
DISTRIBUTED ASSIGNMENT OF CODES FOR MULTIHOP PACKET-RADIO NETWORKS

J.J. Garcia-Luna-Aceves and Jyoti Raju
Computer Engineering Department

School of Engineering
University of California
Santa Cruz, CA 95064
jj, jyoti@cse.ucsc.edu

Abstract— This paper describes and analyzes a distributed algorithm for
assigning codes in a dynamic, multihop wireless radio network. The algo-
rithm does not require any form of synchronization and is completely dis-
tributed. The algorithm can be used for both the transmitter oriented and
receiver oriented code assignment. The algorithm is proven to be correct and
its complexity is analyzed. The implementation of the code assignment algo-
rithm as part of the medium access control (MAC) and routing protocols of a
multihop packet-radio network is discussed.

I. I NTRODUCTION

Using code division multiple access (CDMA) in packet-radio
networks permits multiple stations within range of the same re-
ceivers to transmit concurrently, without interference. Several
multiaccess protocols have been proposed and commercial sys-
tems have been deployed that take advantage of CDMA [1]. An
important design consideration in a multihop packet-radio net-
work using CDMA is the assignment of transmission codes to
network nodes. In a large network, the number of transmission
codes is smaller than the number of nodes, and senders and re-
ceivers must agree on which transmission code to use in a way
that avoids interference as much as possible.

Interference in a CDMA network can be of two kinds.Di-
rect interference consists of two neighboring nodes transmitting
to each other at the same time. This can be avoided by using a
random access protocol that schedules transmissions to the neigh-
bor nodes in time to avoid collisions (e.g., FAMA [8]).Secondary
interference consists of two senders transmitting to receivers in
a way that the senders’ transmissions interfere at at least one re-
ceiver. This type of interference can occur in two scenarios.Two
stations unaware of each other’s existence can transmit to the same
receiver at the same time; this gives rise to the transmitter-oriented
code assignment problem shown in Fig. 1. Here,A andC, which
are two hops away from each other need to have different codes.
The second case of secondary interference occurs when a station
is transmitting to its neighbor and a third station’s transmission
to some station other than the stations involved in the first trans-
mission causes an interference with the first transmission. This
leads to the receiver-oriented code assignment problem illustrated
in Fig. 2. Here,C is transmitting toD but causes interference at
B, becauseB andD which are two hops away share the same
code. As can be seen from the earlier two examples, the code as-
signment problem requires that no set of stations which are two
hops away have the same code.

Several approaches have been proposed in the past for chan-
nel/code assignments. A tree-based protocol for broadcasting is

This work was supported in part by the Defense Advanced Research Projects
Agency (DARPA) under grant DAAB07-95-C-D157.

discussed by Chlamtac and Kutten [4]; the distributed version of
the protocol uses a travelling token, which incurs more overhead
traffic on the network. Chlamtac and Kutten also show that de-
signing a protocol such that the least amount of channel band-
width is used for broadcast is NP-complete. A different approach
to the token-based scheme consists of using control segments dur-
ing which the schedule for the transmission segments is decided
[5]. The transmitter-oriented code assignment is introduced in
[11]. Here, quasiorthogonal codes are assigned to transmitters in a
packet-radio network in such a way that hidden terminal interfer-
ence is eliminated. There are many approaches based on the fact
that the node needs to know the information of nodes two-hops
away [6], [3], [9].

This paper presents a distributed code assignment algorithm.
This algorithm assigns a code to each node in a way that no in-
terference occurs after the algorithm converges, provided that the
number of codes available for assignment is at leastd(d� 1) + 2,
whered is the maximum number of one-hop neighbors any node
can have. This is because the algorithm assigns a transmission
code to a node that is different than the codes assigned to nodes
two hops away from the node. The algorithm is designed to be
part of the MAC and routing protocols of a multihop packet-radio
network. It is based on the asynchronous exchange of control mes-
sages that are part of the regular MAC and routing messages, and
the information generated by any one node propagates up to two
hops away from the node.

