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Abstract

Long-run average properties of probabilistic systems
refer to the average behavior of the system, measured
over a period of time whose length diverges to infinity.
These properties include many relevant performance
and reliability indices, such as system throughput, av-
erage response time, and mean time between failures.

In this paper, we argue that current formal spec-
ification methods cannot be used to specify long-run
average properties of probabilistic systems. To enable
the specification of these properties, we propose an ap-
proach based on the concept of erperiments. Experi-
ments are labeled graphs that can be used to describe
behavior patterns of interest, such as the request for
a resource followed by either a grant or a rejection.
Ezperiments are meant to be performed infinitely of-
ten, and it is possible to specify their long-run average
outcome or duration.

We propose simple extensions of temporal logics
based on experiments, and we present model-checking
algorithms for the verification of properties of finite-
state timed probabilistic systems in which both proba-
bilistic and nondeterministic choice are present. The
consideration of system models that include nondeter-
minism enables the performance and reliability anal-
ysis of partially specified systems, such as systems in
their early design stages.

1 Introduction

Long-run average properties of probabilistic sys-
tems include many classical performance and reliabil-
ity indices, such as system throughput, average re-
sponse time, and mean time between failures. These
properties refer to the average behavior of the system,
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measured over a period of time whose length diverges
to infinity [15]. In systems modeled as Markov chains,
long-run average properties are related to the steady-
state distribution of the chain [20]. In this paper we
argue that current approaches to formal specification
are not suited for the study of long-run average prop-
erties of probabilistic systems, and we present verifi-
cation and specification methods that overcome this
limitation.

Current approaches to the specification and veri-
fication of probabilistic systems are based either on
extensions of temporal logics, or on probabilistic pro-
cess algebras, simulation and bisimulation relations,
and testing preorders.

Temporal logics for the specification of quantita-
tive properties of probabilistic systems have been pre-
sented in [18, 2, 7, 21, 13], and a probabilistic du-
ration calculus has been studied in [24]. These log-
ics enable the specification of bounds for the proba-
bility of satisfying temporal or duration calculus for-
mulas, starting from given subsets of system states.
Model-checking algorithms for these logics have been
presented in [10, 11, 7, 21, 13]. These logics can be
used to specify many properties of interest, such as
bounds on the probability of meeting a deadline, or
of reaching a deadlock, starting from a given set of
states. These properties are related to ensemble aver-
ages (or probabilities) over the set of behaviors that
originate from single system states.

Long-run average properties of systems are related
to time averages along system behaviors, rather than
ensemble averages. This indicates that the above log-
ics cannot be used to specify long-run average proper-
ties of systems. In fact, even in the case of purely prob-
abilistic systems, these logics cannot take into account
the long-run average probability of being at given sys-
tem states, or the long-run average outcome of system
choices. This limits their ability to capture a large
number of classical performance and reliability prop-
erties.

Another approach to the specification of probabilis-
tic systems is based on the use of probabilistic pro-
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cess algebras, simulation and bisimulation relations,
and testing preordres (see for instance [23, 9, 29], or
[28, 12] for more comprehensive summaries of this ap-
proach). Simulation and bisimulation relations pre-
serve the long-run average behavior of probabilistic
systems, but they offer no direct method for the spec-
ification of performance and reliability properties con-
nected to this type of behavior. The approaches based
on tests enable to quantify the probability with which
the system passes the tests. Since the tests are gener-
ally executed only once, they cannot be used to mea-
sure long-run average properties.

This paper presents a method for the formal spec-
ification and verification of long-run average proper-
ties of probabilistic systems. The method is based on
the concept of erperiments, inspired by the tests of
process algebra. Experiments are labeled graphs that
can be used to describe behavior patterns of interest,
such as the request for a resource followed by either
a grant or a rejection. Experiments associate with
each occurrence of these patterns an outcome: a real
number representing the success or the duration of the
pattern. For example, we can associate to the above
experiment outcome 1 if the request is granted, and 0
if it is rejected. Unlike tests, experiments are meant
to be performed infinitely often, and it is possible to
measure their long-run average outcome. The long-
run average outcome of the above experiment is equal
to the long-run average fraction of requests that are
granted. Experiments provide a specification method
for long-run average properties that is semantically
sound, and easy to understand, even when the system
model includes nondeterminism.

We model the behavior of probabilistic systems in
terms of probability, nondeterminism, and time: our
models are based on Markov decision processes, aug-
mented by additional information on the timing be-
havior of the system. The inclusion of nondeterminism
in the system model enables the study of performance
and reliability of partially specified systems, such as
systems in their early design stages.

We propose simple extensions of branching-time
temporal logics based on experiments. These exten-
sions are obtained by introducing new operators that
enable to express bounds on the long-run average out-
come of experiments. These extensions enable the use
of a single language for the specification of correctness,
reliability, and performance properties of systems. We
also discuss the relationship between the long-run av-
erage properties studied in this paper and the proper-
ties expressible in previous probabilistic extensions of
temporal logic.

