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Distributed Routing for Very Large Networks Based on
Link Vectors
Jochen Behrens

ABSTRACT

Routing is the network-layer function that selects the paths that data packets travel
from a source to a destination in a computer communication network. This thesis is on
distributed adaptive routing algorithms for large packet-switched networks.

A new type of routing algorithms for computer networks, the link-vector algorithm
(LVA) is introduced. LVAs use selective dissemination of topology information. Each router
running an maintains a subset of the topology that corresponds to adjacent links and those
links used by its neighbor routers in their preferred paths to known destinations. Based
on that subset of topology information, the router derives its own preferred paths and
communicates the corresponding link-state information to its neighbors. An update message
contains a vector of updates; each such update specifies a link and its parameters. LVAs can
be used for different types of routing policies. LVAs are shown to have better performance
than the ideal link-state algorithm based on flooding and the distributed Bellman-Ford
algorithm.

Like other routing algorithms based on the distribution of link-state information, LVAs
rely on sequence numbers to validate information that a router receives. A fundamental
problem is to bound the sequence-number space. A new sequence-number reset algorithm
is presented that uses a recursive query-response procedure and is designed to eliminate the
need for periodic transmissions of link-state updates and aging. This new reset algorithm is
applicable to routing protocols based on both flooding and selective distribution of link-state
information.

An area-based link-vector algorithm (ALVA) is introduced for the distributed mainte-

nance of routing information in very large internetworks. According to ALVA, destinations



in an internetwork are aggregated in areas in multiple levels of hierarchy. Routers maintain
a database that contains a subset of the topology at each level of the hierarchy. Advantages
of ALVA over existing hierarchical protocols based on link-states are that ALVA does not

require backbones and accommodates multiple hierarchy levels.
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Chapter 1

Introduction

An internetwork consists of a collection of interconnected domains, where each domain is
a collection of such resources as networks, routers, and hosts, under the control of a single
administration. Routing is the network-layer function that selects the paths that data
packets travel from a source to a destination.

Todays internetworks are based on store-and-forward or packet switching. When a data
packet arrives at a router, the router decides on which output port it needs to be transmitted.
In virtual circuit switching, a path is set up when a session is initiated and maintained during
the life of the session; all data travels along this pre-established path. When datagram
routing is used, each packet finds its own way through the network; successive packets may
follow different routes [BG92].

The purpose of the routing algorithms is to set up hop-by-hop forwarding tables or
routing tables at the routers. These tables specify the neighbor to which a data packet is
forwarded towards its destination. It is essential for the operation of networks that entries
in these routing tables do not contain persistent forwarding loops.

Routing algorithms can work either centrally or in a distributed fashion; routes can be
set deterministically or adaptively. In a very large network, central control is not desirable
because of high communication cost and the dependence on the reliability of a central unit.

A routing protocol should be adaptive to handle resource failures and additions, and to



cope with cost changes caused by congestion, for example. For these reasons, this thesis
focuses on distributed, adaptive routing protocols.

Other important design goals for routing protocols are optimality, simplicity, efficiency,
and robustness. Routing algorithms should be able to optimize their performance according
to the objectives of the designer and users. They should be as simple as possible, but
must make efficient use of processing and memory resources, and utilize a minimum of the
communication capacities. Routing algorithms should perform correctly when faced with
unforeseen circumstances and prove stable under a variety of network conditions [Cis97,
Mur96].

Cost metrics for links are chosen to determine paths through the network that are opti-
mized according to policies set by network administrators. Metrics can be static or dynamic.
The simplest static cost metric is to assign unit cost to every link, the resulting routing
policy is minimum-hop routing. Cost metrics can also be based on various characteristics
of the link, such as bandwidth, delay, reliability or communication cost. Dynamic cost
metrics allow the network to react, for example, to congestion by taking into account the
time packets are queued up in buffers. However, it is not desirable that link costs change
too frequently, because this would lead to excessive routing overhead and may cause os-
cillatory behavior. As an example, the cost metric used in the ARPANET is based on a
hop-normalized-delay function [KZ89, SADM95]. Cisco’s IGRP and EIGRP protocols use a
combination of internetwork delay, bandwidth, reliability, and load as its link metric [Cis97].

For quality of service routing, other parameters, such as the delay jitter or bandwidth
guarantees will need to be taken into account. The implications that the choice of link cost
metrics has for the performance of internetworks are beyond the scope of this thesis; we
simply assume that such a cost is given and that it is determined by an underlying protocol.

All the work in inter-domain and intra-domain routing for data networks has proceeded
in two main directions: distance-vector protocols in which routers exchange vectors of
distances of preferred paths to known destinations, and link-state protocols in which routers

replicate complete topology information with which they compute their preferred paths.



Most DVAs are based on the distributed Bellman-Ford algorithm (DBF) [BG92]. In
essence, nodes exchange information about the length of their paths to destinations; this
information, together with the length of adjacent links, is used locally to compute the best
path.

In the distributed Bellman-Ford algorithm, for a given destination ¢, each node keeps
its best known distance D; to the destination in its memory. Initially, D; = 0 at node 1z,
and D; = oo at all other nodes. In addition, a node j knows the cost d;; of its link to any
neighbor k. Let Df (t) denote the distance to 7 as known by node j at time ¢, and Dii(t)
the distance from k to ¢ as reported to j by its neighbor k£ at time t. When node j receives

an update message from k, it updates its distance according to the iteration
DIt +1) = min(D/(2), DL () + dji)

Dit+1) =0.

Either periodically or when its distance changed, a node sends an update to its neighbors.
This algorithm terminates within a finite amount of time with the correct shortest distance
to 7 known at every node [BT89].

To be able to react to changes in the topology, nodes store the distances as reported by
their neighbors. When a neighbor reports a distance different from the one stored already,
node 7 will choose its new distance to 7 to be

Df = min (D} + dji),
where N; is the set of neighbors of j. The neighbor through which this shortest path goes
is chosen as the next-hop entry in the routing table.

The two main problems to be solved in protocols based on distance vectors are the
possibility of loops and DBF’s counting-to-infinity. Iigure 1.1 illustrates the counting-to-
infinity problem of DBF. Consider the very simple topology in Figure 1.1. Node k has a

distance of 1 to 7, node j a distance of 2. When link (k,?) fails, node &k chooses its new
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FiGcUure 1.1: Example for Counting-to-Infinity

minimum distance to be 3, the length of (k, 7) plus j’s reported distance of 2, and reports
this to j. j in turn adjusts its distance to 4 and reports this to k. This process continues
until a maximum distance is reached that indicates that the link has failed. While this
process goes on, k’s next hop toward 7 is j, while j attempts to route through k, creating
a loop in the forwarding tables.

Many mechanisms have been proposed to solve these problems. According to the Split
Horizon technique, routers do not advertise paths to the neighbor from which they received
them. The Poison Reverse technique goes one step further and advertises infinite cost
to destinations received by the neighbor. While these techniques do eliminate many of
the simple cases in which counting-to-infinity occurs, they are not always effective [Tho96,
Hui95].

In other approaches, additional information about the links is propagated to maintain
the spanning tree of the neighboring nodes, or a synchronizing mechanism is used to ensure
that for each destination, the routing table entries of all routers define a directed acyclic
graph at all times [Gar93].

Path-finding algorithms exchange distance vectors containing the length and the second-
to-last hop in that path [CRKG89, Gar86, Hum91, RF91, Mur96, GM97]. For any destina-
tion in an update message, the predecessor router or network is indicated in addition to the
length of the path. This information implicitly contains the complete spanning trees used
by a router; by following the predecessor information, the complete path to any destination
can be extracted. Using this information, routing decisions that would lead to long term
looping can be avoided.

Path-vector algorithms specify complete path information for any destination they need

to reach [LR91, Rek93]. With this information, a router can determine whether the paths



to a destination advertised by different neighboring routers are contradictory, whether they
may lead to oscillating behavior or to forwarding loops.

Examples for protocols based on DVAs are BGP [LR91], IDRP [ISO], RIP [Hed88],
Cisco’s IGRP [Bos92], and EIGRP [AGB94].

The key advantage of protocols based on distance-vector algorithms (DVA) is that they
scale well for a given combination of services taken into account in a cost metric. Because
route computation is done distributedly, DVAs are ideal to support the aggregation of des-
tinations to reduce communication, processing, or storage overhead. However, an inherent
limitation of DVAs is that routers exchange information regarding path characteristics, not
link or node characteristics. Because of this, the storage and communication requirements
of any DVA grows proportionally to the number of combinations of service types or policies
[Jaf84].

Link-state algorithms (LSA) are based on the flooding of link information (topology
broadcast). At every node, a topology database containing information about every link is
maintained. To flood the network with link state information, the source of the information
broadcasts it to all it neighbors. A node that receives new information in turn forwards it
to all its neighbors. Thus, the complete topology information is replicated at every node
and then used to compute the routing tables.

Because protocols based on link-state algorithms (LSA) keep complete topology informa-
tion at routers, they avoid the long-term looping problems of old distance-vector protocols
(e.g., RIP). While routers may have inconsistent views of the topology that can cause loops
in the forwarding tables, these loops are short lived because they persist at most for the
time it takes updates to reach all destinations. More importantly, an LSA exchanges in-
formation regarding link characteristics, which means that the complexity of storing and
disseminating routing information to support multiple types of services and policies grows
linearly with the service types and policies, not their combinations. However, the require-
ment that the complete topology be broadcasted to every router does not scale well [ERH92].

There are two main scaling problems: flooding requires excessive communication resources,



and computing the routes using complete topology databases requires excessive processing
resources.

Examples for protocols based on LSAs are the inter-domain policy routing (IDPR)
architecture [EST93], ISO IS-IS [ISO89], and OSPF [Moy94].

To cope with the inherent overhead of flooding, today’s LSAs organize the network or
internet into areas connected by a backbone. However, this imposes additional network con-
figuration problems and, as results obtained by Garcia-Luna-Aceves and Zaumen indicate
[GZ94], areas must be chosen carefully, together with the masks used to hide information
regarding destinations in an area, for any performance improvement to be obtained with
respect to a “flat” LSA. Furthermore, aggregating information in an LSA is much more dif-
ficult than in a DVA (e.g., see [Gar88, RHE94]). Because LSAs require topology maps to be
replicated at each router, different levels of topologies must be defined and routers must use
multiple topology maps to aggregate information in an LSA (e.g., [Moy94, TRTN8&9]). In
contrast, aggregating information in DVAs is very simple, because DVA exchanges informa-
tion about distances to destinations, and such destinations can be a single network entity
(e.g., router, network, host) or a group of entities (e.g., areas, confederations, clusters).
Accordingly, the routing algorithm uses a single routing table with entries to individual or
aggregated destinations [McQ74].

In summary, the routing algorithms used in todays’ routing protocols have severe scaling
problems. The dissemination of information on a per path basis in DVAs leads to a combi-
natorial explosion with the number of service types and policies. In LSAs, the replication
of the complete topology information consumes excessive communication and processing
resources in very large networks. In spite of these inherent problems, all of the existing
routing protocols and proposals for protocols for very large networks are based on either of
the two algorithm types.

To address these problems, we describe a new method for distributed, adaptive rout-
ing: link-vector algorithms (LVA). The key idea of LVAs is that each router reports to its

neighbors the characteristics of those links that it uses in its preferred paths. Using this



information, each router constructs a source graph that consists of a partial topology and
is used to compute its preferred paths. By disseminating link-states rather than path char-
acteristics, LVAs avoid the combinatorial explosion incurred with DVAs for routing under
multiple constraints. At the same time, because only relevant information is propagated, the
communication and storage overhead can be significantly less when compared to flooding

based LSAs. The rest of this thesis is organized as follows:

Chapter 2 presents the link-vector algorithm (LVA,) describes its operation, points out
differences to other routing algorithms, verifies the correctness of LVA, and analyzes

its performance.

Chapter 3 introduces and verifies a novel mechanism to verify updates for protocols that

rely on the dissemination of link-state information.

Chapter 4 describes the extension of LVA to an area-based hierarchical routing architec-

ture.

Chapter 5 summarizes the work presented in this thesis and points at some directions for

future work.



Chapter 2

Link-Vector Algorithm (LVA)

Although the inherent limitations of LSAs and DVAs are well known, existing routing
protocols or proposals for routing in large internets are based on these two approaches
(e.g., see [CCS95, ESTI93]). This chapter presents a new method for distributed, scalable
routing in computer networks called link vector algorithms, or LVA. The basic idea of LVA
consists of asking each router to report to its neighbors the characteristics of each of the
links it uses to reach a destination through one or more preferred paths, and to report to its
neighbors which links it has erased from its preferred paths. Using this information, each
router constructs a source graph consisting of all the links it uses in the preferred paths to
each destination. LVA ensures that the link-state information maintained at each router
corresponds to the link constituency of the preferred paths used by routers in the network
or internet. Each router runs a local path-selection algorithm or multiple algorithms on its
topology table to compute its source graph with the preferred paths to each destination.
Such path-selection algorithm can choose any type of path (e.g., shortest path, maximum-
capacity path, policy path.) The only requirements for correct operation are for all routers
to use deterministic algorithms that produce the same result when computing the preferred
paths (e.g., one router can use Bellman-Ford also to compute shortest paths from its source
graph, while others can use Dijkstra’s algorithm,) that the same tie-breaking rules are used
for equally good paths, and that routers report all the links used in all preferred paths

obtained using their local algorithm.



Because LVAs propagate link-state information by diffusing link states selectively based
on the distributed computation of preferred paths, LVAs reduce the communication over-
head incurred in traditional LSAs, which rely on flooding of link states. Because LVAs
exchange routing information that is related to link (and even node) characteristics, rather
than path characteristics, this approach eliminates the complexity incurred with DVAs for
routing under multiple constraints [Jaf84]. Regardless of the type of routing algorithm
used, aggregation information (i.e., hierarchical routing) becomes a necessity to support
routing in very large networks or internets. LVAs report links needed to reach destinations,
not complete topology maps, and a destination can be a single entity or an aggregate of
entities. Therefore, aggregation of information can take place in an LVA by adapting any
of the area-based routing techniques proposed for DVAs in the past (e.g., [Gar88, KK77,
Tsu88]).

The following sections introduce the network model used in the remainder of this thesis,
describe LVA, show that LVA converges to correct paths a finite time after the occurrence
of an arbitrary sequence of link-cost or topological changes under the assumption that all
routers run the same local algorithm(s) for the computation of preferred paths, calculate
its complexity, and compare its average performance against the performance of an ideal

LSA and the Distributed Bellman Ford (DBF) algorithm used in many DVAs.

2.1 Network Model

To describe the routing algorithms introduced in this thesis, an internet is modeled as a
directed connected graph G = (V, F), where V is the set of nodes and F the set of edges.
An edge between nodes ¢ and j is denoted as (¢, 7). Routers are the nodes of the graph and
networks or direct links between routers are the edges of the graph. Each point-to-point
link in such a graph has length or cost associated with it. In terms of connectivity, the
graph is symmetrical. This means that if a link is operational in one direction, then it is
operational in the opposite direction, too. A multipoint link is represented in the graph as

a clique of all nodes that are connected by it.
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An underlying protocol assures that

e A node detects within a finite time the existence of a new neighbor or the loss of

connectivity with a neighbor.

e All messages transmitted over an operational link are received correctly and in the

proper sequence (i.e., in the order that they were sent) within a finite time.

o All messages, changes in the cost of a link, link failures, and new-neighbor notifications
are processed one at a time within a finite time and in the order in which they are

detected.

Each router has a unique identifier, and link costs can vary in time but are always
positive. Furthermore, routers are assumed to operate correctly, and information is assumed
to be stored without errors. The same model can be applied to a single computer network.

