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A drawback of the conventional Internet routing architecture is that its route
computation and packet forwarding mechanisms are poorly integrated with con-
gestion control mechanisms. Any datagram offered to the network is accepted;
routers forward packets on a best-effort basis and react to congestion only after
the network resources have already been wasted. A number of proposals improve
on this to support multimedia applications; a promising example is the Integrated
Services Packet Network (ISPN) architecture. However, these proposals are ori-
ented to networks with fairly static topologies and rely on the same conventional
Internet routing protocols to operate. This paper presents a routing architecture
for mobile integrated services networks in which network nodes (routers) can move
constantly while providing end-to-end performance guarantees. In the proposed
connectionless routing architecture, packets are individually routed towards their
destinations on a hop by hop basis. A packet intended for a given destination is
allowed to enter the network if and only if there is at least one path of routers
with enough resources to ensure its delivery within a finite time. Once a packet
is accepted into the network, it is delivered to its destination, unless resource fail-
ures prevent it. Each router reserves resources for each active destination, rather
than for each source-destination session, and forwards a received packet along
one of multiple loop-free paths towards the destination. The resources and avail-
able paths for each destination are updated to adapt to congestion and topology
changes. This mechanism could be extended to aggregate dissimilar flows as well.
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1 — Introduction

Supporting multimedia applications requires the provision of performance guaran-
tees or quality of service (QoS) which are commonly expressed in terms of bounds
to end-to-end delay, throughput, and delay variations or jitter. All of today’s
popular approaches for supporting quality of service in IP or ATM internetworks
are based on establishing connections [7, 4, 3]. However, supporting real-time
multimedia applications in a wireless mobile infrastructure in which all nodes can
be mobile and where nodal connectivity changes constantly is difficult to accom-
plish, because the constituency of the paths supporting connections from sources
to destinations cannot be guaranteed. Furthermore, current proposals for the
provision of QoS in the Internet rely on conventional Internet routing protocols,
which are not well suited for the provision of QoS. First, they react to congestion
after the network resources have been wasted, i.e., a source reacts to congestion
only after it receives a congestion indication from the congested resource in the
data path before the source can regulate its input rate into the network. Second,
they are based on single-path routing algorithms. Even in theory, a routing pro-
tocol based on single-path routing is ill-suited to cope with congestion. This is
because the only thing a single path routing protocol can do to react to congestion
is to change the route used to reach a destination. As has been documented by
Bertsekas [1], allowing a single-path routing algorithm to react to congestion can
lead to unstable oscillatory behavior.

This paper introduces a new routing architecture for mobile integrated ser-
vices networks that provide performance guarantees while the network topology
can change continuously. This work was motivated by the conjecture that ar-
chitectural elements similar to those used in a connection-oriented architecture
(e.g., the Integrated Services Packet Network (ISPN) architecture [4]) to allow
the network to enforce performance guarantees can be used in a connectionless
routing architecture to integrate routing and congestion control and to provide
performance guarantees for the delivery of those datagrams accepted in the net-
work.

In our connectionless routing architecture, packets are individually routed
towards their destination on a hop-by-hop basis. A packet intended for a destina-
tion is allowed to enter the network if and only if there is at least one path with
enough resources available to ensure its delivery within a finite time. In contrast
to the existing connectionless routing schemes, once a packet is accepted into the
network, it is delivered to its destination, unless a resource failure prevents it.
Packet routing is done on a per-destination basis rather than a per-session basis
as in conventional connection-oriented networks. The resources available at each
router are updated to adapt to congestion and the dynamic state of the network.

Although OSPF can provide multiple paths, they have to be of equal length.
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This approach is based on the following three architectural elements:
o Traffic shaping by means of destination-oriented permit buckets
o Traffic separation and scheduling on a per destination basis

e Maintenance of dynamic multiple loop-free paths to reduce the delay from
source to destination.

Generalized processor sharing (GPS) is an ideal scheduling mechanism which
ensures fairness among all the competing flows and also provides traffic isola-
tion among these flows. i.e., one misbehaved flow will not affect the characteris-
tics of other well-behaved flows. Packet-by-packet generalized processor sharing
(PGPS) [14] is the packetized version of GPS which achieves the abovementioned
properties. PGPS provides fairness among competing flows and also provides flow
isolation. In this paper, we assume a PGPS server at each router for scheduling
of packet transmissions; more practical scheduling approaches can be integrated
in the future. Routing is done on a per destination basis over multiple paths. To
establish multiple loop-free paths, we extend prior results on loop-free, single-path
routing algorithms introduced in [11, 16, 10]. This results in a congestion-oriented
multipath routing architecture that uses a short-term metric based on hop-by-hop
credits to reduce congestion over a given link, and a long-term metric based on
end-to-end path delay to reduce delay from source to destination.

Section 2 describes the new connectionless routing architecture and introduces
the concept of flow mulliplexing to support various QoS parameters. Section 3
describes the operation of the routing protocol for the new connectionless architec-
ture in detail. Section 4 gives the formal proof of correctness of both scheduling
and credit-based mechanisms. Section 5 derives a worst-case delay bound as a
function of the available credits. Section 6 discusses the extension of the protocol
to hierarchical topologies. Finally, Section 7 presents our conclusions.

2 — Two-Tier Routing Architecture

The network is modeled as an undirected finite graph represented by G : (N, E),
where N is the set of nodes and F is the set of edges or links connecting nodes. A
bidirectional link connecting nodes ¢ and j is represented as (¢, j) and is assigned
a positive weight in each direction. A link is assumed to exist in both directions at
the same time. All routing messages that are received (transmitted) by a node are
put in the input (output) queue on a F'CFS basis and are processed in that order.
Each node is represented by a unique identifier and the link costs can vary in time
but are always positive. A path from node ¢ to node j is a sequence of nodes,
i, N1, ...y Ny, J, Where (4,n1), (Rg, Nzy1), (Rr, j) are links in the path. A simple path
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from ¢ to j is a sequence of nodes in which no node is visited more than once. A
multipath from 7 to j is a set of simple paths from ¢ to j. The paths between any
pair of nodes and their corresponding distances change over time in a dynamic
network. At any point in time, node 7 is connected to node j if a physical path
exists from 7 to j at that time. The network is said to be connected if every pair
of operational nodes are connected at a given time.
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Figure 1: Source Model

In a destination-oriented network, all nodes in the network can be poten-
tial sources. Each source is capable of supporting connection-oriented sessions.
Figure 1 shows the model at each source. Each connection-oriented sessions are
regulated by a leaky-bucket filter, referred to as connection oriented leaky bucket
(COLB). A connection-oriented session generates traffic at a rate co_r;, where
t=1,...,N;. At any time, there can exist at most IV, sessions in parallel. Each
session is identified by a source-destination pair and the type of service that is
being requested.

Each connection-oriented session is mapped into a destination-oriented flow.
In destination-oriented flows, packets are serviced on a per-destination basis in-
stead of a per-session basis as in a connection-oriented architecture. A destination-
oriented leaky bucket (DOLB) is maintained depending on the type of service and
destination. All COLBs addressed to the same destination and having the same
service requirements are grouped together. The way in which COLB flows are fed
to the DOLB depends on the relative rates of the associated COLB flows.

To ensure fairness among different connections, a weighted round robin schedul-
ing mechanism among all COLB flows belonging to the same group is used at each
of the DOLB inputs. Our protocol guarantees that all packets which enter the
connectionless network (destination-oriented network) will be delivered to their
respective destinations, unless a resource failure prevents it. Depending on the
available resources at each hop, the traffic entering the network is regulated at the
COLB stage itself, before the packets actually enter the connectionless network.
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Figure 2: Node Model

In order to regulate the traffic flow from COLBs to DOLB, a feedback mechanism
is required from DOLB to COLB, so that the leaky bucket parameters of COLB
can be regulated.

