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Abstract

Most of the multicast routing protocols for ad-hoc networks today are based on shared
or source-based trees; however, keeping a routing tree connected for the purpose of data for-
warding may lead to a substantial network overhead. A different approach to multicast routing
consists of building a shared mesh for each multicast group. In multicast meshes, data packets
can be accepted from any router, as opposed to trees where data packets are only accepted
from routers with whom a “tree branch” has been established. The difference among multi-
cast routing protocols based on meshes is in the method used to build these structures. Some
mesh-based protocols require the flooding of sender or receiver announcements over the whole
network. This paper presents the Core-Assisted Mesh Protocol, which uses meshes for data
forwarding, and avoids flooding by generalizing the notion of core-based trees introduced for
internet multicasting. Group members form the mesh of a group by sending join requests to
a set of cores. Simulation experiments show that meshes can be used effectively as multicast
routing structures without the need for flooding control packets.
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1 Introduction

The basic approach for supporting many-to-many communication (multicasting) efficiently in
computer networks consists of establishing a routing tree among a group of routers. Multicast
routing protocols based on trees have been proposed and implemented for wired and wireless net-
works and the Internet (e.g., [1, 8, 9, 2, 4, 20, 23]).

The topology of a wireless mobile network can be very dynamic due to the mobility of routers and
the characteristics of the radio channels. Maintaining a routing tree for the purposes of multicas-
ting packets in these networks can incur substantial control traffic. Hence, using routing graphs
that have more connectivity than trees and yet prevent long-term or permanent routing loops from
occurring is desirable in wireless mobile networks; we call these routing graphsmulticast meshes.
The Forwarding Group Multicast Protocol (FGMP) [3] and the On-demand Multicast Routing Pro-
tocol (ODMRP) [14] are multicast routing protocols that build routing meshes rather than routing
trees to disseminate multicast packets within groups. To establish group meshes, these protocols
flood control packets in the entire wireless network. The difference between these two protocols is
that the receivers initiate the flooding in FGMP, and the senders initiate the flooding in ODMRP.
Although multicast meshes are better than multicast trees in dynamic networks, approaches to
mesh building based on flooding incurs excessive overhead in large networks.

This paper verifies and analyzes the core-assisted mesh protocol (CAMP), which builds multi-
cast meshes without having to flood the wireless network with control or data packets and routes
multicast packets from any group source over the shortest from source to receivers defined in the
group’s mesh. CAMP builds multicast meshes following a receiver-initiated approach based on
cores. Sections 2 to 6 describe the design principles and operation of CAMP. Section 7 shows
that CAMP builds multicast meshes correctly and that multicast packets do not loop in multicast
meshes. Section 8 describes the results of simulation experiments used to compare CAMP’s per-
formance against the performance of ODMRP, which uses flooding to build meshes. Previous
work [11] has shown that CAMP performs much better than tree-based multicast routing protocols
in mobile wireless networks. Section 9 provides our concluding remarks.

2 Overview of CAMP

CAMP [12] differs from most prior multicast routing protocols in that it builds and maintains a
multicast meshfor information distribution within each multicast group. A multicast mesh is a
subset of the network topology that provides at least one path from each source to each receiver in
the multicast group. CAMP ensures that the shortest paths from receivers to sources (called reverse
shortest paths) are part of a group’s mesh. Packets are forwarded through the mesh along the paths
that first reach the routers from the sources, i.e., the shortest paths from sources to receivers that
can be defined within the mesh. CAMP does not predefine such paths along the mesh. A router
keeps a cache of the identifiers of those packets it has forwarded recently, and forwards a multicast
packet received from a neighbor if the packet identifier is not in its cache. The key difference
between a mesh and a tree structure is how data packets are accepted to be processed. A router is
allowed to accept unique packets coming from any neighbor in the mesh, as opposed to trees where
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a router can only take packets coming from routers with whom atree branchhas been established.
Therefore, keeping the branch information updated is one extra challenge protocols based on trees
have to face in a mobility scenario.

Because a member router of a multicast mesh has redundant paths to any other router in the same
mesh, topology changes are less likely to disrupt the flow of multicast data and to require the
reconstruction of the routing structures that support packet forwarding. Figure 1 illustrates the
differences between a multicast mesh and the corresponding shared multicast tree; routers that are
members of the multicast group are dark. The multicast mesh and tree shown in the figure include
routers that have host receivers, hosts that are senders and receivers, and routers that act only as
relays. Routerg is the last receiver to join the multicast group, and does so in the multicast mesh
through either routerf or h; consequently, routerc does not become a member of the mesh.

CAMP extends the basic receiver-initiated approach introduced in the core-based tree (CBT) pro-
tocol [1] for the creation of multicast trees to enable the creation of multicast meshes. Cores are
used to limit the control traffic needed for receivers to join multicast groups. In contrast to CBT,
one or multiple cores can be defined for each mesh, cores need not be part of the mesh of their
group, and routers can join a group even if all associated cores become unreachable.

A host first determines the address of the group it needs to join as a receiver. The host then uses
that address to ask its attached router to join the multicast group using IGMP [7]. Upon receiving
a host request to join a group, the router sends a join request towards a core if none of its neighbors
are members of the group; otherwise it simply announces its membership using either reliable or
persistent updates. If cores are not reachable from a router that needs to join a group, the router
broadcasts its join request using anexpanded ring search(ERS) that eventually reaches some
group member. When one or multiple responses are sent back to the router, it chooses any of these
responses to use as a path to the mesh. The mappings of multicast addresses to (one or more) core
addresses are disseminated from each core out to the network as part of group membership reports.

The Core-Assisted Multicast Routing Protocol provides also an alternate way for routers connected
to sender-only hosts to join the mesh. Whenever a router senses multicast packets originated at a
host directly attached to it, this designated router will join the mesh insimplexmode if it’s not a
member yet. The simplex join request, just as a regular duplex join request, will travel towards one
of the available cores and is acknowledged in the same fashion. The conceptual difference is that
data packets should travel in only one direction: from the sender-only host to the mesh and not the
opposite. This is an attempt to contain data traffic closer to the areas of the mesh where receivers
are present. A router can leave the group when there are no other hosts or routers depending on
it simply by advertising the change in group membership to their neighbors. More details about
simplex joins as well as the handling of topology changes are presented in previous work [12].

A router leaving a multicast group issues aquit notificationto its neighbors, who in turn can update
their data structures. No acknowledgments are requested for quit notifications, because in contrast
to multicast routing trees, multicast meshes do not dictate the paths taken by multicast packets.
Quit notifications are sent as part of multicast routing updates.

In order to minimize delays, CAMP ensures that all the reverse shortest paths between sources
and receivers are part of a group’s mesh by means ofheartbeatandpush join(PJ) messages. A
router receiving a heartbeat for a given multicast group and source retransmits the heartbeat if
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its successor towards the source of data traffic (determined with the unicast routing protocol) is
already a mesh member. When a member router receives a heartbeat and detects that its successor
is not part of the multicast mesh, it sends apush join(PJ) to that neighbor router and waits for an
ACK from that router.