The failure of a node is modeled as the failure of all links adjacent to that node.

2.2 Description of the Algorithm

The basic idea of LVA consists of asking each router to report to its neighbors the charac-
teristics of every link it uses to reach a destination through a preferred path. The set of
links used by a router in its preferred paths is called the source graph of the router. The
topology known to a router consists of its adjacent links and the source graphs reported by
its neighbors. The router uses this topology information to generate its own source graph
using one or more local algorithms, which we call path-selection algorithms. A router derives
a routing table specifying the successor, successors, or paths to each destination by run-
ning local algorithms on its source graph that can, of course, be part of the path-selection
algorithms.

Figure 2.1(a) shows an example topology in which each link has the same cost in both
directions. Figures 2.1 (b) through (e) show the selected topology known according to LVA

with shortest-path routing at the routers highlighted in black. Solid lines represent the
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FiGURE 2.1: Example topology. Topology as seen by nodes indicated with filled circle. Solid lines
indicate links in source graph; dashed lines indicate links in topology table but not in source graph;
arrowheads indicate the stored direction.

links that are part of the source graph of the respective router, dashed links represent links
that are part of the router’s topology table but not of its source graph. Arrowheads on
links indicate the direction of the link stored in the router’s topology table. A link with two
arrowheads corresponds to two links in the topology table; since the source graph is a tree
rooted at the black node in the case of shortest-path routing, only the direction pointing
away from the black node can be part of the source graph. Router z’s source graph shown
in Figure 2.1(b) is formed by the source graphs reported by its neighbors y and z (these are
formed by the links in solid lines shown in Figures 2.1(c) and (d)) and the links for which
router z is the head node (namely links (z, y) and (z, z)). A router’s topology table may
contain a link in only one direction (e.g., link (y, u) in Figure 2.1(b)); this is because a
router’s source graph contains links only in the directions of its preferred paths.

In addition to the parameters of a link, the record of each link entry in the topology
table contains the set of neighbors that reported the link, and control information used to
detect the validity of updates received for that particular link.

The basic update unit in LVA is a link-state update reporting the characteristics of a
link; an update message contains one or more updates. For a link between router z and

router or destination y, router z is called the head node of the link in the = to y direction.
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For a multi-point link, a single head node is defined. The head node of a link is the only
router that can report changes in the parameters of that link.

The main complexity in designing LVA stems from the fact that routers with different
topology databases can generate long-term or even permanent routing loops if the informa-
tion in those databases is inconsistent on a long-term or permanent basis.

Sending updates specifying only those links that a router currently uses in its preferred
paths is not sufficient in LVA, because a given router sends incremental updates and may
stop forwarding state information regarding one or more links that are not changing the
values of their parameters. When this happens, it is not possible to ascertain whether the
router is still using those links in preferred paths if routers’ updates specify only those
links currently used in preferred paths. Simply aging link-state information would lead to
unnecessary additional control traffic and routing loops, especially in very large internets.
Therefore, to eliminate long-term or permanent routing loops, routers must not only tell its
neighbor routers which links they use in their preferred paths, but also which links they no
longer use. Accordingly, routers using LVA send update messages with two types of update
entries: add updates and delete updates. An add update reports a link that has been added
to the source graph of the sending router or whose information has been updated; a delete
update specifies a link that has been deleted from the source graph of the sending router.
An update specifies all the parameters of the link (just like in an LSA.) A router sends an
update in a message only when a link is modified, added, or deleted in its source graph,
not when the same unmodified link is used for a modified set of preferred paths; therefore,
the number of update messages and the size of update messages do not necessarily increase
with the number of paths, service types, or policies that a router uses.

A router reports its source graph to its neighbors incrementally; therefore, a typical
update message in LVA contains only a few add and delete updates. Of course, when a
router establishes a new link, it has to send its entire source graph to the new neighbor;

this is equivalent to the LSA case in which a router sends its entire topology table to a new
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neighbor, or the DVA case in which a router sends its entire routing table to a newly found
neighbor.

Because of delays in the routers and links of the internet, the add or delete updates sent
by a router may propagate at different speeds along different paths. Therefore, a given router
may receive an update from a neighbor with stale link-state information. The consistency of
link-state information can be controlled on a link-by-link basis taking advantage of the fact
that the only router that can change the information about a given link is its head node.
More specifically, a distributed termination-detection mechanism is necessary for a router
to ascertain when a given update is valid and avoid the possibility of updates circulating in
the network forever [BG92, BG94]. Termination-detection mechanisms based on sequence
numbers similar to those used in a number of LSAs [BG92, Moy94, Per83] or diffusing
computations [Gar92] can be used to validate updates.

A concrete embodiment of LVA for shortest-path routing, which we call LVA-SEN, is
shown in the appendix of this chapter (Section 2.8. LVA-SEN determines the validity of
updates using a sequence number for each link. The sequence number of a link consists of
a counter that can be incremented only by the head node of the link. For convenience, a
router is assumed to keep only one counter for all the links for which it is the head node,
which simply means that the sequence number a router gives to a link for which it is the
head node can be incremented by more than one each time the link parameters change
values. The information regarding each link in a router’s topology table is augmented to
include the sequence number of the most recent update received, which was generated by
the head node of that link.

For simplicity, the specification of LVA-SEN assumes that unbounded counters are used
to keep track of sequence numbers and that each router remembers the sequence number
of links deleted from its topology table long enough for the algorithm to work correctly.
In practice, if finite sequence numbers are used to validate updates, a reset mechanism is
needed to recycle sequence numbers. An age field serves this purpose [BG92]; when a link is

deleted from the topology table, the router maintaining the table labels the link as deleted,
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1. Check whether the update is valid.
2. If the update is valid, two cases need to be distinguished:

(a) ADD update: add the link to the topology table, or, if the link is already in
the table, add the sender of the packet to the set of reporting nodes.

(b) DELETE update: remove the sender of the message from the set of reporting
nodes; if the set is empty, remove the link from the topology table.

3. Run the path selection algorithm to construct the new source graph.
4. Construct the new routing table from the source graph.

5. Compare the old and new source graphs:

e Produce an ADD update for links that are in the new but not in the old source
graph, and for those links that changed.

e Produce a DELETE update for links that are no longer used (i.e. they are in
the old but not in the new source graph.

6. Send a message with the updates produced in the previous step to all neighbors.

F1GURE 2.2: Basic operation of LVA. The first two steps are performed for every update in the
message. The remaining steps are performed once the topology table has been updated.

which means that it is not used to compute new source graphs, and keeps the link entry
until the age field of the entry expires. To limit the size of the age field, the head node of
each link sends an add or delete update for that link periodically (depending on whether or
not the link is in its source graph), even if no changes occur in the link. The maximum age
of a link is then a multiple of the time it takes for an update to propagate throughout the
network.

Procedures update, update_topology_table, and compare_source_graphs are the core of
LVA-SEN, in that these procedures are performed to update the data structures held at the
router each time a router processes an input event (e.g., a message from one of its neighbors,
or a link-cost change notification from an underlying protocol). Figure 2.2 summarizes the
operation of these procedures in six steps.

In LVA-SEN, when a router processes an add or delete update, it first compares the
sequence number in that update against the sequence number maintained for the same link
in the topology table. The update is processed if either it specifies a larger sequence number

than the one stored in the topology table, or no entry for the link exists in the topology
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table. In the case of an add update, the link state is added to the topology table, or the
new values of the link parameters replace the current entry, or the reporting node is added
to the set of nodes that reported that link. For the case of a delete update, if there is an
entry concerning the reported link in the topology table, then the reporting node is removed
from the set of reporting nodes, and the link is deleted from the topology table if that set
becomes empty and the link is not an outgoing link of finite length. An update is discarded
if it specifies a sequence number that is smaller than the one in the topology table. In
this case, the receiving node prepares an update for the same link intended to correct the
information stored by the neighbor that sent the update.

Dijkstra’s algorithm [BG92], or any other shortest-path algorithm, is run on the updated
topology table to construct a new source graph, which constitutes a shortest-path tree; in
this case, the new routing table is generated together with the source graph. The router
compares the new source graph against its old one (procedure compare_source_graphs), and
an update message is sent to all neighbors with the differences between the two. In addition
to changes in membership in the source graph, a link in the source graph is considered
different if its sequence number is changed. If the different link is in the new source graph,
then an add update about this link is added to the update message. If the link is in the
old source graph but is not in the new one, then a delete update is added. If any of the
link entries refer to the state of an outgoing link of the node itself, then it gets a current
sequence number. When a router sends an update message, it increments its sequence-
number counter and discards its old source graph.

If a link cost changes, then its head node is notified by an underlying protocol. The
node then runs update with the appropriate message as input. This holds for simple changes
in link cost, as well as for a link failure. In the latter case, the link cost is set to infinity.
The same approach is used for a new link or a link that comes up again after a failure. In
the case of a failing node, all its neighbors are notified about the failure of their links to
the failed node; these nodes then remove the failed node from the list of reporting nodes

for all affected links, and therefore obtain an accurate picture of the topology after running
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FIGURE 2.3: View of topology at nodes z and y after link (z, y) fails

the update procedure. Multiple changes in the status of nodes or links may be implied by
the input event (e.g., a message received, a link failure). A node processes all such changes
before it sends its own update message.

We assume that the node that comes up for the first time after a failure does not
‘remember’ any information that it previously had; in particular, it does not know the
last sequence number it used. After initializing its data structures, the node that comes
up sends a query to all its neighbors. In response, its neighbors send back their complete
source graphs, plus the latest sequence number they received from the node (nodes store
sequence numbers of neighboring nodes, which are updated when a link of some neighbor is
changed). The node collects all this information, updates its topology table and sequence
number, and then performs the same steps as in the procedure update.

Consider the topology of Figure 2.1 and assume that link (y, z) fails. Nodes y and =z
process this failure and call procedure link_down; because neither node uses the failed link
in its source graph, no update results from this failure. Consider now the case in which
link (z,y) fails. Nodes z and y call procedure link_down. Because link (z,y) is used in the
source graph of both nodes, they must send an update message. The message sent by node
y to its neighbors specifies a delete update for link (y, z) and add updates for links (v, z) and
(z,z), which must now be used to reach nodes z and z, respectively, and, therefore, must
be added to node y’s source graph; furthermore, its update message also specifies delete
updates for link (z, z) which cannot be used to reach node z anymore. Figure 2.3(a) shows
node y’s view of the topology after the link failure. If node u used the path w,v,z,z to
reach node z, the update from node y causes no changes to u’s source graph and it simply

updates its topology table based on y’s update.
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On the other hand, when node z processes the failure of link (z,y), it has no path left
to reach node y, because it has no link incident into node y left in its topology table. Node
= sends a message containing delete updates for links (z,y) and (y, u), and an add update
for link (w, u). Figure 2.3(b) shows node z’s view of the topology at that time. When node
z processes node z’s update, it sends and update message that must contain an add update
for link (u,y) and a delete update for link (z,y). When node z processes that message, it
obtains the view of the topology shown in Figure 2.3(c). Note that node z’s update does not
create any changes in node v’s source graph, who must reach node y through path v, w, u, y;

therefore, node v does not send any update as a result.

2.3 Differences With Previous Methods

Three types of prior algorithms have been or can be used to compute preferred paths based
on link-state information: link-state algorithms (LSA), path-finding algorithms (PFA), and

path-vector algorithms (PVA).

2.3.1 Differences with LSAs

LSAs are also called topology broadcast algorithms. In an LSA, information about the state of
each link in the network is sent to every router by means of a reliable broadcast mechanism,
and each router uses a local algorithm to compute preferred paths. The key difference
between LSAs and LLVAs is that each link-state update propagates to all routers in an LSA,
while in LVA the update propagates to only those routers that use the corresponding link in
a path to a destination and their neighbors. Therefore, the reliable broadcast mechanisms
used in LSAs to ensure that all routers with a physical path to a source of link-state updates
receives the most recent updates within a finite time (e.g., see [BG92, Gar92, Gaf87, HS89,
Per83]) are not directly applicable to an LVA. Furthermore, as argued before, a router using
LVA must explicitly state which links it stops using.

Figure 2.1 helps to illustrate how LVA reduces storage and communication overhead

compared to LSAs, even for the case of a fairly compact topology. An LSA would require
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each router to maintain a copy of the entire topology, with an entry for each link in each
direction. Because a router’s source graph contains the links in all its preferred paths, a
router using LVA has the same number of paths available as with an LSA for any type of
routing that applies the same constraints at every router (e.g., shortest path routing, max-
imum capacity routing). In the case that the type of routing permits different constraints
to be applied at different routers (e.g., policy-based routing), LVA offers only a subset of
the paths available with complete topology information. However, such a subset of paths is
the same as that obtained with any PVA, which are used in standard inter-domain routing
protocols.

In the worst case, each router’s source graph contains all the links in the network and
the LVA requires the same communication and storage overhead as an LSA. The number
of updates and size of updates in an LVA are bounded by a number proportional to the
number and size of updates in an LSA, because in that case update messages contain add

updates reporting changes to the parameters of network links, just as in an LSA.

2.3.2 Differences with PFAs

The basic idea in a PFA is for each router to maintain the shortest-path spanning tree
reported by its neighbors (i.e., those routers connected to it through a direct link or a
network), and to use this information, together with information regarding the cost of adja-
cent links, to generate its own shortest-path spanning tree. An update message exchanged
among neighbors consist of a vector of entries that reports incremental or full updates to
the sender’s spanning tree; each update entry contains a destination identifier, a distance to
the destination, and the second-to-last hop in the shortest path to the destination. Several
PFAs have been proposed (e.g., see [CRKG89, Hum91, RF91]). Another PFA by Riddle
[Rid84] is similar to the PFA method just mentioned in that a router communicates infor-
mation regarding the second-to-last hop in the shortest path to each known destination.
However, it uses exclusionary trees, rather than shortest-path spanning trees, and the cost

of the link between the second-to-last hop and the destination, rather than the distance to
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the destination. An exclusionary tree sent from router = to router y consists of router z’s
entire shortest-path tree, with the exception of the subtree portion that has node y as its
root. Riddle’s algorithm does not use incremental updates.

Of course, any path-finding algorithm can use the cost of the link between the second-
to-last hop and the destination, rather than the distance to the destination. However, the
set of preferred paths used by a node to reach other nodes need not constitute a tree in LVA
and it is always a tree in a path-finding algorithm. There are many reasons why routers
may want to communicate link-state information of preferred paths that do not correspond
to a tree. For example, if multiple shortest paths are desired, a router will communicate
links along multiple preferred paths to each destination. Because there can be multiple links
leading to the same node in the subgraph of preferred paths communicated by a router, a
router that receives an incremental update from a neighbor cannot simply assume that the
link from node a to node b communicated by its neighbor can substitute any previously
reported link from another node ¢ to node b by the same neighbor; therefore, the update
mechanisms used in path-finding algorithms to update the subset of link states maintained

at each router are not applicable to LVA.

2.3.3 Differences with PVAs

With PVAs, routers exchange distance vectors whose entries specify complete path informa-
tion for any destination they need to reach. The existing internet routing protocols based on
PVAs (BGP [LR91] and IDRP [Rek93]) do not exchange link-state information per se, but
such information can be exchanged in a PVA by including it as part of the information for
each hop of the reported path in an update or update entry. This, however, would become
very inefficient when the size of the network and the number of link-state parameters are
large, or when multiple preferred paths to each destination are desired.

LVAs provide routers with all the path information that PVAs provide, but with far less

overhead. This is the case because a router that uses a given link in one or more preferred
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paths reports that link only once in LVA, while it has to include the link in each preferred
path it reports using a PVA.

