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Abstract

A single two-dimensional image is an ambiguous representation of the three-
dimensional world—many different scenes could have produced the same
image—yet the human visual system is extremely successful at recovering a
qualitatively correct depth model from this type of representation. Work-
ers in the field of computational vision have devised a number of distinct
schemes that attempt to emulate this human capability; these schemes are
collectively known as “shape from ....” methods (e.g., shape from shading,
shape from texture, or shape from contour). In this paper we contend that
the distinct assumptions made in each of these schemes must be tanta-
mount to providing a second (virtual) image of the original scene, and that
any one of these approaches can be translated into a conventional stereo
formalism. In particular, we show that it is frequently possible to struc-
ture the problem as one of recovering depth from a stereo pair consisting
of the supplied perspective image (the original image) and an hypothesized
orthographic image (the virfual image). We present a new algorithm of the
form required to accomplish this type of stereo reconstruction task.



1 Introduction

The recovery of 3-D scene geometry from one or more images, which we
will call the scene-modeling problem (SMP}), has solutions that appear to
follow one of three distinct paradigms: stereo; optic flow; and shape from
shading, texture, and contour.

In the stereo paradigm, we match corresponding world/scene points in
two images and, given the relative geometry of the two cameras (eyes)
that acquired the images, we can use simple trigonometry to determine the
depths of the matched points [1].

In the optic-flow paradigm, we use two or more images to compute the
image velocity of corresponding scene points. If the camera’s motion and
imaging parameters are known, we can again use simple trigonometry to
convert velocity measurements in the image to depths in the scene [21].

In the shape from shading, texture, and contour (SSTC) paradigm,
we must either know, or make some assumptions about the nature of the
scene, the illumination, and the imaging geometry. Brady’s 1981 volume on
computer vision [2] contains an excellent collection of papers, many of which
address the problem of how to recover depth from the shading, texture, and
contour information visible in a single image. Two distinct computational
approaches have been employed in the SSTC paradigm: (1) integration of
partial differential equations describing the relation of shading in an image
to surface geometry in a scene, and (2) back-projection of planar image
facets to undo the distortion in an image attribute (e.g., edge orientation)
induced by the imaging process on an assumed scene property (e.g., uniform
distribution of edge orientations).

Our purpose in this paper is to provide a unifying framework for the
scene modeling problem, and to present a new computational approach to
recovering scene geometry from the shading, texture, and contour informa-
tion in a single image. Our contribution is based on the following observa-
tion: regardless of the assumptions employed in the SSTC paradigm, if a
3-D scene model has been derived successfully, it will generally be possible
to establish a large number of correspondences between image and scene
(model) points. From these correspondences we can compute a collineation
matrix [11], and then extract the imaging geometry from it [4] [19]. We can



Figure 1: Wire Room

now construct a second image of the scene as viewed by the camera from
some arbitrary location in space. It is thus obvious that any technique that
is competent to solve the SMP must either be provided with at least two
images or make assumptions that are equivalent to providing a second im-
age. We can unify the various approaches to the SMP by converting their
respective assumptions and auxiliary information into the implied second
image and employing the stereo paradigm to recover depth. In the case of
the SSTC paradigm, our approach amounts to “one-eyed stereo.”

2 Shape from One-Eyed Stereo

Most people viewing Figure 1 get a strong impression of depth. We can
recover an equivalent depth model by assuming that we are viewing a pro-
jection of a uniform grid and employing the computational procedure to
be described. In the remainder of this paper we will show how some sim-
ple modifications and variations of the uniform grid, as the implied second
image, allow us to recover depth from shading, texture, and contour.

The one-eyed stereo paradigm can be described as a five-step process,
as outlined in the paragraphs below. Some scenes with special surface
markings or image-formation processes must be analyzed by variants of the
algorithm described, but the general approach remains the same.



2.1 Partition the Image

As with all approaches to the SMP, the image must be segmented into
regions prior to the application of a particular algorithm. Before the one-
eved stereo computation can be employed, the segmentation process must
delineate regions that are individually in conformance with a single model of
image formation. The computation can then be carried out independently
in each region, and the results fitted together.

