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Abstract

We present and verify the Adaptive Link-State Protocol (ALP), a
new link-state routing protocol that does not require the state of
each link to be flooded to the entire internetwork, or to entire ar-
eas if hierarchical routing is used. A router in ALP disseminates
link-state updates incrementally to its neighbors for only those
links along paths used to reach destinations. Link-state updates
are validated using time stamps and contain the same informa-
tion used in other link-state protocols. For the case of neigh-
bor routers connected through a broadcast medium, a designated
router is distributedly elected for each link state reported over the
medium, rather than requiring a designated router to report ev-
ery topology change over the broadcast medium, like OSPF does.
Simulation experiments illustrate that ALP is as efficient as the
Distributed-Bellman Ford algorithm when distances to destina-
tions do not increase and resources do not fail, and more efficient
than traditional link-state protocols based on flooding after dis-
tances increase or resources fail. ALP also outperforms the link-
vector algorithm (LVA), which is the only prior routing algorithm
based on selective dissemination of link states.

1. Introduction

The majority of the work on routing protocols for internetworks
has proceeded in two main directions: distance-vector protocols
(e.g., BGP [12], IDRP [13], RIP [7], and EIGRP [1]) and link-
state protocols (e.g., ISO IS-IS [8] and OSPF [9]). In a distance-
vector protocol, routers exchange path information (e.g., distance
or complete path to one or more destinations) and compute their
preferred paths in a distributed manner. Several routing algo-
rithms based on distance vectors have been proposed to eliminate
the counting-to-infinity problem that prevents the Bellman-Ford
algorithm from working efficiently in large networks (e.g., [5, 3,
11]) and a number of these algorithms have been shown to out-
perform the traditional approach used in implementing link-state
routing. Most approaches to link-state routing are based on topol-
ogy broadcast [4, 10]. Unfortunately, disseminating complete
link-state information to all routers incurs excessive communica-
tion overhead. The link-vector algorithm (LVA) [6] was recently
proposed to avoid the overhead of topology broadcast when using
link-state information. In LVA, each router updates its neighbors
with the state of each of the links it uses to reach a destination
through one or more preferred paths, and also informs them of
the links that it stops using to reach destinations. Updates to or
deletions of links are propagated incrementally, based on the dis-
tributed computation of preferred paths at routers, just like dis-
tance information propagates in a distance-vector algorithm.

Although efficient algorithms have been proposed based on
both link-state and distance-vector information, link-state routing
is more efficient than distance-vector routing when constraints are
placed on the paths offered to destinations, which is the case for
QoS routing offering paths with required delay, bandwidth, reli-
ability, cost, or other parameters. The communication overhead
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of a link-state protocol increases to the extent that more param-
eters have to be communicated for each link whose state is up-
dated, i.e., the added overhead is at most linear with the number
of link parameters. In contrast, the communication overhead of a
distance-vector protocol grows with the number of combinations
of values of the link parameters needed to define the quality of
paths.

As the Internet continues to evolve to support QoS routing,
obtaining more efficient approaches to link-state routing has be-
come an important design and engineering problem. This paper
presents a new link-state routing protocol for internetworks called
ALP (adaptive link-state protocol). In ALP, a router sends updates
to its neighbors regarding the links in its preferred paths to desti-
nations. Each router decides which links to report to its neighbors
based on its local computation of preferred paths. In contrast to
LVA, a router does not ask its neighbors to delete links; instead, a
router simply updates its neighbors with the most recent informa-
tion about those links it decides to take out of its preferred paths.
Link states are validated using time stamps and a router accepts
only more recent link-state updates.

Link-state information is aged out at each router just like in
traditional link-state protocols. Furthermore, when multiple routers
are connected through a broadcast medium (e.g., a LAN), they
elect distributedly a designated router for each link reported over
the broadcast medium; this reduces the number of updates per
link sent over a given network. Unlike OSPF, ALP does not re-
quire backbones and can be used with distributed hierarchical
routing schemes proposed in the past for distance-vector rout-
ing. Because routers in ALP propagate link-state information se-
lectively, it incurs less communication overhead than algorithms
based on topology broadcast.

The following sections introduce the network model assumed
throughout the rest of the paper, describe ALP, show that ALP
converges to correct paths a finite time after the occurrence of
an arbitrary sequence of link-cost or topological changes, cal-
culate its complexity, and present simulation results comparing
ALP’s performance against the performance of an ideal topology-
broadcast algorithm, the distributed Bellman-Ford algorithm
(DBF), and LVA.

2. Network Model

In ALP, routers maintain a partial topology map of their network.
In this paper we focus on flat topologies only, i.e., there is no
aggregation of topology information into areas or clusters.

The topology of a network is modeled as a directed graph
G = (V;E), whereV is the set of nodes andE is the set of
edges connecting the nodes. Each node has a unique identifier
and represents a router with input and output queues of unlimited
capacity updated according to a FIFO policy. For the purpose of
routing-table updating, a Node A can consider another Node B
to be adjacent (we call such a node a “neighbor”) if there is link-
level connectivity between A and B and A receives update mes-
sages from B reliably. Accordingly, we map a physical broadcast
link connecting multiple nodes into multiple point-to-point bidi-
rectional links defined for these nodes. A functional bidirectional
link between two nodes is represented by a pair of edges, one in
each direction and with a cost associated that can vary in time but
is always positive.
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An underlying protocol, which we call the neighbor protocol,
assures that a router detects within a finite time the existence of a
new neighbor, the loss of connectivity with a neighbor, and the re-
liable transmission of packets between neighbors. All messages,
changes in the cost of a link, link failures, and new-neighbor no-
tifications are processed one at a time within a finite time and in
the order in which they are detected. Because of the neighbor
protocol, ALP assumes that all messages transmitted over an op-
erational link are received correctly and in the proper sequence
within a finite time. Routers are assumed to operate correctly,
and information is assumed to be stored without errors.

