orm (equalm item {car list))
(memberm item (cdr list}))}))

(defun memberm* (length type)
{some* ((the-item type)
(the-list (list-type length type)))
(== [the-item the-1ist] (in [type (list-type length type)l))
(out (memberm the-item the-1list))}))

This function maps the plusm machine over two lists of length length, generating a list
whose components contain the sums of the corresponding components in the input lists:

(defun plus-list (a b)
{(if (null a)
J
{cons (plusm (car a) (ecar b))
(plus-list (ecdr a) (edr B))II)

(defun plus-list* (length)
{some* ((listl (list-type length int)})
(1ist2 (list-type length int}))
(== [1istl 1list2] (in [{list-type length int) (list-type length int}]))
(out (plus-list listl 1list2))))

All of the examples given so far are written in a functional style. The following program
is an example of a more relational style of programming. It implements a push-down stack.

(defvar *pop*)
(defvar *push=)
(defvar *noop* }
(defvar *undefined* -99999)

{(defun stack-element (operation below element above)
{== element (init-next *undefined*
(ifm (equalm operation !*pop*)
below
(ifm (equalm operation !*push*)
above
element}))))

(defun stack (operation push-value the-stack)
(if (= (length the-stack) 1)

33

{stack-element operation !*undefined* (car the-stack)} push-value)
(some* ()
(stack-element operation (second the-stack)
{car the-stack) push-value)
(stack operation (car the-stack) (cdr the-stack))}})
(ifm (equalm operation !#pop*) :
(car the-stack)
'03)

(defun stack* (size)
(some*
((the-operation int)
(the-push-val int)
(the-stack (list-type size int}))
(== [the-operation the-push-val] (in [int int]})
(out (stack the-operation the-push-val the-stackl}}))

This stack is structured as a one-dimensional cellular automaton. The contents of the
storage location operatien control what is to happen to the stack at each cycle. It can
contain one of the following values (the encoding is unimportant): *push#*, *pop*, and
noop. If the value of operation is *push*, the value of any given stack element is the
previous value of the element above it and the top element takes on the value of the storage
location push-value; if the value of operation is *pop#*, the value of any stack element
is the previous value of the element below it and the top value is returned by the function
stack; if the value is *noop+*, each stack element retains its previous value. The relation
stack-element has four denoting-expression parameters: operation contains the stack
operation to be performed, above is the cell above, element is the stack element whose
value we are computing, and below is the stack element below. The definition encodes the
rule given above for the behavior of stack elements.

The stack is created recursively. The size of the stack is determined by the length of the
list passed to the function stack. If there is only one element in the stack, then the below
element is set to a special bottom element that always contains the constant *undefined#
since there is no real element below it. Thus, as values are popped off the stack, the stack
locations are filled in with that value. This allows us to check to see if the stack is full —
if it is, the last element is different from *undefined*. If more than one element is in the
stack, we constrain the top of the stack to be a stack element with above bound to the
push-value, and below to be the second element of the stack. Then we constrain the rest
of stack to behave as a {length — 1)-sized stack with the push-value set to the old top of
the stack.

3.2 Sample Problems
Following is a list of problems to be solved by writing Rex machine constructors. These

problems illustrate the variety of programming techniques available in Rex. The solutions
follow in the next subsection.

34

Write Rex constructors for the following machines:

1. The sometime machine. It takes a single boolean (1b or 0b) input, and cutputs 1b
if the input has ever been 1b, Ob otherwise.

2. The always machine. It takes a single boolean input and outputs 1b if the input has
always been 1b, Ob otherwise.

3. The running-average machine. It takes one integer input. The output should be
the average of all the inputs so far.

4. The plus-struect machine. It takes two structured storage arguments. It should
output a storage structure with the same structure as the inputs, but with components
containing the sums of the corresponding components in the input structures. A call
to this machine constructor might look like

(plus-structm [al [a2 a3] [a4 a8]] [b1l {b2 b3] [b4 b&1]1)

5. The life machine. Write a Rex program that simulates Conway's Game of Life. The
simulation takes place on a rectangular arvay of cells, each of which wmay contain an
organism. Ixcept for borders, each cell has eight cells immediately adjacent toit, and
so each organism may have np to eight neighbors. The survival and reproduction of
an organism from generation to generation depends on the number of neighbors it has
and is determined by four simple rules:

(a) If an organism has no neighbors or only one neighbor, it dies of loneliness.
(

)
b) If an organism has two or three neighbors, it survives to the next generation.
(c) If an organism has four or more neighbors, it dies of overcrowding.

)

(d) An organism is born in any empty cell that has exactly three neighbors.

All changes occur simultaneously; the fate of an organism depends on the current
generation irrespective of what may happen to its neighbors in the next generation.