3 Information used in CAMP

Each router maintains a routing table (RT) built with the unicast routing protocol. This table is also
modified by CAMP when multicast groups need to be inserted or removed. CAMP assumes the
existence of abeaconingprotocol, usually embedded into the unicast routing protocol or available
as a separate network service.

At router i, the RT made available to CAMP specifies, for each destinationj, the successor (sij)
and the distance to the destination (Di

j).

Other than the unicast routing table, CAMP relies on the following data structures:

� CAM : table mapping cores to multicast groups.

� CORESg : set of routers acting as cores to multicast groupg.

� CACHEi : cache of multicast data packet control information.

� MRTi : the multicast routing table, containing the set of groups known to routeri.

� AT g
i : table containing anchor information pertaining to routeri. This table is split in two

subsets:

– Ag
i : list of neighbors that have routeri as their anchor for multicast groupg.

– A2gi : list of neighbors who are anchors to routeri in multicast groupg.

� Ng
i : routeri’s list of neighbors that are known to be members of the multicast groupg.

� LSg
i : list of senders that are directly attached to routeri and send data traffic to multicast

groupg.

� LRg
i : list of receivers directly attached to routeri, who want to receive data packets from

multicast groupg.

� PENDg
i : list of either join or simplex join requests to multicast groupg originated at or

forwarded by routeri for whom acknowledgment is pending.

� PENDPJg
i : list of push join requests to multicast groupg originated at or forwarded by

routeri for whom acknowledgment is pending.

� BKg
i : list used for periodic “book-keeping” of senders and associated anchors.
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The packet-forwarding cacheCACHEi maintains the identifier of packets recently processed by
routeri. Basically, the information kept in this data structure comes straight from the IP packet
header, which are source address, destination address (group address), packet identification and
fragment offset. The address of the neighbor that relayed that packet is also stored. The main role
of the packet forwarding cache is to avoid packet replication by keeping track of packets already
received by the router. Caching packets is only feasible for low-bandwidth channels. Although
restricted to symmetric networks, an alternative to packet caching is the use of reverse path for-
warding [6], where routers only accept data packets from their successor to the packet source.

An anchor for routeri in groupg is a neighbor router that is a successor (next hop) in the reverse
shortest path toat least one sourcein the groupg. Therefore, a router determines its anchor to a
given source by using the unicast routing table. For each multicast groupg, an entry in the table
AT specifies those neighbors that routeri uses as itsanchorsfor the group. The tableATi has an
entry for each of the multicast groups in which routeri is a member.

WhenMRTi orATi is updated, routeri sends a multicast routing update (MRU) to all its neighbors
reporting changes in its group membership and anchors per group. An MRU contains one or more
entries, and each entry specifies:

� A group address.

� An operation code specifying a quit notification, simplex membership notification, or a du-
plex membership notification.

� In membership notifications, the list of anchors needed by routeri for the group and/or the
advertisement list of active data traffic source nodes and transient cores in the group.

The main objective of communicating anchor information among routers is to prevent routers that
are required by their neighbors to forward multicast packets from leaving groups prematurely.

The list of data source nodes is propagated only by duplex nodes, and therefore is flooded to the
mesh only. A discussion on the propagation scope and period of the list of temporary cores is done
in Section 4.

In an ad-hoc network, changes in multicast-group memberships should be disseminated together
with routing-table updates, and routers hear the reports from their neighbors and remember which
neighbors belong to which group. To save bandwidth, routers should exchange multicast routing
information together with their unicast routing-table updates. Hence, a routing-table update would
consist of a unicast part and a multicast part. However, we describe CAMP independently of the
unicast routing protocol with which it is used.

Detecting the failure or addition of a link to a neighbor is part of the routing protocol used in
conjunction with CAMP. For CAMP to work correctly, it is necessary for the associated routing
protocol to work correctly in the presence of router failures and network partitions. This implies
that CAMP cannot be used in conjunction with a routing protocol based on the classic distributed
Bellman-Ford algorithm such as the routing protocol of the DARPA packet radio network [15],
which is prone to routing loops and count-to-infinity problems. However, there are several re-
cent examples of routing protocols that can be used in conjunction with CAMP [5, 16, 19, 22].
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With minor extensions, CAMP can also work with on-demand unicast routing protocols, but these
extensions are beyond the scope of this work.

4 Types of Cores

Physical channels in ad-hoc networks are usually characterized by low bandwidth. Therefore, any
protocol designed for such an environment should always try to minimize control traffic. Multi-
cast protocols that use cores as part of the routing structure depend on advertisement messages to
propagate the list of cores currently available. With the purpose of targeting such overhead of mul-
ticast sessions on the internet, Ohta and Crowcroft [17] propose alternate static strategies, as the
use of DNS as a means to disseminate core information. Basically, by adding theCOREresource
record to DNS, one could set up all cores needed for any given multicast group. As pointed by
Perkins [18], the intrinsic lack of hierarchy in ad-hoc networks may make DNS as it is today a hard
fit for such networks. But still some name or session directory service is likely to be available.

CAMP makes use of the idea of making multicast group information available through such ser-
vices, and has two different classes of cores:staticandtransientcores. A core defined as static has
its ID obtained at system start-up from a directory service like DNS and saved locally, or alterna-
tively is defined manually by the network administrator. On the other side, transient cores assume
this role when no static core is available and are expected to exist temporarily, as the name implies.

Eventually, when a router needs to join the multicast mesh or is simply trying to use one of the
mechanisms to keep the mesh connected, no static core may be reachable. After a back-off to
make sure no other router in the area is already taking over this role, the router will become a
transient core, and keep its status for as long as there isn’t reachable static cores. When static cores
become reachable again, there is a transition phase where static and transient cores co-exist, but
the latter ones eventually age out. The back-off time is smaller for routers which have data traffic
sources directly attached to it, which naturally minimizes delays, as source-based trees do, and
also minimizes the need for push join requests.

The key difference between the two classes of cores is advertisement. Since the addresses of static
cores is well-known, they do not need to advertise their existence, as opposed to transient ones that
must advertise their addresses to the network periodically. One should note that, although CAMP is
designed to use transient cores only in exceptional situations, the scheme is flexible enough to allow
the choice between the bandwidth efficiency of static cores, which do not propagate advertisement
messages, and the flexibility of transient cores, that come up on demand and whose definition can
be based on policies like direct connection to traffic sources, gateway to a wired network, and so on.
The simple absence of static core definition will let the network define transient cores dynamically,
as the first duplex and simplex join requests come out.