3. Operation of ALP

In ALP, each router reports to its neighbors the characteristics of
every link it uses to reach a destination through a preferred path.
The set of links used by a router in its preferred paths is called
thesource graphof the router. A router knows its adjacent links
and the source graphs reported by its neighbors; the aggregation
of a router’s adjacent links and the source graphs reported by its
neighbors constitute a partialtopology graph. The links in the
source graph and topology graph must be adjacent links or links
reported by at least one neighbor. The router uses one or more
local route selection algorithms, the topology graph to generate
its own source graph, and a routing table specifying the successor,
successors, or paths to each destination.

The basic update unit used in ALP to communicate changes to
source graphs is the link-state update (LSU). An LSU reports the
characteristics of a link; an update message contains one or more
LSUs. For a link between routeru and router or destinationv,
routeru is called thehead nodeof the link in theu to v direction.
The head node of a link is the only router that can report changes
in the parameters of that link.

The head of a link reports the state of the link in an LSU
periodically or when the parameters of the link change. A router
w other than the head of link(u; v) sends LSUs about the link
when the link is in its source graph and it receives a more recent
LSU for the link from any of its neighbors, when the link is added
to its source graph, or when the link that has been removed from
the source graph changes state. Therefore, the LSUs from a router
specify the state of links that the router currently uses in its source
graph and links that are removed from the source graph.

Each router ages the link-state information it receives and
erases a link from its topology graph if the age of the link-state
information reaches a maximum value.

Figure 1 illustrates the fact that routers in ALP have to main-
tain only partial topology information. For simplicity, this figure
and the rest of the paper assume that a single parameter is used
to characterize a link in one of its directions, which we will call
the cost of the directed link. Furthermore, although any number
and type of local route selection algorithms can be used in ALP,
we describe ALP assuming that shortest paths are used for rout-
ing and that Dijkstra’s shortest-path first is used locally at each
router. Figure 1b through 1d show the selected topology accord-
ing to ALP at the routers indicated with filled circles. Solid lines
represent the links that are part of the source graph of the respec-
tive router, dashed lines represent links that are part of the router’s
topology graph but not of its source graph. Arrowheads on links
indicate the direction of the link stored in the router’s topology
graph. Routerx’s source graph shown in Figure 1b is formed
by the source graphs reported by its neighborsy andz, and the
links for which routerx is the head node (namely links(x; y) and
(x; z)). From the figure, the savings in storage requirements are
clear, even for the small example shown in the figure.

We have developed a routing protocol framework based on
the API provided by gateD [14] for implementation of routing
protocols (Figure 2). A Hello Protocol is used to detect the pres-
ence of new neighbors and the loss of connectivity to them; the
Retransmission Protocol is responsible for delivering update mes-
sages correctly and in the proper sequence to neighbors, as long
as the physical link and network interface are operational. Among
other things, the gateD API manages the routing forwarding table
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Figure 1: Topology as seen by routers indicated with filled circle.
Solid lines indicate links in source graph; dashed lines indicate
links in topology graph but not in source graph.

and relays indications to ALP reporting changes in the parame-
ters of adjacent links, such as link cost changes, link failures, and
link recoveries. In the rest of this paper we describe ALP assum-
ing the services provided by the three underlying modules, which
corresponds to the services provided by the neighbor protocol.

3.1. Information Stored and Exchanged

The LSU for a link(u; v) in an update message is a tuple(u; v; l;
tod; sn; age) reporting the characteristics of the link, wherel rep-
resents the cost of the link,tod andsn is the timestamp assigned
to the LSU, andage corresponds to maximum age the LSU can
achieve while in the topology graph.

A router i maintains a topology graphTGi, a source graph
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Figure 2: ALP protocol building modules

SGi, a routing table, and the set of neighborsNi. The record
entry for link (u; v) in the topology graph of routeri is denoted
TGi(u; v) and is defined by the tuple(u; v; l; tod; sn; age;
F; l0; tag; rn), and a parameterp in the tuple is denoted by
TGi(u; v):p.

TGi(u; v):F contains the set of network interfaces through
which Nodei has received up-to-date link-state information for
(u; v), andTGi(u; v):F (f) holds the addresses of the neighbors
who have reported up-to-date link-state information for(u; v)
through interfacef . In the example shown in Figure 1, router
x’s topology graph would have a record for link(s; u) indicating
thaty andz reported the same link. The link parametersl0, tag,
andrn are described in the next sections.

A vertex v in TGi is denotedTGi(v) and contains a tu-
ple (d; pred) whose values are used on the computation of the
source graph.TGi(v):d is the distance of the pathi ; v, and
TGi(v):pred is v’s predecessor ini; v.

The source graphSGi is a subset ofTGi. The routing ta-
ble contains record entries for destinations inSGi, each entry
consists of the destination address, the cost of the path to the des-
tination, and the address of the next-hop towards the destination.

In our description, we refer to an LSU that has a cost infinity
and the age field is greater than zero as a RESET, and refer to an
LSU with an infinity link cost, a zero age, and a timestamp equal
to the corresponding entry in the topology graph, as a DELETE.
However DELETEs and RESETs are simply LSUs.