As we have noted, any routing algorithm that operates with less than a complete topol-
ogy map reduces the set of all the possible paths that could be used to reach destinations
when different constraints are applied at different nodes. In practice, this is not a problem,
an LVA used for a given type of routing provides routers with exactly the same information
than a PVA would for the same type of routing, because the routers’ source graphs con-
tain all the links in all the preferred paths selected by the routers. Therefore, any routing
constraints or policies that can be supported with a PVA can be supported with an LVA,
and practical routing protocols can be developed based on LVAs that provide the same
functionality supported in BGP and IDRP, for example [Rek93].

A more subtle difference between LVA and a PVA using link-state information is that
routers using LVA determine whether or not an update to a link state is valid based on the
timeliness of that update alone, just as in an LSA. In contrast, a router using a PVA that
communicates link-state information still has to operate on a path-oriented basis, i.e., the
timeliness of an update refers to an entire path, not its constituent links; therefore, even if
a router is able to ascertain that a given update is more recent than another, that update
may still use link-state information that is outdated (e.g., regarding links that are far away
in the path). To eliminate the possibility of using stale link-state information in an adopted
path, each link of the path could be validated (with a sequence number, for example), but

this becomes inefficient in a large internet.

2.4 Correctness of LVA

Theorem 1 below shows that LVA is correct for multiple types of routing under the assump-
tions introduced in Section 2.2 and the additional assumptions that there is a finite number
of link cost changes up to time tp, that no more changes occur after that time, and that
routers can correctly determine which updates are more recent than others. Corollary 1

then shows that routing tables do not contain any permanent loops. Verifying that finite
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sequence numbers and age fields can be used correctly to validate updates can be done in
a manner similar to that used for finite sequence-numbering schemes used in LSAs [BG92].

Correctness for LVA means that, within a finite time after ¢y, all routers obtain link-
state information that allow them to compute loop-free paths that adhere to the constraints
imposed by the local algorithms they use to compute preferred paths, and to forward packets
incrementally.

Because our proof of correctness is intended for many different types of routing, not only
shortest-path routing, we must specify what we mean by the correct operation of a path-
selection algorithm. Consider the case in which each router in the network has complete
and most recent topology information in its topology table and runs the same path-selection
algorithm on it. In this case, it is evident that, for permanent loops to be avoided, the way
in which the path-selection algorithm chooses routes must be deterministic. Assuming that
the same deterministic path-selection algorithm is executed at each router using a complete
and most recent copy of the topology, the preferred paths at any router for each destination
constitute a directed acyclic graph (DAG). Furthermore, the union of the DAGs of any set
of routers for the same destination in the network is also a DAG. Therefore, there are no

permanent loops in the routing tables computed in this case.

Definition 2.1 A correct path-selection algorithm is one that produces the same correct

loop-free paths when it is provided with the same complete and correct topology information.

This definition includes the requirements that ties for equally good paths must be broken
according to the same rules. It is not necessary for all routers to use the same correct path
selection algorithm to compute preferred paths for a given type of routing. All that is
needed is for all the path-selection algorithms used for the same type of routing to produce

the same loop-free paths when they are provided the same topology information.

Definition 2.2 Two or more path-selection algorithms are compatible if they produce the

same loop-free paths when they are provided with the same topology information.
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As we have stated in the description of LVA, all routers use the same path-selection
algorithm, or compatible path-selection algorithms, to compute the same type of preferred
paths (e.g., shortest path, maximum capacity), and report all the links used in all the
preferred paths obtained through all the path-selection algorithms. Therefore, the rest of
this section can assume that a single path-selection algorithm is executed at every router,
and that every router runs the same path-selection algorithm.

Because the topology tables of different routers running LVA need not have the same
information, we cannot use the notion of having all topology tables containing the same
information to ensure correct paths. The following definition specifies what a topology table

should have for loop-free paths to be produced in LVA.

Definition 2.3 A router is said to have consistent link-state information in its topology
table if it has the most recent link-state information regarding all the links for whom it
is the head node, and the most recent link-state information corresponding to each of its

neighbor’s most recent source graph.

While this definition of consistency defines a local state, describing a relationship be-
tween the content of the topology tables of neighboring nodes, it implies that if a node has
information about a particular link in its table, then it has the most up-to-date information

about that link.

Theorem 2.4 A finite time after tq, all routers have consistent link-state information in

their topology tables and the preferred paths computed from those tables are correct.

Proof: Because the deterministic path-selection algorithm used at each router is assumed

to be correct, all the proof needs to show is that

1. All routers eventually stop updating their topology and routing tables, and stop send-

ing update messages to their neighbors.

2. All routers obtain consistent link-state information needed to compute correct pre-

ferred paths within a finite time after t.
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These two properties are proven in the following two lemmas.

Lemma 2.5 LVA terminates within a finite amount of time after tg.

Proof: First note that there is a finite number of links in the network and that, by as-
sumption, a finite number of link-state changes occur up to time #g, after which no more
changes occur. Also, by assumption, for each direction of a link whose parameters change,
there is one router (the head node of the direction of the link) that must detect the change
within a finite time; such a router updates its topology table and must then update its
source graph. As a result of updating its source graph, the router can send at most one
add update reporting the change in the state of the adjacent link, and at most one add or
delete update for each of the links that have been added to or deleted from preferred paths
as a result of the change in the adjacent link. Therefore, for any link [/; in the network, its
head node can generate at most one update for that link after time ¢g.

A given router 21 that never terminates LVA must generate an infinite number of add
or delete updates after time tg. It follows from the previous paragraph that this is possible
only if 1 sends such updates as a result of processing update messages from its neighbors;
furthermore, because the network is finite, z; must generate an infinite number of updates
for at least one link /;. Because the network is finite, at least one of those neighbors (call it
z2) must send to z; an infinite number of update messages containing an update for either
link /; or some other link /5 that makes z; generate an update for link /;. It follows from
the previous paragraph and the fact that the network is finite that 5 can send an infinite
number of updates regarding link /; or /3 to z1 only if at least one of its neighbors (call it z3)
generates an infinite number of updates for either link /5 or some other link /3 that makes
x4 generate updates regarding link [y or /. Because the network is finite, it is impossible to
continue with the same line of argument, given that the head node of any link can generate
at most one update for that link after time tg. Therefore, LVA can produce only a finite
number of updates and update messages for a finite number of link-state changes and must

stop within a finite time after t. q.e.d.
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Lemma 2.6 All routers must have consistent link-state information in their topology data-

bases within a finite time after tq.

Proof: The definition of consistent link-state information at a router implies that the router
knows all the links it needs to compute correct preferred path, and that the router has the
most recent link-state information regarding all the links in its topology table. Proving
that the router receives all the link-state information required to compute correct preferred
paths can be done by induction on the number of hops h of a preferred path. What needs
to be shown is that the router knows all the links on that path within a finite time after ¢,.

Consider some arbitrary preferred path from a router ¢ to some destination. For h =
1, the preferred path consists of one of router i’s outgoing links. Because of the basic
assumption that some underlying protocol provides a router with correct information about
its adjacent links within a finite time after the link-state information for such links changes,
the lemma is true for this case. For A > 1, assume that the claim is true for any preferred
path with fewer than A hops.

Consider an arbitrary preferred path of length A > 1 from some router ¢ to a destination
j. Let k be router ¢’s successor on this path (i.e., the first intermediate router). Then, the
subpath from k£ to j must have length A — 1, and it must be one of router k’s preferred
paths to j. Denote this path by F;. By the inductive hypothesis, router £ knows all the
links on Py;. Because router i also knows (as in the base case) the most recent information
about link l}'C within a finite time after ¢g, it suffices to show that router £ indeed sends the
link information in path Pj; to its neighbor router 7.

Assume that Pj; is a new path for router k, then router k£ must update its source
graph. Because P; is a new path for router k, the information in the updated source
graph concerning FP; is different than the information in the old source graph. Therefore,
router £ must include this information as add updates in the update message that it sends
to its neighbors. Because router 7 is one of those neighbors, it must receive from k all the

information on Pj; within a finite time after #g.
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By assumption router k can determine which link-state information is valid (i.e., up to
date). Accordingly, if Py; is already one of router k’s preferred paths, but experiences a
change in the information of some of its constituent links, then those links with updated
link-state information will be considered different in the new source graph as compared to
the old source graph. Therefore, router £ must send the updated link-state information in
Py; to its neighbor 7 in add updates.

The same inductive argument holds for link-state changes resulting in links being deleted
from a preferred path. In this case, an intermediate router that decides that a link should
no longer be used in any of its preferred paths sends a delete update, which is propagated
just like an add update. This completes the first part of the proof.

Having shown that a router receives the most recent information about the links used
in its source graph within a finite time after tg, it remains to be shown that it also receives
the most recent information about all the links that are in its topology table, but not part
of the source graph of preferred paths. There are two possible cases to consider of links in a
router’s topology table that are not used in its source graph: an adjacent link to the router,
or a non-adjacent link is in the source graph reported by some of the router’s neighbor.
In the first case, it is obvious that the lemma is true because of the basic assumption of
some underlying protocol providing the node with correct information about adjacent links
within a finite time. The second case follows almost immediately from the first part of this
proof. Because every neighbor of the router sends the appropriate add or delete updates
about links added to or deleted from its source own graph, it must be shown that each
such neighbor obtains consistent information about changes in its source graph, which was
shown to be the case in the first part of this proof. q.e.d.

This concludes the proof of Theorem 2.4.
Corollary 2.7 The routing tables created by LVA do not contain any permanent loop.

Proof: Lemma 2.6 shows that the topology information at all routers is consistent within a
finite amount of time after any change in link information. The topology information held at

any router is a subset of the complete topology, and this subset contains all the information
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needed at this router to compute the correct preferred paths. Therefore, the preferred paths
computed from any router’s subset of the topology information must be a subset of the DAG
computed in the case of each router having complete topology information. Any subset of
a DAG is still a DAG; and the union of any such DAGs also forms a DAG, because that
union is also a subset of the DAG obtained with complete topology information. Hence,
the routing tables computed by LVA with a correct path-selection algorithm do not contain

permanent loops. q.e.d.

2.5 Complexity of LVA

This section quantifies the communication complexity (i.e., number of messages needed in
the worst case), time complexity (number of steps), computation complexity, and storage

complexity [Gar93] of LVA for shortest-path routing after a single link change.

2.5.1 Communication Complexity

The number of messages per link cost change is bounded by twice the number of links in
the network. To prove that this is the case, it suffices to show that any update can travel
each link at most twice. Assume that an update concerning link [ arrives at some arbitrary

node n for the first time; there are two possibilities to consider:

1. The link is used in the source graph of n. If this is the case, the corresponding
link-state information is sent to some neighbor n; over some link [;. There are two

possibilities at this router:

(a) ny uses [: If the information was already known and used at nq, then no further
update will be sent over /1 (or any other link adjacent to ny). If it was not
previously known at my, then an update will be sent to all neighbors of nq,
including one over /1 ton. From n, no further update with information concerning

[ will be sent over /{, until newer information becomes available.



27

(b) my does not use {: n; will not sent any update with information concerning [, in

particular none over [y.
2. The link is not used at n, in which case no further update will be sent.

From the above, it follows that the number of messages is at most in the order of the

number of links in the network (O(|E])).

2.5.2 Time Complexity

If the cost of links is not directly related to the delays incurred over such links, the number
of steps required for any link change is O(z), where z is the number of nodes affected by the
change. This can be shown by the following argument: the information about a changed
link travels along all the shortest paths that contained the link before the change, and also
along all shortest paths that will contain the link after the change. No other router than
those along the paths and their neighbors will be notified about the change.

In the worst case, all the affected routers lie along one long path, thus causing O(z)
communication steps. In general, the paths on which the information is forwarded together
with the affected routers form a directed, acyclic graph, and the upper bound for the steps
required is given by the length of the longest simple path in that graph.

Because link failures and recoveries are handled as special cases of link cost changes, and
router failures are perceived by the network as link failures for all their links, it is clear that
O(z) communication steps are also incurred in these cases. The case of a recovering node
involves the nodes getting the complete source graphs from its neighbors, which takes no
more steps than the number of neighbors, before the links of the routers again are handled
as changing their cost to some finite value. Hence, the same upper bound of O(z) applies.

This worst case is the same as the complexity of the best DVA [Gar93]. On the other
hand, if the link costs reflect the delay of the links, the complexity for LVA reduces to
O(d), where d is the (delay) diameter of the network. The reasons for this are that the
information travels along the shortest paths and a router receiving new information can

trust the neighbor that reports the most recent link-state for the associated link; most
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importantly, the node will discard older information from other neighbors. Therefore, a
router does not have to wait for link state updates to reach it through the slower paths, as

is in the case in DVAs. The flooding technique used in LSAs also takes O(d).

2.5.3 Complexity of Computations at Routers

The most important routines to analyze are update and update_topology_table. Most other
procedures just call update with the appropriate input message. One part of update is the
shortest path finding algorithm (Dijkstra) with a complexity of O(|V|?). The routing table
can then be computed in time O(|V]), and the update message can be assembled using
compare_source_graphs in less that O(|V]?) time.

The complexity of the main loop of procedure update_topology_table is determined by the
size of the update message. In the worst case, this message could contain information about
every link, resulting in running time O(]E|) < O(|V]?). This case seems highly unlikely,
though.

In “normal” cases, we would expect an update message to contain information about
some path plus possibly a second path that has to be deleted. A path can have at most
length |V| — 1, leading to an expected complexity of O(|V|). The amount of work in the
other loops is bounded by the number of nodes in the network.

All together, the overall worst case complexity for the procedure update is O(|V]?),
mainly due to the shortest path algorithm. The corresponding complexity in a PVA is
O(]V]) for a single type of service.

Note that there also is the hidden complexity of accessing the topology table; this
problem can be solved using a (dynamic) hash table, which has an expected constant access

time.

2.5.4 Storage Complexity

In the worst case, the topology table of each router maintains the whole topology, making

the storage requirement O(|V|?). In addition, both the shortest path tree and the routing
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table require O(|V]) storage, which is also the case for link state algorithms. Keeping track
of reporting neighbors in LVA can be implemented by means of a bit vector. Because the
identifiers of a router’s neighbors can be stored in an ordered list, a single bit per neighbor
suffices to indicate whether it is a member of the set of reporting nodes for a given link
or not. Therefore, for each link in the topology table, the information about the reporting
nodes adds only a constant amount of storage (which should be a few bytes for all practical
purposes).

On the average, we expect the storage for the topology table to be by far smaller than
O(|V]?). Because the goal is to keep as sparse a subset of the whole topology as possible
(e.g., close to a tree), our conjecture is that the required storage space is closer to O(|V]) for
such simple types of routing as shortest-path routing. This seems realistic, even the small
topology shown as example in Figure 2.1 revealed a significant saving of required space when
compared to an algorithm that stores the complete topology at all routers. In contrast, the
LSAs used today have to store the complete topology. Though the storage required for

DVA is linear in the number of routers, routers have to store the routing tables of their

neighbors. Therefore, DVAs’ storage requirements really become O(|V||Ng|) at router £,

where Ny is the set of neighbors of node k.

2.6 Simulation

We compare LVA-SEN, DBF, and an ideal LSA in terms of the number of steps and updates
that are required for the algorithm to converge (i.e., the algorithm stops sending messages),
and the size of these updates. When a node receives an update message, it compares its local
step counter with the sender’s counter, takes the maximum and increments the count. In
all three algorithms, update messages are processed one at a time in the order in which they
arrive. Both LVA-SEN and LSA use Dijkstra’s algorithm to compute the local shortest-path
tree.

We performed two sets of simulation experiments: first, we used well known small

topologies to analyze the behavior of LVA on a per event basis. Second, we used larger
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topologies to analyze the scaling properties of LVA. For these simulations, we used both a
well known topology as well as randomly generated topologies.