One important issue regarding control message overhead in ad-hoc networks is the core advertise-
ment period used by transient cores. As opposed to sender/receiver advertisement in ODMRP [14]
and FGMP [3], which need a period on the order of hundreds of milliseconds, CAMP can rely
on advertisement periods with tens of seconds or even minute granularity. In the sender-initiated
protocols, senders need to be known as widely and as fast as possible so that nodes all over the
network can join the mesh with minimal delays. In CAMP, if a particular region of the network
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does not have information about any transient core, any router locally can become one and start a
mesh component momentarily. As discussed in session 6.2, this component will merge with the
remainder of the mesh as the ID of other transient cores become available locally.

5 Joining and Quitting the Multicast Mesh

In CAMP, as previously discussed, there are two different mechanisms for a router to join a multi-
cast group mesh. If the router is attached to a receiver router, it sends ajoin requestto its selected
core. If instead it’s attached to a host that is a source of multicast data traffic, the router will send
a simplex join requestto its preferred core. Additionally, after detecting data or receiving a list of
active senders, a mesh member may request that all routers in its shortest path to a given source
become mesh members with apush join request.

In the first mechanism, if a router joining a group has no neighbors that are already members of
the multicast group, then it selects its successor to the nearest core as the relay for the join request.
After the router selects a relay, it sends a join request to all its neighbors. A join request specifies
the intended relay, the address of the multicast group that the sending router needs to join. If, on
the other side, a neighbor is known to be a mesh member, the router joins the group without the
need to send out a join request, and sends an update announcing its new membership status.

After sending a join request, a router waits for the first acknowledgment to its request, and retrans-
mits the request after a request-timeout. The router persists sending join requests for a number of
times (e.g., four) as long as the unicast routing table indicates that there are physical paths towards
any of the group cores and none of its neighbors are group members. Each retransmission of a
request is addressed to an intended relay chosen as described above. This is similar to the basic
mechanism used in CBT; however, because data packets flow along different paths over the multi-
cast mesh depending on the source, there is no need to ensure a single loopless path to the chosen
core. This means that the use of selected relays towards any core is simply used tolimit the search
from the routers towards the multicast mesh, but being able to reach a core is not necessary to join
a group.

Any router that is a duplex member of a multicast group and receives a join request for the group
is free to transmit ajoin acknowledgment(ACK) to the sending router. An ACK specifies the
sender of the join request and the multicast group being joined. To reduce channel traffic, the
router specified as the relay of a join request can be allowed to reply first by means of a timeout
mechanism after a join request is received.

When the origin or a relay of a join request receives the first ACK to its request or the first ACK to
a join request for the same multicast group, the router becomes part of the multicast group. In the
case of a relay, the router sends an ACK to the previous relay or origin of the join request, even if
that neighbor has already sent an update stating that it is a member of the multicast group.

If non-member routers were allowed to send packets to a multicast mesh, the only way to reach
the mesh without flooding would be through one of its cores. Accordingly, cores could become
hot spots if multiple non-member sources existed, and the paths followed by the packets sent by
those sources could be very inefficient due to router mobility in an ad-hoc network. Unlike other
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protocols that allow non-member routers to send packets to a multicast tree for dissemination
within the tree, CAMP requires that the router attached to any source of packets for the group
join the multicast mesh. To avoid the dissemination of multicast packets to routers that join a
group only to allow a source-only host to send packets to the group, CAMP allows routers to
belong in a multicast mesh in simplex mode, rather than as regular members. This characteristic
of mesh members is used during packet forwarding to avoid the dissemination of data to parts of
the network where exclusively sender-only hosts are present.

CAMP ensures that all the reverse shortest paths between sources and receivers are part of a group’s
mesh by means ofheartbeatand push join(PJ) messages. Periodically, every single entry in
CACHE is verified. The router looks up its RT to check whether the neighbor that relayed the
packet is the reverse path to the source for every cache entry. A heartbeat or a PJ is sent towards
every source stored in the cache that had the number of packets coming from the reverse path under
a threshold. Push join requests may also be sent after a member gets an update message containing
a list of active data traffic sources. If for any of the sources, the next-hop is not known to be part
of the mesh a push join request will be sent.

A router receiving a heartbeat for a given multicast group and source retransmits the heartbeat if
its successor towards the source of data traffic (determined with the unicast routing protocol) is
already a mesh member. When a member router receives a heartbeat and detects that its successor
is not part of the multicast mesh, it sends apush join(PJ) to that neighbor router and waits for an
ACK from that router.

A router receiving a PJ forwards it to the next relay if: (a) it is the specified intended relay and
(b) it has a path to the end point of the PJ. The relay specified in the forwarded PJ is the router’s
successor to the end point of the PJ. A router discards a PJ for which it is not the intended relay or
for which it is the intended relay but has no path to the end point of the PJ.

A router that receives a PJ sends an ACK if: (a) it is the intended relay, (b) it is already a member
of the group specified in the PJ, and (c) it has a path to the end point of the PJ. CAMP deter-
mines two types of push join acknowledgments — regular ACK, sent by duplex members and
ACK SIMPLEX, sent by simplex members. Given the fact that simplex mesh members do not ac-
cept packets coming from duplex members, it’s important that there’s no interleave of duplex and
simplex routers between the initiator of a push join request and the router directly attached to the
source. When acknowledgments start coming back from the source, duplex members will always
send regular ACKs, and simplex members will become duplex when they receive a regular ACK.
Therefore, if there’s at least one duplex mesh member in the path from initiator to the source, all
nodes from that duplex member all the way to the initiator must become duplex if they’re not yet.

Receivers use a slightly different procedure to leave a multicast group in CAMP than in CBT. A
router leaves a multicast group when it is not attached to any hosts that are members of the group
and it has no neighbors for whom it is ananchor.

A router leaving a multicast group issues aquit notification to its neighbors, who in turn can
update theirMRTs. No acknowledgments are requested for quit notifications, because in contrast
to multicast routing trees, multicast meshes do not dictate the paths taken by multicast packets.
Quit notifications are sent as part of multicast routing updates.

8



6 Handling Mobility and Mesh Partitioning

6.1 Unreachable Cores

CAMP reduces control traffic associated with the establishment and maintenance of multicast
meshes by using multiple cores per group that routers can use aslandmarksto orient their join
requests. Therefore, a router can try to join a mesh orienting its unicast join requests to any of such
landmarksand can redirect its join requests when topology changes. If none of the cores of a group
are reachable given the unicast routing information currently available when a router needs to send
a join request, this router uses an Expanded Ring Search (ERS) to reach the mesh. This router
first sends a mesh search message specifying itself as the requester. Any router receiving such a
message forwards it appending its ID to the path of the message, if the ERS can proceed and the
router is not a member of the mesh. A router that receives the mesh search message and is a mesh
member replies with an acknowledgment. When the mesh search requester gets the first acknowl-
edgment to its message, it sends ajoin request along the path it obtained with the acknowledgment.
The router retransmits its search message after a time out if it does not receive an ACK.