Let N, be the number of connection-oriented sessions associated with a DOLB
source s with traffic generation rates of co_ry, co_ry,..., co_ryn,, respectively. Each
of these sessions is controlled by leaky-bucket parameters (o, p;), where o; is the
buffer size and p; is the token generation rate at source .

Let CRf be the total available credits (or tokens) at source S for destination j
in the destination-oriented network. The token generation at each of the COLBs
is a function of the credits available at source 5 and this determines how many
packets can be sent through the destination-oriented network. When there are N
active sources the token generation rate at each COLB is given by

B co_r;
- N
TNy o
When a new COLB source becomes active for the first time, a request is
sent to the destination asking for more credit allocation for that source. Such a
request is associated with a sequence number. When a response is received for
that credit request, the obtained credits are distributed to the requesting source.
If the destination is not able to handle any more requests from the sources due to

resource limitations, credits are not sent back for such explicit requests and such
sources will not be allowed into the destination-oriented network cloud.

pi CR; (1)

This mechanism ensures that sources are well behaved and DOLB does not
accept more data than it can handle, and thus can guarantee delivery of packets
once the packets enter the connectionless network.

A connection-oriented flow is recognized by a source, destination and a type
which specifies the QoS associated with that flow. Flows having the same specifi-
cation ({source, destination, type}) are grouped together. i.e., all COLB sources
having the same flow specification are grouped together and mapped to a single
DOLB source. Destination based credits are allocated to these DOLB sources
and the packets are routed to destination using a credit-based multipath routing
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algorithm. This ensures that all sources with the same flow characteristics are
guaranteed similar service. At the destination, packets are demultiplexed to their
respective COLB destinations.

A model of a packet traversal path in the destination-oriented cloud is shown
in the Figure 2. In the figure, rj- is the traffic originated at node ¢ for destination
7 and f;a is the incoming traffic as seen by « for destination j on link (¢,a).
Routing is done on a hop-by-hop basis independently at each node. Scheduling
at a node is done by maintaining permit bucket filters at each node for all active
destinations. Because of hop-by-hop routing mechanism at each node along the
path, any node along the path from a source to a destination can be a potential
source contributing to the traffic flow towards that destination. Therefore, the
traflic at a node corresponds to the traffic arriving at a node from its upstream
neighbors (f1,) and also the traffic originated at the node itself (r%). This will be
discussed further in the following sections. A weighted fair queueing mechanism
is used to ensure that all traffic streams receive a fair amount of resources [6].

Each flow type has a separate destination-oriented permit bucket for data
transfer. The QoS required by the application can be divided into different classes
and each class is serviced separately, independent of other flows, to ensure flow
isolation.

3 — Routing Protocol

A multipath protocol based on congestion information is used within the packet-
switched network to guarantee that all packets incident on the connectionless
network will be delivered to their respective destinations. The protocol consists
of three functional units, namely: packet scheduling and transmission, conges-
tion based credit mechanism and maintenance of multiple loop-free paths. Packet
forwarding to the destinations are based on two routing metrics: a short-term mel-
ric based on hop-by-hop credits to reduce congestion along a link and a long-term
metric based on path-delay to minimize the end-to-end delay.

Packet scheduling is done by means of permit buckets for each destination.
Packets are transmitted as individual entities at each hop. The path a packet
can take to reach a destination is determined independently at each hop. Traffic
at each node is regulated by permit buckets, independently for each destina-
tion.Traffic scheduling and credit aggregation is done at each hop, independently
for each destination. This is required since in a packet-switched network, each
router along the path from a source to a destination can be a potential source and
contribute to the data flow to that destination. The number of available credits
gives an estimate of the bandwidth available for each destination. Available cred-
its are aggregated and sent towards the source along the reverse paths implied by
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the routing table entries. When a node becomes operational, depending on the
availability of resources, credits are distributed among its neighbors.

3.1 — Message Types

Messages are exchanged among routers for the proper functioning of the protocol.
We classify the messages into six types.

Explicit

Explicit

Explicit

Credit Requests: When a new COLB source becomes active at a
router, a message is sent towards the destination of that flow asking for
some kind of reservation or guarantee for that flow in terms of credit
availability for the transmission of data packets. Explicit credit re-
quests are associated with a sequence number. The identifier of the
COLB source that initiated an explicit credit request and the corre-
sponding sequence number is recorded at the time of credit request.
(These messages are analogous to PATH messages in RSVP [3]).

Credit Response: This message is sent in response to an explicit
credit request message and indicates the credits available for data trans-
mission and the sequence number of the request. The available credits
are then distributed among the requested COLB sources at the source
of the credit request. (These messages are analogous to RESV messages

of RSVP).

Teardown: This message is sent to reclaim all the credits assigned to
a particular flow. This message is initiated by a source on recogniz-
ing that there are no more packets associated with a flow that needs
to be delivered to the destination. Credits reserved for a flow are re-
claimed at each hop along the way to a destination. (These are similar

to TEARDOWN messages of RSVP).

Fast Reservation Packet: When a node sends an explicit credit request, its

neighbor along the path to the destination responds with a fast reser-
vation packet indicating that the source can use a few credits before
the actual credit allocation is made by the destination. Each source
may then start transmitting data without having to wait till it receives
credits from the destination, thus preventing starvation. The fast reser-
vation credits are reclaimed when the credits from the destinations are
assigned to the flow.

Periodic Credit Updates: These are simple update messages which carry credit

information (the rate at which data packets are sent). Credits are up-
dated periodically to maintain correct network state information. Peri-
odic updates do not contain a sequence number. Credit information is
exchanged among neighboring nodes periodically and credits are redis-
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Figure 3: Credit Distribution

tributed among active flows at each node accordingly. A credit update
which is sent in response to an explicit credit request will be taken into
account in the periodic update after the explicit credit response was
sent.

Routing Table Update: Whenever the information present in the routing table
changes, a routing table update is exchanged between neighbors. These
updates are also not associated with sequence numbers. Routing table
updates contain both cost and credit information. The way in which
the routing table entries are updated depends on the underlying routing
algorithm.

3.2 — Packel Scheduling and Transmission

In a connectionless architecture, the route that a packet takes to reach a desti-
nation is determined independently at each hop. All nodes along any path from
source to destination can contribute to the flow. This requires traflic scheduling
to be done at each hop to regulate the incoming traffic, instead of having interme-
diate nodes as just forwarding nodes, as in a connection-oriented architecture [15].
We use a PGPS server to regulate the incoming traffic.

As mentioned before, the protocol uses two routing metrics, a short-term
metric and a long-term metric to transmit packets to a given destination. The
number of packets sent to a neighbor depends on the credits available through that
neighbor or equivalently, the number of credits available in the permit buckets.
Credits for a flow are sent from a destination towards the source along the reverse
paths implied by the routing tables. When a node becomes operational, depending
on the availability of resources at each node, credits are distributed among its
neighboring nodes. The credit based mechanism is explained in the next section.

The traffic at each node is regulated by permit buckets, independently for each
destination. In the traditional leaky bucket congestion-control scheme, buckets
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are session oriented; i.e., credits are assigned on a per session basis. Data packets
are accepted from the source and the average rate of flow is controlled by a burst
rate for a source-destination session. In our scheme, permit buckets (which are
similar to leaky buckets) are destination oriented; i.e., at every router permit
buckets are maintained for each active destination. A destination is said to be
active at a router if the router is contained in a feasible path to the destination.
For a given destination j, credits reach a node i at a rate pé, which is called
the token or credit generation rate for destination j at node 7. The bucket size,
denoted by 02 gives the maximum number of packets that can be transmitted
from ¢ to j (burstiness) at time ¢, and O';: is defined for each destination ;7 at time
t>0 as

aj(t) = (1) + Q;(1) (2)
where Q%(1) is the session backlog (depth of the queue) for destination j at time
t that is, the packets which were left behind from the previous time interval and
I:(t) is the number of credits (or tokens) in the bucket at node i for destination j
at time ¢ that can be used by packets in the current time interval. This definition
is much the same given in [14], the only difference being that here we maintain
leaky-bucket parameters for each active destination rather than for each session.