The Rex machine constructor should have one value parameter, n (the Life game takes
place on an n x n grid), and no storage arguments. It should output the rectangular
grid containing the Life simulation. For convenience in processing the borders, you
may make the grid » + 2 by n+ 2, with an outer border initialized to always contain
0’s.

3.3 Solutions

Following are possible solutions to the problems posed in the previous section.

1. This specifies a machine that returns 1b if the input has ever been 1b, and 0b other-
wise:

35

{(defun sometime {input)
(some* {(result bool)
(output bool))
(== output {orm input xesult))
{== result {(init-next ’0b output))
output))

(defun sometimex* ()
(out (sometime {in bool))))

. This specifies a machine that returns 1b if the input has elways been 1b, and 0b

otherwise:

(defun always (input)
(some* ({result bool)
{output bool))
(== output (andm input result))
{== result {(init-next ’1b output))
output))

{defun always* ()
{out (always {in bool)})))

. The following returns the running average of the machines inputs. We keep a counter

of time since the machine began and a running sum. The returned vesnlt is the
quotient of the sum and the count.

{defun running-average (in-type input)
(some* ((count in-type)

{count-out in-type)

(sum in~type)

(sum-out in-type))
== count-out (plusm count 11.0))
== sum-out {plusm sum input))
== count (init-next 0.0 count-out))
(== sum (init-next 0.0 sum-out))
(divm sum-out count-out)))

(defun running-average* (in-type)
(out (running-average in-type (in in-type))))

. Here we sum two storage locations of equivalent structure, returning a storage location

whose elements are the sums of the correspending elements in the input structures.
This is done by general structure recursion on the structure of the inputs.

(defun plus-struct (a b)
(if (null a)
0

36

(if (var-p a)
(plusm a b)
{cons (plus—struct (car a) (car b))
{plus-struct (cdr a) (cdr b)}))))

{defun plus-struct* (type)
(some* {(a type)
(b type)
(output type))
(== [a b] (in [type typel))
== output {(plus-struct a b))
{name ’result output)
{out output)}))

5. This specifies a cellular automaton that simulates Conway’s Game of Life (see prob-
lems for the description) on an n by n grid, with empty borders. The compile timne
value parameter init-grid must be an n-element list of n-element lists of either Ob
or 1b. That parameter is the initial value of the Life array.

The function grid-type specifies a size by size grid of booleans. This method of
duplicating the type of int-grid ensures that it is a square grid of booleans.

(defun grid-type (size)
{(list-type size (list-type size bool)}))

This is the top-level function that allocates and initializes the boolean grid of storage
locations that are the cells of the game:

(defun life* (init-grid)
(some* {(a-grid (grid-type (length init-grid))))
(== a-grid (init-next init-grid (hook-up-grid 0 a-grid)))
(out a-grid)))

The denoting function, heok-up-grid, recursively constrains each row in the grid.
The value parameter, row, indicates the row being constrained. The denoting-expression -
parameter, grid, is used for indicating the size of the grid and is passed on to other
denoting functions that denote and constrain the rows of the grid denoted by this
function. The first and last rows are denoted by the function hook-up-zero-row,
which constrains these rows to always contain Ob. The other rows are computed with
the function hook-up-row:

{(defun hook-up-grid (row grid)
(cond ((= row 0)
(cons (hook-up-zero-row (length grid}) (hook-up-grid (1+ row) grid)))
((= (+ Tow 1) (length grid))
[(hook-up-zero-row (length grid))])
(t (cons (hook-up-row row 0 grid) (hook-up-grid (1+ row) grid)))))

37

Below we generate one row of the Life grid as a function of the whole grid (really
only the row above and below, but it's easier to pass the whole thing around). This
is done recursively by the column. It takes two value parameters: which row this is,
and what column we’re working on. If this is the first or last column, it is constrained
to Ob; otherwise, it is the result of the denoting function cellm. The first function,
element, denotes the cell of grid indexed by row and col. This function is used by
the second function, hook-up-row, to create the list of neighbors of each cell passed
to the function cellm.

{defun element (row col grid)
(nth col {nth row grid)})

{defun hook-up-row (row col grid)
(cond ((= col 0)
(cons :’0b (hook—up-row row (1+ col) grid)))
((= (+ col 1) (length grid))
[!70b])
{t {(cons (cellm {element row col grid)
[{element (1- row) (1- col) grid)
(element (1- row) col grid)
(element (1~ row) (1+ col) grid)
(element row {(1- col) grid)
(element row (14 col) grid)
{element (1+ row) (1- col) grid)
(element (1+ row) col grid)
{element (1+ row) (1+ col) grid}l)
(hook-up-row row (1+ col) grid)))))

The following function, bool-count, counts the number of 1b’s in a list of boolean
storage locations. This function is used by cellm to calculate the value of the celi
using the value of the corresponding cell denoted by the parameter cell and those of
the neighboring cells denoted by the parameter neighbors.