2.2 Select a Model

For each region identified by the partitioning process, we must decide upon
the underlying model of image formation that explains that portion of the
image. Surface reflectance functions and texture patterns are examples of
such models. Partitioning of the image and selection of the appropriate
models are difficult tasks that are not addressed in this paper. Witkin
and Kass [23] are exploring a new class of techniques that promises some
eventual answers to these questions. Generally, it will be impossible to
recover depth whenever a single model cannot be associated with a region.
Similarly, inaccurate or incorrect results can be expected if the partitioning
or modeling is performed incorrectly.

2.3 Generate the Virtual Image

The key to one-eyed stereo is using the model of image formation to fabri-
cate a second (virtual) image of the scene. The idea is that the model often
allows one to construct an image that is independent of the actual shape
of the imaged surface. This allows the virtual image to be depicted solely
from knowledge of the model without making use of the original image.
For example, the markings on the surface of Figure 2(a) could have arisen
from projection of a uniform grid upon the surface. For all images that fit
this model, we can use a uniform grid as the virtual image. As a rule, the
orientation, position, and scale of this grid will be unknown; however, we
will show how this information can be recovered from the original image.
Other models give rise to other forms of virtual images.



Figure 2: (a) A projected texture (b) Its virtual image

2.4 Determine Correspondences

Before applying stereo techniques to calculate depths, we must first es-
tablish correspondences between points in the real image and the virtual
image. When dealing with textures, the process is typified by counting tex-
els in each image from a chosen starting point. With shaded images, the
general approach is to integrate intensities. Several variants of the method
for establishing correspondences are described in the next section. The dif-
ficulty of the procedure, it should be noted, will depend on the nature of
the model.

2.5 Compute Depths Using Stereo

With two images and a number of point-to-point correspondences in hand,
the techniques of binocular stereo are immediately applicable. At this point,
the problem has been reduced to computing the relative camera models
between the two images and using that information to compute depths
by triangulation. The fact that the virtual image will normally be an
orthographic projection required reformulation of existing algorithms for
performing this computation. The appendix describes a new algorithm that
computes the relative camera model and reconstructs the 3-D scene from
eight point correspondences between a perspective and an orthographic
image.

The problem of recovering scene and imaging geometry from two or



more images has been addressed by workers not only in binocular stereo,
but also in monocular perception of motion in which the two projections
are separated in time as well as space. Various approaches have been em-
ployed to derive equations for the 3-D coordinates and motion parameters;
these equations are generally solved by iterative techniques [5] [8] [13] [14].
Ullman [21] presents a solution for recovering 3-D shape from three ortho-
graphic projections with established correspondences among at least four
points. His “polar equation” allows computation of shape when the motion
of the scene is restricted to rotation about the vertical axis with arbi-
trary translation. Nagel and Neumann [10] have devised a compact system
of three nonlinear equations for the unrestricted problem when five point
correspondences between the two perspective images are known. More
recently, Huang [20] and Longuet-Higgins [9] have independently derived
methods requiring only that a set of eight simultaneous linear equations be
solved when eight point correspondences between two perspective images
are known. In our formulation we are faced with a stereo problem involv-
ing a perspective and an orthographic image; while the aforementioned
references are indeed germane, none provides a solution to this particular
problem.

The derivation described in the appendix was inspired by the formula-
tion of Longuet-Higgins for perspective images. When either image nears
orthography, Longuet-Higgins’s method becomes unstable; it is undefined if
either image is truly orthographic. Moreover, his approach requires knowl-
edge of the focal length and principal point in each image while our method
was derived specifically for one orthographic and one perspective image
whose internal imaging parameters may not be fully known.

3 Variations on the Theme

In this section we illustrate how our approach is used with several models
of texture, shading, and contour. Where these models do not match given
scene characteristics, they may require additional modification. However,
a qualitatively correct answer might still be obtainable by applying one
of the specific models we discuss below to a situation that appears to be
inappropriate, or to an image in which the validity of the assumptions
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cannot be established.