The simulation environment used for the first experiments was the OPNET modeler
tool. OPNET facilitates the hierarchical modeling of communication networks. At the
highest level, the topology and its parameters (such as node location and link bandwidth
and delay) are defined. At the second level, the internal structure of the nodes is defined,
specifying devices and protocols used for communication. Finally, at the lowest level, the
protocols to be analyzed in OPNET are defined through finite state machines. The behavior
in the states and in state transitions is defined by program fragments in the C programming
language. The simulation kernel of OPNET is event driven.

For the second set of simulations, we implemented LVA and LSA in CPT (C++ Proto-
col Toolkit,) which was developed by Rooftop Communications. CPT is an object-oriented
protocol framework which provides a class library for networking protocols that allows in-
tegrated development for simulations as well as embedded systems. Although intended for
wireless systems, it also provides point-to-point facilities that we used in our implementa-

tions.

2.6.1 Small Topology

The results presented in this experiment are based on simulations for the DOE-ESNET
topology [GZ94]; similar results were obtained for other smaller topologies. The graphs
show the results for every single link changing cost from 1.0 to 2.0 (Fig. 2.4, 2.5, 2.6), every
link failing (Fig. 2.7, 2.8, 2.9) and recovering (Fig. 2.10, 2.11, 2.12), as well as every node
failing (Fig. 2.13, 2.14, 2.15) and recovering again (Fig. 2.16, 2.17, 2.18). All changes were
performed one at a time, and the algorithms had time to converge before the next change
occurred. The ordinate of Figures 2.4 to 2.12 and Figures 2.13 to 2.18 represent identifiers
of the links and the nodes, respectively, that are altered in the simulation. In Figures 2.4,

2.7, 2.10, 2.13, and 2.16, the data points show the number of update messages sent, in
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Figures 2.5, 2.8, 2.11, 2.14, and 2.17 they show the size of these updates, and in Figures
2.6, 2.9, 2.12, 2.15, and 2.18, they show the number of steps needed for convergence.

LSA shows almost constant behavior for all single link cost changes (Figures 2.4, 2.6)
because the same link-state update must be sent to all routers. In contrast, DBF and LVA-

SEN propagate updates to only those routers affected by the link-cost change; LVA-SEN is
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the most efficient of the three algorithms. Each update message contains one link state in
LSA, and an average of 1.77 links in LVA-SEN. Figures 2.7 and 2.9 show similar behavior
of the three algorithms for link failures, the exception being DBI suffering from ‘counting
to infinity’ in some cases. In almost all cases, LVA-SEN needs fewer update messages and
fewer steps than LSA; the average size of an LVA-SEN messages is 2.89 links.

When a failed link recovers, DBF is superior to both LVA-SEN and LSA. LSA exhibits
the same behavior as with link-cost changes. With the exception of link 30, LVA-SEN is
always better than LSA (Figures 2.10 and 2.12). The average LVA-SEN message is slightly
more than three links; and LVA-SEN almost always requires less information to be sent than
LSA and DBF, because messages in LSA are no longer one-link long due to the packets

containing complete topology information sent over the recovering link.
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For failing nodes, LSA usually has the best performance of the three algorithms. DBF
always suffers from ‘counting to infinity’. In almost all cases, LSA needs fewer steps and
updates (Figures 2.13 and 2.15) than the other algorithms. The average message size for
LSA is one link and 1.9 links for LVA-SEN.

DBF is superior to LSA when a node recovers, and LVA-SEN performs even better than
DBF. LVA-SEN needs fewer steps and updates than the other algorithms (Figures 2.16 and
2.18). The average message size for LVA-SEN is 3.60 links), but of the three algorithms it
still requires the least amount of information to be sent through the network.

Overall, the results of our simulations are quite encouraging. In terms of its overhead,
LVA-SEN behaves much like DBF when link costs change and is always faster and produces
less overhead traffic than LSA when resources are added to the network, and behaves much
like the ideal LSA when links or routers fail. This is precisely the desired result, and indicates
that LVAs are desirable even if multiple constraints are not an issue. It is apparent that
LSA performs better than LVA only after node failures. The reason for this is that a failed
node always impacts one preferred path for each node (i.e., every node’s path to the failed
node), which implies at least one delete update, and may also impact additional preferred
paths of a subset of the nodes for other destinations, which may imply various add and
delete updates for different links. Therefore, while LSA has to report only what happened
to the links adjacent to the failed node, LVA needs to also add other links to bypass the
failed node.

A simple way to improve the performance of an LVA after a node failure is the following;:
when a router detects a link failure or receives a delete update from a neighbor reporting
a link failure, the router waits for a short hold-down time proportional to one propagation
time between neighbor routers to receive updates from other neighbors (which may contain
delete updates for links adjacent to the same destination in the case of a node failure) before
it updates its source graph and generates its own updates. Although the time a router takes
to propagate updates due to link failures increases, the associated control traffic decreases;

furthermore, routers away from the failed resource are more likely to get all the delete
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FIGURE 2.19: Messages and Steps for ARPANET topology

updates associated with a node failure in the same update message from any one of its
neighbors, which means that the router will identify a destination that has failed and will
not try to add links that no longer exist to its source graph to try to reach or use such

destination as part of its preferred paths.

2.6.2 Larger Networks

Similarly to the results described in section 2.6.1, we performed changes (i.e., changes in
link cost, link failures, link recoveries, node failures, and node recoveries) one at a time. We
compare LVA and LSA in terms of the number of update messages and steps needed for
convergence, and the average number of links in the topology table.

The figures in the following subsections show the results of these simulations. For all
event types, we show the average number of messages sent and steps take, together with
the standard deviations. Since all results are shown for specific topologies and all possible

single events are covered in the simulations, no sampling errors can be given.

ARPANET Topology

The well known topology that we chose for our simulations is the ARPANET topology[GZ94].

This topology has 47 nodes and 69 links, giving it an average degree of 2.94.
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Figure 2.19 shows the results for this topology. In all cases of single resource changes (link
changes, failures, and recoveries,) LVA sends on the average about half as many packets as
LSA, and it needs fewer steps to converge.. As in the simulations presented in the previous
section, LSA outperforms LVA when nodes fail. However, when nodes are added to the
network, LVA is significantly better than LSA, and taken together, a node that fails and
comes back up later causes less traffic in LVA than in LSA.

Figure 2.20 shows the average table sizes for both LVA and LSA. Obviously, the tables at
all nodes have the same size when LSA is used, because the complete topology is replicated
everywhere. On the average, topology tables produced by LVA are about half as large as
those produced by LSA. Clearly, this is the cause for the reduced communication overhead.
On the other hand, when nodes fail, additional links must be added to many tables (and
others must be deleted,) causing more updates to be generated for LVA when compared to
LSA.

Overall, the simulations using the ARPANET topology confirmed our findings from the
small topologies. LVA outperformed LSA in terms of messages sent and number of steps

until convergence, and its storage requirements are significantly lower than those of LSA.
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2.6.3 Random Topologies

Random topologies were obtained using the exponential model proposed in [ZCB96]. All
topologies generated this way have 100 nodes (the maximum number allowed in CPT) and
a varying number of links. The topologies used are flat versions of the topologies that we
used for the simulation of hierarchical routing algorithms, a more detailed description of
how we obtained them can be found in chapter 4.

Figure 2.21 shows the results for a topology with 100 nodes and 162 links, giving it an
average degree of 3.24. The maximum degree of a node in the network is 9. Figure 2.22

shows results for another topology with 100 nodes. This topology has an average degree of
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3.02 (151 links) and a maximum degree of 9. These two topologies are representatives of
two classes of topologies as described in chapter 4.

The results from these random topologies confirm the results obtained using well known
topologies. In the topologies shown (and in other topologies obtained using the same meth-
ods,) LVA clearly outperforms LSA in all events except for link failures.

Figure 2.23 shows the average sizes of the topology tables stored at nodes in these
topologies. Topology tables used in LVA are on the average less than half as big as the ones
used in LSA. In terms of storage overhead, LVA outperforms LSA by an even wider margin

than in the smaller topologies that we used for simulations.

2.7 Summary

We have presented a new method for distributed routing in computer networks and internets
using link-state information. LVAs enjoy nice scaling properties: like DVAs, LVAs scale well
with the number of destinations by aggregating information; like LSAs, LVAs scale well
with the number of service types because routers communicate link properties, not path
properties in their updates. An important contribution of this chapter is to show that LVA
is correct under different types of routing, assuming that a correct mechanism is used for

routers to ascertain which updates are recent or outdated.
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LVAs open up a large number of interesting possibilities for routing protocols of large
internets. LVAs can be used to develop intra-domain routing protocols that are based on
link-state information but require no backbones or areas, and can take advantage of simple
aggregation schemes developed for DVAs. LVA can also be applied to inter-domain routing
protocols that provide the same functionality of BGP/IDRP while reducing the overhead

incurred in communicating and storing updates.
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2.8 Appendix: Pseudo Code for LVA-SEN

LVA-SEN Variables and Data Structures at Node :

(7, k) link from j to k

TT; topology table

(4, kL, sn,7) entry in T'T; for (j, k)

l cost of the link

sn sequence number of link

r set, of reporting nodes for link

ST; source graph at router 7

t sequence number of router processing event

N; set, of neighbors of router i

(4, k, 1, sn,type) entry in update message

type add or delete operation
Link Up

This Procedure is called when the underlying protocol detects connectivity to a new neigh-
bor j. The nose j is added to the set of neighbors. Then, an update containing cost of
new link is created and procedures update is called to process the update. In addition, and

update message containing the complete source graph is sent to the new neighbor.

procedure link_up(z, j)
— — Parameters:
— — 1: name of node that executes procedure
— — j7: name of destination of link
begin
N; = N; U {j}
update (7,1, {(¢, j, l;-,t, add)})
u_message = (}
for all (k,m) € ST; do
u_message = u_message U (TT;(k, m), add)
end for
send(j, u_message)
end link_up
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Link Down

This procedure is called when the underlying protocol indicates loss of connectivity to
neighbor j. First, j is removed from set of neighbors. Then, j is removed from all sets of
reporting nodes, a link is deleted if j was the only reporting node. An update containing

the infinity cost for the link is created and procedure update called to process it.

procedure link_down(z, j)
— — Parameters:
— — 1: name of node that executes procedure
— — 7: name of destination of link
begin
message = {}
N; = N; — {i} (but keep sequence number)
for all (k,m) € TT; do
TT;(k,m).r = TT;(k,m).r — {j}
if TT;(k,m).r =0 or TT;(k,m).r = {i} then
message = message U {(T7T;(k, m), delete)}
end if
end for
message = message U {(7, j, 0o, t, delete) })
update (i, i, message)
end link_down

Link Change

This Procedure is called when the underlying protocol detects a change in the cost of a link.
An update containing the new cost of the link is created and procedure update is called to

process this update.

procedure link_change(7)
— — Parameter:
— — 1: name of node that executes procedure
begin
update(i, i, {(, j, lf-,t, add)})

j
end link_change
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Node Up

This procedure is called when a node comes up. The node starts with an empty topology
table, source graph, and routing table. Links to all neighbors are added to the topology
table. Then, all neighbors are queried for their complete source graph, and procedure
update is called to process the answers. After receiving answers from all neighbors, the new

source graph and routing table are built and an update is sent to the neighbors.

procedure node_up (i);

— — Parameter:

— — 1: name of node that executes procedure
begin

o~
o

~
=

0
0
message = {}
N; = {z|3(i,z), L < o}
for all z € N; do
TT; = TT; U (4, 2,11, ¢, {i})
ST, = ST; U (4, z,1)
end for
build new routing table
for all z € N; do
send (z, query)
end for
answers_received = 0
while answers_received < |N;| do
receive (answer)
t = max{t, answer.t}
update_topology_table (i, answer, u_message)

Uy
!
I

end while

t=t4+1

for all z € N; do
TT;(i,z).t =1

end for

build_shortest_path_tree(i, T'T;, NewST;)
build new routing table
ST; =0
u_message = (}
compare_source_graphs (S7T;, NewST;, u_message)
for all z € N; do
send (z, u_message)
end for
ST, = NewST;
t=t4+1
end node_up
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Answer Query

This procedure is called when a topology query is received from a neighbor. An update is

sent containing the complete source graph.

procedure answer_query(i, j)
— — Parameters:
— — 1: name of node that executes procedure
— — j: name of neighbor that sent query
begin
if (i,7) ¢ ST; then
ST, = ST; U (4,7)
build routing table
end if
for all (k,m) € ST;
u_message = u_message U 7'T;(k, m)
end for
u_message.t = ¢;
send (j, u_message)
end answer_query
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Update

This procedure is called when an update message needs to be processed. It processes all
updates in the message. If the content of the message caused change in the topology table,
a new source graph and routing table are computed and an update message is sent to

neighbors.

procedure update (i, n, message)
— — Parameters:
— — 1: name of node that executes procedure
— — n: name of neighbor that sent update message
— — message: update message to be processed
begin
u_message = (}
updated = update_topology_table (i, message, u_message)
if u_message # 0
send (n, u_message)
end if
u_message = (}
if updated then
build_shortest_path_tree (i, TT;, NewST;)
build routing table
compare_source_graphs (i, ST;, NewST;, u_message)
remove marked links from T'7;
if u_message # (§ then
for all z € N; do
send (z, u_message)
end for
end if
ST, = NewST;
t=t4+1
end if
end update
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Update Topology Table

The procedure update_topology_table is called to process an update message. All link-state
updates contained in the message are processed using procedures process_add_update and

process_delete_update to update the topology table accordingly.

procedure update_topology_table (i, message, u_message)
— — Parameters:
— — 1: name of node that executes procedure
— — message: update message to be processed
— — u_message: new update message
begin
updated = false
for all m = (j, k,!, sn,type) do
if type = add then
updated = process_add_update (i, message.source, j, k,{, sn)
else
updated = process_delete_update (%, message.source, j, k,[, sn)
end if
if j = message.source and j € N; then
store sequence number of neighbor
end for
return updated
end update_topology_table
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Process ADD Update

This procedure processes an ADD update. If it is an up-to-date update, the link is added
to the topology table if it was not listed before; the link-state information is updated and
the sender of the update is added to the set of reporting nodes if it is already in the table.
If the update is outdated, a message containing the correct information is generated to be

sent to the neighbor that sent the update.

procedure process_add_update (i,n,j, k,[, sn , u_message)
— — Parameters:
— — 1: name of node that executes procedure
— — n: sender of update
— — 7, k: head and destination of link
— —1: cost of link
— — sn: sequence number of update
— — u_message: new update message
begin
if (j, k) € TT; then
if TT;(j, k).sn < sn then
TT;(j, k) =m
TT(j k).r = {n)
updated = true
else if TT;(j,k).sn = sn
and i # n then
TT;(j, k) r =TT;(4, k). r U {n}
updated = true
end if
elseif (i £ j or n =)
and (T'T;(j, k).sn <= sn) then

T, =TT; Um
updated = true
end if

if TT;(j, k).sn > sn then
— — generate update to send up-to-date
— — information to neighbor
if (j, k) € ST; then
u_message = u_message U (T'T;(j, k), add)
else
u_message = u_message U (T'T;(j, k), delete)
end if
end if
end process_add_update
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Process DELETE Update

This Procedure processes a DELETE update. If the update is up-to-date, the sender of the
update is removed from the set of reporting nodes. If it was the only reporting node, the
link is deleted. If the update is outdated, a message containing the correct information is

generated to be sent to the neighbor that sent the update.