Finally, we present model-checking algorithms for
the verification of long-run average properties of finite-
state systems. The model-checking algorithms are
based on new results from the theory of Markov
decision processes. They have polynomial time-
complexity both in the size of the system and in the
size of the experiment, indicating that this proposal
provides a practical approach to the formal specifica-
tion and verification of long-run average properties of
systems.

Formal Methods for Performance Modeling

To complete our review of related work, we mention
the use of formal methods for the construction of per-
formance models of systems. While this approach does
not deal with the issue of specification languages, it
nevertheless provides methods for measuring several
performance and reliability indices of purely proba-
bilistic systems (i.e. systems not containing nondeter-
ministic choice).

A popular approach to the construction of per-
formance models relies on probabilistic extensions
of Petri nets, such as the stochastic Petri nets of
[26, 25, 30] and the generalized stochastic Petri nets
(GSPNs) of [1]. The transitions of a GSPN can either
fire immediately, or fire with an exponential delay dis-
tribution. GSPNs can be translated into continuous-
time Markov chains, thus enabling the performance
analysis of the systems.

Another approach to the compositional modeling of
probabilistic systems is based on extensions of process
algebras. The process algebras MPA and EMPA as-
sociate delay distributions with the actions [5]. An
EMPA system model can be either translated into
a GSPN, or directly into a continuous-time Markov
chain, thus allowing the performance evaluation of the
system [4, 3]. The idea of associating delay distribu-
tions with the actions is also at the basis of the process
algebras PEPA [19] and TIPP [16]. System models
written in PEPA and in subsets of TIPP can again be
translated into continuous-time Markov chains.

These formalisms enable the performance model-
ing only of purely probabilistic systems: nondetermin-
ism can be present in system sub-components, but
not in the complete model that is translated into a
continuous-time Markov chain.

The performance and reliability quantities of in-
terest can be measured by adding annotations to the
models. In a GSPN reward model, a reward rate is as-
sociated with each place and transition of the net [8];
in PEPA, a reward rate can be associated with each
action. The average reward per unit of time can then



be computed by solving the continuous-time Markov
chains obtained from the systems.

The experiments we introduce here also provide
a flexible way of associating rewards with a system.
Additionally, using experiments we can measure not
only the amount of reward per unit of time, but also
the amount of reward per erperiment. For systems
that can be translated into ergodic Markov chains [20],
the long-run average outcome per experiment can be
computed by computing separately the rates of out-
come generation and of experiment completion, and by
taking the ratio between the two. However, in the case
of systems with nondeterminism this approach fails,
and the introduction of experiments leads to more ex-
pressive specification methods.

2 DModels for Probabilistic Systems

Our models for probabilistic systems are based on
Markov decision processes (MDPs). An MDP is a gen-
eralization of a Markov chain in which a set of possible
actions is associated with each state. To each state-
action pair corresponds a probability distribution on
the states, which is used to select the successor state
[14, 6].

Definition 1 (Markov decision process) A
Markov decision process (MDP) (S, A,p) consists of
a finite set S of states, and of two components A, p
that specify the transition structure:

e For each s € S, A(s) is a non-empty finite set of
actions available at s.

e For each s,t € S and a € A(s), ps(a) is the
probability of a transition from s to t when action
a is selected. For every s,t € S and a € A(s), it
is 0 <pg(a) <land ), gpsi(a)=1. 1

We will often associate with an MDP additional la-
belings to represent quantities of interest; the labelings
will be simply added to the list of components.

A behavior of an MDP is an infinite sequence of
alternating states and actions, constructed by iterat-
ing a two-phase selection process. First, given the
current state s, an action a € A(s) is selected non-
deterministically; second, the successor state ¢ of s
is chosen according to the probability distribution
Pr(t | s,a) = pst(a). The formal definition of behavior
is as follows.

Definition 2 (behaviors of MDP) A behavior of
an MDP II is an infinite sequence w : sgagsiai---
such that s; € S, a; € A(s;) and py, 4, (a;) > 0 for

all i > 0. We let X;, Y; be the random variables rep-
resenting the i-th state and the i-th action along a
behavior, respectively. Formally, X; and Y; are vari-
ables that assume the value s;, a; on the behavior
W :89apS1ay - - -. |

Policies and probability of behaviors. For every
state s € S, we denote by ; the set of behaviors start-
ing from s, and we let B, C 2% be the o-algebra of
measurable subsets of {2, following the classical defini-
tion of [20]. To be able to talk about the probability of
system behaviors, we need to specify the criteria with
which the actions are chosen. To this end, we use the
concept of policy [14], closely related to the adversaries
of [29, 28] and to the schedulers of [31, 27].

A policy n is a set of conditional probabilities
Qnla | sos1---sy), for all n > 0, sg,s1,...,5, € S
and a € A(s,). According to policy 7, after the finite
prefix sgagsy - - - Sp, action a € A(s,) is chosen with
probability Qn(a | sos1---sn). Hence, under policy
1 the probability of following a finite behavior prefix
50005101 -+ 5n 15 [[10g Poi,sisa (@s) Qulai | 50+ 54).