3.1 Shape from Texture

Surface shapes are often communicated to humans graphically by drawings
like Figure 2(a). Such illustrations can also be interpreted by one-eyed
stereo. In this case, there is no need to partition the image; the underlying
model of the entire scene consists of the intersections of lines distributed in -
the form of a square grid. When viewed directly from above at an infinite
distance, the surface would appear as shown in the virtual image of Figure
2(b) regardless of the shape of the surface. This virtual image can be con-
strued as an orthographic projection of the object surface from a particular,
but unknown, viewing direction. Correspondences between the original and
virtual images are easily established if there are no occlusions in the origi-
nal image. Select any intersection in the original image to be the reference
point and pair it with any intersection in the virtual image. A second cor-
responding pair can be found by moving to an adjacent intersection in both
images. Additional pairs are found in the same manner, being careful to
correlate the motions in each image consistently in both directions. When
occlusions are present, it may still be possible to obtain correspondences for
all visible junctions by following a nonoccluded path around the occlusion
(such as the hill in the foreground of Figure 2(a)). If no such path can be
found, the shape of each isolated region can still be computed, but there
will be no way to relate the distances without further information. Other
techniques used to represent images of 3-D shapes graphically may require
other virtual images. Figure 3(a), for example, would imply a virtual image
as shown in Figure 3(b). Methods for recognizing which model to apply
are needed, but are not discussed here.

Once correspondences have been determined, we can use the algorithm
given in the appendix to recover depth. We have presumably one per-
spective image and one orthographic image whose scale and origin are still
unknown. The depths to be recovered will be scaled according to the scale
chosen for the virtual image'. The choice of origin for the orthographic im-

!Recall that the original image does not contain the information necessary to recover the
absolute size of the scene.



Figure 3: (a) The original image (b) The virtual image

age is arbitrary, and will lead to the same solution regardless of the point
chosen. The appendix shows how to compute both the orientation and the
displacement of the orthographic coordinate system, relative to the per-
spective imaging system. 3-D coordinates of each matched point are then
easily computed by means of back-projection. A unique solution will be
obtained whenever the piercing point or focal length of the perspective im-
age is known. A minimum of eight pairs of matched points is required to
obtain a solution; depths can be computed for all matched points.

There exists a growing literature on methods to recover shape from nat-
ural textures |7][12][18][22]. We will now show how the constraints imposed
by one type of natural texture can be exploited to obtain similar results by
using one-eyed stereo.

Consider the pattern of streets in Figure 4. If this city were viewed
from an airplane directly overhead at high altitude, the streets would form
a regular grid not unlike the one used as the virtual image in Figure 2.
There are many other scene attributes that satisfy this same model. The
houses in Figure 5 would appear to be distributed in a uniform grid if
viewed from directly overhead. In an apple orchard growing on a hillside,
the trees would be planted in rows that are evenly spaced when measured
horizontally; the vineyard in Figure 6 exhibits this property.

Ignoring the nontrivial tasks of partitioning these images into isotextu-
ral regions, verifying that they satisfy the model, and identifying individual
texels, it can be seen how these images can be interpreted with the same



Figure 5: The houses can be construed as a projected texture. [3]



Figure 6: These grapevines exhibit a regular texture. [3]
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techniques as were described in the previous section. The virtual image
in each case will be a rectangular grid that can be considered as an or-
thographic view from an unknown orientation. Correspondences can be
established by counting street intersections, rooftops, or grape vines. As
before, one can solve for the relative camera model and compute depths
of matched points. Obviously, for the situations discussed here, we must
be satisfied with a qualitatively correct interpretation—not only because of
the difficulty of locating individual texels reliably and accurately, but also
in view of the numerical instabilities arising from the underlying nonlinear
transformation.

3.2 Shape from Shading

For our purposes, surface shading can be considered the limiting case of
a locally uniform texture distribution (as the texels approach infinitesimal
dimensions). To compute correspondences, we need to integrate image in-
tensities appropriately in place of counting lines, since the image intensities
can be seen to be related to the density of lines projected on the surface.
The feasibility of this procedure depends on the reflectance function of the
surface. ‘

What types of material possess the special property that allows their
images to be treated like the limiting case of the projected textures of
the previous section? The integral of intensity in an image region has to
be proportional to the number of texels that would be projected in that
region. If the angles 7 and e are defined as depicted in Figure 7, it can
be seen that the number of texels projected onto a surface patch will be
proportional to cos?, the cosine of the incident angle. At the same time,
the surface patch (as seen from the viewpoint) will be foreshortened by
cose, the cosine of the emittance angle. Thus, the integral of reflected
light intensity over a region will be proportional to the flux of the light
striking the surface if the intensity of the reflected light at any point is
proportional to cosi/cose. Horn [6] has pointed out that, when viewed
from great distances, the material in the maria of the moon and other
rocky, dusty objects exhibit a reflectance function that allows recovery of
the ratio cosi/cose from the imaged intensities. This surface property

11
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Figure 7: The geometry of surface illumination

has made possible unusually simple algerithms for computing shape-from-
shading, so it is not surprising that it submits easily to one-eyed stereo as
well.