3.2. Validating Updates

Because of delays in the routers and links of an internetwork, up-
date messages sent by a router may propagate at different speeds
along different paths. Therefore, a given router may receive an
LSU from a neighbor with stale link-state information, and a
distributed termination-detection mechanism is necessary for a
router to ascertain when a given LSU is valid and avoid the possi-
bility of LSUs circulating forever. ALP implements the termina-
tion-detection mechanism used in several prior link-state proto-
cols based on topology broadcast [9, 10], which consists in time
stamps.

A router receiving an LSU accepts the LSU as valid if the re-
ceived LSU has a larger timestamp than the timestamp of the LSU
stored from the same source, or if there is no entry for the link in
the topology graph. There is a special case in which a router other
than the head of the link can change the cost of a link to infinity
and report the new cost to the neighbors; this type of LSU will
be considered valid under certain circumstances, as discussed in
the next section. Each LSU sent by the same source specifies the
current timestamp and the maximum age for that LSU (which is
in the order of an hour). Every router that accepts an LSU decre-
ments its age by at least one and also decrements the age while
the LSU sits in memory. The timestamp of an LSU consists of
two values: time-of-the-day (tod), and sequence number (sn).
Thetod value corresponds to the number of seconds elapsed from
midnight (t) to the moment a timestamp must be assigned to the
LSU. The head of a link that generates two or more LSUs with
the sametod value uniquely identifies them by assigning different
sns from a linear sequence-number space starting at 0.

The head of the link can resetsn wheneverj tod - tod of last
LSU j� 1. The maximum age assigned to an LSU must not be
larger than the maximum value oft, which is reseted every 24
hours. This leads to aself-stabilizingsystem because it makes
the timestamp look like an “unbounded register model.” Alterna-
tively, a large linear sequence number space can be used, together
with a reset mechanism for the sequence number to guard against
malfunctions. We opt for the timestamp method in order to make
our treatment of ALP simple.

3.3. Processing Input Events

An update message from a routerk consists of a list of LSUs
reporting incremental updates to its source graph and deletion of
links from the topology graph not caused by aging; the procedure
Update(Figure 3) is executed when a routeri processes an update
message. First, the topology graph is updated, then the source
graph is updated, which may cause the router to update its routing
table and to send its own update message.

An LSU for (u; v) updates the topology graph if its timestamp
is larger than the timestamp maintained for the same link in the
topology graph, or no entry for the link exists in the topology
graph, or the entry in the topology graph has the cost set to infinity
and the LSU has the same timestamp as the entry in the topology
graph but the link cost is not infinity.

An LSU is considered outdated not only if it specifies a times-
tamp that is smaller than the one in the topology graph, but also if
the timestamps are the same and the LSU carries a link cost infin-
ity, while the entry in the topology graph has a cost different than
infinity and the link is in the source graph. The reception of an
outdated LSU causes the router to send an LSU with up-to-date
information to the neighbor that originated the update message.

If the LSU is a valid RESET and there is an entry in the topol-
ogy graph for the link, the LSU is forwarded to the neighbors.

A new source graph is computed and the routing table is up-
dated if new link-state information is added to the topology graph
or links are deleted from the topology graph. The shortest-path
tree is generated by running Dijkstra SPF algorithm on the topol-
ogy graph.

Rather than generating delete updates every time a link is re-
moved from the source graph, as is the case in LVA, ALP reports
to its neighbors the new value of the parameters of a link removed
from the source graph if the cost of the link has increased. For
those links that are removed from the source graph and that had
not a cost increase, the node will only announce their removal
when it learns that the cost of such links increased. The links
stored in the topology graph have a tag that is used to keep track
of those links that had the source graph removal announcement
postponed, and gives the current state of the link in the state dia-
gram of Figure 4. The state diagram shows the transition to a new
state for a linkl = (u; v), given its current state and the type of
input event received for the link. The tag of a link(u; v) for Node
i is denotedTTi(u; v):tag, and its possible values at timet are
the following:

0 : Link (u; v) is not in the source graph at timeti,
wheretreset � ti � t andtreset is the time the
link last transitioned to State 0. The tag of a link
is set to 0 when the link is inserted into the topo-
logy graph or when the cost of the link increases.

1 : Link (u; v) is in the source graph at timet.

2 : Link (u; v) is not in the source graph at timet,
but it was in the source graph at timeti, where
treset � ti < t. The removal of the link from
the source graph had not been announced.

The transition to NIL in the state diagram corresponds to the
deletion of the link from the topology graph. The description of
possible input events summarized on the state diagram in Figure 4
are given in Figure 5.

In our current implementation of ALP, a link in the topol-
ogy graph has just onereporting neighbor. This contrasts with



Update(k;msg)
f

if ( msg 6= ; )
changed Update Topology Graph(k;msg);

else
changed TRUE;

if ( changed = TRUE )
f

newSG Build Shortest Path Tree();
ProcessCost Increase State 1(newSG);
ProcessCost Increase State 2(newSG);
ProcessLinks RemovedFrom SG(newSG);
event Update Routing Table(newSG);
if ( event = NEWLINK or

event = PARAMETERCHANGE or
event = NEWSGEMPTY )

f
Compare Source Graphs(SGi; newSG);

g
SGi  newSG;

g
if ( k 6= i )

Send();
g

Figure 3: Processing update messagemsg received from neigh-
bork

RESET(l)  OR  COST_INCREASE(l)

LSU(l)

LSU(l)  OR  LSU(k)
OR  VOID_RESET(l)
            LSU(l)