These probabilities for prefixes give rise to a unique
probability measure on B;. We write Pr? (A) to denote
the probability of event A in Q4 under policy 7, and
E?{f} to denote the expectation of the random func-
tion f from state s under policy 7.

Timed probabilistic systems. Our model for
probabilistic systems is that of timed probabilistic sys-
tem (TPSs). A TPS is an MDP with three additional
labelings, that describe the set of initial states, the
timing properties of the system, and the values of a
set of state variables at all system states. TPSs are
closely related to semi-Markov decision processes [6].

For simplicity, we assume a fixed set V of state vari-
ables.

Definition 3 (TPS) A TPS (S, A, p, Sin, time, T) is
an MDP (S, A, p) with three additional components:

e A subset S;, C S of initial states.

o A labeling time that associates with each s €
S and a € A(s) the ezpected amount of time
time(s,a) € RT spent at s when action a is se-
lected.

o A labeling 7 that associates with each 2z € V and
s € S the value Zs[z] of z at s. 1

The relative simplicity of this model enables us to
focus our attention on the specification and verifica-
tion of long-run average properties, rather than on



modeling issues. It is possible to define higher-level
compositional models for probabilistic systems that
can be automatically translated into TPSs; an exam-
ple of such higher-level models are the stochastic tran-
sition systems of [12]. Several other models can be
similarly translated.

We say that time diverges along a behavior iff
Yoo time(Xy,Yy,) diverges. Since behaviors along
which time does not diverge do not have a physical
meaning, we make the following assumption about the
TPSs under consideration:

Non-Zenoness Assumption: For every policy 7
and state s, Pr? (372, time(X;,Y;) = 00) = 1.

This assumption can be verified using the algorithm
described in [13]. A more general approach to the
problem of time divergence, inspired by [28], is pre-
sented in [12, §8].

3 A Motivational Example

To gain a better understanding of why existing for-
mal specification methods cannot capture long-run av-
erage properties of systems, we present a simple exam-
ple: the specification of the long-run average proba-
bility of gaining access to a shared resource in a multi-
user system.

Specifically, we consider a system SHARED-RES,
consisting of N users that can access a shared resource.
The resource can be used by at most M < N users at
any single time. FEach user can be in one of three
states: idle, requesting and using. For the sake of sim-
plicity, we assume that each step of the system has
unit duration.

Initially, all users are at idle. At each time step, if a
user is at idle it has probability p of going to requesting
and 1 — p of staying at idle. If the user is in using, it
has probability g of going to idle, and 1 — q of staying
in using. The behavior of a single user is depicted in
Figure 1.

Let j and k, with kK < M, be the number of users
in requesting and using, respectively, at the beginning
of a time step. The scheduler may grant access to any
number of users between m = min{My, M —k, j} and
n = min{M —k, j}, where My > 0is a constant. Thus,
from the state there are actions ap,, @m+y1,-..,0n. If
action q; is chosen, with m <1 < n, then [ among the
j users at requesting are selected uniformly at random
and go to using, while the remaining j — [ users are
sent back to idle. From this informal description, for
given N, M, My, p, and g, it is possible to construct
a TPS H(N7 M7 MOapa q)

1o | T 1q

Figure 1: Behavior of a single user in system
SHARED-RES. The transitions from state waiting de-
pend on the scheduler and on the states of the other
users in the system.

This system was originally devised as a very sim-
ple model for the behavior of people placing phone
calls: N is the number of people, M is the maximum
number of calls that can be active at the same time,
and M is the minimum number of new calls that the
phone company guarantees to be able to connect in a
time unit. The transition from idle to requesting cor-
responds to the act of lifting the handset to place a
call; the transition from wusing to idle corresponds to
hanging up at the end of the call. The transitions out
of the requesting state model the acts of either getting
the connection or of hanging up upon hearing the busy
signal. Our intended specification is as follows:

Reql: For any user, the long-run fraction of requests
that are granted is at least by, for some specified
0< by <.

We will attempt to encode this specification in the
probabilistic temporal logic pCTL, derived from CTL
by introducing the probability operator P [17, 7, 18].
The operator P can be used to express bounds on
probabilities, and it is syntactically similar to a path
quantifier. If ¢ is a linear-time temporal logic formula,
then P>4,¢ holds at a state s iff the probability that
a system behavior from s satisfies ¢ is at least by (the
cases for <, <, > are analogous).

As the situation is symmetrical for all users, let
us concentrate on the first user. Let I;, Ry, Uy be
atomic formulas representing the fact that user 1 is at
idle, requesting or using, respectively. It might seem
plausible at first to encode the requirement Reql with
the following pCTL formula:

AI:I(Rl — PZbo (R1 Z/{Ul)) . (1)

Let us analyze this formula. Call any state that satis-
fies Ry an R,-state. Subformula P>y (R, U Uy) holds
at an R;-state iff the request of user 1 at that state
will be granted with probability at least by, regardless
of the policy. By definition of A and O, specification
(1) holds for SHARED-RES iff every reachable R;-state
satisfies P>y, (R U Un).