Hence, CAMP has no single point of failure and can use as many cores as desired for a given mesh.
In contrast, CBT and PIM-SM require a single core to be used in order to provide a multicast tree at
all (i.e., avoid to detect loops in the multicast tree and detect partitions). ERS could be used when
the single core fails, of course, but that still leaves CAMP as a more efficient approach, because
ERSs are used less often by providing multiple cores (no single point of failure). A proposal to
accommodate multiple cores and still provide multicast trees has been made recently [21], but the
mechanisms in such a proposal appear much too complex for a dynamic network and no similar
solutions have been proposed for ad-hoc networks.

6.2 Keeping Meshes Connected

A multicast mesh may be partitioned due to the mobility of routers or the partition of the network
itself. In such a case, CAMP has the ability to continue the operation of all mesh components,
because routers do not rely on a single core to join the mesh. In any tree-based protocol based on
receiver-initiated joining, the tree component including the core or rendezvous point can continue
to operate, but the other must terminate the multicast group (or make use of ERS, for example, for
every join request) until a path to the core is re-established.

In addition, CAMP is able to merge mesh components as long as there is physical connectivity
between mesh components. To ensure that two or more mesh components with cores eventually
merge, the protocol requires (a) routers to periodically check if the next-hop to its selected core is
part of the mesh, and (b) that all active cores in the mesh send periodical messages to each other,
forcing routers along the path that are not members to join the mesh.

The periodic verification of the membership of the next-hop to the selected core is done by all
members. If the next-hop to the core is not known to be a mesh member, a duplex or simplex
join request is sent towards the core again. The verification is needed because the mobility of the
nodes can place non-member routers for instance between receivers, senders and cores. Checking
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periodically the membership of the next-hop to each sender is not feasible because CAMP does
not keep track of senders. Therefore, making sure the reverse path to cores are part of the mesh
provides at least a sub-optimal way for receivers to get packets generated by the senders in the
group.

The messages exchanged among cores arecore explicit joins(CEJ) that specify the multicast group,
the intended relay of the CEJ, the intended core, and a gap flag. The flag is an information used by
the receiver of a CEJ to determine whether there are non-members in the path between two cores.
When the flag is kept reset all along the path between the two cores, no acknowledgment to CEJ
needs to be sent back.

A router receiving the CEJ with the gap flag set to 0 forwards the CEJ to the next relay if (a) it is
the specified relay and (b) it has a path to the specified core. Furthermore, if the relaying router is
not a member of the mesh, it sets the gap flag to 1 in its CEJ.

A core receiving the CEJ with the gap flag set to 1 sends an ACK. The ACK is forwarded all the
way back to the core that originated the CEJ; ACKs force relaying routers to join the mesh as in
a PJ or a regular join. Alternatively, a router receiving the CEJ with the gap flag set to 0 forwards
the CEJ to the next relay if: (a) it is the specified relay, (b) it has a path to the specified core, and
(c) it is not a member of the group.

The possibility of using multiple cores in a multicast group provides fault tolerance to the protocol.
But CAMP is able to merge mesh components even when no core is reachable. As explained
previously, in such exceptional situations, a node uses expanded ring search when it needs to join
the mesh. When a search fails because no mesh member is close enough, the originator of the
search request backs-off, checks again for the availability of a core and if still no one is found, the
originator becomes a transient core, as explained in Section 4. As the existence of one or more
transient cores is propagated to the network, core-explicit join requests start being exchanged and
different components eventually merge again.

7 CAMP Correctness

In this section we show that, if there is physical connectivity among all the members of a multicast
group, CAMP builds connected multicast meshes over which multicast packets flow without loops,
and that it builds connected mesh components when the wireless network becomes partitioned. A
mesh component is a set of routers that belong to the same multicast group, such that data can flow
bidirectionally between any pair of routers in the group. We assume that the set of static cores of
any multicast group is known to all routers in the wireless network, and that the link layer supports
the reliable delivery of CAMP control packets and the identification of the neighbors of a router.

The following theorem shows that data packets do not traverse loops in routers running CAMP,
under the assumption that the time-to-live (ttl) of a data packet is

Theorem 1 No multicast data packet is accepted or forwarded more than once by any given router
running CAMP.

Proof: From the definition of data forwarding in CAMP, routeri discards any incoming packets
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whose header information (i.e., the address of the packet’s source node, the sequence identification
assigned by this source and a packet fragment offset) is already available inCACHEi. We assume
routeri is able to use the information available in the unicast routing table to assess the longest
delay (LD) in the network. Any routeri in the mesh keeps each packet header inCACHEi for a
time t > LD + �, where� > 0. Therefore, any incoming multicast data packet that was already
seen by routeri must have its header information inCACHEi even when it came back to routeri
over the path that incurs the longest delay, and will be discarded. Consequently, data packets are
never processed more than once by a router.2

Because of node mobility, changes in group membership, and link failures, a multicast mesh need
not be connected at every instant. In terms of the connected components of a mesh and its cores,
we can define a multicast meshM asM = K [X, whereK is the set of mesh components with
at least one core router andX is the set of mesh components without any core. There are four
possible cases for the values ofjKj andjXj in terms of the number of mesh components and the
cores in them, namely:

1. jKj = 1 andjXj = 0: The mesh is not partitioned into components and has at least one core.

2. jKj > 1 andjXj = 0: There are multiple mesh components with at least one core.

3. jKj � 1 andjXj � 1: There are mesh components both with and without cores in them.

4. jKj = 0 and jXj � 1: The mesh is partitioned into components, and none of them have
cores.

For each of the above cases, we need to show that CAMP builds mesh components within a finite
time, and that components with physical connectivity among one another through routers not in
the mesh reassemble into a larger component within a finite time.

The following lemma shows that CAMP permits a source of data packets outside a multicast group
to send data to the group by means of a simplex join.

Lemma 1 A simplex join request has no deadlocks and finishes in a finite time after the network
stops changing.

Proof: We need to show that no router stays with a simplex join pending indefinitely. More
specifically, we need to show that the initiatorx of the request, for whomPENDg

x = x, becomes
a simplex member of the multicast groupg or returns back to the non-member state.

After initiatorx sends out the request, the request travels through none or at least one non-member
router, and there are only five possible cases to consider:

1. The request travels all the way to the selected core.

2. It travels hop-by-hop to a duplex or simplex mesh member.

3. It reaches a non-member or a simplex routerz with a pending join
request, i.e.,PENDg

z 6= ;.
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4. The request reaches a non-member routerz with another simplex join request pending.

5. Either the request or its acknowledgment is lost by one of the intermediate routers in the path
between the request initiator and the selected core.