procedure process_delete_update (i, n, j, k,, sn , u_message)
— — Parameters:
— — 1: name of node that executes procedure
— — n: sender of update
— — 7, k: head and destination of link
— —1: cost of link
— — sn: sequence number of update
— — u_message: new update message
begin
if TT;(j, k).sn < sn then
if (j, k) € TT; then
mark (7, k) as deleted
updated = true
else
TT;(j, k).sn = sn
end if
else if T'T;(j, k).sn = sn then
if (j, k) € TT; then
TT;(j, k)r =TT;(j, k).r — {n}
if (TT;(j, k).r=0or TT;(j,k).r = {i})
and i # n then
mark (7, k) as deleted
updated = true
end if
end if
else if T'T;(j,k).sn > sn then
if (j, k) € ST; then
— — generate update to send up-to-date
— — information to neighbor
u_message = u_message U (T'T;(j, k), add)
else
u_message = u_message U (T'T;(j, k), delete)
end if
end if
if TT;(j, k).l = oo and TT;(j, k).sn < sn then
TT;(j, k).sn = sn
end if

end process_delete_update
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Compare Source Graphs

This procedure is used to produce an update to be sent to all neighbors. It compares the
old and the new spanning tree and generates an update message containing the differing

link states.

procedure compare_source_graphs (7, ST;, NewST;, u_message)
— — Parameters:
— — 1: name of node that executes procedure
—— ST;: old spanning tree at node ¢
—— NewST;: new spanning tree at node i
— — u_message: new update message to be generated
begin
— — first, generate add updates for all links that are in
— — the new spanning tree but were not in the old one.
for all (j,k) € NewST;, ((4,k) ¢ ST;
or NewST;(j, k).sn > ST;(j, k).sn) do
u_message = u_message
U (4, k, TT;(4,k).sm, TT;(j,k).l, add)
end for
— — now, generate delete updates for links that were in
— — the old spanning tree but are not in the new one.
for all (j,k) € ST;, (j, k) ¢ NewST; do
if i = j then
u_message = u_message U (j, k,t,TT;(j, k).l, delete)
else
u_message = u_message
U (J, k, TT;(j, k).sn, TT;(j, k).l, delete)
end if
end for
end compare_source_graphs
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Chapter 3

Update Verification

3.1 Introduction

Disseminating link-state (topology) information reliably is essential to many internet rout-
ing protocols proposed or implemented to date. This dissemination can take the form of
broadcast, in which every network node (router) maintains the same topology map [BG92],
or selective distribution, in which each node maintains only the subset of the topology map
it needs to perform correct routing, as described in the previous chapter. Of course, in a
very large internet, network resources (links and nodes) must be aggregated into clusters or
areas to reduce the amount of information each node needs to store and process; however,
because the focus of this chapter is on the basic algorithm used for disseminating topology
information in a network a flat network organization is assumed for ease of presentation.
Broadcast of link states can be accomplished by flooding or building a spanning tree over
which link states are distributed [HS89, Gar92]. This chapter focuses on flooding because
of its simplicity and popularity. Examples of standard internet routing protocols based on
the flooding of link states are OSPF [Moy94], IS-IS [ISO89] and NLSP [Nov94]. In addition,
the inter-domain policy routing (IDPR) architecture [EST93] and the Nimrod architecture
for scalable internet routing [CCS95] are both based on flooding. These protocols and

architectures use the same basic approach for the flooding of topology information, which
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we simply call intelligent flooding protocol or IF'P in the rest of this chapter (e.g., see [Per83,
PVL92]).

According to IFP, each network router ascertains the state of its neighboring links and
reports this in what we will call a link-state update (L.SU); for simplicity, we assume that
an LSU reports the state of only one link adjacent to a given source. The basic problem
then becomes one of broadcasting the most recent LSUs of each source to every router in
the network. Once this is accomplished, each router has a topology map from which it
can compute the desired paths to destinations. To flood LSUs, IFP uses sequence numbers
to validate the most recent LSU from each source; a router receiving an LSU accepts the
LSU as valid (i.e., recent) only if the received LSU has a higher sequence number than the
sequence number of the LSU stored from the same source.

Because the sequence-number space available in a routing protocol is finite, IFP must
operate with finite sequence numbers. To accomplish this, a linear sequence-number space
is used together with an age field, and large enough that the maximum sequence number
should be reached only in very rare circumstances. Each LSU specifies a sequence number
and an age. The source starts its first LSU with a sequence number equal to 0, and sends a
new LSU with a higher sequence number after either detecting a change in the state of an
adjacent link, or after reaching a maximum time with no state changes in adjacent links.
Each LSU sent by the source specifies the current sequence number and the maximum age
for that LSU (in the order of an hour in today’s protocols). No more LSUs from the same
source are accepted when the sequence number reaches its maximum value, until the LSU
is erased due to aging. Aging means that every router that accepts an LSU decrements its
age by at least one and also decrements the age while the LSU sits in memory. A router
rebroadcasts an LSU when it reaches age 0. If a router receives a valid LSU with an age of
0, the router ignores the LSU if it does not have a stored LSU from the same source, and
rebroadcasts the LSU if it has a copy of the LSU; this ensures that nodes age LLSUs at a

similar pace. LSUs must be sent reliably between neighbors.
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The link-vector algorithm (LVA) introduced in [GB95] is based on the selective distribu-
tion of topology information, rather than on flooding. The purpose of this algorithm is to
allow a router to maintain only the link-state information it needs to reach a destination,
rather than the entire topology map. Each router maintains a subset of the topology map
corresponding to its adjacent links and the links that its neighbor routers have reported as
being used in their paths to destinations. The router uses this information to compute its
own paths to destinations, and reports to its neighbors the states of only those links used in
the chosen paths. In addition, the router tells its neighbors which links it no longer uses to
reach destinations. A basic assumption for the correct operation of the LVA implementation
introduced in [GB95] is that routers can determine whether an update contains up-to-date
information using the same update validation scheme used for L.SUs in IFP.

The inherent limitation with the above method is that the age field must be very long
to avoid situations in which, due to aging, routers loose LSUs that are still valid. Fur-
thermore, because every LSU must expire in a finite time, the source of each LSU must
retransmit new incarnations periodically in the absence of link-state changes. In practice,
aging of sequence numbers introduces additional communication overhead. Furthermore,
after resource failures that isolate any portion of the network from a source of LSUs, old
LSU information can be erased only after reaching its maximum age.

We propose a new algorithm that achieves fast dissemination of up-to-date link-state
information without periodic updates or age fields. The algorithm is based on a finite and
linear sequence-number space and diffusing computations [DS80]. Most prior applications
of diffusing computations to routing [JM82, Gar93] have focused on the dissemination of
information regarding distances to destinations. The application of diffusing computations
to the dissemination of link-state information has been proposed before only in the context
of building a spanning tree over which link-state updates are distributed [Gar92]. Our
update algorithm can be applied to standard internet routing protocols based on flooding,
eliminates the need for periodic flooding of L.SUs, can dramatically reduce the amount of

time in which obsolete LSUs can be erased after resource failures or new LSUs can be copied
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throughout the network after resource recoveries, and incurs limited overhead. The latency
of our algorithm in reseting sequence numbers and erasing old information is bounded only
by the time it takes for an LSU to traverse the network, rather than by a global timer, which
is the case in all previous reset schemes used or proposed to date (e.g.,see [PVL92, APV94]).
We note that, just as with other link state algorithms, the routing of user messages proceeds
while the dissemination of link-state information is taking place.

The following section states the goals for our reset mechanism. Section 3.2 describes
the new reset algorithm in the context of flooding as well as selective diffusing of topology
information. Section 3.3 verifies that the new reset algorithm works correctly within the
context of selective dissemination of topology information, and that the resulting routing
protocol ensures that all routers receive the information they need to make correct routing
decisions. We chose to address correctness in the context of selective dissemination because,
as we will show, selective dissemination represents a generalization of flooding. Section 3.5
analyzes the complexity of the selective dissemination algorithm. Section 3.6 summarizes

the applicability of our results.

3.2 Objectives of The Reset Algorithm

The objective of the reset algorithm is threefold:

e When the sequence number of an LSU wraps around at its source (i.e., the sequence-
number space is exhausted and the sequence number is reset to 0), all the routers
affected by the LSU are forced to synchronize with the source in such a way that, in
the absence of topology changes, all other sequence numbers for the same LSU are
purged and all routers affected by the LSU reset its sequence number to 0, before the

source can increment the sequence number.

e After a malfunction that makes a router reset the sequence number of an LSU for
which it is not the source, the router forces either the source or another router to

provide the correct sequence number.



52

o After aresource failure, routers with no physical path to the source of an LSU erase the
LSU within a finite time proportional to the time it takes to traverse their connected

components.

Dijkstra and Scholten’s basic algorithm was used in [Gar89] to provide loop freedom
in topology broadcast algorithms, assuming that the intelligent flooding protocol was used
with no changes (i.e. aging and periodic retransmission are used to handle finite sequence
numbers).

A reset algorithm for IFP with goals similar to the above three has been sketched in
[APV94]. According to this algorithm, whenever the sequence number of an LSU reaches
its upper bound at some router, this router makes a reset request. When a request reaches
a router other than the source, that router resets its sequence number to 0 and forwards
the request. When the source of the LSU receives the request, it sets its sequence number
to 1 and broadcasts its most recent LSU. This type of reset has two problems: erroneous
LSU information has to propagate all the way to the source before it can be erased (a
technique first suggested by Humblet [BG92]), and other than having a global timer for
garbage collection, there is no provision for erasing an obsolete LSU after the failure of the
source of the LSU or the partition of the network. The following section outlines how our

reset algorithm supports the three goals stated above.

3.3 Description of Reset Algorithm

To validate LSUs with no need for periodic transmissions or age fields, we present a sequence-
number reset algorithm based on diffusing computations [DS80]. The reset algorithm can
be applied to both the replication of the same LSU at every router, or the selective dissemi-
nation of LSUs. Replicating LSUs at every router is a special case of selective dissemination
of LSUs, and there are only two important simplifications: The first is that, because every
router must receive every LSU, there is no need for a router to request its neighbors to delete

any LSU. The other simplification is that a router does not have to decide which LSU to
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propagate depending on the link constituency of its paths to destinations; the router simply
propagates each valid LSU.

We describe our reset algorithm within the context of both selective dissemination and
flooding of link states. A network is modeled as an undirected graph G = (V| F), where
V is the set of nodes (routers) and F is the set of edges (links). Each link exists it both
directions at any time, and there is a (possibly different) cost assigned in each direction.
An underlying protocol assures that every node detects changes in link states within a finite
amount of time. All such changes are processed one at a time, and in the order in which
they are detected.

Assume that a protocol is used for the dissemination of link-state information and the
maintenance of topology and routing tables. This protocol, be it based on flooding or
selective dissemination of link states, must use certain message formats to exchange link
states among adjacent routers. We have called such messages L.SUs; we assume that an LSU
specifies who originates it, a sequence number, the state of the link, and an add or delete
instruction in the case of selective dissemination. Sequence numbers are assumed to be
drawn from a finite and linear sequence-number space. In the same way that some routing
protocols based on routing do (e.g., OSPF), we assume that LSUs are exchanged reliably
between neighbors. When a router sends an LSU in a message, it waits for acknowledgments
from all its neighbors, and retransmits the message with the LSU to a neighbor if it does
not receive an ack after a timeout. Connectivity with a neighbor is assumed lost after a
number of unsuccessful message transmissions.

In steady state, the topology of the network is stable and none of the sequence numbers
wraps around. In such a case, nodes execute the flooding or selective dissemination protocol
by exchanging LSUs as summarized in Section 3.1 for IFP and LVA. In this case, a node
that originates an LSU and sends it to its neighbors only needs to receive acknowledgments
from them stating that they have received the LSU. Node 7 does not need to know that

either all of the network nodes have received a copy of the LSU (in the case of flooding), or
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that all the nodes using the link reported in the LSU have received the LSU (in the case of
selective dissemination).

There are three cases in which a node must ensure that all the nodes that need to know
about the state of a given link receive the new information for the link and adapt the correct

sequence number. These cases are the following:
e The node needs to reset the sequence number for one of its outgoing links.
e The node detects failure one of its links.
e The node detects that it has no physical path to the head of a remote link.

This is accomplished by means of two additional types of update message entries: queries
and replies. Both are reliably transmitted between neighbors by means of message acknowl-
edgment and retransmissions, as described for the case of LSUs. Queries have the same fields
of an LSU. Replies do not need to transmit link information, but may carry a tag signaling
the possibility of an error. Based on these queries and replies, our reset algorithm operates
in a manner very similar to Dijkstra and Scholten’s algorithm for diffusing computations
[DS80].

A node that needs to reliably distribute information about a link through the network
and detect the termination of this, sends queries instead of LSUs to all its neighbors and
then waits until it receives a reply from each neighbor. An acknowledgment signals that a
neighbor has received an LSU (or a query) correctly. A reply signals that a neighbor and
all nodes connected through that neighbor that need to process the query have done so.
A node is said to be in active mode (or state) when it is waiting for replies, otherwise it
is passive. A passive node receiving a query for a given link follows the same pattern, it
forwards the query to all its neighbors, waits for their replies, and, upon reception of the
last reply, sends a reply to its predecessor in the diffusing computation, i.e., to the node
from which it received the query that caused its transition to active state. If an active

node receives another query, then it simply sends a reply back to the neighbor that sent the

query.
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An update message may contain queries and replies, as well as plain LSUs from the
underlying routing protocol. When an update message is received, the node first processes
all the replies, then the LSUs, and at last the queries that are included. Then, it assembles
the packets to be sent to its neighbors. The replies must be processed first so that updates
can be queued if the respective reply is in the same packet. Processing updates before
queries may speed up convergence of the diffusing computations, because more complete

up to date topology information is available to determine the correct action for the query.

3.3.1 Reset for Flooding

In the case of flooding, the complete topology information needs to be replicated at every
node. The pseudo code in the appendix of this chapter (section 3.7) formally specifies a
flooding protocol based on our reset algorithm. For simplicity, all messages, which can con-
tain LSUs, queries, and replies, are assumed to be transmitted correctly over an operational
link.

A passive node processes LSUs according to the rules for intelligent flooding. If an active
node receives an LSU, it must check whether it already received a reply from the sender
of the LSU. If this is the case, then the update must be buffered because it contains more
recent information than the query did. There must be a separate buffer for each neighbor,
but only the latest LSU must be kept. In addition, the buffer is flushed when a query is
received subsequently over the same link.

When a passive node receives a reply, this reply is simply discarded. An active node
receiving a reply checks if this is the last reply that it expects; if this is the case, the node goes
into passive state and sends a reply to its predecessor in the diffusing computation (unless
it is the source of the diffusing computation, in which case the diffusing computation is
terminated). It then processes buffered LSUs. In the case that the state of the link changed
since the node became active (i.e., the buffered LSUs contained more recent information),
LSUs are sent to all neighbors. If the reply carried an error tag, all subsequent replies for

this diffusing computation that the node sends also carry such a tag.
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FIGURE 3.1: Normal action of reset algorithm. Filled circles denote active nodes

The core of the algorithm is the way in which queries are handled. When the node that
receives a query is in passive state, it generally accepts the query, goes into active state,
and sends queries to its neighbors. However, there are two exceptions to this rule. First, if
the source of the diffusing computation is not the head of the link and the receiving node
has a path to the link reported in the query, the node simply sends a reply. This prevents a
diffusing computation originated by a node other than the head of the link from propagating
to parts of the network where a physical path to the head of the link is known. Second, if
the head of the link reported in the query receives it, the node sends a reply. If the content
of the query it receives is different from the current link information, the head of the link
also sends an LSU with a higher sequence number; this ensures that the correct information
about the link will be known throughout the network.