The problem with specification (1) is that there are
many reachable R;-states in the system: in some of
them, few users are accessing the resource; in others,
the resource is fully utilized. Clearly, the probabil-
ity that the first user gets access to the resource from
these latter Rj-states is 0. Thus, as long as there
is a reachable R;-state in which M users are already
using the resource, specification (1) will not be sat-
isfied, regardless of the long-run average probability
with which the first user succeeds in accessing the re-
source.

More generally, the problem is that the temporal
logics presented in [17, 2, 7, 13] can specify the proba-
bility with which behaviors satisfy temporal formulas
from given states, but they do not take into account
the long-run probability of being in those states.

A similar argument applies to the specification ap-
proaches based on process algebras, simulation rela-
tions and testing preorders. While these approaches
can characterize many probabilistic properties of inter-
est, they do not take into account the long-run proba-
bility of being in given system states. Indeed, an exam
of the verification algorithms that have been proposed
to check these relations in purely probabilistic systems
confirms that the computation of steady-state proba-
bility distributions is not among the tasks performed
by the algorithms.

4 Specification of Long-Run Average
Properties

The specification method we present is based on
the concept of experiments. An experiment is simply
a finite deterministic automaton, with a distinguished
set of initial states and some additional labelings. Ex-
periments describe behavior patterns of interest, and
are applied to a TPS by forming the synchronous com-
position between the experiment and the TPS. Each
time an experiment is performed, it yields an outcome,
related either to the success, or to the duration, of the
experiment. Accordingly, we distinguish two types of
experiments: P-experiments, to measure discrete out-
comes, and D-experiments, to measure durations.

Definition 4 (experiment) An ezperiment ¥ =
(V,E,E.,Vin,\) is a labeled graph (V, E), with set
of vertices V' and set of edges £ C V x V, and with
the following additional components:

e A set Vi, CV of initial vertices.

o Aset E. CE — {(v,v) |v €V} of reset edges.

o A labeling A that assigns to each v € V a first-
order formula A(u) over the state variables V.

For all u € V, we denote by dst(u) = {ve V | (u,v) €
E} the set of vertices that can be reached in one step
from u, and we require u € dst(u). The labeling of the
vertices must be deterministic and total. Specifically,
the following formulas must be valid (i.e. true in any
type-consistent variable interpretation):

L. VveVin)‘(’U)-

2. \/vedst(u))\(v), forallu e V.

3. a[A(v1) A A(vq)], for all vy, vy € V.

4. =[A(v1)AX(v2)], for alluw € V, v1,v9 € dst(u). 1

When the synchronous composition between an ex-
periment ¥ and a TPS II is formed, the vertex labels
A of ¥ are used to synchronize the transitions of ¥ and
II. The fact that u € dst(u) for all u € V ensures that,
if the variable assignment does not change, the exper-
iment remains at the same vertex. Each time a reset
edge is traversed, we say that the experiment ends,
so that the number of reset edges traversed along a
behavior indicates how many experiments have been
completed.

In a P-experiment, we associate with each reset
edge an outcome: a real number representing a reward
earned when the experiment is ended.

Definition 5 (P-experiment) A P-ezperiment is
an experiment in which each reset edge (u,v) € E,
is labeled with an outcome y(u,v) € R. 1

Often, we are interested in experiments whose out-
come is binary: they can either succeed or fail. In this
case, we associate outcome 1 with the reset edges that
represent a successful completion of the experiment,
and outcome 0 with those representing failures.

In a D-experiment, we specify a set of timed ver-
tices: the outcome of a D-experiment is equal to the
total time spent at timed vertices.

Definition 6 (D-experiment) A D-experiment is
an experiment with a distinguished nonempty subset
Vi CV of timed vertices.

Example 1 (average success in SHARED-RES) In
Figure 2 we present a P-experiment that can be used
to express specification Reql. If user 1 proceeds from
requesting to using, the outcome is 1; if user 1 proceeds
from requesting to idle, the outcome is 0. Specification
Reql can be encoded by requiring the long-run average
outcome of the experiment to be at least bg. 1
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Figure 2: P-experiment Wg.,;, for the specification of
Requirement Reql of SHARED-RES. All vertices are ini-
tial; the reset edges are drawn as dashed lines. We omit-
ted the self-loops and the edges that are never followed
by system SHARED-RES.

4.1 Long-Run Average Outcome of Ex-
periments

To use experiments for the specification of long-
run average properties of systems, we need to compose
them with the system and to define their long-run av-
erage outcome. The synchronous composition with a
system is defined as follows.

Definition 7 (product of TPS and experiment)
Given a TPSII = (S, A, p, Sin, time, I) and an exper-
iment ¥ = (V,E, E,, Vi, A), we define their product
MDPIlyg =IIQ ¥ = (§, E,ﬁ, r,w) as follows:
o« 5= {{s,u) | s = AMu)}, where s = A\(u) holds iff
the formula A(u) is true in the variable interpre-
tation Z(s) corresponding to s.

e For all (s,u) € S, we let A\((s,u)) = A(s).

e For all states (s,u),(t,v) € S and actions a €
A(s), the transition probabilities and the label-
ings r, w are defined as follows.