In the first two cases, an acknowledgment to the simplex join request is sent back to routerx,
which then becomes a simplex mesh member. In the following two cases, an acknowledgment
is sent towards the initiator as soon as the routerz gets its own acknowledgment for its original
request. If this original request was of duplex type, routerz will send an acknowledgment of duplex
type. After receiving this duplex acknowledgment, the very next routery acting on behalf of router
x and with a pending simplex request due to routerx’s request will become a simplex member,
even though what was received was a duplex acknowledgment. Clearly, in the cases above, nothing
prevents the mesh to be extended and routerx to become a simplex member. Finally, in the last
case, the pending join simplex request times out and is sent again; the request is retransmitted only
by the initiator, routerx, for a finite number of times. If all retransmissions time out and do not
succeed, routerx goes back to non-member status.

The path built by a join simplex request for a routerx as the request traverses the network is finite
and simple, i.e., no router repeats itself on the path. Denote the routers on the path by (y1,...,yp).
The path either ends whenyp is (a) the selected core, (b) a router other than the selected core that
is already a member of the mesh or a node with a pre-existing pending join/join simplex request,
or (c) the router that had its join request or acknowledgment lost. In the first two cases, the router
yp must give a reply within a finite time; this implies that routeryp�1 receives an acknowledgment
in a finite time. By induction on the number of routers on the path a simplex join request traverses,
every routeryi, where1 � i < p, andx get a reply to its request within a finite time. In cases 3
and 4, as soon as routerz gets an acknowledgment to the pending request, this router will become
a member, and these cases proceed as case 2. In the last case, allyi will have their pending simplex
join requests timed out. If after a finite number of retransmissions, routerx does not succeed in
its join request, it will go back to its non-member status. Thus,yi become mesh members or stay
non-members in a finite time.

Therefore, because every initiator of a simplex join request becomes a mesh member or goes back
to non-member status, a request of this type does not have deadlocks and finishes in a finite time.
2

Now we need to show that CAMP allows receivers to join the multicast mesh. If the router closest
to the receiver host is already a duplex member, this router does not need to send any requests. If
the router has neighbors that are already members of the group, the router can announce becoming
a member. However, if that router is not a mesh member yet or just a simplex member, and if
the router does not have neighbors that are members of the group, then the router must send a
join request towards a selected core. We need to show that such request completes in a finite time
and that CAMP does not deadlock in the event that the request cannot be completed successfully,
allowing the router closest to the receiver host to send the request again if it is still appropriate.

Lemma 2 A join request has no deadlocks and finishes in a finite time after the network stops
changing.
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Proof: As in Lemma 1, we need to show that no router stays with a join request pending in-
definitely. More specifically, we need to show that the initiatorx of the request, for whom
PENDg

x = x, becomes a duplex member of the multicast groupg or returns back to its previ-
ous state, non-member or simplex member.

After initiator x sends out the request, the request travels hop-by-hop through none or at least one
non-member/simplex router. There are only 4 possible cases:

1. The request travels all the way to the selected core.

2. It travels to a duplex mesh member.

3. It reaches a non-member or a simplex routerz with a pending join
request, i.e.,PENDg

z 6= ;.

4. Either the request or its acknowledgment is lost by one of the intermediate routers in the path
between the request initiator and the selected core.

In the first two cases, an acknowledgment to the simplex join request is sent back to routerx, which
then becomes a simplex mesh member. In the third case, an acknowledgment is sent towards the
initiator as soon as the routerz gets its own acknowledgment for its original request. Routerz
will become a duplex member and send an acknowledgment. Clearly, in the cases above, nothing
prevents the mesh to be extended and routerx to become a simplex member.

In the last case, the pending join request will time out and will be sent again. The request is
retransmitted only by the initiator, routerx, for a finite number of times. If all retransmissions time
out and do not succeed, routerx goes back to its previous membership status.

Just as in a join simplex request, the path built by a join request for a routerx as the request
traverses the network is finite and simple, i.e., no router repeats itself on the path. The proof for
that claim is the same as the one shown in Lemma 1. Therefore, because every initiator of a join
request becomes a mesh member or goes back to its previous status, a request of this type does not
have deadlocks and finishes in a finite time.2

After a receiver joins a mesh, it periodically receives advertisements sent from active traffic sources,
which are flooded within the mesh. When receiving one of such advertisements, a router deter-
mines if its successor to the given source is already part of the multicast mesh. If not, a push
join request is sent in the direction of this source to incorporate the shortest path to the mesh. To
show that a push-join request does not deadlock, we require the definition of theno-type-interleave
property.

Definition 1 Consider a routerr, a data traffic sources and an intermediate routeri in the path
from r to s. A path of routers betweenr and s does not have a random sequence of duplex and
simplex routers and is said to have theno-type-interleaveproperty iff:

1. All routers in the path have the same membership type, either duplex or simplex, as routerr,
or,
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2. All routers froms to i, includingi are simplex members, and all routers fromi to r are duplex
members, includingr.

Because a multicast mesh as defined by CAMP may include simplex and duplex members, and
given the fact that simplex members are not allowed to accept data packets from duplex members,
in order for a receiver host connected to routerr get multicast data packets from a sources, the
path betweenr ands must have theno-type-interleaveproperty.

Lemma 3 A push join request has no deadlocks and finishes in a finite time after the network stops
changing.

Proof: Consider the path which consists of all routers in the path between the router that is directly
connected to the data traffic source hosts and the initiatorx of the push join request, for whom
PENDPJg

x;s = x. In order to prove this lemma, we need to show thatx does not wait indefinitely
for the request to complete and that the path betweenx ands has the no-type-interleave property
in a finite time.

After initiator x sends it out, the request travels hop-by-hop towards the intended sources. The
possible cases are:

1. The request travels across all nodes, regardless of their membership type, all the way to
routerd directly connected to the source.

2. It reaches a routerz with a push join request already pending for sources, i.e.,PENDPJg
z;s 6=

;.

3. Either the request or its acknowledgment is lost by the intermediate routeri in the path
betweenx ands.

In the first case, ifd is duplex, a duplex acknowledgment is sent. All simplex nodes in the path
will receive, forward the duplex acknowledgment towardsx and become duplex.

But if d is simplex, it will send a simplex acknowledgment towardsx. If there is an intermediate
nodei betweenx ands and that node is the closest duplex member tos, nodei will not forward
a simplex acknowledgment but a duplex one instead. All nodes betweenx and i which are not
duplex already will become duplex members because each node in this path forwards the duplex
acknowledgment.

In the second case, an acknowledgment to request originatorx will be sent as soon as router
z gets an acknowledgment for the push join request that was previously pending. The type of
acknowledgment sent by routerz will depend on its membership type after handling the feedback
for the previous request. If duplex, routerz will send a duplex acknowledgment, and all routers
betweenz andx will be duplex. If routerz is simplex, an acknowledgment of this type will be sent
and forwarded until it reaches either originator routerx or another duplex member.

It is clear from these two cases that a path between the push join request originator and the traffic
source does not randomly interleave or alternate routers of different types, and therefore the no-
type-interleave property applies.

