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Increasing UAV Task Assignment Performance through 
Parallelized Genetic Algorithms 

Marjorie A. Darrah*, William M. Niland†, and Brian M. Stolarik‡ 
Institute for Scientific Research, Inc., Fairmont, WV, 26555-2720 

and 

Lance E. Walp§ 
West Virginia University, Industrial & Management Systems Engineering, Morgantown, WV 26506-6107   

This paper explores the parallelization of a Genetic Algorithm (GA) utilized for task 
assignment of a team of Unmanned Air Vehicles (UAV) conducting a Suppression of Enemy 
Air Defense (SEAD) mission.  The GA has been developed and implemented in the 
MultiUAV simulation environment for testing.  The original (non-parallel version) of the GA 
demonstrated improved performance over the Mixed Integer Linear Program (MILP) 
algorithm.  In order to further improve on the GA performance, the algorithm has been 
parallelized with each UAV acting as an independent processor.  Two different 
implementations are explored.  The first employs identical algorithms on each processor 
seeded with a different random number, requiring an exchange of information at the end.  
The second utilizes a GA Island Model, necessitating information exchange several times 
during the evolution of generations.  The results of these implementations are compared to 
the original GA performance. 

I. Introduction 
UTURE generations of Unmanned Air Vehicles (UAVs) will be able to autonomously cooperate as a team to 
accomplish strongly coupled tasks.  Investigations into the most efficient teaming arrangements have been 

performed by formulating various cooperative control algorithms for the candidate mission.  Algorithms have been 
developed for the allocation of tasks to team members with respect to timing constraints, flyable trajectories, and 
tasking precedence.  

Several types of algorithms have been used to address the task assignment problem. Shumacher et. al.1 used the 
Mixed Integer Linear Programming (MILP) approach to assign vehicles to stationary ground targets for a Wide Area 
Search and Destroy (WASD) mission.  This MILP work was extended to a Suppression of Enemy Air Defense 
(SEAD) mission with survivable Unmanned Combat Air Vehicles (UCAVs) prosecuting pop-up threats by Darrah 
et. al.2  Shima et. al.3,4 applied a Genetic Algorithm (GA) to the original UAV task assignment problem and 
developed an encoding scheme for a feasible solution as a chromosome.  Their GA work was extended for the task 
assignment of UCAVs prosecuting pop-up threats during SEAD missions by Darrah et. al.5 

The research discussed in this paper applies a parallel version of a GA implementation to increase the 
performance for the task allocation problem in a SEAD mission.    This will include a discussion of the GA 
approach, formulation, implementation, and integration into a high fidelity simulation.  In order to test the GA 
approach in a rapid prototyping environment, the GA formulation was coded using a MATLAB toolbox developed 
by the University of Sheffield6 and customized MATLAB scripts. Integrating the GA toolbox formulation as a new 
tasking resource for the MultiUAV7,8 research software allows testing and analysis of UAV teaming with realistic 
trajectory constraints in a SEAD mission.  In order to conduct accurate SEAD missions, an Integrated Air Defense 
System (IADS) model is provided by connecting MultiUAV to the FLexible Analysis Modeling and Exercise 
System (FLAMES).   
                                                           
* Principal Scientist, Computer Sciences Branch, mdarrah@isr.us, AIAA Member 
† Member Research Staff, Control Systems Branch, wniland@isr.us, AIAA Member 
‡ Director, Control Systems Branch, bstolarik@isr.us, AIAA Member 
§ Senior, lwalp@mix.wvu.edu, under advisement of Dr. Alan McKendall, alan.mckendall@mail.wvu.edu 
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The parallel version of the GA is used for task assignment in a SEAD mission scenario where a number of air 
vehicles are searching an area for unknown IADS threats.  Vehicles travel in a predefined serpentine search pattern 
with sensors that are capable of detecting and identifying potential threats.   When a potential threat is discovered it 
is necessary to classify it as a target or non-target.  If the threat is identified as a target, then a vehicle must attack the 
target.  After the attack, a vehicle must verify that the target has been destroyed.  There are three tasks to be 
executed per threat: classify, attack, and verify.  The mission described in this paper has five basic assumptions: (1) 
the UCAVs are survivable and do not perish in an attack task; (2) the threats are not known a priori and are 
discovered during the mission, the tasking assignments must be completed with the discovery of each new threat; (3) 
the number of weapons onboard each aerial vehicle is limited; (4) the team of aerial vehicles becomes heterogeneous 
since weapons are depleted and mission capabilities are not consistent across the team; and (5) a vehicle depletes its 
weapons during a mission and can no longer be assigned the attack task once its weapons are depleted.  After the 
depletion of all weapons the vehicle is limited to classify or kill verification.    