Let vf, € V be the unique vertex such that ¢ =
A(vl) and (u,l) € E. Intuitively, if IT is at s and
¥ at u, and II takes a transition to ¢, ¥ will take
a transition to v{. We define
. pst(a) if v =10
p k) b a =
(et (9) { 0 otherwise.
w(ea). (o) = {10 € F
0 otherwise.
If ¥ is a P-experiment, we define
rl(s,uha (o)) = { 1000 T80 € B
0 otherwise.
If ¥ is a D-experiment, we define
) = { time(s,a) if u €V,

r((s,u),a,(t,v .
otherwise.

Since experiments are total and deterministic, to each
s € S corresponds a unique vertex u € Vj, such that
(s,u) € S. We denote this unique vertex by v;,(s),
forseS. 1

In the product MDP, the sum ZZ;S w( Xy, Xpy1)
indicates how many experiments have been completed
in the first n steps of a behavior. Similarly, the sum

Z;é r(Xg, Yk, Xi+1) indicates the total outcome for
the first n steps. Hence, we can define the n-stage

average outcome of experiments as follows.

Definition 8 (n-stage average outcome) Given
a behavior w of a product between a TPS and an ex-
periment, we define the n-stage average outcome of w
by

n—1

ZT(Xk, Yi, Xit1)
Ha(w) = =2

n—1

> w(Xp, Xpt1)

k=0

The argument w in H,(w) is simply a reminder that
H,, is a random variable, i.e. a measurable function of
the behavior. 1

The long-run average outcome of the experiment
on a behavior w is thus related to lim,,_ . Hn(w), or
better to liminf,, . Hn(w) and limsup,,_, . Hn(w),
since under certain policies the sequence {H,(w) }n>0
may oscillate for n — oo.

4.2 Extending Temporal Logics with Ex-
periments

To enable the specification of long-run average
properties of systems, we extend probabilistic or non-
probabilistic versions of the temporal logics CTL and
CTL* with experiments. The extensions are obtained
by introducing two new operators P and D, which are
used to express bounds on the average long-run out-
come of experiments from given starting states. For
> € {<, <, >, >} we introduce the following state for-
mulas in the logics.

e If ¥ is a P-experiment and a € R, then Py, ()
is a state formula.

e If ¥ is a D-experiment and a € R, then Dyq, ()
is a state formula.

Intuitively, Py, (¥) holds at a state s if, under all
policies, a behavior that performs infinitely many ex-
periments yields a long-run average outcome that is
> a with probability 1. The semantics of operator



D is analogous. To define the semantics precisely, we
need an auxiliary predicate I that characterizes the
behaviors on which the long-run outcome of an exper-
iment is well-defined.

Definition 9 (predicate I) For a behavior w of a
product between a TPS and an experiment, the truth
value of predicate I is defined by w = T iff

Z (X Xit1) + [1(X, Yie, Xp1)|]] =00 . (2)
k=0

Thus, I holds either if w spends an infinite amount
of time at timed vertices, or if w performs infinitely
many experiments. It is not difficult to show that the
truth-set of I is measurable. 1

The operators P and D specify bounds on the long-
run average outcome only for behaviors that satisfy
predicate I, i.e. behaviors that perform infinitely many
experiments, or that spend an infinite amount of time
at timed vertices. The reason is that the behaviors
that do not satisfy I eventually cease to be involved
in the active part of the experiment, so that the limit
lim,,—, oo Hn(w) represents a short-term average out-
come, rather than a long-run one. This short-term
average outcome can be influenced by statistical fluc-
tuations. This will be illustrated later in Example 3.

The semantics of operators P and D is defined in
terms of H and I as follows.

Definition 10 (semantics of P and ﬁ) Given a
TPSTI = (S, A, p, Sin, time, ) and an experiment ¥ =
(V, E, Ey, Vin, A), let Ily = I® ¥ be the product MDP.

First, we define the semantics of P, D on IIy. For
a state (s,v) of Iy, a € R and > € {>,>}, we have
that (s,v) |= Pua(P) (resp. (s,v) E Dy (®)) if, for
all policies 7,

Pr?s )(I - hnrglgf?-l (w)ma) =1. (3)

The definition of (s,v) = Ppqa(¥) (resp. (s,v) =
Do (¥)) for < € {<, <} is analogous.

For all states s € S of II, the semantics of P and D
is then defined by

s | Exa(®) iff (s,0in(s)) F Exa(¥)
where Z is one of P, D and =€ {<,<,>,>}. 1

Example 2 (specifying the call throughput of
SHARED-RES) Using the experiment ¥ of Figure 2,
we can specify the call throughput requirement Reql
of system SHARED-RES using the formula ¢greq
PZbo (111) |

rllp: Sl
12 r=+1 idle
w=1
So gamble S;
w=1
12 =
S

gamble_again

Figure 3: Product MDP Iy = (S, A, p,w,r), corre-
sponding to a gambling system. It is A(sq) = {gamble},
A(s3) = {idle, gamble_again}.

The following example illustrates the necessity of
excluding from the considerations the behaviors on
which predicate I does not hold.