Credits sent by downstream nodes are aggregated at each hop for a given
destination along the path from destination to source and are redistributed among
its upstream neighbors. In Figure 3, if z is the number of credits received by node
a from its downstream neighbors to destination j, then node ¢ maintains a permit
bucket of size z. These credits are redistributed among its upstream neighbors
relative to the traffic flow along links (¢, @) and (s, a) as « and y.

The number of credits left behind, is the difference in the number of credits
that arrive within a given time interval and the number of arrivals. Accordingly,
[Ix;(t) — E;(T)] — A;(T, t), where Ix;(t) is the credits that are accepted by node ¢ at
time t for destination j and A;'-(T, 1), the traffic arriving at node ¢ for destination j
in the interval (7, 1], is the number of arrivals in units of credit. The total number
of accepted credits in a time period should be less than the credit generation rate.
Therefore, with 7 < ¢,

i)~ Ki(r) < g}, (1-7) (3)

p; is related to the number of total credits available to node ¢ at time ¢ and
is the sum of the credits available through all the nodes downstream of node .
Consider Figure 4. The total number of credits available at router ¢ for destination
7 is the sum of the credits available from its downstream neighbors «, b, and ¢ for
destination j (some neighboring nodes may not belong to the feasible set of nodes
to a destination. In the above example, nodes d and e does not belong to FZW;)
The total number of packets transmitted to destination j from node 7 cannot
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exceed the total available credits at ¢ for j at time ¢. The number of available
credits also depends on the traffic low on that link which is an indication of the
congestion state of that link as explained in the following section.

3.3 — Credit-Based Congestion Mechanism

Congestion over a given link is avoided by a hop-by-hop credit-based mechanism.
Each router selects a path to the destination based on the available bandwidth
through a given link, utilization of that link and the cost to reach the destination
through that path. The chosen path is subject to a constraint that the bandwidth
available through that path is at least equal to the required bandwidth, or equiv-
alently that the total bandwidth allocated through a link is less than the capacity
of that link. The available bandwidth is then translated into credits. Credits
given by a node to its upstream neighbors for a given destination represent the
number of packets that the node can accept from its upstream neighbors for that
destination. Credits to upstream nodes are sent in the reverse direction of the
routing tree. Upstream nodes receive credits from downstream nodes for a given
destination before they can transmit data towards the downstream nodes.

Figure 5 presents a formal description of the credit allocation scheme. Proce-
dure Initialize indicates the action taken by a node when it becomes active for the
first time (initialization). Procedure Receive describes the functions performed by
a node when a node receives a periodic update (steady state).
Initialization and Path selection

On initialization, credits are equally distributed among neighbors as there will
be no traffic on any of the links of a new node. The number of credits available at
each node i for destination j is determined by the total resources available at that
node (jWaxC'reditsj-). A part of the total available credits (Reserve®) is reserved

J
for our fast reservation mechanism. The fast reservation mechanism is used to
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allocate credits to a new source when an explicit credit request is received for a
destination. This mechanism speeds up the credit allocation process by sending
a minimum number of credits to the new upstream neighbor as explained below.
Since there are always some reserved credits at each node, nodes upstream do not
starve. The reserved credits are reclaimed when the traffic starts flowing through
that path. A flow uses the reserved credits only for one unit of time. Therefore,
there is no need to reserve credits explicitly for all destinations. The remaining
credits, C‘R;'- (= AMaxC‘reditsé- — Reserveé), are equally distributed among the
neighboring nodes, N;, on startup. This is the weighted credit WCR;-k where ¢
is the source, j is the destination and k is the neighbor. The hop-by-hop delay
incurred for the credits to reach next-hop neighbor is taken into account while
computing the available credits (explained in the following section).

Credits are dynamically assigned among all the active flows, depending on the
traffic flow through each of the links. When node ¢ selects neighbor k£ as one of
its multiple successors to a destination, it sets the successor flag in the update
message (s_flag;-k) to that neighbor to indicate that the neighbor now belongs to
feasible multipath set FM]Z When node k recognizes this, it includes the node
in its set of active upstream neighbors, sends a fixed minimum amount of credit
(C Rynin) to its new neighbor indicating that ¢ can use k as a possible multipath
successor, and redistributes its credits for that destination. This is done in order to
indicate that the upstream neighbor can use this node for sending packets towards
destination 7 if required. Credit redistributions information is communicated to
other nodes in the next update interval. The total credits sent to the upstream
neighbor is limited by the total available credits at that node. Credit information
at each node is updated periodically; this is required because we do not use a
reliable credit updating mechanism.

A routing node resets its traffic counters on initialization and monitors the
incoming and outgoing traflic for all its neighbors. Based on these statistics,
the routing parameters qb;k, from ¢ to j through k for all neighbors k£ € N; are
computed. The permit bucket parameters are also initialized for each destination.
The credit generation rate pé is initialized to the sum of the credits available
through all the neighbors of ¢ to a given destination j in the given time period.
The permit bucket size O';- is initialized to the number of available credits.
Steady State

Each node monitors the traflic flowing through its incoming and outgoing
links periodically and determines the traffic flow on each of its links for all desti-
nations. A periodic update timer is maintained at each router to exchange credit
information periodically. The periodic update interval At should be longer than
the maximum round trip time (RTT) delay between two nodes in the network.
Each time an update is sent, the periodic timer, R;, is reset (Figure 5).

At each node, credits received from all downstream nodes are aggregated and
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Procedure Receive(i)

Variables: when : receives periodic update from m
p;l: credits occupied by packets in transit begin )
) from : to j through if((s_flag;? =1)A(m & FM]'))
q;: credits due to packets already in queue /* add m to ]:]\4]I */
CRY — CR' 4 CRypp;
Procedure Initialize 3 J ,+ min:
when router ¢ initializes itself FM]‘ — FM]z U {m};
begin . m _ z
/* some credits are reserved for fast reservation */ lf((s_flag]i =0)A(m E FM]))
CRY — Ma.rCredits; — Reserve;; /* delete m from FM; */
do for k € N; CR; — CR; - WCRZ.‘;
begin oRi FM]"' — FM; —{m};
WCRY — 2. /* redistribute credits among shortest path
Ik [BA neighbors */
8 : 1 : :
s_flagt, — 1, i X 2 I T
end Ik CR; < EmeFM]' WOR m — Py
Send credit information WCR;k to all k € Ny CRi _ CR;‘I _ q;;
at next update interval WO Rt —CcRi'x ¢ lie FMT
Reset R gm Ty T Tym J
J Send credit information to all & € N;
end at next update interval

Reset R’
J

end

Figure 5: Credit Distribution Mechanism

are redistributed to the upstream neighbors. This can be done because the total
bandwidth allocated at each link at any given time is no more than the capacity of
that link. A node can send data to a downstream neighbor only if the credit value
through that neighbor is greater than zero. Also, because at each hop credits
are distributed based on the traflic flow, the algorithm ensures that information
about all active destinations are maintained, When a new destination for which
the bandwidth is not reserved becomes active, or when a node becomes part of
the set of loop-free paths to a destination, credits are redistributed using a fast
reservation mechanism.
Explicit Credit Request and Response

When a new source becomes active and the source needs credits to transfer
data, an explicit credit request is sent to all neighbors in the feasible multipath
set. This elicits a credit response. The initial credit assignment is done using fast-
reservation mechanism. The explicit credit response from each neighbor indicates
the amount of credits allocated by the destination through multiple paths for the
requested flow.
Explicit Teardown

Each teardown message is associated with a sequence number representing the
flow. Although it is not necessary to explicitly reclaim the credits of a flow, it is
recommended that all sources send explicit teardown message as soon as a session
is completed.