II. Genetic Algorithm Approach 
In order to try to find the optimal task assignment of UAVs to targets for the SEAD mission, a GA is employed.  

The GA is implemented using three different methods.  The first or original method employs a GA seeded with the 
same random number on each UCAV, thus providing 
redundant centralized optimization and requiring minimum 
communication since all vehicles arrive at the same conclusion 
independently.  The second, or Parallelized GA, employs the 
same algorithm on each UCAV, but seeds the GA on each 
vehicle with a different random number.  This allows different 
sub-populations to be generated and evolve on each UCAV.  
They share information at the end of GA reproduction and 
implement the best solution.  The third method, or Island 
Model, is similar to the parallel method but requires more 
communication during the evolution of generations.  A small 
percentage of the best chromosomes are allowed to migrate 
during evolution to all vehicle sub-populations, helping to find 
comparable task allocation plans in a smaller amount of 
reproductive iterations.  A conceptual diagram of these latter 
two approaches is supplied in Figure 1. 

A. Original Implementation 
A GA is a search algorithm based on the mechanics of 

natural selection and natural genetics.  GAs are in a subclass of 
evolutionary algorithms that are based on three main principles: 
reproduction, natural selection, and diversity of species.  In this 
work, a GA is used to try to find the optimal task assignment of 
UAVs during a SEAD mission.  For a more general approach, 
please refer to Genetic Algorithms by David Goldberg9.  

GAs require the parameter set be coded as a finite-length string over a finite alphabet; these strings are referred 
to as chromosomes.   After the initial generation is created, reproduction, elitism, and mutation are applied to 
produce subsequent generations that, when implemented correctly, have improved performance. 

In order to begin the problem, solutions need to be encoded as a chromosome.  The following example closely 
follows the encoding scheme of prior GA work3,4 related to the task assignment problem.  Each solution must 
represent the assignment of vehicles to targets and thus there are two rows for each chromosome.  The top row 
represents the vehicles and contains numbers from the set V = {1, 2, …Nv} and the bottom row represents the targets 
and tasks on each and contains numbers from the set T = {1, 2, … Nt}.  Table 1 shows an example of a chromosome 
for the scenario of three targets, each with three tasks being prosecuted by four vehicles.  

Figure 1.  Distributed GA Concept.  Each 
vehicles GA component collaborates with other 
team members during migration.  This 
information can be passed during chromosome 
reproduction (Island Model) or at conclusion of 
reproduction (Parallelized). 

Table 1. Example Chromosome for SEAD Mission Scenario. 
Vehicles 4 3 1 3 2 1 4 2 1 
Targets 1 2 1 3 1 2 2 3 3 
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Since there are three targets, the bottom row contains only the numbers 1, 2, and 3.  Each target has exactly three 
tasks to be performed on it, so three instances of each number are found in the row.  The first occurrence of a 
number indicates the first task on that target; the second indicates the second task; and the third occurrence the third 
task.  The situation represented by the chromosome in Table 1 is as follows:  

 
• Vehicle 4 performs task 1 on target 1, and then task 3 on target 2 
• Vehicle 3 performs task 1 on target 2, and then task 1 on target 3 
• Vehicle 1 performs task 2 on target 1, and then task 2 on target 2, followed by task 3 on target 3 
• Vehicle 2 performs task 3 on target 1and task 2 on target 3 

 
Given a feasible chromosome, the objective function is defined to determine tasking precedence and total time 

for mission completion using the task assignment defined by the chromosome.  Fitness values are linearly assigned 
between 0 and 2 to the chromosomes of each generation based on a minimization objective, with 2 being the best 
fitness. The selection process uses the roulette wheel method that probabilistically selects individuals from a given 
generation for reproduction based on some measure of their performance.   

The reproductive process for this problem combines both a crossover operation and an inversion operation. The 
first reproductive step is to use crossover on the top row (vehicle row).  Using crossover on the bottom row (target 
row) almost always produces an infeasible solution because of the make up of this row.  Therefore, the bottom row 
is modified using inversion.  Inversion takes all numbers in the row between two random places and writes them in 
the reverse order.  This leaves the numerical make up of the row the same but switches the ordering of the numbers. 