Figure 3.1 illustrates the normal action for a diffusing computation concerning link (¢, 7).
First, 7 sends queries to all its neighbors that are received at z, w, and j (Fig. 3.1(a)).
These nodes go into active state and forward the query to its neighbors (Fig. 3.1(b)). Since
neighbor w also received a query from ¢, it is active and immediately sends a reply to
z after receiving the query from this node (and vice versa). y and z also forward the
query to their neighbors (Fig. 3.1(c)). After nodes y and z also receive replies from each
other (Fig. 3.1(d)), they return to passive state and send replies to their predecessors in the

diffusing computation, z and w, respectively. After z receives the reply from y (Fig. 3.1(e)),
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FIGURE 3.2: Detection of erroneous condition at node z

it returns into passive state and sends a reply to its predecessor in the diffusing computation,
node ¢, as does w after receiving the reply from z (Fig. 3.1(f)). When node ¢ receives the
last reply, it also returns into passive state and the diffusing computation terminates.

In active state, the normal action taken by a node after receiving a query is to send a
reply. However, if the node is active in a diffusing computation that was started at a node
other than the head of the link, but the origin of the new query received is the head of the
link reported in the query, then the new computation takes over. That is, the node becomes
active in the computation started by the head of the link, and sends out new queries to all
its neighbors. These queries ensure that the new diffusing computation also takes over at
all other nodes that were active in the old diffusing computation.

The other exception to the normal processing of queries occurs when a node detects an
erroneous situation when it is active in a diffusing computation originated by the head of
a link and receives a second query originated by the same node for the same link, but such
that the query contains different link-state information. This situation can only occur after
a component of the network, in which an old diffusing computation has not terminated is
reconnected to another component. This situation is illustrated in Figure 3.2, where node
z is shown to receive two different queries. Because node z cannot decide which of the
two diffusing computations is more recent, the situation must be corrected by the head
of the link. Therefore, the node sends a reply that has an error tag, and tags its active
state, meaning that all subsequent replies sent for the computation will be tagged as well.

The propagation of the error tags ensures that the head of the link will be notified of the
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FIGURE 3.3: Propagation of tagged replies for diffusing computation to reset sequence number of
(2,7) after link failure

erroneous situation, unless there is no physical path to the head of the link; in that case the
diffusing computations both terminate and the information about the link will be erased in
this part of the network.

When a link fails, the head of that link updates its topology table and sends a query for
this link to its neighbors. If the node is active in a diffusing computation concerning another
link and is still waiting for a reply to come over the failed link, then the node assumes that
the reply has been received, and that this reply was tagged; this helps prevent deadlocks.

When the cost of a link changes or a new link is established, the head of that link
initiates the flooding of an LSU for that link if the node is passive. However, if the head of
the link is already active for the link when a change of cost or reestablishment of the link is
detected, then the link must wait to distribute the LSU upon termination of the diffusing
computation.

As described above, tags in replies are needed to signal an erroneous situation to the head
of alink, who then sends LLSUs with higher sequence number to its neighbors. Figure 3.3 (a)
illustrates the propagation of tagged replies back to node i, the source of the diffusing
computation. This example assumes that = received the query from w earlier than the
query from ¢ and that y and z are waiting for replies from each other when link (y, z) fails.
After receiving the tagged reply from w and the reply from j, the head of the link (node %)
sends LSUs with a new sequence number to its neighbors (Figure 3.3 (b)).

Unfortunately, the tagging mechanism may require extra communication in cases where

it is not needed. In particular, whenever a link with outstanding replies fails, the reply is
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assumed to be tagged, causing an unnecessary new LSU to be generated by the source (as
in Figure 3.3). It is, however, possible to use some other means to signal the erroneous
situation to the head of the link. For example, a different diffusing computation could be
used to make sure that the information gets to the head of the link. This would increase the
worst case complexity, but reduce the complexity in the more likely case of a link failure.
Moreover, the correctness of the basic algorithm would not be affected if the new algorithm

assures delivery of the needed information to the head of the link.

3.3.2 Reset for Selective Dissemination

To use the reset algorithm described in the previous section with LVA, some minor mod-
ifications need to be made. Since in LVA not all nodes need to store information about a
given link, nodes that do not have information about a link (i.e. the link is neither in the
topology table nor in the list of deleted links) need not participate in a diffusing computa-
tion concerning that link. Therefore, a node without information about the link (obviously,
such a node is passive) simply sends a reply to the sender of the query, if the link-state
information in the query does not cause the node to store the link. In addition, LSUs that
arrive at a passive node are processed according to the LVA rules and not IFP’s.

An active node that receives a query needs to process the link-state information in the
query in addition to sending a reply. This is necessary to update the list of reporting nodes
kept in LVA. A node that receives the last reply for a query must check for changes in the
state of the link since it became active. With LVA, such changes can be caused by the
buffered LSUs as well as by other information acquired during the active period; a change
of the state of the link here includes more recent information as well as a switch from used
to not used or vice versa. If any such change occurred, the appropriate add or delete update

must be sent.
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3.3.3 Fast Deletion of Old Information

An important feature of our reset algorithm is the fast deletion of old information. This
is important, because reconnecting previously disconnected parts of the network can lead
to significant overhead. For example, assume that some part of a network is disconnected.
With aging, it takes a long time for the information about links in the other network
component to be flushed. Therefore, if the sequence number of a link has been reset using
premature aging and the network is reconstituted, it is possible for older information with
a higher sequence number to pollute the network.

Figure 3.4 illustrates the above problem. In Figure 3.4 (a), an example topology is shown
where a sequence number of 20 is known for link (¢, 7) throughout the network when link
(z,y) fails. Figure 3.4 (b) shows the situation after node 7 initiated a diffusing computation
to reset the sequence number of (4,7) to 0. In Figure 3.4 (c), the link between nodes z
and y is reestablished before the old information with sequence number 20 expired in the
disconnected component. As seen in Figure 3.4 (d), the obsolete information can now be
propagated in the other part of the network as well. Although this situation will eventually
be noted and corrected by the head of the link (node %), it may result in temporary routing
loops.

On the other hand, if our reset mechanism is used rather than aging, the obsolete
information in the component that was disconnected from the head of the link will very
likely be erased by the time network reconststution occurs, because such erasure will occur

in a matter of a few minutes. This also reduces the probability of temporary loops.

3.4 Correctness of Reset Algorithm

This section proves that the new reset algorithm is correct under selective dissemination
of link-state information, which is a generalization of flooding. A subset of the same proof

applies to topology broadcast.
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FiGURE 3.4: Example of polluting a network with old information.

A node is said to have a notion of a link, i.e., to have any information about a link, if
it either has state information concerning that link in its topology table, or if it stores the
sequence number of that link in its list of deleted links, but does not keep state information
in the topology table. This definition would not be necessary if IFP were used, because
the replication of complete topology information at every node implies that each node
needs to know about every link. Message transmissions over an operational link are made
reliable (i.e., messages are received without error and in the order in which they are sent)
by means of a correct retransmission strategy between any two nodes across a link. With
this assumption, the proof of correctness can simply assume, without loss of generality,
that LSUs, queries, and replies are always sent reliably over an operational link. We also
assume that the routers perform LVA error free. The reset algorithm is correct if, after a
finite sequence of topology changes, any diffusing computation started at some node for a
given link, terminates within a finite amount of time, and upon termination, the network
has consistent information about the link.

Consistent information here has the following meaning:

o If the diffusing computation was initiated by the head of the link, then all nodes that
have any notion of the link have the same information about it, and only nodes that

use the link or whose neighbor uses the link have a notion of the link.
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e If the diffusing computation was initiated by a node other than the head of the link,
then the information about this link has been erased from those nodes that cannot

reach the link.

The first step in proving correctness is to show that the reset algorithm terminates.

Under the conditions stated above, we have the following:

Theorem 3.1 Any diffusing computation for a given link (i, j) terminates within a finite

amount of time.

Proof: There are two possible scenarios for a diffusing computation not to terminate:
1. Deadlock could occur.
2. An infinite amount of queries could be generated.

To show termination of the algorithm, we need to show that neither of these scenarios can
occur.

The proof that there can be no deadlock is by contradiction. Consider first a network
with a static topology. Assume that there is some node z at which deadlock occurs. This
implies that z does not receive a reply from at least one of its neighbors, say y. Node y
must have some notion of (7,j) and y cannot be in active state when it receives the query
from z, otherwise y would have sent a reply immediately after it received and processed the
query from z. Hence, y becomes active with z’s query and it must wait for a reply from a
neighbor other than z, because z must send a reply to y. Following this line of argument,
there must be an infinite number of nodes waiting for replies from nodes other than the
node from which the query was received. This is not possible because the network is finite.
Therefore, # cannot be in a deadlock situation.

Note that deadlock cannot occur even in a dynamic topology. This is the case because,
when a link adjacent to z fails (or is established), then z simply assumes that a reply has

been received over that link.
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The proof that only a finite number of queries can be generated is also by contradiction.
Assume that the diffusing computation does not terminate. Since there are only finitely
many nodes, there must be a node z that produces an infinite number of queries. However,
x cannot be the head of the link, which produces exactly one query. Therefore, node z
must receive a query, send its own queries to all its neighbors, and send a reply infinitely
often. Hence, at least one of its neighbors must do the same. Furthermore, w.l.o.g., this
node must receive its first query earlier than x. In other words, there must be either a
cycle of nodes which alternately go into active and passive state, or an inductive argument
shows that there must be an infinite number of nodes in the stated situation. The first case
can only occur if two parts of the network become disconnected and reconnect after the
diffusing computation has terminated in one component but not in the other. Since there is
only a finite sequence of changes in the network, this cannot go on indefinitely. Obviously,
the second possibility contradicts the assumption of a finite network.

This concludes the proof of Theorem 3.1. q.e.d.

The algorithm works correctly if, after termination in a connected component, all the
nodes in that component that have a notion of a given link have the same sequence-number
(and the same link information) for that link. In addition, the information must be con-
sistent as required by the underlying routing protocol, i.e., it must be up to date and, for
LVA, correctly reflect whether it is used by the neighbor nodes.

This means that, in any part of the network that has no connection to a given link, the
information about that link must be completely removed. In the part of the network that
uses the link, the nodes that do have information about the link (this set is determined by
the basic algorithm) have the latest sequence number for the link reported by the head of
the link and the other nodes have erased any information about the link from their topology

table.

Theorem 3.2 Upon termination of a diffusing computation for a given link (i,7), the in-
formation about the link is consistent throughout the network, i.e., any node in the network

has the correct information.
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Proof: The proof for this theorem is based on Lemmas 3.3 through 3.7. First, consider
a connected stable network where the head of link (7, ) initiates a diffusing computation
concerning that link. Then the proof for this theorem consists of two steps. First, Lemma 3.3
shows that, if a node needs information about a link, then it will receive a query with the
correct information. Second, Lemma 3.4 shows that all nodes have consistent information
when the diffusing computation finishes at the source of the diffusing computation.

Note that, after termination, the set of nodes that have any information about link (7, 7)
is a connected subset of the complete graph, because if a node has any information about
(¢,7), then there must be a path to ¢ through nodes that also have information about (7, 7).
Also note that, as long as the diffusing computation is not terminated, ¢ cannot produce

any more recent information about (7, 7).

Lemma 3.3 A node x that has any notion of a link will receive a query with up to date

information about (i, 7).

Proof: The proof is by induction on h, the minimum hop distance of = to ¢, the head of
the link.

The base case is h = 1. In this case, z is a neighbor of . When ¢ initiates a diffusing
computation, it sends queries with up to date information to all its neighbors. Since z is
such a neighbor, it will receive a query.

For h > 1, assume that the lemma is true for all nodes with distance less than h.

Consider a node z with a distance of A hops to i. This node must have at least one
neighbor y, that has a distance of (h — 1) < h to i and that has a notion of (7, ). By the
inductive hypothesis, y must have received a query with up to date information about (7, 7).
Since y has information about (7, ), it will send a query to all its neighbors, including z. At
the same time, the diffusing computation cannot have terminated, since y did not receive a
reply from z and therefore must be in active state. Hence, the query that x received from

y contains up to date information. q.e.d.
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Lemma 3.4 When the diffusing computation terminates, all nodes have consistent infor-

mation about link (i, j).

Proof: The proof is by contradiction.

Note that a node that is in active state cannot send information that is not up to date
to a neighbor.

Assume that node z does not have up to date information about (7, j) when the diffusing

computation terminates. There are only two ways in which this could happen:

1. z received outdated information while it was in active state for the last time and

buffered it, or

2. z received the outdated information after it sent a reply to its parent in the diffusing

computation at the last time it was in active state.

For the first case to happen, there must be a neighbor y that first sends a reply to z’s
query and then sends the outdated information. Hence, y must be in the same situation
as z. Following this line of argument, if the first case also applies for y, then y must have
another neighbor in the same situation, and so on. Since the network is finite, we must find
some node for which the second case applies; w.l.o.g., assume that y is such a node. For

this case to happen, there are again two possibilities:
1. y must have a neighbor in the same situation, or

2. y had no information about (7,j) when it received the query that it replied to, and

later got an outdated LSU from another neighbor, z.

Again, by an inductive argument and the fact that the network is finite, we can show
that we must find some node for which the second case is true. So, we can again w.l.o.g.

assume that the second case applies to y. For z, we again have two possibilities:

1. z is in the same situation as z, but obviously, the termination of its last active state

happened earlier that for z, or
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2. z did not receive any query in this diffusing computation.

The first case can be ruled out by an inductive argument and the fact that the network
is finite; following the same line of argument, we must find an infinite sequence of nodes in
the same situation described above for z, y, z. There cannot be cycles in these sequences,
because a node in the same situation as z must finish its last active state earlier than the
corresponding node in z’s situation. The second case cannot occur, because z obviously
must have information about (7,j) and, by Lemma 3.3 must receive a query before the
diffusing computation terminates. Then, z would send a query to y, which in turn would
send one to z. Hence, this was not the last time that z was in active state for this diffusing
computation, which contradicts the assumption; therefore, the lemma must be true. q.e.d.

Now consider a network that is still connected, but where links can fail or come up while
the diffusing computation is going on.

As long as no node thinks that it is not connected to (%, j), the diffusing computation
still terminates, because a node assumes that it received a reply over a link that failed, and
establishment of a new link does not cause additional queries to be sent. The assumptions
for the proof of Lemmas 3.3 and 3.4 are not affected; therefore, the lemmas still hold in this
case.

It remains to be shown that Theorem 3.2 holds if either the network becomes discon-
nected, a node (wrongly) perceives that it is disconnected, or the connectivity is reestab-
lished after temporary disconnection. Lemmas 3.5 and 3.6 show that, all information about
a link will be removed from the part of the network that does not have a path to the link,
and that a diffusing computation that is started by a node that is seemingly disconnected

does not produce incorrect link information.

Lemma 3.5 [f the network becomes disconnected, then all information about (7, j) will be

removed from the part of the network that has no path to the link.

Proof: Since a diffusing computation is started for any failing link, some node in the

disconnected part will notice that it does not have a path to (¢,7) and start a diffusing
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computation. If no other node notices the disconnection early enough to start its own
diffusing computation, then this computation will reach all nodes in the component in the
network to which this node is connected. For this diffusing computation, the previous two
lemmas hold, as well as Theorem 3.1 (termination). If multiple nodes in the disconnected

component start separate diffusing computations, then:

1. Each of the diffusing computations terminates. A node that is already in active state
for a diffusing computation originated at n, n # ¢, n # m and receives a query for a
diffusing computation originated at m # i will simply send a reply, which is the same

action a node that does not have information about (7, j) would take.

2. After termination, the nodes that were involved in at least one of the diffusing com-

putations have consistent information.

3. All nodes that are disconnected from (¢, j) will be involved in at least one diffusing
computation. (If a node is disconnected from (¢, 7), and it does not receive any query,

then it will start its own computation, since it will notice that it is disconnected.)