To interpret this type of shading, we can construct a virtual image
whose direction of view is the lighting direction (4.e., taken from a “virtual
camera” located at the light source). When the original shaded image is
orthographic, we consider a family of parallel lines in which each line lies
in a plane that includes both the light source and the (distant) viewpoint.
When viewed from the light source, the image of the surface corresponding
to these lines will also be a set of parallel lines regardless of the shape of
the surface. These parallel lines constitute the virtual image. We will use
the image intensities to refine these line-to-line correspondences to point-
to-point correspondences. Figure 8 shows the geometry for an individual
line in the family. A little trigonometry shows that

cos1
AS!_

- coseAS ! (1)

where
As is a distance along the line in the real image and As' is the corre-
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Figure 8: The geometry along a line in the direction of the light source

sponding distance along the corresponding line in the virtual image. Inte-
grating this equation produces the following expression, which defines the
point correspondences in the two images along the given line.

' * cost

.3—30+0$S—;ds (2)

To use this equation we must first compute %:—:— from the intensity value

at each point along the line. This will, of course, be possible only when the
reflectance function is constant for constant % Next we choose a starting
point in the shaded image and begin integrating intensities according to
Equation (2). For any value of s, the corresponding virtual image point
is along a straight line at a distance s’ from the virtual reference point.
With these point-to-point correspondences in hand, it is a simple matter of
triangulation to find the 3-D coordinates of the surface points, given that

we know the direction to the light source. We can explore the remainder of
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the surface by repeating the process for each of the successive parallel lines
in the image. Adjacent profiles still remain unrelated to each other, since
their individual scale factors have not yet been ascertained. Knowledge
of the actual depth of one point along each profile provides the necessary
additional information to complete the reconstruction. It is important to
note that our assumptions and initial conditions are those used by Horn;
the fact that he was able to obtain a solution under these conditions assured
the existence of a suitable virtual image for the one-eyed stereo paradigm.

For shaded perspective images, we must integrate along a family of
straight lines that radiate from the point in the image that corresponds to
the location of the light source. This ensures that the image line will be in a
plane containing both the viewer and the light source, and that the virtual
image of each line will also be a straight line. The integration becomes a
bit more complex than shown in Equation 2 because the nonlinear effects
of perspective imaging must be accommodated. Nevertheless, it remains
possible to establish point-to-point correspondences between images and to
reconstruct the surface along each line.

3.3 Shape from Contour

It is sometimes possible to extract a line drawing, such as the one shown
in Figure 9, from scene textures. Parallel streets like those encountered in
Figure 4 give rise to a virtual image consisting of parallel lines when the
cross streets cannot be located; terraced hills also produce a virtual image
of parallel lines. Correspondences between real and virtual image lines can
be found by counting adjacent lines from an arbitrary starting point. This
matches a virtual image line with each point in the real image. Point-to-line’
correspondences are not sufficient to enable the stereo computation of the
appendix to be used for reconstruction of the surface. Knowledge of the
relative orientation between the two images {equivalent to knowing the ori-
entation of the camera that produced the real image relative to the parallel
lines in the scene) provides an adequate constraint; the surface can then
be reconstructed uniquely through back-projection. Without knowledge of
the relative orientation of the virtual image, heuristics must be employed
that relate points on adjacent contours so that a regular grid can be used as

14
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Figure 9: (a) An image of contours  (b) Its virtual image

the virtual image. The human visual system is normally able to interpret
images like Figure 9 unambiguously although just what assumptions are
being made remains unclear. Further study of this phenomenon may make
it possible to extract models that are especially suited to the employment
of one-eyed stereo on this type of image without requiring prior knowledge
of the virtual orientation.