NO_INCREASE(l) LSU(l)  OR  OUTDATED_RESET(l)  OR
DELETED(l)  not from first reporting neighbor

LSU(l)

LSU(l)  OR  LSU(k)

LSU(l)

LSU(l)  OR  LSU(k),  AND  TG(l).cost  is not  infinity

0

LSU(l)  OR  RESET(l)  OR  COST_INCREASE(l)  OR  VOID_RESET(l)

LSU(l)  if  RESET(l)

2 1

nil nil

nil

RESET(l)  OR
COST_INCREASE2(l)

DEL(l) DEL(l)

DEL(l)

RESET(l)

Set cost of l to infinity
if the node is not the
head of the link;

Figure 4: State diagram for a linkl

LVA, which considers a reporting neighbor to be any neighbor
that has reported an LSU with sequence number that matches the
sequence number for the link in the topology graph. The report-
ing neighbor for a link(u; v) in the topology graph is denoted
TTi(u; v):rn, and consists of the address of the neighbor that
last reported a valid LSU for the link if the state of(u; v) is 0,
or the address of the neighbor that is in the shortest-path tou if
(u; v) is in the source graph (i.e, the state of(u; v) is 1), or the
address of the neighbor that was in the shortest-path tou at the
time link (u; v) was removed from the source graph and transi-
tioned to State 2. The reporting neighbor of a neighbor’s adjacent
link is the neighbor itself.

LSU(l) : LSU for link l other than RESET(l), VOID RESET(l),
OUTDATED RESET(l), COSTINCREASE(l),
COST INCREASE2(l), and DELETE(l).

RESET(l) : LSU with cost infinity generated when linkl fails or
whenl transitions from State 2 to State 0.

VOID RESET(l) : Timestamp of LSU is equal to the timestamp
of the link in the topology graph, the cost of the
LSU is not infinity, and the cost of the link in
the topology graph is infinity.

OUTDATED RESET(l) : Timestamp of link in LSU is equal to the timestamp
of the link in the topology graph, the cost of the
LSU is infinity, the age of the LSU is greater than
zero, and linkl is in the source graph.

COSTINCREASE(l) : Cost of linkl has increased.
COSTINCREASE2(l) : Cost of LSU is greater thanTTi(l):l

0 .
DELETE(l) : LSU reporting linkl was removed from the topology

graph.
DEL(l) : DELETE(l) or there is no reporting neighbor for

link l.
NO INCREASE(l) : cost of linkl in LSU is not greater thanTTi(l):l

0

Figure 5: Input events of the state diagram

When a link(u; v) is removed from the source graphSGi and
transitions to State 2, Nodei needs to store the current cost of the
link in TTi(u; v):l

0, which is used for checking increases in the
cost of the link while(u; v) is in State 2.

After computing the new source graphnewSG (Figure 3)
the router generates link-state updates for those links whose cost
has increased and were removed from the source graph, i.e., the
links have transitioned from State 1 to State 0 (Figure 4). Then,
the router generates RESETs for those links that had the cost
increased while in State 2. If the router that transitions a link
from State 2 to State 0 is not the head of the link, the cost of
the link in the topology graph is set to infinity. ProcedureUp-
date then executesProcessLinks RemovedFromSG which sets
TTi(u; v):l

0  TTi(u; v):l andTTi(u; v):tag  2 for each
link (u; v) that was removed from the source graph and had not
the cost increased. The router then compares the new source
graphnewSG against the current source graphSGi, and LSUs
are created with the link-state information for links that are in
newSG but not inSGi, or that are in both graphs but had their
timestamp changed. After LSUs are generated,newSG becomes
the current source graphSGi.

The procedureUpdateis run having as input an empty mes-
sage when a link-state information has been erased from the topol-
ogy graph due to aging.

If a link cost changes, then its head node is notified by an
underlying protocol. The router then runsUpdatewith the appro-
priate message as input; the LSU in the message gets a current
timestamp. This holds for simple changes in link cost, as well as
for a link failure. The same approach is used for a new link or a
link that comes up after a failure. When a router establishes con-
nectivity to a new neighbor, the router sends its complete source
graph to the neighbor (much like a distance vector protocol sends
its complete routing table).

When the link(i; k) to neighbork fails, the topology graph is
updated to erase the neighbor from the setTTi(i; k):F (f), and
a RESET for(i; k) is transmitted to the neighbors. For each link
(u; v) in the topology graph whose reporting neighbor is router
k, routeri generates a DELETE update for(u; v) and deletes the
link from the topology graph. A router that receives a DELETE
update from a node other than the reporting neighbor transmits to
the sender of the DELETE an LSU with the current state of the
link if the link is in the source graph. This guarantees that the
tree of reporting neighbors for link(u; v) 2 E, formed by the
links (i; TTi(u; v):rn) 2 E, for each Nodei 2 V , is updated
accordingly. Link-state information for failed links that have a
reporting neighbor must be kept in the topology graph in order to
validate incoming LSUs for the link.

Consider the topology in Figure 1 and assume that link(y;B)
increases its cost dramatically (e.g., from 1 to 100). Nodey pro-
cesses the link-cost increase and generates a new source graph;



the update message sent by Nodey to its neighbors specifies an
LSU for the link (y;B) with the new cost and LSUs for links
(p; q), (x; z), (z; B) and(w; g), which must now be used to reach
all the nodes in the graph. Note that routery does not inform its
neighbors that it removed links(B; z), (B; q) and(u; g) from its
source graph, as would be the case in LVA [6], but makes the links
to transition from State 1 to State 2 (see Figure 4). An important
difference between ALP and LVA is that in ALP a router informs
its neighbors of a link removed from its source graph only if it is
removed because its cost increased or because there is no report-
ing neighbor for the link anymore (in which case the cost is set
to infinity). LVA reports all deletions to the source graph, and all
such deletions represent infinite link costs.