This shows the validity of the claim. q.e.d.

Lemma 3.6 A diffusing computation started in a seemingly disconnected part of the net-

work does not produce inconsistent link information.

Proof: The rules of the algorithm prohibit a diffusing computation that is not originated
by the head of the link to proceed through parts of the network that have a path to the
link. Hence, such a diffusing computation will erase information only at those nodes that
have no knowledge about a usable path to the link.
Furthermore, a diffusing computation for (¢, 7), originated at m, m # 7, does not interfere
with a diffusing computation initiated by 7, since the latter simply overwrites the former.
Therefore, no permanent inconsistent information can be caused by a diffusing compu-

tation. q.e.d.
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The last case to consider is that a new path to (¢, 7) is established to a portion of the
network that was temporarily disconnected.

By the previous lemma, a diffusing computation started within the temporarily discon-
nected part will not cause inconsistencies in the network. The only possible problem could
arise from a diffusing computation that was started at ¢, finished in the component con-
nected to (7, j), but did not terminate yet in the part that was disconnected. (Lemma 3.1
still holds, so the diffusing computation will terminate eventually.) Lemma 3.7 shows that

no permanent inconsistencies are produced in this case.

Lemma 3.7 No permanent inconsistency is caused by the temporary disconnection and

reconnection of a part of the network while a diffusing computation for any link is going on.

Proof: In the case that the computation happens to travel over the new link that reestab-
lished the connectivity, it will obviously reach the head of the link (7, ), unless another
diffusing computation concerning the same link that started at ¢ is going on.

If the diffusing computation reaches the head of the link, then node ¢ will notice any
possible inconsistency with the information stored in its topology table. It will send a
reply (to avoid deadlock), and an LSU with the correct information if necessary. By the
correctness of LVA [GB95], the content of this LSU will get to all nodes that need the
information. Note that, due to the buffering of information received by an active node
after the reply, the ongoing diffusing computation will not prevent the propagation of this
information.

If another diffusing computation for the same link is going on, there will be some node
x that is in active state from ¢ when it receives a query for a diffusing computation started
by ¢ with different link-state information (if the two diffusing computations contain the
same information, no problem arises). This node can not determine which of the two
computations is the more recent. The problem of inconsistency must be solved by the head
of the link by sending an LSU. To notify the head, a tagged reply is sent. Obviously, the
head of the link will then receive a tagged reply, since nodes between the head of the link

and z will send a tagged reply to their predecessor in the diffusing computation, if they



69

receive a tagged reply from one of their successors. Note that further topology changes do
not change this property, since the assumed reply over a failing link is treated as tagged.
q.e.d.

This concludes the proof of Theorem 3.2. q.e.d.

While the above theorems hold when LSUs and queries are sent one at a time and
processed in order, to reduce communication overhead, it is desirable to combine multiple
LSUs and queries together in packets. The following argument shows that this is possible,
the algorithm still behaves correctly when such LSUs and queries are sent together and
are processed out of order. For example, all the LSUs are processed first (as in the basic
algorithm) and then the queries (one at a time, but in no particular order).

If a reply is sent in the same packet as an LLSU or query concerning the same link, then
it is crucial for the algorithm that the order of processing is correct, i.e., first the reply is
processed and then the LSU or query.

There are two possible scenarios of failures due to out of order processing at the receiving

node z:

1. = believes some query when it should not, or

2. z does not believe a query when it should.

Note that either case can only happen for a diffusing computation that was not started
at the head of the link (which also always contains a delete LSU).

The first case implies that x has no path to the head of the link in its topology, while
there is information in the packet that adds such a path. In this case, * does not have
any notion about the link or is already involved in a diffusing computation. Either way, a
reply is sent. Before z can use the link, it must receive an other LSU adding the link to its
topology table.

In the second case, z does not believe a query because it still assumes a path to the
head of the link, that is removed by other information in the packet. This does not pose
a problem either, because after it realizes that there is no longer a path, = will start a

diffusing computation concerning that link (and erase the link from its topology table).
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3.5 Performance

3.5.1 Communication Complexity

For a single diffusing computation, the number of messages generated is O(|F]). In the
worst case, two queries are sent over each link, one in each direction. Note that there is
exactly one reply sent for each query, which does not change the order of magnitude for the
communication complexity.

The source of the diffusing computation obviously sends exactly one query over each
outgoing link, because it must receive replies from all its neighbors, before it can send
a second query, which is the condition for the computation to terminate. Now consider
an arbitrary node other than the source of the diffusing computation. When this node
receives a query, it either sends a reply to the sender, or it sends exactly one query over
each outgoing link. Before it can send more queries, it must first receive replies from all its
neighbors and then receive a new query. Hence, it must become active more than once for
the same diffusing computation. This is not possible in the connected part of a network.

If IFP is used as the underlying protocol, the number of queries can easily be restricted to
one per link. By not sending a query to the predecessor in the diffusing computation. With
LVA, this extra query is used to update the set of reporting nodes at the predecessor node.
On the other hand, with IFP, the worst case always occurs because the whole network

is flooded with the information, while LVA produces fewer messages in the average case

[GBYS).

3.5.2 Time and Storage Complexity

In the connected component of the network, the worst-case time complexity is O(z), where
x is the number of affected routers. With IFP, z obviously is the number of nodes in the
network, while with LVA it can be significantly less. The queries will travel to all nodes

that do require the information, before the replies are sent back on the same paths and with
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the same time complexity. In the worst case, all affected routers lie along a single path,
causing O(z) communication steps.

Computational complexity at routers is determined by complexity of underlying proto-
col, for each query, only constant work is added to that already being done.

The extra storage required while a node is passive is constant, only an extra tag indicat-

ing the state is needed. While a node is active, in addition to some extra state information,

o(

N,|) storage (where |N;| is the set of neighbors of node z) is required to keep track of

the received replies at node z, and to buffer LSUs.

3.6 Summary

We presented a new algorithm to reset sequence numbers in routing protocols. This reset
algorithm, which is based on a recursive query-response process, makes it possible to use a
bounded sequence-number space without a need for periodic retransmissions or aging. Thus,
its time complexity is determined entirely by the time it takes to traverse the network, and
it does not rely on any global timers.

The reset algorithm can be used with routing protocols based on flooding as well as
selective dissemination of link-state information to speed up their convergence. For instance,
using our reset algorithm in OSPF, even when resources fail, all link-state information will
be distributed in time proportional to the time needed to traverse the network, which should
take in the order of minutes at the most. A version of intelligent flooding based on this
reset mechanism was introduced.

We have shown that the reset algorithm leads to a correct routing protocol when applied

to the selective dissemination of link-state information, which is a generalization of flooding.
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3.7 Appendix: Pseudo Code for Reset Algorithm for Flood-
ing
Notation

T, Topology table at node z, entries (7, j, l;-, sn,r,d), where
(¢,7) Link from node 7 to node j

l;- Length of link (7, 7)
sn Sequence number of link
d Status for diffusing computations: active/passive,

set of replies received, source, predecessor
ST, Shortest path tree at node z.

N, Set of neighbors at node z.
Sequence number at node.
t; Last sequence number of neighbor j.

Messages are (ordered) sets of updates of the form
(4,3, sn, type, ds) for link (4, j) with cost [}, where

sn Sequence number
type  Type of update: update, query, reply
ds Source of diffusing computation (if applicable)

Process Update Packet

Process update packet receive from neighbor. First process the replies contained in the
packet, then the updates, and at last the queries. When done with this, assemble the

packets to be sent to the neighbors.

procedure process_packet (z, n, packet)
— — Parameters:
— — x: name of node that executes procedure
— — n: name of node that sent packet
— — packet: packet to be processed
begin
process_replies (z,n, packet)
process_updates (z,n, packet)
for all ¢ € packet — — query ¢
process_query (z, q)
end for
assemble_and_send_new_packets (z)
end process_packet
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Process Updates

Process all updates in packet. If the node is active for the link described in an LSU, the
update is buffered; if the node is passive, the update is processed according to the rules for

the flooding algorithm.

procedure process_updates (z, message)
— — Parameters:
— — x: name of node that executes procedure
— — message: packet to be processed
begin
for all m = (4, 7, l;, sn, update) do
if TT;(i,7).d = active then
if reply from message.source received then
buffer m
else
discard m
end if
else — — passive
if (i,j) € TT, then
if TT;(i,7).sn < m.sn then
if 'm.l;- < oo then

TTy(i,j) = m
else

TTy(i,5) =0
end if

else if T'T; (7, j).sn > m.sn then
send (message.source, (773 (%, j), update) )
end if
end if
end if
end for
end process_updates
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Process Replies

Process all replies in update packet. If the reply is the last one expected, go into pas-
sive state, process buffered updates, and send a reply to the predecessor in the diffusing

computation.

procedure process_replies (z, n, packet)
— — Parameters:
— — x: name of node that executes procedure
— — n: name of node that sent packet
— — packet: packet to be processed
begin
for all rep € packet do — — rep = (i,4,1)
if TT,(i,7).d = active then
TTy(i,7).d.received = TT(i,7).d.received U n
if t = true then
TTy(i,7).d.tag = true
end if
if TT;(i,7).d.received = N, then
— — all replies received
if z = i then
if TT;(i,7).d.tag = true then
for all k € N, do
send (k, (TTy (i, §), update)
end for
end if
else
new_reply = (4, 5,773 (%, j).d.tag)
send (TTy(%, j).d.predecessor, new_reply)
end if
TTy(i,7).d = passive
if there are buffered updates for (7, j) then
for all m = (i,j,l;, sn, update) in buffer do
if m.sn > TT;(i,7).sn then
TTy(i,5) =m
for all k € N, do
send (k, m)
end for
end if
end for
end if
end if
else
discard rep
end if
end for
end process_replies
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Process Query

procedure process_query (z,q)
— — Parameters:
— — z: name of node that executes procedure
- —query q = (4,7, l;, sn, type, ds)
begin
if TT;(i,7).d = passive then
if z = i then
send (n, (4, j, reply))
send (n, (T'Ty(i,j), update)
else if q.ds =i or i € ST, then
— — source of query is head of link or there is a path to the link
set_entry (TTy, i, j, active, 1, q.lé, 0)
TTy(i,7).d.predecessor = n
for all k € N, do
send (k, New_query)

end for
else - —source of query # head, path to link
send (n, (2, j, reply))
end if
else — - (7,j) active
if g.ds =i then — — source of query is head of link
if TT;(i,7).d.source = i
and T, (%, ])l; = q.l§ then — — same diffusing computation
send (n, (4, j, reply))
else if T'T; (i, j).d.source # i then — — diffusing computation from other source

set_entry (T'Ty, i, j, active, i, q.l;'», q.sn)
TTy(i,7).d.predecessor = n
for all k € N, do

send (k, New_query)

end for
updated = true

else — —special case: different diffusing computation from head of link
if x =i then — — received at head of link

send (n, (4, j, reply))
send (n, (i,j,l;, sn, update))
else
TTy(i,7).d = active, tagged
send (n, (4, j, reply))
end if
end if
else — —source of query different from head of link
if TT,(i,7).d.source = i then — — active from head
discard query
send (n, (4, j, reply))
else — — active from other node
process update part
send (n, (4, j, reply))
end if
end if
end if

end process_query



76

Assemble New Packets

Assemble new packets to be sent to the neighbors. This procedure also detects unreachable

links. The send-procedure used in other procedures should be implemented as buffering,

then the buffered information is added to the packages here.

procedure assemble_and_send_new_packets (z)
— — Parameter:
— — x: name of node that executes procedure
begin
for all (i,j) € TT; do
if TT,(i,7).d = passive and ¢ unreachable then
— — ¢ unreachable is the same as i ¢ STy
TTy(i,7).d = active
TT;(i,7).d.source = z
u_message = u_message U (T'T; (4, j), query, z)
end if
end for
forall k € N, do
message = u_message U buffered information for &
send (k, message)
end for
end assemble_and_send_new_packets

Set Entry of Topology Table

procedure set_entry (77}, %, j, status, source, {, sn)

— — Parameters:

— — TT;: topology table of node that executes procedure
— —1,7: head and destination of link

— — status: status of link (active/passive)

— — source: source of diffusing computation

— —1: cost of link

— — sn: sequence number of link state

begin
TTy(i,7).d = status
TT(i,7).d.source = source
TT, (i, j).0i =

TTy(i,7).sn = sn
end set_entry
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Link Cost Change

This procedure is called by the underlying protocol when the cost of a link changed. It
buffers the information if the link is active; otherwise the information is processed and

updates are sent to the neighbors.

procedure link_change (z,y)
— — Parameters:
— — x: name of node that executes procedure
— — y: name of destination of link
begin
if TT,(z,y).d = active then
buffer update {(z,y,ly, sn, update)}
else
process_updates (z, {(z,y,{y, sn, update)})
assemble_and_send_new_packets (z)
end if
sn=sn+1
end link_up

Failure of Link

This procedure is called by the underlying protocol when the link to a neighbor failed.
It buffers the information if the link is active; otherwise the information is processed and

updates are sent to the neighbors.

procedure link_failure (z,y)
— — Parameters:
— — x: name of node that executes procedure
— — y: name of destination of link
begin
Ny = Ny — {y}
if TT;(z,y).d = active then
buffer update {(z,y, oo, sn, update)}
else
process_updates (z, {(z,y, co, sn, update)})
assemble_and_send_new_packets (z)
end if
sn=sn+1
end link_failure
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Link Comes Up

This procedure is called by the underlying protocol when a new link to a neighbor is detected.
It buffers the information if the link is active; otherwise the information is processed and

updates are sent to the neighbors.

procedure link_up (z,y)
— — Parameters:
— — x: name of node that executes procedure
— — y: name of destination of link
begin
Ny = N, U{y}
process_updates (z, {(z,y,[y, sn, update)})
assemble_and_send_new_packets (z)
sn=sn+1
end link_up
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Chapter 4

Hierarchical LVA

4.1 Introduction

Although we have shown that LVAs are more scalable than LSAs and DVAs, using LVAs
with a flat addressing structure is not sufficient for a net to scale to very large numbers of
nodes and destinations. Any routing algorithm that requires routers to know about every
single destination in an internet, becomes infeasible as the internet grows. The storage
requirements as well as computational and communication overhead become too costly. To
address this problem, the amount of information stored and communicated must be reduced
using address aggregation schemes.

The goal of any address aggregation scheme is to reduce the size of the topology
databases or routing tables kept at routers, thereby reducing the amount of data that
needs to be communicated, processed, and stored. The main idea in aggregation schemes is
that a router keeps in its database one entry per node or link that is “close,” and an entry
for a set of nodes or links further away [Kam76]. To achieve this, hierarchies of addresses
are formed by grouping together (“clustering”) nodes that are close together.

The OSPF [Moy94] and ISO IS-IS [ISO89] protocols define areas that correspond to well
defined portions of an internet. Areas are defined statically, and to route traffic among such
areas, a backbone is used to interconnect all areas. In OSPF, all inter-area traffic must be

routed via the backbone.
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There have been many hierarchical routing proposals described in the past based on
the notion of areas, which are also called clusters [Ste95]. The first such proposal was Mc-
Quillian’s [McQ74]; this proposal was analyzed in detail by Kamoun and Kleinrock [KK77].
Most prior proposals on hierarchical routing have routing algorithms based on topology
broadcast or variations of the distributed Bellman-Ford algorithm. Ramamoorthy et al.
[RT83, TRTN89| proposed an algorithm based on link-state information for hierarchical
routing. According to this algorithm, a node maintains complete topology information of
each area to which the node belongs, and the topology of an area at a given level is given by
the interconnection of the lower-level areas within it. More recently, Murthy and Garcia-
Luna-Aceves [MG97] proposed an area-based hierarchical routing algorithm called HIPR
that is based on McQuillian’s clustering scheme and the loop-free path finding algorithm
[GM97] which is a loop-free algorithm based on distance vectors.