2

A

 C
B

1

1

Fig. 1. Interference when two transmitters two-hops away have the same code

1

A B

C

D

1

Fig. 2. Interference when two receivers two-hops away have the same code

Section II describes the algorithm in detail. Section III shows
that the algorithm guarantees correct code assignments after con-
vergence, provided that enough codes are available. Section IV
addresses the algorithm’s complexity.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1997 2. REPORT TYPE

3. DATES COVERED
 00-00-1997 to 00-00-1997

4. TITLE AND SUBTITLE
Distributed Assignment of Codes for Multihop Packet-Radio Networks

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Santa Cruz,Department of Computer
Engineering,Santa Cruz,CA,95064

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

5

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

II. T HE ALGORITHM

A. Network Model and Protocol Assumptions

To describe our code assignment algorithm, we model a mul-
tihop packet-radio network as an undirected graphG = (V;E)
whereV is the set of nodes andE is the set of edges. Each node
consists of a transceiver and a router. A link between two nodesi

andj in G means thati can hearj’s transmission andj can hear
i’s transmission. Each node uses an omnidirectional antenna for
transmission and the network works in half-duplex mode, which
means that a node cannot transmit and receive at the same time.
A routing protocol is assumed to create and update the routing ta-
ble used at each node. This routing protocol provides information
about who the node’s active neighbors are; this involves adding to
the neighbor list new neighbors when they come up and deleting
neighbors which are no longer active. The routing protocol is as-
sumed to have some form of neighbor discovery mechanism such
as a HELLO exchange [12]. Nodes process messages they receive
and links transmit packets in the FIFO order.

We also assume a MAC protocol that allows stations to sched-
ule their transmissions to the same receiver in a way that collisions
of data packets to the receivers are avoided. The floor acquisition
multiple access (FAMA) family of protocols [8] is an example of
such a MAC protocol. According to FAMA, a sender transmits
a request-to-send (RTS) to the receiver, which in turn transmits
a clear-to-send (CTS) if it obtains the RTS free of errors. The
RTS lasts longer than the propagation delay and the CTS must be
larger than size of RTS + maximum round trip propagation de-
lay + transmit-to-receive turnaround time, so that collisions due
to hidden terminals are eliminated in the absence of erasures due
to drastic node mobility. When the network is first brought up,
all transmissions take place over a common signaling code using
FAMA. As the stations decide on their codes, the stations use dif-
ferent codes for data transmissions.

A link is assumed to exist between two nodes only if there is
good radio connectivity and the update messages of the routing
protocol can be sent reliably. Node failures are modelled as all
links incident on the node failing at the same time. A moving
node is considered attached to all nodes with which the node can
exchange messages with a certain probability of success; a moving
node becomes detached from nodes with which it cannot exchange
messages with this probability of success. The code assignment
algorithm runs in conjunction with the routing protocol, which in
turn runs on top of the MAC protocol.

B. Principles of Operation

The messages of the code-assignment protocol are called the
Code Assignment Messages (CAM). These messages are sent as
part of the messages exchanged in the network’s routing protocol.
These messages could be lost due to changes in radio connec-
tivity. Reliable transmissions ofCAM’s is done with the help of
retransmissions. After receiving aCAM, the receiver is required
to acknowledge it to the node which sent it, by sending an ex-
plicit ACK message indicating that theCAM has been received
and processed. Since, the network layer assumes the link to be of
a broadcast nature, a node can send a message once and assume
to have sent it to all the neighbors; however, each neighbor needs
to ACK the message individually.

C. Information at Each Node

The following structures are needed for code assignment at each
node.
� Priority List: Each node has a unique priority number as-

signed to it. This priority number allows two-hop neighbors
with the same code to decide which one of them should keep
the code and which must look for new codes. We decided
to use the address of a node as its priority number, because
addresses are unique.
The priority list contains the priority numbers of the node, its
one-hop and two-hop neighbors sorted in increasing order.
Each entry in the list has a flag which is set to 1 if the neigh-
bor is one-hop or 2 if the neighbor is two-hop. The codes
assigned to the node and its neighbors are also listed in here.

� Neighbor List : This is a list of all the node’s immediate
neighbors, i.e. all its one-hop neighbors.

� Code Assignment Message Retransmission List (CAMRL):
This list has one or more retransmission entries, where an
entry is of the following nature.

– The sequence number of theCAM.
– A retransmission counter that is decremented every time the

node sends aCAM.
– An ACK-required flag that is actually a field of the size of

the neighbor list. The bit corresponding to a neighbor is
set if theCAM is yet to be acknowledged by the neighbor.