3.4. Electing Designated Routers

Because routers in ALP communicate partial topology informa-
tion to their neighbors, defining a designated router as in OSPF
to be in charge of sending topology information over a network
connecting multiple neighbor routers cannot be applied. In ALP,
a link is assigned a designated router if it needs to be reported
by at least one router over a given broadcast medium (a LAN, a
network, or a link).

The idea of assigning one designated router per link-state up-
date consists of making only one router responsible for report-
ing the link-state update in a broadcast link. In this way, when
an adjacency is formed with a new neighborx through a broad-
cast link,x will receive only one copy of the link-state informa-
tion for a link (u; v) from the routers that already have adjacen-
cies in the link. To accomplish this, the topology graph entry
TGi(u; v) maintains the set of interfaces through which Nodei
has received link-state updates for the link(u; v), as well as the
list of neighbors attached to the interface that have reported the
link-state update.TGi(u; v):F contains the set of interfaces, and
TGi(u; v):F (f) is the list of neighbors with adjacencies through
interfacef that have reported a link-state update.

When Nodei receives a valid LSU from neighborx for link
(u; v), the LSU for(u; v) is forwarded to all neighbors exceptx,
i then stores neighbor’sx’s address in the listTGi(u; v):F (f)

TGi(u; v):F  ;;
TGi(u; v):F  TGi(u; v):F [ ffg;
TGi(u; v):F (f) f address ofxg;

If the received LSU(u; v) is not valid, but its timestamp is
equal to the one stored in the topology graph, Nodei also stores
neighbor’sx’s address in the listTGi(u; v):F (f), wheref is the
incoming interface

if ( f =2 TGi(u; v):F )
TGi(u; v):F  TGi(u; v):F [ ffg;

TGi(u; v):F (f) SORT(TGi(u; v):F (f) [ f address ofxg);

When a routeri reports an LSU(u; v) through interfacef , it
adds the address off into TGi(u; v):F (f).

The list of neighborsTGi(u; v):F (f) is always sorted in as-
cending order of router addresses. The first router address in the
list (TGi(u; v):F (f):0) is the one with the smallest address.

When a new adjacency is formed to a neighbork through
interfacef , Node i will only report an LSU for link(u; v) to
k if i is the head node of the link, orf 2 TGi(u; v):F and
TGi(u; v):F (f):0 equalsf ’s address. The procedureDSTSET
shown in Figure 6 returns the set of interfaces through which
a link-state update for link(u; v) can be announced, andAN-
NOUNCE returns TRUE if Nodei can announce an LSU for
(u; v) through the interfacei has connectivity to neighbork. For
any given link used by a set of routers connected to a LAN, the
router with the smallest ID is the only one allowed to send LSUs
for the link over the LAN.

DST SET(u; v)
f

F  set of operational interfaces;

if ( r 6= i )
for each ( interfacef 2 TGi(u; v):F )

if ( TGi(u; v):F (f) 6= ; and
TGi(u; v):F (f):0 6= f:address )
F  F � ffg;

return F ;
g

ANNOUNCE(k;u; v)
f

announce TRUE;
f  interface attached tok;

if ( r 6= i andf 2 TGi(u; v):F )
if ( TGi(u; v):F (f) 6= ; and

TGi(u; v):F (f):0 6= f:address )
announce FALSE;

return announce;
g

Figure 6: Procedures used to determine to which neighbors a link-
state update can be announced

Wheni detects loss of connectivity to a neighborx attached
to a broadcast link through interfacef , andx was the only router
in TGi(u; v):F (f), routeri will announce an LSU for(u; v) in
the broadcast link if it has a path to destinationv whose succes-
sor is not a neighbor in the broadcast link. This guarantees that
new neighbors that have not received link-state information about
(u; v) will get it as soon asi detects lack of connectivity tox.

4. ALP Correctness

In this section we show that routers executing ALP stop dissemi-
nating link-state updates and obtain shortest paths to destinations
within a finite time after the cost of one or more links changes
and there are no more changes afterwards.

For simplicity of exposition, we assume that all links are bidi-
rectional point-to-point links and that shortest-path routing is im-
plemented. Lett0 be the time when the last of a finite number
of link-cost changes occur, after which no more such changes oc-
curs. The networkG = (V;E) in which ALP is executed has a fi-
nite number of nodes (j V j) and links (j E j), and every message
exchanged between any two routers is received correctly within a
finite time. According to ALP’s operation, for each direction of a
link in G, there is a router that detects any change in the cost of
the link within a finite time.

The following theorems relay on the use of timestamps as de-
scribed in Section 3.2; the same approach applies if an alternative
update validation scheme based on resets is used. We also assume
that all routers use the same type of tie-braking rules in comput-
ing shortest paths, e.g., if a shortest path toj is obtained through
two different relays, routers choose the relay with the smallest
identifier.

Lemma 1: The dissemination of LSUs in ALP, other than DELETEs,
stops a finite time aftert0.