The two other operations applied are elitism and mutation.  Elitism retains a portion of the best chromosomes 
from each generation to go on to the next generation to ensure that new GA generations monotonically decrease. 
The mutation operation randomly changes one number in the vehicle row and is only applied to a small percentage 
of elements to insure diversity of the population.  

This algorithm was implemented and tested in the MultiUAV/FLAMES simulation environment with each UAV 
running an identical copy of the GA.  Since each vehicles random number generator is seeded identically, each 
vehicle generates a common initial population and arrives at the same solution as all other team members.  The team 
then executes the task assignment with the best objective value, given the time available to reach the solution.  This 
approach minimizes intra-team communication requirements.  The empirical results show that the GA performs 
better than the MILP solution for SEAD missions involving several vehicles and targets5.   

B. Parallel Version of Genetic Algorithm 
In order to further explore the usefulness of the GA and to fully exploit the parallel nature of the algorithm, the 

GA algorithm was parallelized in order to reach a better solution in less time.    
Shonkwiler10 discusses that parallelizing a GA is simply to run the identical algorithm on each processor 

independently of one another.  Shonkwiler called this GA approach IIP parallel, and several authors have shown this 
technique to be very effective with superlinear parallel speedup11,12,13.  Empirical results have been supported 
theoretically14.     

In this research, each processor is on a separate UAV seeded with a different random number.  For this first 
parallel implementation, the vehicles start with a different initial population and let these sub-populations evolve for 
a specified number of generations.  The only required communication between processors (UAVs) is at the end of 
reproduction, which allows the best results of the vehicles sub-population to be shared among team members.  Each 
processor (UAV) then chooses the best solution from all other team members and implements the chromosome 
assigned tasks.    

This strategy allows for much more of the entire solution space to be explored in the same amount of time.   The 
algorithm performance will depend on the number of members in the team.  Results of the simulation of this 
technique and comparison with the original GA are discussed in Section IV of this paper. 

C. Island Model of Genetic Algorithm 
The Island Model has been shown to be an efficient way to implement a GA on a parallel machine15,16,17.  In the 

Island Model each machine maintains its own sub-population and periodically exchanges a portion of their 
population in a process called migration.   

 Island Model GAs have reported to display better performance than serial single population models, both in 
terms of quality of the solution as well as a reduction in the effort.  The improved search quality is contributed to the 
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varied island populations maintaining some degree of independence and thus exploring different regions of the 
search space while at the same time sharing information via migration. 

 In our case, each UAV is seeded with a different random number and generates a different initial sub-
population, as it does with the parallel version of the algorithm.  However, in the Island Model version, each 
vehicles sub-population evolves for a specified number of generations and then exchanges a small percentage of its 
best chromosomes with the entire team.  At this time, the “best of the best” are included in each sub-population so 
they can reproduce to yield increased diversity and ultimately better solutions.  This is the migration process, which 
is executed several times during the evolution time interval. 

 The Island Model is compared in this research against the original GA implementation and the parallel 
implementation discussed in the last section.  The comparison results are presented in Section IV. 

III. Implementation 
In order to test the distributed GA formulations, enhancements were needed in the MultiUAV research tool.   

This section will briefly describe MultiUAV and then discuss the added capabilities required for a distributed GA 
approach.   

A. MultiUAV Overview 
The U.S. Air Force Research Laboratory (AFRL) developed the MultiUAV8 research tool to implement and 

evaluate cooperative control strategies for teams of UAVs.  MultiUAV is based in MATLAB/Simulink, easing the 
effort for researchers to identify and alter simulation components required for the desired cooperative control 
studies.  The public release version of MultiUAV can simulate up to eight vehicles coordinating concurrently.  Each 
MultiUAV vehicle contains a set of managers responsible for duties such as planning routes, gathering sensor 
information, tracking target states, supervising weapon payload, and allocating tasks during target discovery7.  

All relevant manager information is passed between vehicles through the MultiUAV Virtual Communication 
Representation (VCR) message passing scheme18.  The VCR protocol in MultiUAV mandates that each outgoing 
message is defined with a time-stamp, message layout enumeration, and data fields.  This information allows each 
vehicle to process inbound messages appropriately.  This also allows researches to study the effects of cooperative 
control algorithms during communication latencies, drop-outs, and data corruption. 