The CAMRL permits a node to know whichCAM is not ac-
knowledged by some of the neighbors and needs to be sent
again. The node retransmits aCAM when its retransmis-
sion entry in theCAMRLreaches zero. The retransmission
counter of a new entry in theCAMRLis set equal to a small
number (e.g., 3 or 4).

� Unassigned Code List (UCL): This list contains all the codes
which are available, i.e. they are not being used by any of the
node’s two-hop neighbors.

D. Information Exchanged among Nodes

TheCAM’s propagate only from a node to its neighbors and no
further. EachCAMcontains
� The address of the node which is sending theCAMalong with

its code.
� The addresses of the node’s one-hop neighbors along with

their codes.
� ACK’s to earlierCAM’s. An ACK entry specifies the source

and the sequence number of theCAMbeing acknowledged.
� A response list of zero or more nodes which need to send an

ACK for thisCAM.
If a singleCAM is not large enough to hold all the codes and
addresses, the information can be split up into more than one
CAM.

CAM’s are sent in the following situations.
1. A new node comes up. Its priority list only consists of its

own address and its own code. It broadcasts this to all its
neighbors.

2. When a nodei detects a change of code by any of its one-
hop neighbors,i makes the required changes in its priority
list and sends aCAM to all its one-hop neighbors including
the one that changed the code.

2

3. When a nodei finds that a certain one-hop neighborj is no
longer active, it dropsj from the priority list. This informa-
tion is then conveyed to all its one-hop neighbors by aCAM
which reflects the changes.

E. Updating the Priority List

A node updates its priority list either after detecting a change
of code in one of its one-hop neighbors or after receiving aCAM
which contains information about a change of code by its two-hop
neighbors.

When a node notices a change of code in any of its one-hop
neighbors, it makes a change in its own priority list and sends
a CAM with its own address and the address of all its one-hop
neighbors along with their respective codes. This is sent to all
its one-hop neighbors. If a two-hop neighbor has changed a code
then any of the following three situations might arise.

1. If the new code of the two-hop neighbor is not the same as
i’s code, then the new code in entered into the priority list in
the entry corresponding to the two-hop neighbor.

2. If the new code of the two-hop neighbor is the same asi’s
code and the address of the two-hop neighbor is lesser than
i’s code, theni picks up a new code. The new codes of the
two-hop neighbor andi are entered into the priority list.

3. If the new code of the two-hop neighbor is the same asi’s
code and the address of the two-hop neighbor is greater than
i’s code, theni retains its code and there is a temporary con-
flict till the two-hop neighbor changes its code. The two-hop
neighbor will get to know ofi’s code because of theCAM
sent by the one-hop neighbor ofi. This conflict does not stop
the data transfer in the network. It merely increases colli-
sions.

In the first two cases theUCL has to be updated. All the codes
used by the two-hop neighbors are marked as unavailable in the
UCL.

F. Sending New and Retransmitted CAM’s

Whenever a nodei sends a newCAM, it must do the following
steps

1. Decrement the retransmission counter of all the new entries
in theCAMRL.

2. Delete the entries which correspond to entries in the new
CAM.

3. Add an entry in theCAMRLfor the newCAM.
If a certainCAM in the CAMRLhas all its entries covered be a
newCAM transmission, the oldCAM is deleted from theCAMRL.

When the retransmission counter for aCAM retransmission en-
try expires, nodei sends a newCAM which has the same data
as the oldCAM. However, it has a new sequence number and a
new response list. This new response list specifies the neighbors
which did not acknowledge theCAM earlier. The old entry in the
CAMRLis deleted and a new entry created for the new retransmis-
sion.

Using the above retransmission strategy, a node can keep send-
ing CAM’s till all its one-hop neighbors acknowledge it. However,
after some time if a node gets no response from a neighbor, it con-
siders the neighbor dead and does not send it anyCAM’s and resets
bits which correspond to this neighbor in the response lists of all
the entries in theCAMRL.

G. Processing an ACK

The ACK entry bears the sequence number of theCAM it ac-
knowledges. As soon as anACK is received by a node, the node
searches itsCAMRLto find the entry with the required sequence
number. If a match is found the node resets theACK required flag
for the neighbor which sent theACK.

A node may receive anACKfor an entry which has been deleted
due to more recentCAM’s to the same neighbor or for an entry
which has undergone a change in sequence number due to more
recent retransmissions. In that case, the node simply ignores the
ACK.