A teardown message is initiated by a source and is forwarded hop-by-hop all
the way to the destination. The state of each node is updated along the way and
the credits are reclaimed. These messages are not delivered reliably. The loss of
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a teardown message will not cause a protocol failure because the unused credits
will eventually time out and are reclaimed.
One-Pass Reservation Mechanism

To ensure that there is no starvation in the protocol, a fast reservation mecha-
nism is used. This enables the downstream nodes to respond immediately without
having to wait till they hear from their destinations about the credit availability.
This scheme is similar to the one-pass reservation mechanism of RSVP [3].

Sources send explicit credit requests to a destination requesting credits for
data transmission. On receiving these requests, credits are allocated for that
session and source; all the nodes along the way are informed about this.

Each node maintains soft-state information about the network state. This
state information is refreshed periodically by credit updates. If a credit update is
not received before a certain time interval, those credits are reclaimed. At each
periodic timeout interval, the state of the network is updated. The soft-state
information has the potential to change at every periodic time interval.
Periodic Updates

Credit (resource reservation) information is updated periodically. The allo-
cated resources are reclaimed after a certain time if the state information is not
refreshed. The timer value for updating the state information is set at each hop
independently. Floyd and Jacobson [8] have shown that periodic updates gener-
ated by independent network nodes can become synchronized. This can lead to
disruption in network services as the periodic messages contend with other net-
work traffic for link and forwarding resources. Therefore, periodic credit update
messages must avoid synchronization and ensure that any synchronization that
may occur is not stable.

Because of this, the refresh timer should be randomly set to a value in the range
[O.5R§-, 1.5R§] where R; is the periodic update timer used to generate updates. The
value Ré— is chosen locally at each node. A smaller Ré- speeds up the adaptation to
network state changes but increases the protocol overhead. A node may therefore
adjust the effective Ré dynamically to control the amount of overhead due to
periodic update messages. The default value of R; is set to 30 seconds as in some
of the other routing protocols.

The end-to-end delay associated with packets to each destination is also esti-
mated periodically. If the measured delay does not satisfy the required QoS, that
successor will no longer be selected as a feasible successor to the given destina-
tion and this information is communicated to all the neighboring nodes. A node
determines the total available credits for a given destination j, and the credits
are redistributed among its upstream neighbors after reserving a fraction of the
credits for the initialization phase. The philosophy behind this fast reservation
mechanism is similar to a fast bandwidth reservation scheme.

Figure 6 shows the cost table (DT) at node ¢ for destination j for the config-
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Destination Neighbor Flag Cost Credits
j a 1 al a2
I b | Lo wo | o
j c 1 cl c2
j d 0 d1 o
o e | o | a | o |
J X 0 x1 infinity
R y | o | v | ity |
j z 0 71 infinity

Figure 6: Cost Table at node ¢ for destination j

uration in Figure 4. The flag field indicates whether the neighbor belongs to the
feasible multipath set or not. The distance gives the sum of the link costs along
the path to destination j and credits gives the number of available credits through
that path. A credit of 0 implies that packets cannot be forwarded through that
path.

The number of credits available at a node is determined by the flow on its
links and the total traffic seen by that node. If kaZ is the incoming flow on link
(k,i) to destination j as seen by node 7, and r; is the traffic originated at ¢ for
destination j, we define the total input traffic seen by ¢ for destination j as the
sum of all the incoming traffic at node ¢, and denote it by /\; Furthermore, by the
conservation of flow, the sum of all the traffic arriving at a node must be equal to
the sum of all the traffic departing from a node for each destination j. Therefore,
for destination j, the total incoming flow is equal to the total outgoing flow at

N= T Un= X L o

k| i€FMF m e FM;

node 7, and

Note: 1 € FJW;“ does not necessarily mean k € FJW;

The routing parameter, qﬁék is defined for each link (7, k) as the ratio of the
flow on each link with respect to the total flow on all outgoing links for a given
destination j. From Eq. 4 and with N; denoting the neighbor set of ¢, we have:

L= /\Lf Vk € N; (5)
J

For k ¢ Fl\/lj, f;k = 0. In other words, if a neighbor is not in the feasible
multipath set of node ¢, lows do not go through that neighbor. Because node ¢
itself can also contribute to the total traffic, by the conservation of flow, it must
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be true that

Z Qb;'k <1 (6)

keFM;‘

The rate of distribution of credits to upstream neighbors depends on the traffic
flow on that link, which in turn depends on the routing variables qb;k associated
with that link. The number of credits a node sends to an upstream neighbor is
weighted by the traffic flow on a given link. The token generation rate for a given
update period At is proportional to the weighted credit received by that node
for destination j through all its feasible multipath neighbors. Weighted credit is
proportional to the routing variable ¢ of that link.

FM;
PHAL = Y WCRL(A (7)

k=1
To obtain a correct estimate of the credits generated at each node at any given
time, we need to take into account the delay associated with the propagation of
credits. This can be done either by estimating the credits available as in [12]
or by explicitly sending a marker. We use a estimation mechanism. Credits are
sent to the upstream neighbor, i.e., they propagate only one hop. The update
period used for updating routing information is one round-trip delay by a data
packet. Therefore, to obtain a correct estimate of the available credits at a node,
we have to take into account the data packets that a sender has already forwarded
over the link in the past round-trip time (RTT) and the data packets that are
already queued from the past RTT. Therefore, the total available credits at node
t for a destination j, is the difference between the sum of all the weighted credits
available from its downstream neighbors /; (equivalently, sum of all the credits on
its outgoing links) belonging to the feasible multipath and the credits which are

already being used, i.e.,

CRi(1) = Y WOR(L) —ply(D)] - (1) (8)
l e FM;

where WC'R;Z is the weighted credit obtained from the downstream neighbor [
over an update period (which depends on the flow on the link (7,1)), pél is the
number of credits occupied by the packets that are already in transit on link (z,7),
and q;- is the number of credits due to the data packets that are already in the
queue at node ¢ for destination 57 which were not completely transmitted since the
previous update period. If a node does not have credits for a given destination j,
then C’R; is set to zero.
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3.4 — Maintenance of Loop-Free Mullipaths

The primary objective of maintaining multiple loop-free paths is to minimize the
end-to-end path delay by reducing network congestion along the path. The cost
reported to node ¢ for destination j by a downstream neighbor k is denoted by
D;-k (this is the distance between k and j) and node ¢’s cost to its neighbor k
is denoted by d;x (cost of the link (7,k)). The cost from node ¢ to destination j
through node k is denoted by b;k, and is equal to, b;k = Dj-k + d;p.

The delay at node ¢ to destination j is computed as the weighted average path
delay through all the nodes in the feasible multipath at node ¢; it is denoted by
D; This delay is weighted by the fraction of the traffic going through that path,
ie.,

Dit)y= Y d(t) D)= > 9 Dj(t) (9)
J j J ORRE

i i J
kEFM(t) kEFM(t)

The flow from ¢ to each neighbor in FM ]Z depends on the credits available
through that neighbor. Assuming that packets are of fixed size and that each
packet corresponds to one credit, we can say that a packet flows on a link if at
least one credit is available on that link. That is, packet flow on a link implies
credits are available on that link. This implies that the number of packets that
can flow on a link is equal to the number of credits available through that link;
for simplicity we assume all packets are of the same size. Therefore,

D(t) = 3 Y. IWCR(1) Dijy(t)] (10)
keFM:(1)

w5
—~
o~
~—

Multiple loop-free paths from each node to a destination are maintained by
means of a feasible multipath routing algorithm (FMRA), which is based on our
prior work on path-finding algorithms [11, 16, 10]. Any change in cost trigger
update messages. A marker tag;- is used to update the routing table. For a
given destination j, tagj- specifies whether the entry corresponds to a simple path
(tag;: = correct), a loop (tag;: = error) or a destination that has not been marked
(tag;: = null).