Proof: A router that detects a change in the cost of any outgoing
link must update its topology graph, update its source graph as
needed, and send an LSU if the link is added to or is updated in its
source graph. Letl be the link that last experiences a cost change
up tot0, and lettl be the time when the head of linkl originates
the last LSU of the sequence of LSUs originated as a result of the
link-cost change occurring up tot0. Any router that receives the
LSU for link l originated attl must process the LSU within a finite
time, and decides whether or not to forward the LSU based on its



updates to its source graph. A router can accept and propagate an
LSU only once because each LSU has a timestamp; accordingly,
given thatG is finite, there can only be a finite chain of routers
that can propagate the LSU for linkl originated attl, and the
same applies to any LSU originated from the finite number of
link-cost changes that occur up tot0. Therefore, ALP stops the
dissemination of LSUs a finite time aftert0. 2

Lemma 2: The dissemination of DELETEs in ALP stops a finite
time aftert0.

Proof: A router i that detects failure of the link to the report-
ing neighbor of a linkl in the topology graph must deletel from
the topology graph, update its source graph, and send a DELETE
LSU for link l. Let the failed link be the link that last experi-
ences a cost change up tot0, and lettl be the time when Node
i originates the last LSU of the sequence of LSUs originated as
a result of the link-cost changes occurring up tot0. Any router
that receives the DELETE for linkl originated attl must process
the DELETE within a finite time, and forwards the DELETE after
deletingl from its topology graph if the sender of the DELETE
was the first reporting neighbor ofl. A router can accept and prop-
agate a DELETE only once because the link is deleted from the
topology graph when the DELETE is accepted for the first time,
and a DELETE for linkl is not propagated if linkl is not in the
topology graph of the router processing the DELETE. Given that
G is finite, there can only be a finite chain of routers that propa-
gate the DELETE for linkl originated attl, and the same applies
to any DELETE originated from the finite number of link-cost
changes that occur up tot0. Therefore, ALP stops the dissemina-
tion of DELETEs a finite time aftert0. 2

Theorem 1: The dissemination of LSUs in ALP stops a finite time
after t0.

Proof: The proof is immediate from Lemmas 1 and 2.2

From Theorem 1, it must be true that there is a timets when
no more LSUs are queued or in transit anywhere in the network.

Lemma 3: A router with a tag value of 1 for linkl at timets must
be the head of the link or have at least one neighbor with a tag
value of 2 or 1.

Proof: The proof is obvious if the router is the head of the link.
Assume that routeri is not the head of linkl and that all of its
neighbors have tags equal to 0 at timets.

Because routeri is not the head of linkl and has linkl in its
source graph, it must have received an LSU reportingl from at
least one neighbork at some timet0 < ts, which requiredk to
have linkl in its source graph at that time, i.e., to have a tag value
of 1 for l at timet0 < ts. By assumption,k has a tag equal to 0
for link l, which means thatk must have transitioned its tag value
from 1 or 2 to 0 before timets. According to ALP’s operation,
at the time of its transition,k must have sent an LSU reporting
an increase in the cost of linkl, and it may also have sent LSUs
for links thatk adds or updates in its source graph. Because by
assumption no LSUs are queued at or in transit to routeri at time
ts, i must have processed the LSU fromk indicating the cost
increase forl, as well as any LSUs needed to bringi topology
graph consistent withk’s source graph.

Because none ofi’s neighbors use linkl in their shortest paths,
becausei has received the LSUs fromk that exclude linkl from
being part of any shortest path fromk, and because all routers
use the same tie-braking rules for shortest paths, it follows that
routeri cannot usel in any of its shortest paths, becausek does
not. Accordingly, routeri must transition to a tag value of 0 or 2
after processing the LSUs fromk, and the Lemma is true.2

Lemma 4: A router with a tag value of 2 for linkl at timets must
be the head of the link or have at least one neighbor with a tag
value of 2 or 1.

Proof: The proof is obvious ifi is the head of linkl, because
i may have shorter paths to the tail of the link than the link it-
self. Assume that routeri is not the head of linkl and that all its
neighbors have tags equal to 0 for linkl at timets.

Because routeri is not the head of linkl and has linkl in its
source graph, it must have received an LSU reportingl from at
least one neighbork at some timet0 < ts. Following the same
line of argument used in the proof of Lemma 3, we can show that,
at timets, routerimust have processed the LSU fromk indicating
the cost increase forl, together with any LSUs needed to bringi
topology graph consistent withk’s source graph. According to
ALP’s operation, when routeri has a tag value of 2 for linkl
and receives an LSU reporting a cost increase forl, then it must
transition to a tag value of 0 and send an LSU; therefore, the
theorem is true.2

Theorem 2: In a connected network, and in the absence of link
failures, all routers have the most up-to-date link-states they need
to compute shortest paths to all destinations within a finite time
after ts.

Proof: The proof is by induction on the number of hops of a
shortest path to a destination, and is basically a generalization of
the proof for SPTA [2].

Consider the shortest path from routers0 to a destinationj
at time ts, and leth be the number of hops along such a path.
For h = 1, the path froms0 to j consists of one of the router’s
outgoing links. By assumption, an underlying neighbor protocol
provides the correct parameter values of adjacent links within a
finite time; therefore, the Theorem is true forh = 1, i.e.,s0 must
have link (s0; j) in its source graph, which means that its tag
value for the link is 1 and it must have sent its neighbors an LSU
for that link.

Assume that that any router with a path ofn or fewer hops to
j has the correct link-state information about all the links in the
shortest path toj, and consider the case in which the path from
s0 to j at timets isn+ 1 hops.