H. Embedding Code Assignment Algorithm in MAC and Routing
Protocols

The proposed code assignment algorithm can be used as an in-
tegral part of the MAC and routing protocol of a packet-radio net-
work.

In our model, all stations have a common signaling code on
which they implement anRTS-CTSexchange similar to the 802.11
protocol [10]. The data transfer can be done on the receiver’s code
for ROCAor on the transmitter’s code forTOCA. The advantage of
some form of code assignment is that a node’s one-hop neighbor
can receive a data transmission at the same time as the node.

I

RTS

CTS

DATA
1

DATA
2

 Interval Time

Data Train 1 Data Train 2

Sender(Signalling Code)I

 Receiver(Signalling Code)J

Sender(Receiver’s Data Code)

Fig. 3. Handshake and Data Transfer using Receiver’s Code

We investigate the case for the receiver oriented approach (Fig.
3). Consider two nodesI andJ which are immediate neighbors
of each other. The nodeI needs to transmit data toJ . I sends
anRTSto J in which it specifies the code it expectsJ to have. It
also specifies the number of data packets it plans to send.J send
back aCTSwhich contains its code and the maximum number of
data packets it can allow. After successfully receiving theCTS,
the nodeI transmits its data using the code.

After the specified number of data packets have been transmit-
ted and received,I andJ switch back to the signaling code. If the
RTS-CTSexchange also specifies the interval time between two
packet bursts, then after an initial handshakeI can switch toJ ’s
data code automatically without an interveningRTS-CTShand-
shake. The last packet of a data burst can contain control data
which specifies if there are more data bursts following. If node
J gets any requests which would require it to receive data from
any node other thanI during the time it has reserved forI , it will
refuse the requests. Also, anyRTSarriving(on the signaling code)
atJ while it is receiving data fromI (onJ ’s data code) would not
destroy the data. This takes care of the multihop problem.

Now, with the availability of assured time for data transmission,
a certain rate for data transmission can be guaranteed. This is use-

3

ful for real-time data traffic which requires constant delay. How-
ever, one has to keep in mind that if the topology gets constantly
rearranged, such a rate cannot be sustained.

A similar treatment can be done for the transmitter oriented ap-
proach. Here, theRTS-CTSwill exchange the sender’s code.

CAM’s need to contain information about a node’s one-hop
neighbors and their codes. If the distance metric in a routing al-
gorithm is hop-count, then reading a routing update message from
a node is enough for the code assignment algorithm to deduce
a node’s one-hop neighbors. However, the codes assigned to the
neighbors are not present in the routing updates. With the addition
of this field the routing updates can be used asCAM’s.

III. CORRECTNESS OF THEALGORITHM

This section shows that the code-assignment protocol is correct
under the assumption that an underlying protocol assures the fol-
lowing conditions.

1. A node detects within a finite time the existence of a new
neighbor or the loss of connectivity with a neighbor. A node
also detects within a finite time a change in the code used by
a neighbor.

2. All messages transmitted over a radio link are received cor-
rectly and in the proper sequence within a finite time.

3. All messages and code changes are processed one at a time
within a finite time and in the order in which they are de-
tected.

D-1

D
D-1

D-1

D-1

Fig. 4. The connectivity of a node in a network a maximum degree d

Another assumption we make is that we have a minimum of
d(d � 1) + 2 codes, whered is the maximum degree of the net-
work. One code is required for signaling and the use of the rest of
them can be explained using Fig. 4. A node can have a maximum
of d neighbors. Each of these neighbors can in turn haved neigh-
bors. Consider the central nodei. It hasd one-hop neighbors and
d(d � 1) two-hop neighbors. The node should not have a code in
common with any of its two-hop neighbors. Thus, it is clear that
we required(d � 1) + 1 codes. This is a sufficient condition to
obtain valid code assignments [9]. The network can still operate
with fewer thand(d � 1) + 2, even though some two-hop neigh-
bors will have the same codes. However, for the proof, we assume
thatd(d� 1) + 2 codes exist.

Additional assumptions are that there are a finite number of
code changes upto timet0, and that no more changes occur after
that time, and that nodes can correctly determine whichCAM’s
are more recent than the others.

Correctness for this algorithm means that within a finite time
aftert0, all nodes obtain information about the codes of their one-

hop and two-hop neighbors. This allows them to calculate a code
for themselves which is different from the codes of all their two-
hop neighbors.