14



In the last case, the push join request pending at the originator will time out and will be sent again.
The request is retransmitted only by the initiator, routerx, for a finite number of times. If all
retransmissions time out and do not succeed, routerx removes the pending push join request to
senders from the list. If needed, a new push join request to this sender will be triggered again by
the protocol.

The path between the push join request originator routerx and the source of data traffic is finite
and simple, i.e., no router repeats itself on the path. Denote the routers on the path by (y1,...,yp).
The path starts withy1, which is the router that is the closest tox, and ends withyp, which is the
router that is the closest tos. When the push join request reachesyp, it must provide a feedback in
a finite time. This implies that the routeryp�1 will receive an acknowledgment in a finite time. By
induction on the number of routers on the path betweenx ands, x gets a feedback to its request
within a finite time. If either an acknowledgment or the request itself gets lost in the path, router
x will not receive a feedback before its timer expires and will retransmit the request for a finite
number of times.

Therefore, a successful push join request forms a path with no-type-interleave between originator
and traffic source without deadlocks and in a finite time. When not successful, the original request
does not prevent the protocol to try again later if appropriate.2

Theorem 2 When the multicast mesh has at least one core and is not partitioned into multiple
components, CAMP allows traffic sources to send data, receivers to join the mesh and incorporate
shortest-paths to sources in the mesh.

Proof: Lemmas 1, 2 and 3 have shown that a join, a simplex join, and a push join requests have no
deadlocks and finish in a finite time. Therefore, the theorem is true.2

The next relevant mesh partitioning scenario is Case 2, where the mesh is broken intojKj different
components, withjKj > 1, and all components have at least one core. The mechanisms for
sources and receivers to join the mesh are just like the ones in Case 1. But because the mesh
is partitioned, data traffic or advertisements from senders located in other components will not
be received locally, and consequently shortest-paths to these senders cannot be incorporated to
the mesh before components merge. For this and similar scenarios, CAMP requires the periodic
exchange of messages among all cores. This exchange consists ofcore-explicit-join(CEJ) requests,
whose role is to force all routers between each pair of cores to join the mesh. In a given multicast
groupg, an active core, which has received requests from routers willing to join the multicast
group, will send CEJs to the other cores inCORESg in a round-robin fashion, that is, every
time to a different core. This is to prevent a core to always send CEJs to other cores in the same
component.

Therefore, in order to show that CAMP allows mesh components to merge, we need to show that
core-explicit join requests do not deadlock and finish in a finite time.

Lemma 4 A core-explicit-join (CEJ) request has no deadlocks and finishes in a finite time after
the network stops changing.

Proof: A core-explicit join request uses the same mechanism as a join simplex request (Lemma 1),
in the sense that it is a unicast communication between two nodes. The major difference is the
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fact that the originator of the request is an active core rather than a regular router willing to join
the multicast group. Furthermore, CEJs always go from one core to the other, and feedback comes
only from the destination core and not by mesh members in between. Therefore, a CEJ has no
deadlocks and finishes in a finite time.2

Theorem 3 When the multicast mesh is partitioned into multiple components and all of those
components have at least one core, CAMP allows components to merge, traffic sources to send
data, receivers to join the mesh and incorporate shortest-paths to sources in the mesh.

Proof: Lemmas 1 to 4 have shown that join, join simplex, push join and core-explicit join requests
have no deadlocks and finish in a finite time. Therefore, the theorem is true.2

7.1 Mesh Components with and without Core Routers

Case 3 is the next relevant mesh partitioning scenario that needs to be considered to prove the
correctness of CAMP. In this scenario, there are mesh componentsKi, where1 � i � r and
r � 1, with at least one core and other componentsXj, where1 � j � s ands � 1, that do not
have any core. For any value ofr, proofs of Case 2 also apply forK here.

The fact that no core is available for any given componentXi does not prevent receivers and
sources in such a mesh component from joining the multicast group. Either cores available inK
or members already existing locally can validate the join request. Although any successful join
request originated in a componentXi and sent to a componentKj will cause those components
to merge, this does not guarantee the merging of different components when there are no more
senders or receivers to join the multicast group.

Theorem 4 When the multicast mesh is partitioned into multiple components and some of those
components do not have at least one core, CAMP allows components to merge, traffic sources to
send data, receivers to join the mesh and incorporate shortest-paths to sources in the mesh.

Proof: It has been shown that join, join simplex, push join and core-explicit join requests have no
deadlocks and finish in a finite time. CEJ requests will merge components inK, but not compo-
nents inX because these do not have core routers available.

In order to allow different components in a multicast groupg to merge in situations like that,
CAMP requires every duplex or simplex routeri to look up itsMRT g

i and check the membership
status of the neighbor that works as the next hop to the selected core. This check is periodically
done and also every time the beaconing protocol signals CAMP that a neighbor was added to or
removed from the local database. If the routeri is duplex, a join request will be sent if the next hop
is either a simplex member or non-member (not available inMRT g

i ). If the routeri is simplex, a
join simplex request will be sent only if the next hop is not a mesh member.

Therefore, in a componentXi, where no core is available locally, there will be at least one router
r who will need to send either type of join request due to the membership type of its next hop
to its selected core. From Lemmas 1 and 2, we know both join simplex and regular join requests
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don’t incur in deadlocks and finish in a finite time. So the first successful join request originated
by routerr will move its componentXi fromX after it merges with a component inK. This same
process will happen to every component inX, and when the network stops changing, we’ll be back
to Case 2. Therefore, the theorem is true.2

7.2 No Mesh Components with Core Routers

Finally, Case 4 is the last of the relevant scenarios for mesh partitioning in CAMP. Here, the mesh
has one or multiple components, and none of them have a core available. This situation is expected
to happen rarely, and should be seen as exceptional.

Theorem 5 When the multicast mesh is not partitioned or is partitioned into multiple components
and none of the components have at least one core, CAMP allows components to merge, traffic
sources to send data, receivers to join the mesh and incorporate shortest-paths to sources in the
mesh.

Proof: The absence of cores prevents any router to send join requests of any type. In components
with senders, data packets can still be sent locally, and therefore push join requests can be gen-
erated also locally. Besides the validation of join requests, recall that the reverse path to cores is
periodically checked by members to prevent mesh partitioning.