Routers0 has a tag value of 1 for each link in the shortest
path toj, because the path belongs to its source graph. For any
such linkl in the shortest path toj, it follows from Lemma 3 that
the router has a neighbor that by timets has reported an LSU it
can believe that specifies the up-to-date cost ofl. Accordingly,
the shortest path froms0 to j must be through a neighbors1 with
a tag value of 1 or 2 for linkl, which means thats1 must send
the most up-to-date LSUs it receives for each link in its shortest
path toj. The sub-path froms1 to j hash � 1 hops and, by the
inductive assumption we have made, such a path must be the true
shortest path froms1 to j by timets. Because all routers use the
same tie-braking rules to choose shortest paths, this also means
that thats1 must have a tag value of 1 for each link in its shortest
path toj.

Because it is also true thats0 has the most recent link-state
information about link(s0; s1), it follows that s0 has the most
recent information about all the links in its chosen path toj. The
Theorem is therefore true, because the same argument applies to
any chosen destination and router.2

Theorem 3: In a connected network, and in the absence of link
failures, a tree of reporting neighbors for a linkl will be formed
within a finite time afterts.

Proof: For the neighbors of the head of the linkl the root of the
tree of reporting neighbors is the head of the link. The tree of
reporting neighbors consist of routers whose value of the tag for
link l can be 0, 1, or 2. Routers that have the tag set to 1 elect as
the reporting neighbor forl the next hop in the shortest-path to the
head of the link. Given that the source graph is computed within a
finite time afterts according to Theorem 2, the subtree of the tree
of reporting neighbors that includes the source graph is computed
a finite time afterts. Whenever a valid link-state update forl is
processed andl has a tag set to 0 or 2 after computing the source
graph, the reporting neighbor is set to be the router which sent
the update message. Together with Lemma 1, this implies that
the Theorem is true.2

Theorem 4: All the routers of a connected network have the
most up-to-date link-state information needed to compute short-
est paths to all destinations.



Proof: The result is immediate from Theorem 2 in the absence of
link failures. Consider the case in which the only link that fails
in the network by timet0 is link (s; d). Call this timetf � t0.
According to ALP’s operation, routers sends an LSU reporting
an infinite cost for(s; d)within a finite time aftertf ; furthermore,
every router receiving the LSU reporting the infinite cost of(s; d)
must forward the LSU if the link exists in its topology graph, i.e.,
the LSU gets flooded to all routers in the network that had heard
about the link, and this occurs within a finite time aftert0. It than
follows that no router in the network can use link(s; d) for any
shortest path within a finite time aftert0. DELETE updates will
also be propagated by routers for all those links in the topology
graph that had routerd as the reporting neighbor, as described
in the proof of Lemma 2. A router sends and LSU for a link
l to the router that transmitted a DELETE update ifl is in the
source graph and the router is not the reporting neighbor ofl.
Accordingly, within a finite time aftert0 all routers must only use
links of finite cost in their source graphs; together with Theorem
2, this implies that the Theorem is true.2

Theorem 5: If destinationj becomes unreachable from a net-
work componentC at t0; the topology graph of all routers inC
includes no finite-length path toj.

Proof: ALP’s operation is such that, when a link fails, its head
node reports an LSU with an infinite cost to its neighbors, and the
state of a failed link is flooded through a connected component of
the network together with DELETE updates for those linksj that
are part of the disconnected component to all those routers that
knew about the link. Because a node failure equals the failure of
all its adjacent links, it is true that no router inC can compute a
finite-length path toj from its topology graph after a finite time
aftert0. 2

Note that, if a connected component remains disconnected
from a destinationj all link-state information corresponding to
links for which j is the head node is updated when the network
components get connected.

The previous theorems show that ALP sends correct routing
tables within a finite time after link costs change, without the need
to replicate topology information at every router (like OSPF does)
or use explicit delete updates to delete obsolete information every
time the source graph of a router changes (like LVA does).

5. Performance

ALP has the same communication, storage, and time complexity
than LVA. However, worst-case performance is not truly indica-
tive of ALP’s performance advantage over LVA. Because link-
states are deleted from the topology graph of a router, rather than
after receiving explicit delete updates from neighbors, ALP in-
curs less communication overhead than LVA. ALP also compares
favorably against recent distance vectors based on “source trac-
ing” [3] [11], or the diffusion of distances [5], which do solve the
looping problems of RIP and RIP-2.

Compared to the diffusion of distances, ALP disseminates
link-state information from only the source of an LSU out to those
routers that need the link, while DUAL requires distances to be
disseminated from the source of the update out to those routers
whose path included the source of the update, followed by replies
going back to the source. Hence, when such coordination occurs
in DUAL, ALP incurs half the communication overhead.

Compared to source tracing algorithms, it is interesting to ob-
serve that in ALP a router notifies its routing tree to its neighbors
by specifying each link in the tree, while in a source tracing al-
gorithm the same tree is specified by reporting, for each node
on the tree, the distance from the root of the tree to the node
and the identification of the previous node on the tree. Clearly,
there is an one-to-one mapping between the two representations,
which means that the same routers will receive LSUs or distance-
vectors updates reporting changes to the routing tree. In other
words, the communication overhead is the same. Furthermore,
in terms of communication overhead, it is not possible to attain a
smaller overhead than sending updates (of links or distances) to

only those routers whose shortest paths are affected by a topol-
ogy change, i.e., ALP and source-tracing algorithms make very
efficient use of communication, and both amount to a more dis-
tributed implementation of Dijkstra’s SPF algorithm than proto-
cols using topology broadcast (e.g., OSPF), whichreplicateSPF
runs at each router.