Definition 1 : There are two different ways a node can change
its code.

1. The node can change its code to any of the unused two-hop
codes(this includes codes of one-hop neighbors).

2. The node can change to a code that is already being used by
a two-hop neighbor with an address greater than itself.

Definition 2: A node is said to have consistent information in
its priority table if it has the most recent information about the
change of codes of its one-hop and two-hop neighbors.

Theorem 1: A finite time aftert0, all nodes have consistent in-
formation in their priority tables and the codes they decide based
on this information are correct.

To prove the above statement we need to show that the follow-
ing conditions are satisfied:

1. All nodes eventually stop updating their priority list and stop
sending update messages to their neighbors.

2. All nodes must have consistent code information in their
topology databases within a finite amount of time aftert0.

3. If the information in the node is consistent and most recent,
a node only makes a valid change of code and there are no
deadlocks.

4. If all nodes make only valid change of codes, then we have a
correct code assignment, such that no pair of two-hop neigh-
bors have the same code.

Lemma 1: All nodes eventually stop updating their priority list
and stop sending update messages to their neighbors.

Proof: First, note that there are a finite number of nodes in the
network, and that by assumption a finite number of code changes
can occur upto timet0, after which no more changes in codes
occur. Also by assumption, a change of code by a certain node is
detected within a finite amount of time by the neighboring nodes.
These neighboring nodes, in turn update their priority lists and
send out at most oneCAM to each of their neighbors. Therefore,
for any change of code, there can be at mostd(d � 1) messages
sent.

A node which does not allow the protocol to terminate must be
generating an infinite amount ofCAM ’s. This is only possible
if one of its neighbors is changing its code an infinite number of
times. Since, we assume that there are no changes aftert0, this is
not possible. Therefore, the protocol produces only a finite num-
ber ofCAM ’s and the message transfer must stop within a finite
time aftert0.

Lemma 2: All nodes must have consistent code information in
their topology databases within a finite amount of time aftert0.

Proof: Consistent code information means that the node knows
about all the recent code changes in its one-hop and two-hop
neighbors. Consider some nodei. A lower level protocol guar-
antees thati will detect a change of code in any of its one-hop
neighbors within a finite time.

Consider the case of a nodei whose two-hop neighbork
changes its code. This two hop neighbor is the one-hop neigh-
bor of one ofi’s one-hop neighbors(j). We are guaranteed thatj
detects a change ink’s code in a finite time. This detection causes
a change inj’s priority list, which in turn causesj to send aCAM

4

to all its one-hop neighbors which includei andk. Since, we as-
sume that nodej processesCAM ’s in a finite time, we always
have the latest code change information at a node in a finite time
after the last change, i.e. aftert0.

Lemma3: If the information in the node is consistent and most
recent, a node only makes a valid change of code and there are no
deadlocks.

Proof: When a node gets aCAM, it makes changes in its pri-
ority table and checks to see if any of its two-hop neighbors use
the same code as it does. If no two-hop neighbor has the same
code, the node does nothing. If a two-hop neighbor has the same
code, then the node checks the address of the two-hop neighbor.
If the two-hop neighbor has a larger address, then the node keeps
its own code. If the two-hop neighbor with the same code has an
address smaller than the node, then the node has to pick up a new
code from theUCL. If there ared(d� 1)+2 codes, there will al-
ways be some code available to pick. Thus, there is always a valid
change of code. It can be seen that there are no possible situations
where a node has to wait for any event to occur and therefore,
there exist no deadlocks.

Lemma 4: If all nodes make only valid changes of codes, then
we have a correct code assignment in which no two-hop neighbors
have the same code.

Proof: Consider a set of two-hop neighborsa1; a2::::; an sorted
with respect to their addresses. Under the condition of valid
change of codes, no node can have the same code as a two-hop
neighbor with lesser address, i.ea2 cannot have the same code
asa1, a3 cannot have the same code asa1 anda2. If the condi-
tion of valid change of codes is true for all nodes, any nodeai
cannot have the same code asai�1; ai�2; :::; a1. If we continue
this argument tillan, we see thatan cannot have the same code
asan�1; an�2:::a1. From this we see that for a set of two-hop
neighbors with a bounded number of nodes, no two nodes have
the same code. One of the assumptions we made is that we have
a finite network, i.e. a bounded number of nodes. Therefore, we
have a correct code assignment in which no two-hop neighbors
have the same code.