An update message from router ¢ consists of a vector of entries; each entry
specifies a destination j, an update flag u;'-, a successor flag s_flag;:k, the reported
cost to that destination RD;, the reported predecessor to the destination Tp;, and
the reported credits available to destination 5 through that neighbor. The update
flag indicates whether the entry is an update (u"7 = 0), a query (u; =1)ora
reply to a query (u; = 2). The predecessor is the second-to-last hop in the best
path to the destination. Using predecessor information, we can implicitly derive

a loop-free path to a destination.
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A detailed specification of FMRA is given in Figures 7 and 8. Procedures
RT_Init and DT_Init are used for routing table and cost table initialization. Pro-
cedure Message is executed when a router processes an update message, a query
or a reply; procedures Link_Up, Link_Down and Link_Change are executed when
a router detects a new link, link failure or a change in the link cost, respectively.
We refer to these as the event handling procedures. An update, query or a re-
ply is handled by procedures Update, Query and Reply, respectively. Procedure
Update_Timer updates the periodic update timer and updates the credit infor-
mation. Procedures DT_Update and RT_Update updates the cost and the routing
tables, respectively; details of how these procedures work are provided in [16, 10]
and omitted here for brevity.

For any destination j, a router ¢ can be in one of the two states, active or
passive, at any given time. Node 7 is active for destination j if it does not have
a feasible successor to destination 7 and is waiting for at least one reply from a
neighbor; node 7 is passive otherwise. A router ¢ initializes itself in the passive
state with an infinite cost to all its known neighbors and a zero cost to itself.
The maximum allowable cost to reach neighbor, defined below, is also set to oco.
Routers send updates containing cost and credit information about themselves to
all their neighbors. When the destinations become operational, they inform their
neighbors about the available credits to all other destinations.

Each routing update contains cost and credit information. Cost and credit in-
formation are exchanged among neighbors when the state of the network changes;
credit information is also updated periodically. An update can contain the full
routing table or increments of the routing table in different update messages.
After initialization, only incremental updates are sent.

For a given destination, a router updates its routing table differently depend-
ing on whether it is active or passive state for that destination. When router ¢
is passive, it reports the current value of D; in all its updates and replies. An
active router cannot send an update message for the destination for which it is
active. However, when a active router receives a query, it sends a reply with
infinite distance.

When a passive router receives a routing update for a destination it tries to
obtain a feasible successor for that destination. A feasible successor is obtained
using a feasible multipath condition which states at time ¢, a router ¢ can make
node k € N;(t) as a feasible successor if and only if D;k(t) < MAD;-(t) where
AMAD;'- is the mazimum allowable cost for destination j, and is equal to the min-
imum value obtained for D; since the last time router ¢ transitioned from active
to passive state for destination j. From router ¢’s standpoint, a feasible successor
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Procedure Update(y, k)

Variables: begin )
N: Set of all nodes if(rfz =0,Vz € N;)
Nyt Set of all neighbors of node ¢ then meegin Procedure Passive_Update(y)
p;: Predecessor of node j from ¢ if((si = k) or (Di < DZ)) begin ‘ ;
L Predecessor of node 7 f J . Jk J DTypip — Min{D’ Vz € N;}
Pigt redecessor ol node j irom then call Passive_Update(yj) Jz .
: through = end FCSET — {n | n € Ny, D;n = DTpin,
F;CSET: Set of feasible successors delse call Active_Update(j, k) D < MADi};
. g ss ; en
s]. Successor of node ¢ to 3 Procedure Message if (FCSET #°0) then begin
5311 Successor of ¢ to j through * when router i receives a message call RT _Update(j, DTy );
Procedure RT_Init on link (1, k) MAD; — Mzn{D;,MAD;}
when router : initializes itself begin end
do beginl . for each entry (u;c,], RD;C7 rp;C) else begin )
set a llnk-sfate tal?le with such that j % i MADY = co;rfl =1,z € N
costs of adjacent links; do begin i J i Jz
N — {i}; N; — {z | dj5 < oo} o8 D' = D'
: iz if (j € N) J 3 st
for each (z € N;) th . 37
. en begin . .
do begin it (RDF Pt =p'
; = 7
N —« NUugz; ‘tag‘ZE<—null; if ( 7 o) J ]s]

then delt?te entry if (D% = o0) then s’ — null;
else begin J J

D;’E<—oo; MAD3E<—00 N < Nu{j} V x € N; do begin
1 if (query and x = k)

sé_ — null; pfr « null;

d
P . MAD} = oo i
st — i; pb — i; tag! — correct; ;
i PPy }i 9; ’ for each z € Ny then Tka =0
Di — 0; MAD: «— 0; call DT Init(z, j) else Send message

for each j € N call DT Init(z, j); tagh — null; (1, 3, co, null) to =
H

for each (n € N;) do o end

Send message (0, 7, 0, 7) to n; call DT Update(j, k) end
end end end

end

Procedure DT Init(z, j) else Procedure Query(j, k)
begin tagl — null; begin )

DY — oo; pb — null; call DT _Update(y, k) if (rf! = 0Vz € N;)

gz Jz end T

Sl.r — null; Tfl.r — 0; k k& k then begin )

J J for each entry (u;,j, RD”, rp7”) if (D% = o0 and DY, = o0)
end J. J J J - Ik =

left such that j # ¢ then Send message
i _res

Pro.cedure Reply(j, k) do case of va}ue of u] (2, 7, D;, p;) to k
beglni 0: [Entry is an update] else begin

Tf]k — 0; call Update(], k) call Passive_Update(j);

. i 1: [Entry is a query] - PR

1f(rf]n =0,Vn € N1) call Query(y, k) Send message (2, j, D], p])

then if (3z € N; | D! < o) 2: [Entry is a reply] to k

) Iz 11 Repl k end
i call Reply(y, k)
or (D] < 00)) end else call Active_Update(j, k)
then call Passive_Update(j) call Send end

else call Active_Update(j, k) end

end

Figure 7: FMRA Specification

toward destination j is a neighbor router k& that satisfies the maximum allowable
cost condition (MACC) given by the following two equations:

Di(t) = Di(t)+ din(t) = Min{ D}, (6) + dip() | p € Ni(1)}
() < MAD(1) (11)

Router ¢ adjusts ZWAD;- depending on the congestion level of the network. Figure 9
gives a graphical representation of how MAD is updated. The point at which a new
computation for finding a feasible successor starts is a synchronization point [9].
It can be noted that between two synchronization points the value of MAD can
only decrease or remain the same and can never increase. Every time the MAD



S. Murthy and J.J. Garcia-Luna 19

Procedure RT_Update(j, DT,p,;,)
begin
if(D; i = DTmin)

s

Procedure Link_Change (i, k, d;1)
when d; changes value do begin
old «— d;p;
d; < new link cost;
for each j € N do begin
call DT _Update(y, k);

Procedure Link_Up (i, k,d;1)
when link (i, k) comes up do begin
d; < cost of new link;
if (k € N) then begin
N — NuU{k} tag;'C «— null;

then ns — si‘;
else ns — b | {b € N; and

D}y = DTyinki

D! — co; MADY — oo; for each j € N . ‘
K Tk ’ do if (D% > D%, or k = &) T
() Lot . 'k R . 7 : 7
pk<—null, sk<—null7 ]i J while (D}, ,,, = Min{D b vV be N;}
for each z € N; do then tag] — null; and (Di L< 00) *
call DT _Init(z, k) end .rrils )
end for each j € N do begin and (tagx = null))

Nj — Ny Uik}
for each 3y € N do
call DT _Init(k, 7);

foreach]EN—k|D;<oodo
Send message (0, j, D;, p;) to k;

end

Procedure Link Down(i, k)
when link (i, k) fails do begin
d;p «— 090
for each j € N do begin
call DT _Update(j, k);

if (d;p < old)
then for each j € N —1
| D > Dzk
do call Update(y, k)
else for each JEN—
| & = s
J
do call Update(y, k)
end
end

Procedure DT _Update(y, k)
begin

do z — Py nsi .
if (pY s =tor tag}, = correct)
then tag; — correct;
else tag; «— error;
if(tag; = correct)
then begin ) )
. H 7 7
lf(D] # DTy O Py # Py ns)
then Send message
. )
(0, 3, DTpin, P}
z, Vz € N;