B. MultiUAV Enhancements for Distributed GA 
The GA task allocation resource from previous work did not require the vehicles to exchange information about 

mission plans.  Therefore, it was critical that each vehicle arrive at the same solution.  Since the GA formulation is 
based upon random number generation, there is no guarantee that each vehicle calculates the same conclusion based 
on common inputs.  This issue was eliminated in previous work by seeding the random number generator on each 
vehicle identically, causing duplication of the initial chromosome generation and reproductive steps by each team 
member.   

Due to the decentralized and parallel nature of the MultiUAV vehicles, a better approach over the original GA 
formulation allows each vehicle to independently find its optimal GA solution and share results among team 
members.  Instead of each identically seeded vehicle redundantly implementing a common solution, each vehicle 
solves the GA independently and passes a VCR message to all other team members containing its best chromosome 
combination.  Once a vehicle receives chromosome information from every other vehicle, the chromosome 
combination with the shortest mission duration is implemented.  Since each vehicle generates its own initial 
population, more solutions can be evaluated in this Parallelized GA approach to find the shortest mission time 
possible.   

The addition of the VCR message for the Parallelized GA can also be used for Island Model GA studies.  Instead 
of each vehicle solving its own GA formulation and then exchanging results, a VCR message containing the best 
chromosome combinations is passed among team members during reproduction.  In other words, once a vehicle 
performs crossover and inversion on its own set of chromosomes, a small percentage of the best combinations are 
shared with other team members.  For clarity, a timeline in provided in Figure 2. 

The Island Model approach allows the differing initial populations on the vehicles to converge to a shorter 
mission time more quickly than either the original or Parallelized GA approaches.  On the other hand, it requires an 
increased amount of communication and bandwidth since team members are sharing multiple chromosomes at 
various iteration points during the evolution of the GA solution.   
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IV. Results 
To study the benefits of using a Parallelized or 

Island Model GA over the original formulation, a 
simulation scenario is created to compare the three 
approaches.  The scenario involves three vehicles 
engaging a cluster of five threats.  To fairly compare 
the three GA approaches, each simulation run 
ensures that the three vehicles are notified of the 
threats at the same instance in time.  Once the 
vehicles are notified of the threats, the task 
allocation manager on each vehicle generates an 
initial chromosome population of 50 and solves the 
problem according to the chosen GA formulation.  
Both an attack and verification task must be solved 
for each threat, thus 10 tasks are solved in this 
scenario.  The objective of each GA formulation is 
to minimize the total mission duration. 

Each GA formulation is simulated 10 times with 
different random number seeds on the candidate 
scenario.  During simulation the best mission time 
found in the initial population and each reproductive 
step were noted and averaged.  The average values 
at initial population (iteration 0) and even iterations 
2 through 10 are presented for each GA formulation 
in Figure 3. 

Note, even before the reproductive iterations 
begin, the original GA has an average mission 
duration that is greater than either of the distributed 
approaches.  Since the original GA results in an 
identical set of initial populations on all three 
vehicles, fewer combinations are explored and the 
average mission time is higher.   

The Parallelized GA has the shortest average mission duration at the initial population.  This can be contributed 
to the observation that the vehicle fortunate enough to have the best initial population has a head start on its team 
members and generally will continue to contain the shortest mission time at any iteration.  The Island Model 

eliminates this since chromosomes are exchanged 
quickly after the initial population.  Even though the 
Island Model averages a higher mission duration than 
the Parallelized approach in the initial population, the 
average mission duration between both GA approaches 
are very close at the second iteration.  

Once the reproductive iterations begin, the benefits 
of using the distributed GA approaches are quickly 
seen.  Both approaches find an average mission 
duration (209 seconds) in two iterations that required 
the original GA eight iterations to find.  At four 
iterations the Parallelized GA can find a mission 
duration (206 seconds) that is less than the best results 
the original GA can calculate (207 seconds) at 10 
iterations.  As the Parallelized and Island models are 
allowed to iterate, they continue to find improvements 
in mission duration.   

Because of the stochastic nature of the GA, there 
are times that the Parallelized approach performs as 
well or even better than the Island Model, but on 

 
Figure 3.  GA Formulation Comparison.  The 
original GA formulation occupies the rightmost 
series of bars.  The Parallelized GA approach is seen 
in the middle series of bars.  The leftmost series of 
bars represents the Island Model. 