Example 3 Consider a gambling system II which,
upon each gamble, returns a gain of £1 with equal
probability. After each gamble, the player can either
be idle, or gamble again. Figure 3 depicts the MDP re-
sulting from the product of the system with an exper-
iment ¥ that measures the average gain per gamble.
Our specification for this system is P>_q.3(¥). This
formula specifies that the long-run average outcome
of the experiment (i.e., the long-run average gain per
gamble) should be at least —0.3.

Along a behavior that gambles infinitely often, the
long-run average gain per gamble is 0 with probabil-
ity 1. Thus, by (2) and (3), we have sy = P>_0.3(¥),
which agrees with our intuitive understanding of long-
run average outcome.

On the other hand, the short-term average outcome
might be different from 0. In particular, let 5’ be
the policy that prescribes to gamble exactly 4 times
starting from sg, and then be idle forever. Clearly,

PrZ; (lim inf H,(w) =

im in —4) = 1/16.
Hence, if we dropped the restriction to behaviors sat-
isfying I in (3), we would have so £ P>_o.3(%).

This example shows that omitting predicate I from
(3) would alter drastically the semantics of P and D,
making them useless for the specification of long-run
average properties. N



4.3 Specification Languages and Property
Classification

The specification language we propose in this pa-
per embeds experiments into branching-time temporal
logic. This might seem a poor fit, since temporal op-
erators and experiments cannot be nested arbitrarily.
Two reasons motivated our proposal. First, if the state
space of the system under analysis is not strongly con-
nected, the long-run average outcome of experiments
can have different values when measured from differ-
ent states. Temporal logic enables us to specify the
set of states from which to measure it.

Moreover, operators P and D can be combined with
other probabilistic extensions of CTL and CTL* to
yield powerful languages for the specification of a wide
range of correctness, reliability and performance prop-
erties. The logics GPTL and GPTL* (generalized
probabilistic temporal logic) presented in [12] combine
the operators P and D with the operators P and D.
The operator P, mentioned in Section 3, can express
bounds on the probability with which linear-time tem-
poral logic formulas hold; operator D, presented in
[13], can express bounds on the expected amount of
time required to reach given subsets of states. We
call the properties that can be expressed by operators
P and D single-event properties, to emphasize the fact
that they involve the occurrence of a single event (sat-
isfying a linear-time temporal formula, or reaching a
subset of states).

The duality between long-run average properties
and single-event properties has been mentioned in the
introduction: long-run average properties refer to time
averages, while single-event properties refer to ensem-
ble averages. This duality is reflected in the different
types of questions that arise during verification.

The model checking of GPTL* formula Py, ¢ in-
volves the construction of the product between the
TPS and the deterministic Rabin automaton for ¢ or
—¢ [13]. Deterministic Rabin automata are strictly
more expressive than deterministic Biichi automata
[22]. Nonetheless, for the sake of simplicity we con-
sider an algorithm that computes the product with a
deterministic Biichi automaton instead. Such an al-
gorithm can be used for the subclass of formulas that
can be encoded as deterministic Biichi automata.

In the resulting product structure, to decide
whether s |= Py, ¢, we essentially need to answer the
question:

What is the probability of visiting the accept-
ing states infinitely often?

Consider now the specification Py (¥). In the
structure resulting from the product between the sys-

tem and the experiment, the outcomes are associated
with the reset edges of the experiment. The long-run
average outcome depends on the relative frequency
with which we traverse these edges. Hence, to decide
whether s |= Py, (), we essentially need to answer
the question:

If we traverse the reset edges infinitely often,
with what relative frequency do we traverse
them?

Hence, we see that there is a direct correspondence be-
tween deterministic Biichi automata and experiments:
to the accepting states of Biichi automata correspond
the reset edges of experiments. P-experiments could in
fact be defined as deterministic stutter-invariant edge-
Biichi automata with outcomes associated to the ac-
cepting edges. The duality between the verification
questions corresponding to P and P illustrates the du-
ality between the classes of properties expressed by
these operators.

Given the duality between single-event and long-
run average properties, it is natural to ask whether
there are families of systems whose specifications are
better captured by a particular class of properties.
While there is no absolute answer to this question,
long-run average properties seem to be better suited to
the study of systems that have an interesting steady-
state behavior. Examples of such systems are commu-
nication networks and distributed systems in which no
irreversible failures can occur.

Single-event properties are instead suited to the
study of systems that have uninteresting steady-state
behavior. Several system models used for reliability
analysis fall in this category. These models can often
reach an irreversible “failure” state, in which case the
steady-state distribution is degenerate. The proper-
ties of interest are related to the probability or ex-
pected time to reach the failure state from given sets
of states.

5 Verification of Long-Run Average
Properties

In this section, we present a model-checking al-
gorithm to determine the truth value of formulas of
the form P (¥) and Dy (¥) at all states of the
product between a TPS and an experiment, where
<E {<,<,>,>} and a € R. The algorithm relies
on new results on the theory of Markov decision pro-
cesses, and on a connection with optimization prob-
lems for semi-Markov decision processes [12]. The cor-
rectness proof for the algorithms is fairly complex, and



has been presented in [12, §6]: here, we will only pro-
vide a partial and informal justification.