J) to

¢ ) Lt v .
lf(kzs;)then tag; — null D;k (_RD;C‘I'dik; DJ ‘_DTmlnrp] “ Pyng
end ) . st — ns;
. . P — rp; 5
delete column for & in distance table; Ik 7. end
N; — N; — {k}; for each neighbor & do .
3 Zi ; begin else begin
delete rf]k; ‘ h — j; if(D; < 00)
for each j € (N — i) | k = s; while (h # ¢ or k or b) do then Send message
call Update(y, k) h — p}; (0, 3, oo, null) to
end if (h = k) then begin z, Vo € Ny
DL Dt T RrRDk. DY — oo; pb — null;
Procedure Update_Timer: Jb kb J’ z‘J 1L J
when the periodic update timer pt, — rp%; S] - e
. Jb 2
expires end end
begin . if (h = i) then begin end
reset timer RY; 7 .
° A . D]b et Procedure Active_Update(y, k)
update credit information; 7 5
. P, — null begin
for all ¢ € N; Jb ’ . 3 .
send periodic update; end if (k‘: s]) ‘then‘ begu‘1
end end Dt DU pt T,
end J<_ ]k’p]hp]k’
end
end

Figure 8: FMRA Specification (cont.)

has to increase, a new synchronization point has to be computed. This ensures
that the algorithm is loop-free.

If a passive router ¢ finds a feasible successor, it remains passive for that
destination. It sets LMAD;: equal to the smaller of the updated value of D;- and
the present value of jV[AD;-. In addition, it updates its cost, predecessor, and
successor making sure that only simple paths (paths that are loop-free) are used
[16]. Router 7 then prepares an update message to its neighbors if its routing table
entry changes. Alternatively, if router ¢ finds no feasible successor, then it sets
]WAD;-(t) = oo and updates its cost and predecessor to reflect the information
reported by its successor. If D%(t) = oo, then the successor (next-hop node) 32-(15)
= null. Router ¢ also sets the reply status flag (rf;k = 1)forall k € N; and sends a
query to all its neighbors, which reports an infinite cost to the destination. Router
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Figure 9: Maximum Allowable Cost Condition

¢ is then said to be active, and cannot change its successor information until it
receives all the replies to its query. When a neighbor moves, that neighbor is
assumed to have failed (a neighbor is said to be no longer existent if a node does
not hear from its neighbor for a period of time). All the pending replies from that
neighbor are assumed to have been received and it is removed from the neighbor
set N;.

Once active for destination j, router ¢ cannot change its feasible successor,
neighbors, or its entry in the routing table, until it receives all the replies to
its query. A reply received from a neighbor indicates that such a neighbor has
processed the query and has either obtained a feasible successor to the destination,
or determined that it cannot reach the destination.

Queries and replies are processed in a manner similar to the processing of an
update described above. The input event that causes router ¢ to become active is
a query in which router k reports an infinite cost. This is the case, because router
k’s query, by definition, reports the latest information from router k. Router ¢
will send a reply with finite distance to k if router ¢ has a feasible path to j; else
1 enters active state and replies to k with an infinite distance. An update is sent
to k when ¢ becomes passive again. A link-cost change is treated as a link going
down and coming up with a new cost. When router ¢ is active and receives a reply
from router k, it updates its distance table and resets the reply flag (Tf;k =0).

Router ¢ becomes passive at time ¢ when it receives replies from all its neigh-
bors, which means they have processed its query reporting an infinite cost. There-
fore, router ¢ is free to choose any neighbor that provides the shortest cost, if there
is any. If such a neighbor is found, router ¢ updates the routing table with the
minimum cost as described and sets M AD(1) = D;(t) A router does not wait
indefinitely for replies from its neighbors because a router replies to all its queries
regardless of its state. Thus there is no possibility of deadlocks due to the inter-
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neighbor coordination mechanism.

Ensuring that updates will not be sent in the network when some destination
is unreachable is easily done. If node 7 has set D;(t) = oo already and receives
an input event (a change in cost or status of link (¢, k), or an update or query
from node k) such that D;k(t) + d;x(t) = oo, then node ¢ simply updates D}k,
and sends a reply to node k with the reported distance RD}(t) = oo if the input
event is a query from node k. When an active node ¢ has an infinite maximum
allowable cost and receives all the replies to its query such that every neighbor
offers an infinite cost to the destination, the node simply becomes passive with
an infinite cost.

When node ¢ establishes a link with a neighbor k, it updates the value of
d; and assumes that node k& has reported infinite costs to all destinations and
has replied to any query for which node ¢ is active. Furthermore, if node k is a
previously unknown destination, node i sets si = null, and Di(t) = RDi(t) =
MADL(t) = oco. Node i also sends to its new neighbor k an update for each
destination for which it has a finite cost.

When node ¢ is passive and detects that link (¢, &) has failed, it sets d;;, = o0
and B;k = oo. After that, node ¢ carries out the same steps used for the reception
of a link-cost change in the passive state.

Because a router can become active in only one interneighbor coordination
mechanism per destination at a time, it can expect at most one reply from each
neighbor. This is true because a router cannot send updates for a destination for
which it is active. Accordingly, when an active node ¢ loses connectivity with a
neighbor n, node ¢ can set rf;n =0 and D;n = 00, i.e., assume that its neighbor
n has sent any required reply reporting an infinite cost. When node ¢ becomes
passive again, it must find a neighbor that satisfies the MACC using the value of
ZWAD;- set at the time node ¢ became active in the first place (Eq 11).

When nodes choose their successors from the feasible successor set, the path
from source to destination obtained as a result of this is loop free at every instant.

4 — Correctness

The proof of correctness and loop-freedom of FMRA is basically the same as that
provided in [10] for LPA. In this section we prove that the scheduling policy which
we have used to map connection-oriented sessions to destination-based flows and
the credit-based mechanism are both correct and live. For this purpose, we assume
that all sources are well-behaved.
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4.1 — Scheduling Scheme

Lemma 1: Each destination-oriented permit-bucket always demultiplexes the
credits fairly among the connection-oriented sessions.

Proof: The proof of this involves two parts. (a) fairness of credit distribution
on explicit credit requests (b) fairness of credit distribution on receipt of periodic
credit updates

Each DOLB is fed by a set of COLBs. Let N; be the number of COLBs
associated with each DOLB at any given time.

(a) When a new COLB source becomes active, DOLB sends an explicit request
for credits towards destination j. Each of these explicit requests is associated with
a sequence number.

When such a request is sent to the feasible multipath neighbors, the state of
the source along with the sequence number is saved i.e., the COLB source due
to which an explicit request was initiated. When a credit response (analogous to
an acknowledgment) for that sequence number is received, the credits are fairly
distributed among the requesting sources. i.e.,

co_r;

E'r’eq Treq

where r is the set of requesting sources. Therefore, credit demultiplexing at
DOLB is fair. This proves part (a).

(b) At each periodic interval, credits are assigned to neighbors depending on
the traffic flow seen through those neighbors. When a periodic credit request is
received by a DOLB source, the credits are fairly distributed to all the active
COLB sources associated with it. i,e.,

z S

i " ops
CR. = o CR;

where A is the set of active sources. (In this case, active source set and

requested source set will be the same). This proves part (b).
Therefore Lemma 1 is true. O
Lemma 2: The scheduling mechanism is live.
Proof: Whenever a new source becomes active, credits are explicitly requested by
that source using a explicit credit request message. Since each of these messages
are associated with a sequence number, according to Lemma 1, when the source
receives a credit response, credits are assigned proportionally to all requesting
sources. In the worst case, a credit request might have to go all the way down to
the destination before it gets the desired allocation. Since we maintain loop-free
paths to all destinations, the hop-count from source to a destination is finite.
Therefore, the scheduling mechanism is live. This proves Lemma 2. O
Theorem 1: The scheduling mechanism is correct.
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Proof: Lemma 1 and 2 ensure that the scheduling mechanism will not have any
deadlocks and all the active sources have a fair share of the available credits at
all times. This proves theorem 1. O

4.2 — Credit-based Scheme

The correctness of the credit based mechanism (i.e., showing that it has no dead-
locks and that packets are not dropped) can be proven similarly as for virtual-
circuit connections [13]. For the purposes of such a proof, we make the following
assumptions.

e the protocol is initialized properly i.e., all nodes have correct credit and
routing information

e there are no link errors or link failures and node failures (steady state)

Lemma 3: The congestion-oriented credit mechanism never drops packets ac-
cepted into the network.
Proof: The total credits available at a node is given by (from Eq. 8):

CRi(1) 2 3 WOR() - p(1)] - ¢(1)
keFM}

Also, the total of the available credits is less than the maximum resources at a
node.

jVIawC’reditsé(t) > CR;(t)

This is true since we reserve some credits for the fast reservation mechanism.