When either join requests or verification of reverse-path to core fail to find a reachable core, the
router i that originates the request or verification may become a transient core. Specifically in
simplex or duplex requests, routeri must try to join the mesh using Expanded Ring Search (ERS)
first. But when everything else fails, as explained in Section 4, the router backs off for a given
amount of time, and if no other core has become available in the meantime, routeri will become a
transient core. When the first transient cores start becoming available, their IDs will be propagated
to the entire network, and the proofs for the previous cases will apply. Therefore, the theorem is
true.2

8 Performance Comparison

8.1 Experiments

In large ad-hoc networks, no multicast protocol proposed to date that is based on sender-initiated
joining is scalable with the number of nodes in the network or the number of sources and groups in
the network. Examples of this type of protocols based on routing trees are DVMRP and PIM-DM;
an example of this type of protocols based on graphs other than trees is FGMP and ODMRP. The
reason that these protocols are not scalable is that sources must frequently flood either data packets
or control packets toall the network in order to establish a routing structure. If the network size
is large, or the number of groups and sources per group is large, this approach is not applicable.
In order to confirm that, we implemented one of the flood-based mesh approaches, ODMRP, to
observe how it compares to CAMP in a network with mobile nodes.
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In essence, ODMRP requires that all senders that are active transmitting data packets periodically
flood the network with a sender advertising packet. All routers directly connected to hosts willing
to participate in the multicast group will process those advertising packets, and update a member
table. This table lists all senders whose advertisements were received and the neighbor routers
used as next hop toward those senders. Periodically and when new sender advertisements are
received, the member table is also broadcast, and intermediate routers listed in member tables as
next hop to a sender will set a data forwarding flag, become group members and keep/broadcast a
member table themselves. Just like CAMP, ODMRP keeps a data packet cache. Data packets are
forwarded if the forwarding flag is set and the data packet is not already in the packet cache. FGMP
is very similar to that approach, except for the fact mentioned above that receivers are the entities
that flood membership advertisement packets, and senders keep track of receivers in the member
table. Both ODMRP and FGMP have scalability problems because of the design decision to flood
control packets, and specially FGMP due to the fact senders have to keep track of all receivers in a
multicast group. Our simulation results illustrate the scaling problems of the mesh approach used
by ODMRP.

The interesting aspects for performance comparison between CAMP and other multicast protocols
are the average delays, percentage of packet loss incurred due to node mobility, and the number of
control packets received by each node. The percentage of packets lost at a receiver is simply the
amount of packets sent by the traffic source that was not seen by the specific receiver. Therefore,
the smaller the percentage is, the better the protocol behaves. Obviously, the average packet delay
measured at each receiver excludes lost packets.

We ran a number of experiments to study this aspect of CAMP’s performance and to compare it
against the other multicast approaches. Figure 2 shows the topology of the dynamic network used
in the simulations. The network has 30 routers, numbered from 1 to 30, and two senders,A andB.
The links shown in the diagram illustrate the initial mesh connectivity in the simulation, i.e., the
existence of a link between two nodes imply there’s bidirectional connectivity between these two
nodes. All nodes in the simulation of the multicast routing protocols are receivers. In CAMP, this
means all nodes areduplexmembers.Router 16was chosen as core for all simulations.

Experiments ran for 350 seconds and the same conditions were applied to the simulation runs for
CAMP and ODMRP; specifically, the same number of packets was sent from the given source, the
same pattern of router mobility was applied, and the same MAC and routing protocols were used.
The simulations used a single broadcast channel, so that the transmission of a node is received by
all its neighbors. The channel bandwidth is 1 Mbit/sec. The Floor Acquisition Multiple Access
(FAMA) protocol[10] was used to access the broadcast channel, and the wireless internet routing
protocol (WIRP) [13] withhop countas distance metric was used to generate the unicast routing-
table entries at routers for CAMP. ODMRP does not need a unicast routing protocol. Radio links
are bidirectional. The timers of updates in CAMP and sender advertisement in ODMRP determine
how fast the network adapts to topology and group membership changes. Although the draft
specification available for ODMRP [14] requires this timer to be set to 400 msecs and does not
clearly indicate a way to compute this timer for different network sizes and capacity, the update
timers for both protocols are set to three seconds. This is an attempt to be fair to this protocol,
since 3 seconds is the period used by CAMP to send updates. Naturally, if its timers are set to 400
msecs, we expect ODMRP to yield a much greater overhead than the one shown here.

18



Two sets of experiments were run regarding mobility and mesh membership. In the first, 15 routers
or 5 routers move through the network. All 30 nodes are receivers in one multicast group. The
mobile nodes are represented in white in Figure 2. When only 5 routers are mobile, those are
routers 17, 18, 20, 28 and 30. The speed at which mobile nodes moved randomly in all simulations
was 67.5 miles/hr (30 meters/sec).

In this first set of experiments, data traffic is originated either by sourceA, which is directly
attached to the core (router 16), or by both sourceA andB, which is attached torouter 29. In
the experiments where the source of data traffic is senderA, the load was 4 packets/second. In the
experiments where both sendersA andB transmitted packets, each one sent 2 packets/second to
try to keep the same number of data packets in the network. Data packets are 500 bytes long.

In the second set of experiments, 15 nodes are mobile out of 30 nodes. The difference is that only
six nodes are receivers in the multicast group — nodes 6, 9, 16, 20, 23 and 25. Please note that
all receivers are mobile, except for router 16. In this second set, simulations had either only one
source — sourceA attached to router 16, or 4 sources — besidesA, sources attached to routers 6,
23 and 25, and each of them generate data traffic at a rate of 1 pkt/sec. Given the routers they’re
attached to, those routers are also mobile. They’re not depicted in Figure 2, and are referred to as
sourcess6, s16, s23 ands25. All other simulation parameters are the same as in the first set of
experiments.

8.2 Performance of Protocols

Figures 3 to 6 summarize the comparison between CAMP and ODMRP over the first set of exper-
iments we have run. Dashed lines represent ODMRP and solid ones represent CAMP. Figure 3(a)
shows that CAMP renders smaller delays than ODMRP in the case of a single source sending 4
packets/second and 15 nodes moving in the network. And the main reason for this difference in
average is shown in Figure 3(b). The longer delays incurred in ODMRP is a consequence of the
flooding of control packets per source needed in ODMRP. The number of control packets received
by CAMP routers represent around 60—70% of the number seen by ODMRP routers. For the
same traffic load and mobility patterns, both protocols perform similarly, when there’s one source
of data traffic, as shown by Figure 3(c). As the number of sources grows, CAMP performs even
better than ODMRP, as shown in Figure 4. In Figure 4(a), one can observe that, like routers 1, 2
and 3, almost half of the routers in the network show shorter delays for both sendersA andB when
running CAMP. As illustrated by Figure 4(c), as far as packet losses are concerned, CAMP loses
consistently fewer packets when more than one source send data packets.