3.4 Distorted Textures and Unfriendly Shading

We have already noted that image shading can be viewed as a limiting (and,
for our purposes, a degenerate) result of closely spaced texture elements. To
recover depth from shading, we must use integration instead of the process
of counting the texture elements that define the locations of the “grid lines”
of our virtual image. The integration process depends on the existence of
a “friendly” reflectance function and an imaging geometry that allows us
to convert distance along a line in the actual image to a corresponding
distance along a line in the virtual image.

The recovery of lunar topography from a single shaded image [6], as
discussed in Section 3.2, is one of the few instances in which “shape from
shading” is known to be possible without a significant amount of additional
knowledge about the scene. Nevertheless, even here we are required to
know the actual reflectance function, the location of the [point] source of
illumination, and the depths along a curve on the object surface, and be
dealing with a portion of the surface that has constant albedo. Furthermore,
the reflectance function has to have just the property we require to replace
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direct counting, i.e., the reflectance function has to compensate exactly for
the “foreshortening” of distance due to viewing points on the object surface
from any angle. Most of the commonly encountered reflectance functions,
such as Lambertian reflectance, do not possess this friendly property, and
it is not clear to what extent it is possible to recover depth from shading in
such cases {e.g., see Pentland [12] and Smith [15]). Additional assumptions
will probably be necessary and the qualitative nature of the recovery will
be more pronounced. Just as in the case in which a complex function
can be evaluated by making a local linear approximation and iterating the
resulting solution, so it may be possible to deal with unfriendly, or even
unknown, reflectance functions by assuming that they are friendly in the
vicinity of some point, solving directly for local shape by using the algorithm
applicable to the friendly case, and then extending the solution to adjacent
regions. We are currently investigating this approach.

The uniform rectangular grid and the polar grid that we used as virtual
images to illustrate our approach to one-eyed stereo are effective in a large
number of cases because there are processes operating in the real world that
produce corresponding textures (i.e., gridlike textures that appear to be or-
thographically projected onto the surfaces of the scene). However, there are
also textures that produce similar-appearing images, but are due to differ-
ent underlying processes. For example, a uniform gridlike texture might
have been created on a flat piece of terrain that is subsequently subjected
to geologic deformation—in this case the virtual image (or the recovery
algorithm} needed to recover depth must be different from the projective
case. We have already indicated the problem of choosing the appropriate
model for the virtual image and, as noted above, image appearance alone is
probably insufficient for making this determination—some semantic knowl-
edge about the scene is undoubtedly essential. Figure 10 shows an example
in which two completely different, yet equally believable, interpretations of
scene structure result, depending on whether we use the rectangular grid
model or the polar grid model.

16



Figure 10: This simple drawing has two reasonable interpretations. It
is seen as curved roller-coaster tracks if the lines are assumed to be the
projection of a rectangular grid, or as a volcano when the lines are assumed
to be the projection of a circular grid.

4 Experimental Results

The stereo reconstruction algorithm described in the appendix has been
programmed and successfully tested on both real and synthetic imagery.
Given a sparse set of image points and their correspondence in a virtual
image, a qualitative description of the imaged surface can be obtained.
Synthetic images were created from surfaces painted with computer-
generated graphic textures. Figure 11(a) shows a synthetic image com-
structed from a section of a digital terrain model {DTM). The intersections
of every tenth grid line constitute the set of 36 image points made
available to the one-eyed stereo algorithm. Their correspondences were es-
tablished by selecting an arbitrary origin and counting grid lines to obtain
virtual inage coordinates. When these pairs are processed by the algorithm
in the appendix, a set of 3-D coordinates is obtained in either the viewer-
centered coordinate space, or the virtual image coordinate space (which, if
correct, is aligned with the original DTM). Figure 11(b) was produced from
the resulting 3-D coordinates expressed in the virtual image space by using
Smith’s surface interpolation algorithm [16] to fit a surface to these points.
This yields a dense set of 3-D coordinates that can then be displayed from
any viewpoint. The viewpoint that was computed by one-eyed stereo was
used to render the surface as shown in Figure 11(b). Its similarity to the

17



Figure 11: {a) View of part of a DTM (b) View of surface reconstructed
from (a)

original rendering (Fig. 11{a)) confirms the successful reconstruction of the
scene.