At any node, the number of credits available for a given destination j is at
least equal to the packets sent downstream for that destination. This is true since
a packet can not be forwarded unless we have a credit to do so. If a packet is in
flight from a sender to a receiver, then p;-l = 0 and C'R; < LMaxC'reditsé. Thus,
the received packet will not be dropped as there is at least one empty buffer that
can be used.

This proves the Lemma. O

Lemma 4: The credit based mechanism is starvation free.

Proof: To prove this Lemma, we consider three cases — (a) initialization (b) when
the nodes are operational and (c) when a explicit credit request is received.
Case (a): On initialization, when a new node comes up, the node distributes
its credits equally among its neighbors and receives a minimum number of non-
zero credits from its neighbors indicating the presence of a possible path to a
destination through that neighbor. Since on startup a minimum number of credits
is always available to the new node, the credit mechanism is starvation free.
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Case (b): When a new node becomes a member of the feasible multipath set
(FJW}), the successor flag will be set in the update message. On receiving this
update, the neighbor first sends a minimum number of credits initially using the
reserved bandwidth available through the fast reservation mechanism. Later on
the neighbor dynamically updates the credits depending on the traflic on the link.
Case (c): An explicit request for credits from a source is received by means of a
routing table update. This update sets the successor flag in the update message.
Therefore, the message will be treated as any other routing table update and is
processed similar to case (b) if the router has credits to send to its upstream
neighbors. Otherwise, the router sends routing table updates to its feasible multi-
path neighbors (downstream neighbors) requesting for credits to send packets to
the destination. In the worst-case, this process can continue till the routing table
update reaches the destination and will terminate at the destination. This is true
because the credits to a flow are assigned at the destination.

This ensures that a node will always have credits when it requires to forward
a packet. Therefore, the protocol is starvation free. O

Theorem 2: In the congestion-based credit mechanism, if there is a packet at a
node to be sent, it will be eventually sent (finite time).
Proof: From Lemma 3, packets which are accepted into a network are not
dropped unless there is a resource failure (this is true in case of connection-oriented
networks also). This means, a packet arriving at a node will either be forwarded
or queued till the resources are available to forward it.

From Lemma 4, whenever an intermediate node needs to forward a packet, it
always has the credits to do so. This implies packets arriving at a node will be
forwarded eventually.

This proves the theorem O

5 — Worst-Case Steady-State Delay

In this section, we derive an upper bound on the end-to-end steady-state path de-
lay, D;*, from node 7 to destination j as a function of the credits available through
each path under steady state. Steady-state means that all costs and credit infor-
mation are correct at every router. This bound demonstrates that it is possible
to provide performance guarantees in a connectionless routing architecture. The
delay experienced by a packet accepted into the network is the time required by a
data packet to reach its destination from a source. This includes both the propa-
gation delays and the queueing delays. Path delay can also be interpreted as the
time it would take for a destination j backlog at ¢ to clear.
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Parekh and Gallager have analyzed worst-case session delay in a connection-
oriented network architecture [15]. We adopt a similar approach for each desti-
nation in a connectionless architecture. To do this, we assume a stable topology
in which all routers have finite cost paths to each other. We also make use of the
fact that FMRA enforces loop-freedom at every instant on all paths in the feasible
multipath sets.

In a connectionless network, the path taken by a packet can change dynam-
ically depending on the congestion level in the network. Routing is done on a
hop-by-hop basis, independently at each router. The total traffic at a node will
be the sum of the traffic on all its links connecting to upstream neighbors. To
obtain an expression for the worst-case bound, we make the following assumptions:

1. Each node can send traffic to destination j only if credits are available (non-
zero) for that destination along any of its chosen paths.

2. At every node m, traffic for every destination is treated independently.

3. Traffic arriving at a node 7 for destination j in the interval (0,¢) (denoted by
A;) is the sum of the traffic from all its upstream neighbors to destination j
and the traflic originated at the node ¢ itself, denoted by ré(t), ie.,

POREE S ORSD DI /10 (12)

i€ MP(t),nEN;

Each router in the connectionless network can itself be a source to any given
destination. At each node, traffic to destination j is constrained by a permit
bucket filter. The worst-case delay and backlog is bounded above by an additive
scheme due to Cruz [5]. The rate at which the packets are serviced at each node
depends on the permit bucket or leaky bucket parameters O';'- and pé- for a given
destination j. The parameter O';: gives the permit bucket size, and pé gives the
credit accrual rate at node i:. Therefore, the number of packets that are being
serviced at a node is a function of O'; and ,0?7

The per-hop delay on a link (7, k) dé-k for a given destination j is the sum of
the queueing delay and the propagation delay on that link. Propagation delay is
defined as the time taken for a packet to reach a destination from a source. Every
packet is time-stamped when it leaves a node, and the time at which the packet
reaches the neighbor is noted. The difference between the two gives a one-hop
delay. The average of this delay over a given period of time gives the propagation
delay (5};.

The queueing delay is the time a packet has to wait at a node before it is
processed. The waiting time of a packet depends on the number of packets already
present in the queue at the time a packet arrives. This is referred to as the backlog
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at node 7 for destination 7 and is denoted by Q; Therefore, the delay on link
(,1) for destination j at time ¢ is

(1) = 81(1) + Qu(1)6;(1) = 65(D[1 + Q5 (1)] (13)

The backlog number of packets for a given destination j at a given time ¢ can
be defined as the difference in the incoming and the outgoing traflic at a node,
i.e.,

Q;(1) = A3(1) — 55(1) (14)
This takes into account both the processing delay and the queueing delay
experienced at each hop. For every interval (7,1],

Let 7 < ¢ be the time at which there are no backlogged packets in the network.
Then,

Si(r.t) > pit —7) (15)

We assume that variation in the size of the packet does not contribute signif-
icantly to the delay component. A delay bound for the case in which packet size
is not negligible is presented by Murthy and Garcia-Luna-Aceves[11]. The total
number of arrivals at each node ¢ is the sum of the arrivals at all the upstream
nodes for destination j and the traffic originated at node 7 itself. Forallt > 7 > 0
we have,

Aj(r ) =ri(r, )+ D0 () Aj(r,0) (16)
llieFM(t)

The maximum backlog traffic Q;* for destination j is the difference between
the arrivals in the interval (7,¢] and the total packets transmitted in the same
interval at node i. For ¢% > 0,

Q;*(T,t) = A;(T,t)—S;(T,t) (17)
< T;(T,t)—S;:(T,t)
+ Y [Bh(r, 0 Al )] (18)
ieFMI(t)
[ri(t) = r3(r)] = Si(r, 1)
+ Y [Bh(r, 0 Al )] (19)

; 1
lieFM(1)

IN

The difference (r;(t) - T;(T)) determines the amount of traffic arriving at node

¢ in the interval (¢ — 7); the maximum of which is the sum of the tokens available
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at node ¢ at 7 and the tokens received in the interval (¢ — 7). At every node, each
destination is constrained independently by a permit bucket scheme. Following
Parekh and Gallager’s approximation [15], we assume the links to be of infinite
capacity. The results for the infinite capacity case supply a upper bound for the
finite capacity case. The arrival and the service functions at each router depend
on the maximum path delay and the link flows. Substituting for the arrivals and
the number of packets serviced in terms of the permit bucket parameters from the
previous section we have

QF(r,t) < [o5(t—7)+pi(t = 7)) = pj(t = 7)

i i i
+ E /\LZ[Uj(t_T)‘}'pj(t_T)]
L] ieFMi(t)

Because f;l < /\é for any 7 and [ € FAM}'(t),

Qrr<ait-n+ 3 lo(t=7)+pt 7)) (20)
I | ieFMi(t)

Making 7 =t — At, we can write

QF() <A+ 3 [o)(Al) + pj(AL)]
I | ieFM(t)

Therefore, the backlog at node ¢ to destination 5 depends on the leaky bucket
parameters at node ¢ and the permit bucket parameters of all the upstream neigh-
bors of 7 for which node 7 is in the feasible multipath set.