We note that for purely probabilistic systems, it is
possible to use a simpler algorithm, based on the com-
putation of the steady-state distribution of Markov
chains [12, §6].

To present the algorithms, we need the preliminary
notions of sub-MDP and end component [12].

5.1 End Components

End components are the analogous concept in
Markov decision processes of the closed recurrent
classes of Markov chains [20]: they represent the set
of states and actions that can be repeated infinitely
often along a behavior with non-zero probability.

Definition 11 (sub-MDPs and end compo-
nents) Given an MDP II = (S, A4,p), a sub-MDP
is a pair (C,D), where C C S and D is a function
that associates with each s € C' a set D(s) C A(s) of
actions. A sub-MDP (C,D) is an end component if
the following conditions hold:

e Closure: for all s € C, a € D(s), and t € S, if
psi(a) >0 then t € C.

e Connectivity: Let
E = {(s,t) € C x C | Ja € D(s) . pst(a) >0} ;
then, the graph (C, E) is strongly connected.

We say that an end component (C, D) is contained in
a sub-MDP (C',D') if

{(s,a) | s € C ANa € D(s)}
C{(s,a)|s€C'"Aa€ D'(s)}.

We say that an end component (C, D) is mazimal in a
sub-MDP (C', D') if there is no other end component
(C", D) contained in (C', D') that properly contains
(C, D). We denote by mazEC(C',D’) the set of max-
imal end components of (C',D"). &

It is not difficult to see that, given a sub-MDP
(C, D), the set mazEC(C, D) can be computed in time
polynomial in |C| 4+ >, . |D(s)| using simple graph
algorithms; an algorithm to do so is given in [12, §3].

Given a behavior w, let

C,={s|3k.X;=s}

Du(s)={a|3 k.Xy=5AY; =a},

where 3 k stands for “there are infinitely many dif-
ferent k’s”. The sub-MDP (C,,D,,) corresponds to
the states and actions that are repeated infinitely of-
ten along w. The proof of the following result can be
found in [12].

Theorem 1 (fundamental theorem of end com-
ponents) For all s € S and all policies n,
Pr?((Cy, D,) is an end component) = 1.

5.2 The Model-Checking Algorithm

Consider an MDP II = I, ® ¥ = (S, A4,p,r,w)
resulting from the synchronous product of a TPS Il
with experiment U.

We define the threshold outcomes T? and T} of II
to be, respectively, the maximum and minimum val-
ues of the long-run average outcome of ¥ that can be
attained with non-zero probability under some policy
starting from state s.

Definition 12 (threshold outcomes) For all s €
S, we define the threshold outcome T: by

T! = sup{acR | In.Pr(IAlimsup Hy(w)>a) > 0} .
n—oo

The threshold outcome T~ is defined similarly. We
use the conventions sup ) = —oo, inf) = +oo. 1

The truth value of Py, (¥) and Dpg, (¥) at all s € S
can be computed by comparing the threshold out-
comes with a, as stated by the following theorem.

Theorem 2 For Z € {P,D} and = € {<,<}, we
have B

5 = B (P) iff T aa.
A similar result holds for € {>,>} and T, .

The following algorithm computes the threshold
outcomes. It uses Algorithms 2, 3 and 4, which will
be described later.

Algorithm 1 (threshold outcomes)
Input: MDP II = (S, A, p, r,w).
Output: T, and T, for all s € S.
Method:

1. Compute the labelings W and R, defined by
W(s,a) = Zpst(a) w(s,t)

tesS

R(S, a) = Zpst(a) ’I“(S, a, t)

teS



for all s € S and a € A(s). Denote by II' =
(S, A,p, W, R) the MDP obtained by replacing r
and w with R and W, respectively. The purpose
of this step is to simplify the notation.

. Let {(S1,41),...,(Sn,4An)} = mazEC(S,A).
For each 1 < i < m, construct an MDP II; =
(S;, Ai, p', Ri, W;), where pi, R;, W; are the re-
strictions of p, R, W to (S;, A;). For s € S, let

M, = {i € [1.n] | S; reachable in II' from s} .

By Theorem 1, for a behavior w there is with
probability 1 an 4 € [1..n] such that (C,,D,) C
(Si, 4;), i.e. w is eventually confined to (S;, 4;).
If a behavior w satisfies I (the case of inter-
est), the limit liminf, o H,(w) does not de-
pend on any initial prefix of w (and similarly for
lim sup,,_, o Hn(w)).

Let T: i» Ty be the threshold outcomes associ-
ated with state ¢ € S;, computed with respect
to the MDP II;. Since for 1 < i < n each II;
is strongly connected, it is possible to prove that
T,; and T,; do not depend on t € S;, so that
we can write simply T; and T; . From the above
considerations it follows that

TY = max T; T,
i€M,

Hence, to solve the model-checking problem it suf-
fices to compute T; and T; for all 1 <i < n.