The same procedure was followed when we worked with real photographs.
The intersections of 31 street intersections were extracted manually from
the photograph of San Francisco shown in Figure 4. Those that were oc-
cluded or indistinct were disregarded. Virtual image coordinates were ob-
tained by counting city blocks from the lower-left intersection. The one-
eyed stereo algorithm was then used to acquire 3-D coordinates of the
corresponding image points in both viewer-centered and grid-centered co-
ordinate systems. A continuous surface was fitted to both representations
of these points. The location and orientation of the camera relative to the
grid were also computed. Figure 12(a) shows the reconstructed surface
as an orthographic view from the direction computed to be true vertical.
The numbers superimposed are the computed locations of the original 31
points. Figure 12(b) shows the surface from the derived location of the
viewpoint of the original photo. While several of the original points were
badly mislocated, the general shape of the landform is apparent.

There are several reasons the algorithm can provide only a qualitative
shape description. First, the problem itself can be somewhat sensitive to
slight perturbations in the estimates of the piercing point or focal length.
This appears to be inherent to the problem of recovering shape from a sin-
gle image. How humans can perceive shape monocularly without apparent
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Figure 12: (a) Orthographic view of surface reconstructed from Figure 4
(b) Perspective view of same surface (from derived camera location)

knowledge of the piercing point or semantic content of the scene remains
unresolved. The second factor precluding precise, quantitative description
of shape is the practical difficulty of acquiring large numbers of correspond-
ing points. While the algorithm can proceed with as few as eight points, the
location of the object will be identified at those eight points only. If a more
complete model is sought, additional points will be required to constrain
the subsequent surface interpolation.

The task remains to evaluate the effectiveness of the iterative technique,
described in Section 3.4, for recovering (1) shape from shading in the case
of scenes possessing “unfriendly” reflectance functions, and (2) shape from
nonprojective and distorted textures. Our experience with the process in-
dicates that the key to surmounting these problems lies in the ability to
establish valid correspondences with the virtual image. With these in hand,

reconstruction of the surface can proceed as outlined in the foregoing dis-
cussion.
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5 Conclusion

In this paper we have shown that, in principle, it is possible to employ the
stereo paradigm in place of various approaches proposed for modeling 3-D
scene geometry—including the case in which only one image is available.
We have further shown that, for the case of a single image, the approach
could be implemented by:

1. Setting up correspondences between portions of the image and some
variants of a uniform grid, and;

2. Treating each image region and its grid counterpart as a stereo pair,
and employing a stereo technique to recover depth. {We present a
new algorithm that makes it possible to accomplish this step.)

3. Devising automatic procedures to partition the image, select the ap-

- propriate form of the virtual image, and establish the correspondences

are all difficult tasks that were not addressed in this paper. Neverthe-

less, we have unified a number of apparently distinct approaches, that

individually, also have to contend with these same pervasive problems
(i.e., partitioning, model selection, and matching).
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6 Appendix

The main body of this paper was devoted to showing how the problem of
interpreting certain varieties of textured and shaded images can be trans-
formed into equivalent problems in binocular stereo. Beginning with a per-
spective image, a second (virtual) image is hypothesized according to some
presumed model of the original image. The model also specifies how to es-
tablish the correspondence between points in the two images. To compute
the shape of the surfaces in the original scene, we need only compute the
3-D coordinates from the information in the two images, where the actual
scene is a perspective projection and the virtual image has been constructed
as an orthographic projection. This appendix shows how three-dimensional
coordinates can be computed from point correspondences between a per-
spective and an orthographic projection when the relation between the
imaging geometries is unknown.

We will use lowercase letters to denote image coordinates and upper-
case letters for 3-D object coordinates. Unprimed coordinates will refer
to the geometry of the perspective image, and primed coordinates to the
orthographic image. Let &, and z, be the image coordinates of a point in
the perspective image relative to an arbitrarily selected origin. Let —d,
and —d; be the [unknown] image coordinates of the principal point and
let f [> 0] be the focal length. The object coordinates associated with an
image point are (X, X>, X;s), where the origin coincides with the center of
projection and the X axis is perpendicular to the image plane. The Xj
coordinates of any object point will necessarily be positive.