 

 
Figure 2.  Comparison of GA Timelines.  The 
amount of communication required during Island 
Model studies is proportional to the desired amount 
of iterations specified for reproduction.  The 
Parallelized technique only requires communication 
once at plan implementation. 
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average the Island Model should give the best performance because it diversifies the search more than the other two.  
Since each GA approach is only tested 10 times, it is believed a more exhaustive Monte Carlo analysis will show the 
Island Model performing at least as well as the Parallelized approach at each iteration. 

The Island Model does begin to outperform the Parallelized GA further into the iteration process.  This is due to 
the fact that the solution becomes harder to improve upon as the number of iterations increase.  At this point the 
benefit of sharing chromosomes during reproduction 
becomes more evident.  Notice each iteration of the 
Island Model provides a consistent mission duration 
improvement.  At certain points in the original and 
Parallelized approaches, improvements in mission 
duration become stagnant between iterations.   

V. SEAD Mission Improvement 
In the original GA formulation, the task allocation 

algorithm performance was tested in a dynamic SEAD 
mission.  The UAV team objective is to engage an 
enemy IADS and prosecute Surface-to-Air (SAM) 
missile sites as they are discovered.  Each UAV is 
equipped with a Radar Warning Receiver (RWR), 
giving them the ability to detect SAM sites as they 
begin tracking vehicle positions.  The FLAMES 
software provides the IADS capabilities.  Through a 
previous effort19, MultiUAV was made interoperable 
with FLAMES through a remote client interface and 
solely responsible for updating the UAV positions, 
monitoring RWR sensors, and planning vehicle routes 
according to the cooperative control task allocation 
algorithms.  A sample snapshot of MultiUAV 
collaborating in the FLAMES IADS model is 
provided in Figure 4. 

Without a priori knowledge of the threat layout, as 
performed in Section IV, a detailed comparison of 
algorithm performance is difficult.  As the mission 
unfolds for each GA formulation, threats are 
discovered at different times due to different trajectory 
plans implemented on the previous target discovery.  
This section will only present the results for one 
simulation run with the intent to show an overall 
mission duration improvement when using the 
Parallelized and Island Model approaches.  Table 2 
provides a comparison of the three GA formulations 
during dynamic SAM discovery.   

It can be seen that a significant improvement over 
the original GA can be found by using a Parallelized 
or Island formulation as the amount of SAM sites to 
prosecute increases.  Since the chromosomes begin to 
increase in size, it becomes beneficial to search 
through a larger initial population.  At the discovery of 
the third SAM, it is interesting to note that the original 
GA can find a quicker mission duration than the 
Parallelized approach.  Due to the stochastic behavior 
of the GA, there are times when the original GA can 
find a very good solution in a small population.  As 
seen in the previous section, on average this will not 
hold true. 

(a)  
 

(b)  
 

(c)  
Figure 4.  MultiUAV/FLAMES collaborative 
environment.  MultiUAV controls vehicle position and 
orientation along with sensor processing (a).  SAM sites 
detect presence of vehicles and emit radar emissions 
(b).  UCAV successfully attacks SAM (c). 
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Table 2 shows that in this simulation the distributed GA improves the effectiveness of the UCAVs in a SEAD 
mission.    It does not provide much insight into whether the Island Model will provide a greater benefit than the 
Parallelized approach.  In fact the Parallelized model performs better in this example after the fourth SAM 
discovery.  It is important to remember that this is only one simulation run and the scenario unfolds very differently 
when running both distributed approaches.  More investigation is needed to draw clearer conclusions and weigh the 
benefits of each approach. 

VI. Conclusion 
The Parallelized and Island Model versions of the GA outperform both the original GA formulation and the 

MILP. However, it is important to mention certain drawbacks.  The Parallelized GA comes to a better solution 
faster, but requires an extra communication step at the end.  This can be a problem if intra-team communication 
must be limited or if communication failures occur.  On average, the Island Model shows improved performance 
over the Parallelized GA, but requires increased communication, thus leaving it more vulnerable to communication 
errors.  The performance increase of the Island Model may not outweigh the demand in communication 
requirements compared to the Parallelized approach.  These problems were not addressed in this research by 
assuming perfect communication between vehicles.  Future work will explore possible techniques to ensure good 
solutions even when faced with imperfect communication. 
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