. Compute the set

L={ie[l.n]|3s€S;.Ta€c Ay(s).
[Ri(s,a) > 0V Wi(s,a) > 0]} .

If i ¢ L, the behaviors that are confined to II; do
not satisfy I. Hence, for i € {1,...,n} — L let

(5)

. Transform, using  Algorithm 2, each
II; = (Si,Ai,pi,Ri,Wi), i € L, into an MDP
I; = (S;, A;, p', Ri, W;) such that the predicate
holds with probability 1, for all policies.

Let T‘:r, TZ_ be the threshold outcomes computed
on the MDPs II;, for 4 € L. For i € L, it can be
shown that:
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5. Compute, using Algorithm 3, the sets

K ={iel|T, =400} (7)

~+
K'={iel|T; =+oo}. ®)
6. For every policy, predicate I holds with probabil-
ity 1 on II;, for ¢ € £. This enables us to disre-
gard predicate I when working on II;, leading to

. . ~t
a connection between the computation of T; , T,
and the solution of an optimization problem for
semi-Markov MDPs [12].

Algorithm 4 exploits this connection to compute
T, (resp. T, ) for all i ¢ K (resp.i ¢ K ). The

2

threshold outcomes T! and T in M at all s € S
can be computed by (4), (5), (6), (7), (8). 1

5.3 Eliminating non-I Behaviors

Algorithm 2 transforms an MDP into a related
MDP on which predicate I holds with probability 1.
The idea of the algorithm is the following. From The-
orem 1, predicate I can be false with positive proba-
bility iff the MDP contains a (reachable) end compo-
nent all of whose state-action pairs have R = W = 0.
By eliminating these end components, we can insure
that I holds with probability 1. The offending end
components are eliminated by collapsing each of them
to a single state, and by removing all the actions be-
longing to the end component. Since the state-action
pairs that are collapsed have R = W = 0, it is possible
to prove that the transformation leaves the threshold
outcomes unchanged, as stated in (6).

Algorithm 2 (I-transformation)
Input: MDP II = (S, A,p, R,W).
Output: MDP II = (S, A, 7, R, W)
Method: For each s € S, let
D(s) ={a € A(s) | R(s,a) =0AW(s,a) = 0}

be the set of actions associated with s that have R
and W-labels equal to 0. Also, let

{(B1,D1),...,(Bn,Dy)} = mazEC(S, D) .

The MDP II is obtained from I by collapsing each EC
(B;, D;) into a single state 3;, for 1 <4 < n. The new
set, of states is given by § = SU{%1,...,3,} -UL, B..
The action sets are then defined as follows.

e Forse S—UL, Bi, A(s) = {(s,a) | a € A(s)}.



e For1<i<n:
AGi) ={(s,a) | s€ BiAa € A(s) — D(s)} .
Forse S,teS—Ur,Bi, 1 <i<nand (u,a) €

Z(s), the transition probabilities and the labelings R,
W are defined by

B3, (1) = 3 pula)

teB;

W (s, (u,a)) = W(u,a). ®

Pst((u, @) = pui(a)

R(s, (u,a)) = R(u,a)

5.4 Computation of Convergent MDPs

Algorithm 3 (convergent MDPs)
Input: Set L.
Output: Sets K~ and K, defined as in (7), (8).
Method: For each i € L:
o For s € S;, let B(s) = {a € Ai(s) | Wi(s,a) = 0}
be the set of actions having W; = 0. Let

{(C1,Dy),...,(Crm, D)} = mazEC(S;, B) .

Then, i € K" iff there are j € [1..m], s € C; and
a € Dj(s) such that R;(s,a) > 0.

e i € K iff both of the following conditions hold:
— for all s € S; and a € A;(s), W;(s,a) = 0;

— there are s € S; and a € gz(s) such that
Ri(s,a) >0. 1

5.5 Computation of Threshold Outcomes

The following algorithm computes threshold out-
comes on strongly connected MDPs on which predi-
cate I holds with probability 1.

Algorithm 4 (computation of ’Tj, ’T‘Z_) Ifi €
K, consider the following linear programming prob-
lem, with variables A\, {hs} _=: Maximize A subject
to SES;

hs < fi’i(saa) _)‘Wi(saa)+ Zﬁst(a) ht (9)
tes;
for all s € S; and a € A;(s). Then, all optimal solu-
tions to the problem share the same value for A, and
this value is equal to ’I‘; [12].

For i € K, the outcome ’T‘j can be computed
by solving a similar linear programming problem, in
which the direction of the inequality in (9) is reversed,
and A is minimized. N
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5.6 Correctness and Complexity

The following theorem provides results on the cor-
rectness and the complexity of the model-checking
procedure.

Theorem 3  Algorithm 1 correctly computes the
threshold outcomes, and it has time-complexity poly-
nomial in 1|S| Y, cq|A(s)|, where | is the length of
the fized-precision binary numbers used to encode the
transition probabilities.

If the labels of the experiment vertices are written
in appropriately restricted sub-languages of first-order
logic, the time-complexity of the verification process
is polynomial both in the size of the TPS and in the
size of the experiment.
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