In terms of storage overhead, ALP has similar overhead than
distance-vector protocols and link-state protocols for the case of
shortest-path routing. ALP and other link-state protocols become
more attractive than distance-vector protocols when providing mul-
tiple paths to the same destinations becomes necessary.

Because of the way in which ALP updates link-state informa-
tion, ALP outperforms any topology broadcast protocol. Because
ALP does not use “delete” updates we expect ALP to outperform
LVA, specially when nodes fail or resources recover. Further-
more, because no counting-to-infinity occurs in ALP, ALP should
outperform protocols based on the Bellman-Ford algorithm. To
verify this, we ran a number of simulation experiments to com-
pare its average performance against DBF, topology-broadcast
(called LSA in prior literature), and LVA. We used the same topol-
ogy and experiment reported in [6] in order to compare ALP
against the best-performing published results for other approaches.
The performance metrics consist of the number of steps and up-
date messages that are required for each algorithm to converge
(i.e., the algorithm stops sending messages), and the size of these
updates. When a router receives an update message, it com-
pares its local step counter with the sender’s counter, takes the
maximum and increments the count. Update messages are pro-
cessed one at a time in the order in which they arrive. Like LVA
and LSA, ALP uses Dijkstra’s algorithm to compute the local
shortest-path tree. The results presented are based on simula-
tions for the DOE-ESNET topology [6] which was used in or-
der to simply use published simulation results for the competing
approaches. The graphs in Figure 7 show the results for every
single link changing cost from 1 to 2; in Figures 8 and 9 for every
link failing and recovering; as well as every node failing and re-
covering again (Figures 10 and 11). All changes were performed
one at a time, and the algorithms had time to converge before
the next change occurred. The ordinate of Figures 7, 8, and 9
represent identifiers of the links, and the ordinate of Figures 10
and 11 represent the identifiers of the nodes that are altered in the
simulation.

ALP, DBF, and LVA propagate updates to only those routers
affected by single link-cost changes (Figure 7). In contrast, LSA
shows almost constant behavior because the same link-state up-
date must be sent to all routers; ALP is the most efficient of the
four algorithms. Each update message contains one link-state up-
date in LSA, and an average of 1.10 links in ALP; the average
number of messages transmitted in ALP is 43.36, 48.67 in LVA,
and 57.45 in DBF.

Figure 8 depicts DBF suffering fromcounting to infinityin
some cases. There is a small difference in the average number of
updates and synchronization steps required in ALP and LVA. The
average size of an ALP message is 2.40.

When a failed link recovers, ALP is superior to all three al-
gorithms. The average number of messages in LVA is 70% more
than in ALP; LSA exhibits the same behavior as with link-cost
changes, and in average more than three times the number of up-
date messages generated by ALP. With an average of 5.85 steps,
ALP is twice as fast as LSA, and 50% faster than LVA. Messages
in LSA are no longer one-link long due to the packets containing
complete topology information sent over the recovering link.

ALP also shows to have the best performance of the four al-
gorithms for failing nodes. DBF always suffers fromcounting to
infinity. ALP needs to send 23% fewer updates than LSA, and
80% less the amount experienced by LVA. For recovering nodes,
ALP shows to be more efficient than LVA, DBF, and LSA, both
in terms of the amount of information sent through the network
and speed of convergence.

The simulation results show that ALP has better overall aver-
age performance than LVA, LSA, and DBF. ALP behaves better
than DBF and LVA when link cost changes and is always faster
and produces less overhead traffic than LVA and LSA when re-
sources are added to the network, and behaves better than the



ideal LSA when links or routers fail. This is precisely the de-
sired result, and indicates that ALP is desirable even if multiple
constraints are not an issue.

6. Conclusions

We have presented ALP, which we believe is the first example
of a link-state protocol that has been shown to be more efficient
than topology broadcast and recent distance-vector routing ap-
proaches. ALP is currently running in a small testbed imple-
mented with PCs running gateD, and the very same code was
used in the reported simulation experiment. The size of ALP’s
executable code including the Hello Protocol and the Retrans-
mission Protocol (Figure 2) is 96 Kbytes, compared to the 226
Kbytes of OSPF. A novel feature in ALP is the use of desig-
nated routers per link for each broadcast medium, rather than a
designated router for the entire medium, and its ability to accom-
modate partitioned areas and multi-hop or partitioned IP subnets,
which makes it adaptable toad hocnetworks. Simulations using
the actual code for ALP corroborate the fact that ALP achieves
the most efficient way of disseminating update information in a
routing protocol compared to topology broadcast, the distributed
Bellman-Ford algorithm, and LVA. ALP addresses the complex-
ity of today’s approach to link-state routing by making the com-
putation of routing trees using link-states costs a distributed com-
putation and establishes link-state routing as the more efficient
approach for the Internet, in terms of communication overhead
and the ability to support efficient types of paths to destinations,
which well become more important as QoS support emerges in
the Internet.
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Figure 7: Links changing cost; (a) number of update messages,
(b) average size of messages, and (c) number of steps for conver-
gence.
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Figure 8: Links failing; (a) number of update messages, (b) aver-
age size of messages, and (c) number of steps for convergence.
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Figure 9: Links recovering after failure; (a) number of update
messages, (b) average size of messages, and (c) number of steps
for convergence.
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Figure 10: Nodes failing; (a) number of update messages, (b) av-
erage size of messages, and (c) number of steps for convergence.
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Figure 11: Nodes recovering after failure; (a) number of update
messages, (b) average size of messages, and (c) number of steps
for convergence.