The delay at each node ¢ can be computed as the weighted average path delay
through all its multipath neighbors; therefore,

Di(t)= > (D51 (21)

kEFM(t)

The cost from ¢ to 7 through neighbor k can be expressed as the sum of the
costs from k to j and the link cost from ¢ to k. The link cost is the sum of the
cost and the propagation delay of that link. Therefore,

Dis(t) = Die(t) + die(t)
D) = X GO0 + dix(0)] (22)
KEFM ()

From Eq. 13, d;x(t) = 65(¢)[1 + Q;(t)], which implies that
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Di(ty= Y, D) + 6u(t)(1 + Q5(1))] (23)
k€FM(t)
Because MACC must be satisfied by every k € FM;(t), D;k(t) < MAD;-(t).
Then, if Dj-*(r) is the maximum path delay from 7 to j at time 7 and Q;*(t) is
the maximum backlog from ¢ to 7 at time ¢, we obtain from Eq. 23 that

D) < >0 @b e+ @ (1)

kEFM(t)

+MADYt) > 4,1 (24)

kEFM(t)

Let the maximum link propagation delay of all the links from ¢ to a node in

FM(t) be

AL(L) = 8 (t 2
(1) kerg&ig(t) k(1) (25)

Therefore, the maximum path delay from ¢ to j becomes

D) < Aty Y 401+ Q¥ (1)

kEFM(t)

FMADY() Y () (26)

keFM;(t)
Noticing that Q;*(t) is independent of k and substituting Eq. 6 in Eq. 26 we obtain

Dé*(t) < Aj-(t)[l + Q;*(t)] + MAD;-(t) (27)

The above equation is an upper bound on D;(t) that should be expected. It
states that D;(t) must be smaller than the sum of the product of the backlog
for ¢ at node ¢ times the maximum link propagation delay in node #’s feasible
multipath, plus MAD;-(t). The first term of Eq. 27 corresponds to the delay
incurred by sending all backlogged packets at time ¢ to a neighbor with the longest
link propagation delay. The second term corresponds to the maximum delay
incurred by any neighbor receiving the backlog packets; because any such neighbor
must be on FLM]Z:(t), that delay can be at most equal to lMAD;:(t).

Substituting Eq. 20 in Eq. 27, we can represent the same bound in terms of
permit bucket parameters as follows:
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Dj-*(t) < MADj-(t) + Aj—(t){l + aj-(t) Z [aé-(t) + pé-(t -7}
i€ FMj(t)

(28)

The bound given by Eqs. 27 and 28 for router ¢ is based on a maximum delay
offered by the neighbor of 7 and a maximum backlog allowed at router . This is
possible because of two main features of FMRA: datagrams are accepted only if
routers have enough credits to ensure their delivery, and datagrams are delivered
along loop-free paths. In contrast, in traditional datagram routing architectures,
any datagram presented to a router is sent towards the destination, and the paths
taken by such datagrams can have loops; therefore, it is not possible to ensure a
finite delay for the entry router or any relay router servicing a datagram.

6 — Supporting Subnets

Having defined the basic protocol to support several quality-of-service types in a
mobile integrated services network, we now extend the same to larger networks
with hierarchical topologies. Two issues that are of concern here are scalabilily
and fairness of the proposed credit-based mechanism.

Figure 10: Credit Aggregation
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6.1 — Credil Aggregation

Destination-oriented credits are aggregated at all intermediate nodes from des-
tination towards source. Therefore, a credit value at each hop gives the total
credits available for a specified destination through all the feasible paths through
the downstream nodes.

To illustrate this, let us assume that the network is divided into clusters.
Each cluster is viewed as a single entity from any node outside the cluster. All
the information (distribution of credits) within the cluster is transparent to the
nodes outside the cluster. The border node(s) at each cluster is responsible for
sending aggregated credit information to all the nodes/clusters outside its own
cluster and then to distribute the credits fairly among the routers within the
cluster.

Available credits are aggregated for each destination (cluster) at all routers
(boundary nodes) along the path from destination to a source. When a source
needs credits to send traffic, it sends an explicit credit request towards the desired
destination. Each destination in turn redistributes credits (reserving resources
along the way). The number of packets entering the network is controlled at the
COLB sources themselves. Because of this, the sources cannot misbehave and
consume the resources allocated for other sources. The COLB sources are not
allowed to send data unless they have credits to do so. This is because a packet
is not allowed into the network unless it has resources to reach the destination.
This ensures that the sources will not misbehave.

Because the sources are well-behaved, we can aggregate the available credits
for destinations. This can be done without maintaining any additional information
about the subnetworks, i.e., the topology of the subnetwork is transparent to the
routers outside the subnetwork. Therefore, the credit-based approach is scalable.

Figure 10 shows an example of how the credits are aggregated in a subnet.
S1 and 52 are the two sources and D1 and D2 are the two destinations for which
the sources are sending data. The solid arrows indicate the direction of the data
flow and the dashed arrows indicate the direction of the credit flow. But, from
the point of view of the two sources, the information about both the destination
have been integrated into a single destination D which is the boundary node of
the destination cluster. D aggregates the credits available for the two destinations
within its cluster and passes on that information towards sources 51 and 52.

Because the sources are well behaved and cannot send data to the destination
unless they have credits to do so, the credits obtained are distributed between the
two sources in proportion to their traffic arrival rate.
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6.2 — Fairness

The system under consideration is said to be fair if two sources with the same flow
specification get the same type of service from the system in terms of resource
allocation and flow handling. Fairness can be ensured in the proposed destination-
oriented credit mechanism among all active destinations, because all destinations
are served according to the traflic rate using a weighted fair queueing scheme at
all nodes. The available credits are distributed among active destinations in pro-
portions relative to their traffic arrival rate. Furthermore, the congestion control
scheme is exercised hop-by-hop on a per destination basis, so that a misbehaved
flow for one destination does not block the flows for other destinations.

At each hop, credits are allocated to each flow depending on its relative input
traffic rate into that node. Because the sources can not transmit packets into the
network unless they have credits to do so (sources are well behaved), all sources
get a fair share of the available bandwidth.

7 — Conclusions

We have presented a new routing architecture for mobile integrated services net-
works. OQur approach is based on a hop-by-hop destination-oriented credit mech-
anism and a loop-free multipath routing algorithm. The new routing architecture
dynamically adapts to congestion, so that the entries in the routing tables define
long-term connections and thus reflect the state of the network at any time.

We have demonstrated by analysis that it is possible to provide performance
bounds for the delivery of packets in a network in which routing decisions are
made on a destination-oriented basis, rather than a connection-oriented manner.

A two-tier architecture to support end-to-end connections on top of a con-
nectionless architecture was also presented to support several levels of quality of
service. We have also showed that this credit-based mechanism is scalable and is
fair.

We believe that the new routing architecture represents an attractive approach
to extend wireline integrated services packet networks (ISPNs) with wireless mo-
bile networks capable of supporting multimedia applications while network con-
nectivity changes.
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