The imaging geometry is as depicted in Figure 13 and yields the follow-
ing standard perspective equations:
Xz

Xy
—ﬁ, T2 + dz = Z (3)

For the orthographic image, z; and z, are the image coordinates (rela-’
tive to an arbitrary origin) and (X, Xj, X3) is the world coordinate system
defined such that

Il-f-d]:f

zy = X1; 75 = X3 (4)
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Figure 13: Definition of coordinate system
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We use the unknown scale factor between orthographic image coordinates
and the scene as our unit of measurement.
The two world coordinate systems can be related as follows:

X' =R(X-T) , (5)
where X is the column vector [X;, Xz, Xi|T,
X' is the column vector [ X!, X} X}i|T,
R is a 3x3 rotation matrix, and
T is a translation vector from the center of perspective projection to the
origin of the world coordinate system associated with the orthographic
projection. For either component (i=1 or 2), we can write

Xi=R (X-T) (6)
where R; is the i-th row of B. By substituting Equations 3 and 4 into the
above, we obtain

flzy + R, -T)
By [{z1+d1), (z2+4d3), f]
Eliminating X from the two equations in Equation 7 yields

Xs = (7)

0= ziT Ry + 222 Ry + 2\ R - D — 242 Ry — thzo Bys — 2L Ry - D
+1z, (R21 Rl - T — R11R2 . T) + 272(R22R1 -T - RlzRg : T) (8)
+R,-TR,-D— R, - TR,-D

where D is the vector [dy, d2, f].

The above equation relates image coordinates for corresponding points
in both images. The following unknowns can be found by using eight cor-
responding pairs and solving the system of eight linear equations:
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B, = R
B3 == i‘é'—?
By =512
B, = Ao ©)
R
By=f2R .T—R, T
By = g—(Ry - T)(R; - D) — g (R; - T)(R, - D)
B, ]
B,
iz, ziT, Ty —zhry —1p, T 1y 1 B, LT
. B .
B: =| (10)
By
B,
. Bs ad

When more than eight points are available, a least-squares method can be
employed to solve the system of equations. Once we have the B;’s in hand,
we can solve for the components of the rotation matrix R. First, &), can
be determined by making use of the fact that the rows of a rotation matrix
are orthogonal. Thus, from R, - B; = 0 and the expressions for By, B and
B, in Equation 9, we get

R (B:B:+ B —2B\By,B,)— RE(1+B*+B:+B:+1=0 (11

This yields two real values for R,;; fortunately we’ll be able to identify the
incorrect one later. For now, let us simply choose one at random and return
to this point if it turns out to be wrong.

The rest of R can be derived from the B;’s in a similar fashion, R;», Rs;
and Ry, can be established immediately from R;; and Equation 9. R,s is
determined from the fact that || Ry {|= 1. R, - R; = O gives an expression
for Re3. Finally, B3 is computed from the fact that R, x R, = R3 for all
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rotation matrices. As a result, we have completely derived two alternative
R matrices, depending on the choice of R;;. One of these matrices is correct,
while the other can be eliminated later.

Now to solve for the translation vector T. First let us note that 7 cannot
be found uniquely, because the origin of the primed world coordinate system
has not been completely specified. The X| and X} coordinates of the origin
were fixed by the choice of origin for the orthographic image coordinates,
but the position of the origin along the Xj axis is still unconstrained. Since
we are free to choose any origin for X', we will choose the one for whlch

Ts = 0.
Using the expression for By in Equation 9, we find
R
By = Rz‘ (R Ty + Ri;T; + RisTs) — (RuTy + Roo Ty + RysTs)  (12)
11
’\Ia]\lng use of the fact that Rys = Ry Rps — Ry2 Ry and Ty = 0, we get
_ £y
T, = =By Roy (13)
Similarly,
T, = By~ Ry (14)
Rss

The origin of the primed coordinate system in unprimed coordinates is
given by
Rll Rll
B —Bs—, 0].
[ TRSS GRSS, ] (15)
If the location of the principal point is known but the focal length (the
scale factor of the perspective image) is not, f can easily be computed from

Equation 9:
Bs Ry — Byd, — Ripd,

/ Rys
If the focal length is known, the principal point of the perspective image
is found as follows. Use the third and fifth expressions of Equation 9 to
write two equations in the two unknowns, d, and d;. Their solution yields

(16)

f_a_L+BBR1|R22—53311R12

R33 Ras (17)
d — f_32+B8R“_"B5RIIRQI
2 Raz Raz
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The perspective image coordinates of the principal point are [—d;, —d,].