In the case where there’s only 5 mobile nodes, the trend is similar to the case above, as shown by
Figures 5 and 6. Regarding packet losses, with the exception of some routers in Figure 6(c), CAMP
routers tend to consistently loose slightly fewer packets than their ODMRP counterparts, when two
senders transmit data packets. In Figure 6(c), some of the CAMP routers lost considerably more
packets. Routers 1, 2, 10, 13, 20 and 30 start the experiments all located in the upper left corner of
the network, as shown by Figure 2. Some CAMP updates were lost and intermediate routers took
longer to start acting as anchors for that part of the network. Routers 18 and 28 are initially in the
same network area, but are not as negatively impacted, because early on during the simulation run
they move to other parts of the network.
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The results for the second set of experiments are shown from Table 1 to Table 6. The numbers
show how the protocols perform when 15 nodes are mobile in the network of 30 nodes, and only
6 nodes are receivers. The comparison on these tables is based on the columnratio for average
data packet delay and incoming control packets, and on the columndifferencefor percentage of
missed packets. The ratios are always computed by the division of the figure yielded by CAMP by
the figure yielded by ODMRP. The difference is computed by subtracting the result obtained by
ODMRP from the result obtained by CAMP.

Tables 1 to 3 show average packet delay, percentage of packet losses and the number of incoming
control packets for the case where only the sender attached to router 16 generates data packets.
Although there’s a difference in the volume of control packets as shown in Table 3, this does
not impact the network, which is able to absorb the overhead for both protocols. CAMP and
ODMRP have very similar delays for all receivers, as theratio column in Table 1 shows. Because
of a combination of lost CAMP updates and slow convergence of the unicast routing protocol,
receivers 6 and 20 lose much more data packets when running CAMP. Specifically for the case
of receiver 20, the slow convergence of WIRP, in two different moments during the simulation,
prevented push join requests to be sent by not providing receiver 20 with a next hop to the sender.
The problems with the loss of update messages in the two experiments indicate that CAMP can
improve its performance with a reliability mechanism for this type of control messages.

When the number of sources of data traffic was increased to four, the protocol overhead grew
proportionally for both protocols as shown by Table 6. But now the volume of control packets
of ODMRP brings down the performance of the receivers regarding average packet delay. In this
experiment, the delays started to show considerable differences in favor of CAMP. The receivers
when running CAMP see delays that represent 52% to 78% of the delays when they run ODMRP,
as shown in Table 4. All receivers consistently see smaller delays when they run CAMP. Table 5
does not show a considerable difference regarding packet losses.

9 Conclusions

We have presented and verified the core-assisted mesh protocol (CAMP) for the establishment and
maintenance of multicast meshes over which multicast routing can be accomplished efficiently
in wireless mobile networks. CAMP establishes multicast meshes by means of sets of cores to
allow group members to join the meshes without flooding data or control packets throughout the
wireless network. We compared CAMP against ODMRP, which also establishes multicast meshes
but requires flooding an entire wireless network with control packets to set up its routing structure.
Our simulation experiments show that the receiver-initiated approach used for mesh joining in
CAMP performs and scales better than the sender-initiated approach of ODMRP.
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Figure 1: Traffic flow from routerh in a multicast mesh (left) and in the equivalent multicast shared
tree (right).
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Figure 3: Average packet delay (a), number of
incoming control packets (b) and percentage of
missed data packets (c) for routers in a network
of 30 nodes, where 15 of these nodes are mo-
bile. Data traffic from sourceA, which is the
one close to the core.
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Figure 4: Average packet delay (a), number of
incoming control packets (b) and percentage of
missed data packets (c) for routers in a network
of 30 nodes, where 15 of these nodes are mo-
bile. Data traffic from both sourcesA andB.
In this figure, “CAMP-A” represents the results
for routers running CAMP due to traffic from
SourceA.
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Figure 5: Average packet delay (a), number of
incoming control packets (b) and percentage of
missed data packets (c) for routers in a network
of 30 nodes, where 5 of these nodes are mo-
bile. Data traffic from sourceA, which is the
one close to the core.
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Figure 6: Average packet delay (a), number of
incoming control packets (b) and percentage of
missed data packets (c) for routers in a network
of 30 nodes, where 5 of these nodes are mo-
bile. Data traffic from both sourcesA andB.
In this figure, “CAMP-A” represents the results
for routers running CAMP due to traffic from
SourceA.
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s16
receiver camp odmrp ratio

6 107 98 1.09
20 168 170 0.99
23 99 96 1.03
25 91 93 0.99
9 89 102 0.87

16 0 0 1.00

Table 1: Average packet delay seen by receivers for traffic coming from sources16, directly at-
tached to router 16. The ratio iscamp=odmrp.

s16
receiver camp odmrp diff

6 25.89 4.69 21.21
23 4.37 4.13 0.24
25 10.64 2.54 8.10
9 0.95 4.29 -3.34

16 0.00 0.00 0.00
20 44.24 9.61 34.63

Table 2: Percentage of data packets missed by receivers for traffic coming from source directly
attached to router 16. The difference iscamp� odmrp.

control packets
receiver camp odmrp ratio

6 213 1137 0.19
23 225 1130 0.20
25 290 1262 0.23
9 248 1052 0.24

16 579 1362 0.43
20 143 1004 0.14

Table 3: Total number of incoming control packets at each receiver for multiple sources. The ratio
is camp=odmrp.
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s16 s23 s25 s6
receiver camp odmrp ratio camp odmrp ratio camp odmrp ratio camp odmrp ratio

6 243 331 0.73 340 508 0.67 302 463 0.65 0 0 1.00
20 324 524 0.62 446 625 0.71 461 653 0.71 210 403 0.52
23 245 341 0.72 0 0 1.00 317 465 0.68 385 525 0.73
25 272 350 0.78 258 434 0.60 0 0 1.00 295 457 0.65
9 230 366 0.63 293 492 0.59 355 530 0.67 447 678 0.66

16 0 0 1.00 245 385 0.63 266 406 0.65 220 365 0.60

Table 4: Average packet delay for multiple sources. The ratio iscamp=odmrp. Sources16means
the one attached to router 16.

s16 s23 s25 s6
receiver camp odmrp diff camp odmrp diff camp odmrp diff camp odmrp diff

6 4.14 9.24 -5.10 7.96 9.24 -1.27 7.32 12.42 -5.10 0.00 0.00 0.00
20 11.46 11.46 0.00 16.56 10.83 5.73 18.15 14.65 3.50 11.46 4.14 7.32
23 1.59 5.73 -4.14 0.00 0.00 0.00 4.46 9.24 -4.78 9.55 8.60 0.96
25 1.91 7.01 -5.10 3.82 7.01 -3.18 0.00 0.00 0.00 9.87 9.87 0.00
9 0.32 6.05 -5.73 5.41 10.19 -4.78 6.05 10.51 -4.46 10.51 10.51 0.00

16 0.00 0.00 0.00 4.14 6.05 -1.91 5.10 9.87 -4.78 9.24 7.96 1.27

Table 5: Percentage of data packets lost for multiple sources. The difference iscamp� odmrp.

control packets
receiver camp odmrp ratio

6 475 2832 0.17
23 552 2921 0.19
25 835 3140 0.27
9 366 2625 0.14

16 528 2842 0.19
20 257 2712 0.09

Table 6: Total number of incoming control packets at each receiver for multiple sources. The ratio
is camp=odmrp.
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