IV. COMPLEXITY OF THE CODE ASSIGNMENTALGORITHM

This section gives results about the communication complex-
ity(i.e. the number of messages needed in the worst case), com-
putation complexity and storage complexity after a single code
change.

A. Communication Complexity

There can be two results of a node changing its code.
1. The node’s new code is not the same as any of its two-hop

neighbors’ codes. In this case, there are onlyO(d2)messages
exchanged.

2. The node’s new code is the same as one of its two-hop neigh-
bors’ code. In this case, the two-hop neighbor might have to
change code which in turn could causeCAM ’s to be sent. In
a pathological case, a node’s change of code might cause all
the nodes in the network to change their codes.

From the above, it follows that the number of messages is
bounded byO(jV j:d2).

B. Complexity of Computation at the Nodes

In the worst case there ared + 1 entries in theCAM . This
includes new entries which did not exist in the priority list ear-
lier. The entries in theCAM are presumed to be in the sorted
order. A scan of the priority list is done and the new codes added
to it. While doing the scan we can check if any of the two-hop
neighbors have the same code and also update theUCL. There
ared(d� 1) + d+ 1 entries in the priority list. A linear scan will
take the order ofd(d� 1) + d+ 1 which isO(d2).

C. Storage Complexity

The priority list hasd(d � 1) + d + 1 entries. TheMRL can
have a specified maximum number of entries which is presumed
to be a constant. TheUCL has to have a minimum ofd(d�1)+2
entries. Thus the storage complexity isO(d2).

V. CONCLUSIONS

We have presented an algorithm for distributed, dynamic chan-
nel assignment in multihop packet radio networks. This protocol
is based on obtaining information about the transmission codes
used by nodes one-hop and two-hops away. The algorithm was
shown to be correct and its complexity was analyzed. This pro-
tocol fits in nicely with existing MAC and routing protocols de-
signed for multihop packet-radio networks. At UCSC, we are
implementing the proposed algorithm as part of the FAMA [8]
and Wireless Internet Routing Protocol [12] which are used in the
Wireless Internet Gateways [2], [7].

REFERENCES

[1] Ricochet Wireless Network.http://www.ricochet.net/netoverview.html.
[2] Wireless Internet Gateways. http://www.cse.ucsc.edu/research/ccrg

/projects/wings.html.
[3] A.A. Bertossi and M.A. Bonuccelli. Code Assignment for Hidden Terminal

Interference Avoidance in Multihop Radio Networks.IEEE/ACM Trans. on
Networking, 3(4):441–449, August 1995.

[4] I. Chlamtac and S. Kutten. Tree-Based Broadcasting in Multihop Radio Net-
works. IEEE Trans. Computers, Oct 1987.

[5] I. Cidon and M. Sidi. Distributed Assignment algorithms for Multihop
Packet-Radio Networks.Proc. IEEE Infocom, pages 1110–1118, 1988.

[6] A. Ephremides and T.V. Truong. Scheduling Broadcasts in Multihop Radio
Networks.IEEE Trans. Computers, 38(4):456–460, April 1990.

[7] J.J. Garcia-Luna-Aceves et. al. Wireless Internet Gateways (WINGS). In
Proc. IEEE MILCOM 97,, Monterey, CA, 1997.

[8] C.L. Fullmer and J.J. Garcia-Luna-Aceves. FAMA-PJ:A Channel Access
Protocol for Wireless LANs.Proc. ACM Mobile Computing and Networking,
1995.

[9] L. Hu. Distributed Code Assignment for CDMA Packet Radio Networks.
IEEE/ACM Trans. on Networking, 1(6):668–677, Dec 1993.

[10] IEEE. P802.11-Unapproved Draft. Wireless LAN Medium Access Con-
trol(MAC) and Physical Specifications, Nov 1991.

[11] T. Makansi. Trasmitter-Oriented Code Assignment for Multihop Radio Net-
works. IEEE Trans. Computers, COM-35(12):1379–1382, Dec 1987.

[12] S. Murthy and J.J. Garcia-Luna-Aceves. An Efficient Routing Protocol
for Wireless Networks.ACM Mobile Networks and Applications Journal,
1(2):183–197, Oct 1996.

5