If neither the focal length nor principal point is known beforehand, then
the problem we have proposed does not have a unique solution. Equation
17 specifies the constraints between focal length and piercing point. For
any choice of focal length, there exists a unique principal point. The center
of perspective projection is constrained to lie on a line parallel to the lines
of sight of the orthographic projection. The reconstructed surface will be
distorted as one varies the center of projection along this line. It is worth
noting, however, that our computations of the rotation matrix R and the
translation vector T did not require knowledge of either the focal length or
the principal point.

We are now in a position to compute the world coordinates of all points
for which we have correspondences. There may, of course, be many more
than the minimum of eight points used so far. Equation 6 gives

Xs
Yy

which can be solved for

X
(z; +dy), Z2(zo+dy), Xs|—R-T (18)

=R
! f

_ fzi+ R -T)
Rz + Rypzp + R - D

X, (19)
Now we must check the signs of the Xg’s. If they are negative, the world
points are located behind the center of projection. The correct solution,
corresponding to all positive values of X3, can be found by choosing the
alternative value of R, derived earlier and repeating the computations from
that point. After obtaining the set of positive X3’s, we can continue.
Equation 3 gives the other unprimed world coordinates:
X, = X_a(—"»'l +dy); Xy = é(fb’z + dg) (20)
f f
If desired, the primed coordinates can be found by applying Equation 5.
The above derivation makes the implicit assumption that the X} and
X! axes are scaled equally. It is conceivable that the virtual image coor-
dinates could be unequally scaled, as is the case when they are derived
from a rectangular grid (e.g., Figure 4). If we have prior knowledge of the
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ratio of the sides of each rectangular grid element, then the virtual image
coordinates should be normalized before applying this algorithm (7. e., by
dividing X3 by this ratio). Without knowledge of the ratio, the problem is
underspecified and a unidimensional class of solutions exists. Knowledge of
the piercing point, if available, can be used to constrain the problem further
and to solve for the unique solution. To do this, we define the following
virtual coordinate systems in place of Equation (4):
! ] ! 1 !

T, = Xi; Th = EXZ (21)

where k is the ratio of the sides of the rectangular grid elements.
The solution proceeds as before, yielding

0= QIQI]RQI + I’ll'szz + I;Rz D - kI'zI]Ru - kIéIleg - kI;_Rl - D
+I'1 (RglRl . T — RIIRZ . T) + Ig(Rzle . T —_ R12R2 - T)
+R,-TR, - D—-—R;, - TR,-D

. (22)
The above equation is recast as the eight linear equations:
G
Ce
—ziT, —z) Thr, ThT, T, T To 1 Cs T\ T
Cy | _
G| = (23)
Ce
&
e CB -
where R
Cl = E:‘f
C, = Ra-D
Ray
C, = Ry
f21
04 = %f‘l"z
05 — kﬁll‘D (24)
Com By T - By T
Cr = %ﬁRz-T-%gRI-T
Cy = RLM(Rz -T)(RBy - D) — RL.“(Rl : T)(Rz - D)



The following equalities can then be derived from Equation (24):

Ryy = E”(Cs — Csdy — C4d2)

Tk 25
By = B2(C, — dy — Cydy) (25)

—(Cs — Cydy — C4d2)(C; ~ dy — Cydy)
= 26
/ J Cs + C1C (26)
R2l =+ f (27)

\/f2 + Ci [P+ (Co — dy ~ Cidy)?

_ R21 212 2 2

k= 7\/f CE + f2C? + (C5 — Cydy — Cydy) (28)

The rest of R can now be computed easily from Equation (24) and R, x R, =
Rs;. The translation vector T is given by Equation (15) because Cy = By
and C7; = B;. With R and T now fully recovered, it is a simple matter to
derive the object coordinates from Eqs. (3), (21), and (5). Let us recall
that we have two candidate matrices R hinging on the choice for Ry ; as
before, the correct one must be selected by examining the signs of the X
coordinates.

To summarize, we have described an algorithm to compute the relative
orientation and position between two imaging systems—perspective and
orthographic—from the locations of eight (or more) corresponding image
points. Either the principal point or the focal length and rectangular aspect
ratio are computed along the way. With this information in hand, the world
coordinates of all points in the imaged scene can be computed.
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