(defun bool-count (1)
(¢ond ((null 1)
10)
(t (ifm {car 1)
(plusm !'1 (bool-count (cdr 1)))
(bool-count (cdr 1}))3)))

(defun cellm (¢ell neighbors)
{some* ((neighbor-count int))
(== neighbor-count {bool-c¢ount neighbors))
(ifm (orm (<=m neighbor-count !1}
{>=m neighbor-count !4))
'10b
(ifm (equalm neighbor-count !3)
111b
cell})))

38

This function denotes a storage structure that is a list of length 1ength, each of whose
elements has the value 0b:

(defun hook-up-zero-row (length)
(if (zerop length)
0
(cons !'0b (hook-up-zero-row (- length 1)})))

Rex compilation would be done with a form like the following;:

(makem (life* ’'((Ob Ob Ob Ob Ob Ob)
(ob Ob Ob Ob Ob Ob)
{0b Ob 1b Ob Ob Ob)
(0b Ob 1b Ob Ob Ob)
(0b 0b 1b Ob 0Ob Ob)
(0b Ob 0b 0b 0b 0Ob)}))

The pattern here should oscillate between a vertical and a horizontal row of three
1b’s.

Acknowledgments

The Rex lauguage was iteratively designed and implemented by Stauley Roseuscliein
and Leslie Kaelbling. Nathan Wilson implemented the optimizing code generator,
and Stanley Reifel provided the UNIX linking, execution, and debugging tools. David
Chapman provided useful insights and much help on previous implementations of
Rex. Stan Rosenschein, Stan Reifel, Sandy Wells, and David Kaelbling made helpful
comments on earlier drafts of this paper.

39

References
[1] Hillis, W. Daniel, 1985: The Connection Machine (The MIT Press, Cambridge,
Massachusetts).

(2] Johnson, Steven D., 1983: Synthesis of Digital Designs from Recursion Equations
(The MIT Press, Cambridge, Massachusetts).

[3] Rosenschein, Stanley J., 1986: personal communication.

[4] Rosenschein, Stanley J. and Leslie Pack Kaelbling, 1986: “The Synthesis of Digi-
tal Machines with Provable Epistemic Properties,” Proceedings of the Conference
on Theoretical Aspects of Reasoning About Knowledge, pp. 83-98.

40

Appendix: Errors Encountered During Compiling

This appendix describes the error messages that can be generated by the Rex compiler.
The majority error messages that can be generated by the Rex compiler are simple
syntax errors in the use of a primitive Rex machine or a special Rex syntax. These
messages include the name of the function with the error and a brief description of
the problem. There is also a set of fatal compiler errors. These errors are all signalled
with the string Compiler Error!!!:. QOther error messages that can be generated
are described below:

Address number is too large. This error indicates that the number of vars has
exceeded 8,192. This causes an error because the 68xxx family of chips canuot
easily address locations more than 32k off of an address register. Wheun this error
occurs, find some way to break the program down into modules.

Value value is not of type type. This error indicates that an attempt was made to
use value incorrectly as a type. Look in your code {or constants equal to value. I
none are found, the compiler may be attempting to create a new coustant from
other constants and encountering an error. Look up the stack to find the other
constants.

Type is not a valid data type. Typeis undeclared or incorrectly declared.

Attempt to equate nonconformable structures. The storage locations in a
structure equation do not have the same structure.

Attempt to equate vars of different types. A pair of correspouding atomic
storage locations in a structure equation Liave different types.

Attempt to equate two already defined vars. A pair of corresponding atomic
storage locations in a structure equation are both constrained elsewhere in the
code.

The module, mod, has not been properly declared. Try recompiling the
module mod and evaluating the form (defmodule mod). If the problem persists
with the same module, remove the file mod.mod and evaluate the form {clrhash
nrex::*module-hashtablex), then recompile the module and evaluate the form
(defmodule mod). If the problem still persists, it may be necessary to reload
the entire Lisp world.

Input/output type does match module declaration for mod. A module has been
called with the wrong type of arguments. There is an error in either (1} the use
of the module or {2) the in or out forms of the module.

Propagation or module var depends on itself with no delay. An illegal
circularity has been found in the circuit. You probably forgot an init-next.

Thing is not a structure of vars. The input, thing, to a Rex machine is not a
storage location. Most likely there is a missing ‘!".

The node, var, has no definition. Look up the stack to see who depends on
it. Some output, named variable, or descendent of such is not defined. Looking

41

up the stack tells you what kind of thing is undefined and hopefully gives clues
as to where in the code the problem is. One common cause of this error is when
the computation of var has been removed from the code, but var is still named.

The output, var, is undefined. One of the outputs, as declared in the out form,
is not constrained.

42