In this chapter, we introduce a new area-based hierarchical routing scheme that uses
LVA as its basic routing algorithm. This new scheme, which we call area-based link-vector
algorithm (ALVA) supports multiple levels of hierarchy and does not rely on a backbone for
inter-area routing. ALVA allows more flexible topologies and shows improved performance
by removing the bottleneck backbone. The main motivation for this new scheme is to
provide an approach based on link-state information that does not require complete topology
information for each hierarchical level. As we show subsequently, it constitutes the basis for
developing internet routing protocols based on link-state information that are much more
scalable than OSPF.

Section 4.2 describes the hierarchical routing algorithm. Section 4.3 proves its correct-
ness. Section 4.4 discusses its complexity and presents simulation results addressing its

average pe1‘f01‘mance.

4.2 Area-Based LVA (ALVA)

To allow a hierarchical structure, the basic network model described in chapter 2 is extended.

Nodes of the graph are clustered into subgraphs called areas. Although the new hierarchical
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FIGURE 4.1: 2-level hierarchical network

routing algorithm can be used with overlapping clusters with only minor modifications, for
simplicity, we assume that the areas are disjoint, i.e. every node belongs to exactly one
area.

According to ALVA, nodes are clustered into areas organized into multiple hierarchical
levels, so that areas can be grouped into higher-level areas as well. Figure 4.1 shows an
example topology with three levels of hierarchy. Links in this topology are assumed to be

bidirectional, with unit cost in both directions. The nodes (named in lower case) make up
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level 0 in the hierarchy. Level 1 consists of the areas A1..A5, B1..B3, and C1..C4, while
we have the areas A, B, and C at the top level, level 2. In this example topology, only
border-nodes are named, with the exception of node z, which is an interior node of area
A4.

A border node is a node that has a link to a node that belongs to a different area. A k-
level border node is a node that connects k-level areas. Nodes can determine to which area a
given address belongs, and at which level of the hierarchy two given addresses differ. With
this, nodes can dynamically determine whether they are border nodes (this may change

with link failures or establishments,) and at which level their border is. The basic operation

of ALVA is as follows:

e For routing within an area, flat LVA is used.

e Lor inter-area routing, LVA is applied on the topology representing the connectivity

among areas at any particular level.

At any given level, shortest-path routing is used among all areas that are contained in the
same area one level up in the hierarchy. Because areas are seen as single entities by remote
routers, the cost to traverse them cannot easily be determined; since the cost of the links
between the areas is outweighed by the area traversal cost, using the actual for those links
need not improve overall performance of the algorithm. Accordingly, for simplicity, we use
minimum hop routing across areas in this chapter.

The pseudo code in the appendix (section 4.6 provide a formal specification of ALVA.
The following sections are used to describe the information stored and communicated, as well
as ALVA’s operation, in more detail. For simplicity, we assume that the sequence numbers
used to validate updates are based on unbounded counters. In practice, a mechanism using

a finite sequence number space must be used.

4.2.1 Information Maintained at Nodes

With respect to the information exchanged, all routers act as peers in ALVA. This does not

mean that the information stored is the same at all routers, but that the type of information
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is the same. There are no special routers that need to store any additional information.
Thus, we can ensure that any routers can, without delay, accept the additional functionality
of a border router if a new link crossing a border is established.

Each router maintains a topology table and a source graph. The latter is used to derive
the routing table. The topology table may be viewed as being split up into one table for
each level in the hierarchy (as is assumed in the pseudo code in the appendix;) this is merely
an implementation matter for the path-selection algorithm.

In principle, the topology table contains the following information about all links known
to the router, and belonging to the router’s own 1-level area: head and destination of link,
cost of link, sequence number, and the list of its reporting nodes. Again, the reporting
nodes of a known link are those neighbors of the router who have notified using that link.
If more than one routing policy is used in the network, multiple costs can be reported for
the same link.

For inter-area links, additional information must be stored. Because an inter-area link
represents connectivity rather than a particular physical link, it may be that this link
actually corresponds to multiple links. Thus, checking whether an update concerning such
a link is recent becomes a problem, given that there can be no unique sequence number
assigned to it. To solve this problem, the sequence number with the head of the actual link
and store the ID of the head of the link together with it. Different neighbors may report
different heads about the same inter area connections to a node. The node then stores all
the different heads concerning the connection, but forwards only one of them. To reduce
communication overhead, all nodes should use the same criterion as to which head to report
in such a case, but this is not required for the protocol to work correctly.

Of course, the list of reporting nodes must be kept on a per head of link basis as well.
The list of reporting nodes can easily be stored as a bit vector, since only neighbors of a

node can be in that list. Thus, the storage overhead of that list is relatively minor.
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all links for paths Al - A2, ¢ (none)
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X ->p A2 - B, t A-C, c(,d
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A2 - C, d
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q - A3 may store
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A4 - A3, q
A4 - A5, D

F1GURE 4.2: Topology at Node x

The source graph contains all links that are used on a preferred path to any destination,
as determined by the local path selection algorithm. In the case of shortest path routing,
it is simply the shortest paths tree.

Figure 4.2 shows a textual representation of the links known at node z. Figure 4.3 shows
a graphical representation of the topology databases at node z and the border node k.

As can be seen in Figures 4.2 and 4.3 (a), z knows all the links necessary for it (or one
of its neighbors) to reach any destination within the level 1 area A4. In particular, it knows
all the links necessary to reach the border-nodes. In addition, the local table contains links
from these border-nodes to the neighboring level 1 areas. (The internal topology of A4 is
too small to show any significant saving in space as compared to topology broadcast here.
However, it should be noted that a few of the links are known only in one (the “useful”)
direction, exhibiting some of the savings due to LVA. At the next level of hierarchy, the
figures show a partial view of the inter-area topology. Note that, while node = sees only one
way to each of the level 2 areas B and C', border-node ¢ in the same area actually knows
about the alternatives through area A2, enabling it to react fast to changes in the topology

and then propagate that information within its area.
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FIGURE 4.3: Topology at Nodes z (a) and k (b)

Although the information concerning links leaving the own area in levels 1 and 2 is
redundant, it may be beneficial to store it in the tables to simplify the path selection
algorithm.

Figure 4.3 (b) shows the topology as seen by border-node & of area A5. It can be seen
that the two topologies are quite different. However, due to the way the tables are formed,
these differences cannot create any routing loops. Note that, by virtue of being a border-
node to area B, k actually knows about the connection between areas B and C'. It does
not propagate this information within its area though, because it prefers the path through

A2 to reach C.

4.2.2 Information Exchanged between Nodes

While there is no difference in the data stored at nodes, the information exchange within an
area is obviously different from the inter-area exchange. Border nodes filter the information
that is forwarded across their borders. They do not forward internal information about their
area across the area border, but add the appropriate head of link information to updates

concerning links leaving their area.
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forwarded to q: forwarded to neighbors in A3:
A3 - A1, n o - Ad
A3 - A2, m A1 -C, ¢
A3 - A5, 1 A5 - B, s
Al - C, c links used within A3
A5 - B, s

FiGURE 4.4: Link-states forwarded by Node o

Whenever there is a change in a node’s source graph, it sends incremental updates about
the change to its neighbors: it sends an add update for links that they are using to get to
any destination; it sends a delete update for links that they used before but that are not
used any more. For links within an area, each such update contains the cost, the sequence
number, and the type. Updates concerning links crossing area borders contain the areas of
origin and destination, a sequence number and the head of the link reporting that sequence
number.

Border links originating in the own area are propagated with the actual head of the link,
but with an area address as destination by the border node.

A border node makes sure that no link from within its area is reported to its peer in the
other area. Links to other areas are converted to a hierarchical form and one of the actual
heads of that connectivity is chosen to propagate the respective sequence number.

To illustrate the differences in how information is forwarded by border-nodes, Figure 4.4
shows which link states are forwarded by node o. Since o must distinguish between the
recipients of its update packets and assemble different packets to neighbor ¢ and its interior
neighbors.

The differences are further illustrated in Figure 4.5, where the links that are forwarded
by node h to its neighbor p, which is in a different area at level 1, and the links that s

forwards to its neighbor b7 over a level 2 boundary.
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h forwards to p: s forwards to bi:
A5 - A2, j A - B, s
A5 - A3, 1 A-¢C,d
A5 - A4, h
A5 - B, s
A2 - C, d

FiGURE 4.5: Link-states forwarded by Node h and s over area boundaries

4.2.3 Operation of ALVA

The operation of ALVA is very similar to that of basic LVA. When an update message is
received from a neighbor, every update in the message is examined and the topology table
changed as necessary.

First, consider that the update is an add: if there is no information about the link in the
topology table, then the link is added to it. If the link is already present in the table, then
its value is changed if the sequence number indicates a more recent update. If the sequence
number is the same as the one stored, then the neighbor that sent the update message is
added to the list of reporting nodes.

In the case of a delete update, the sender of the message is removed from the set of
reporting nodes and. if the set becomes empty, the link is removed from the topology table.

In either case, an update containing recent information is sent back to the neighbor who
sent the message if an update is found to be out of date (i.e., its sequence number is smaller
than the one stored.)

If there was any change in the topology table, then the updated topology table is used
to obtain the new source graph, using the local path selection algorithm. From the source
graph, the routing table is updated. At last, the new source graph is compared with the
previous one to assemble the update packets that are sent to the neighbors. In principle, an
add update is generated for any new link in the source graph, and for any link whose sequence
number changed as a result of the update procedure. For any link that was previously part
of the source graph but is no longer being used, a delete update is generated. Of course, a

border node must filter the propagation of this information as described above.
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The main difference between ALVA and the basic LVA lies in the fact that the sequence
numbers and reporting nodes for inter-area links are updated on a per head-of-link basis in
ALVA. This also means that, if the head of the link changed for some inter-area link, two
updates must be generated, one to delete the old head and another to add the new one.
Because all routers use the same criterium to choose which head to advertise, this is a rare

occurrence.

4.3 Correctness of ALVA

The proof of correctness for ALVA assumes that update messages are transmitted reliably
and received and processes in the order that they are sent. In addition, we assume that
there is a finite number of changes in link state up to time tg, after which time there are no

more changes. With these assumptions, the following theorem shows that ALVA is correct.

Theorem 4.1 After a finite time after tyg, no more updates are sent in the network, and
all routers have up-to-date link-state information in their topology table and have computed

correct hierarchical source graphs.

The proof of correctness consists of two parts: first, it is shown that ALVA terminates.
The second part shows that the information in the network is consistent upon termination
and thus correct routes have been computed.

Both parts of the proof build on the properties proven for LVA [GB95] and extend the

proofs for LVA to the hierarchical algorithm. The following lemmas constitute the proof.

Lemma 4.2 Area-based LVA terminates within a finite amount of time after tq.

Proof: The proof that the hierarchical LVA terminates is by induction on the number of
levels (k) in the hierarchy. In each inductive step, the proof is by contradiction.

The base case for the induction is a topology with a one-level hierarchy (k= 1).

The proof for LVA assumes that an infinite number of updates (add of delete) is generated

for some link, and it is shown that this is impossible due to the finite number of nodes in
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the network and the fact that the node detecting the link change sends exactly one update.
Because flat LVA is used within the lowest-level areas and no information is propagated
outside an area concerning topology changes within the area, it is clear that the algorithm
terminates for such changes.

It remains to show that the algorithm terminates if there is a change in the connectivity
between two areas. Note that all nodes use LVA on the graph comprising all inter-area
links in the network. The exact same argument used for flat LVA can now be used: assume
that an infinite number of updates is generated. This implies that there is at least one
node that generates an infinite sequence of updates about some link [. In turn, this implies
that a neighbor of this node also generates an infinite sequence of updates concerning the
same link. The proof for LVA proceeds showing that there must be an infinite sequence of
nodes who start sending infinitely many updates caused by that same change. However,
this argument is only valid if nodes can validate updates, which can be accomplished by
sequence numbers. Here lies the only difference in the proof. Because those links can be
detected at multiple heads-of-link, it must be assured that this does not lead to a “flip-
flop-effect,” where nodes switch between the heads-of-link whose sequence number they use
for reporting the link. This problem does not apply to the two areas that are actually
connected, in these areas the links are reported with their physical heads-of-link, inclusion
of these links does not alter the termination property of LVA within areas. In remote areas,
if we require that all nodes who receive multiple heads choose the head that they propagate
using the same criteria (for example, using the smallest address,) then no infinite sequence
of adds and deletes will be created. Hence, ALVA terminates when there is one level of
hierarchy.

Now consider a topology with £ > 1 levels of hierarchy. Assume that ALVA terminates
for k — 1 levels of hierarchy.

A k-level hierarchical topology is composed of (k — 1)-level areas and links connecting
these areas. By the inductive hypothesis, we know that ALVA terminates for any changes

within the (k —1)-level areas. It remains to show that ALVA terminates if there is a change
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in the connectivity between two k-level areas. The argument here is very similar to the
case of one level of hierarchy. Again, LVA is used at the k-th level of hierarchy, and the
only difference to the flat case is that there can be multiple heads-of-link, that could cause
the described “flip-flop-effect.” Again, this is prevented by requiring the consistent choice
of the head-of-link that is reported to a neighbor. Hence, ALVA terminates in a k-level

hierarchy. q.e.d.

Lemma 4.3 Within finite amount of time after to, all routers have the consistent infor-

mation necessary to compute correct source graphs.

Proof: The proof that all nodes have consistent information when ALVA terminates is by
induction on the levels in the hierarchy.

Again, the base case for the induction is a one-level hierarchy.

The proof that information is consistent in a finite time after topology changes cease
for LVA is by induction over the length of paths in hops. In a similar fashion, we can argue
the same case in the higher level.

Within any area, LVA is used. Therefore, a any node — in particular any border node —
in the area has correct information about the topology within the area that it is part of. In
addition, it knows about all links that it needs to route to neighboring areas. (A neighboring
area appears as a destination in the level 0 topology table, therefore, every node — including
border-nodes — knows at least one link to that destination.) Since a border node forwards
the latter information to its neighbors in the other nodes, the border-nodes of these areas
know about the connectivity of their neighboring area at level 1. This is the base case,
one hierarchical hop. The information is propagated within the neighbor-area, using LVA
rules for a network at level 1, where minimum hop routing is used for the computation of
the preferred paths. From the correctness of this (flat) LVA at the higher level follows the
correctness of the hierarchical scheme.

The formal proof for this argument uses induction, as in the flat case. The base case
— neighboring areas — is described above. Then, for A > 1 hops assume that the correct,

needed information to reach a destination is known in areas that are less than A hierarchical
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hops away from this destination. Consider a path that spans h hierarchical hops. Then, we
know that there is a flat path to the first area on that path. This area is A — 1 hierarchical
hops away from the destination. The subpath from that area to the destination must be
optimal, hence, by the inductive hypothesis, it is known in that area. But since it is used
and known, it must be propagated to all the neighboring areas by its border-nodes, and
therefore also be known in the area we first considered. This, together with the known path
to that neighboring area, means that the complete path is known h hierarchical hops away.

Now consider the case that we have & > 1 levels of hierarchy. Assume that the algorithm
yields consistent information for k£ — 1 levels.

A k-level area is composed of (k — 1)-level areas. By the inductive hypothesis, all nodes
have consistent information about their (k — 1)-level. In addition, the links between (k—1)-
areas, as well as their connectivity to outside areas is known to all (k—1)-level border-nodes.
Hence, for a given k-level area, this information is also known at all its border-nodes, since
a k-level border-node is also a border-node at levels 1,...%k. Then, we can use the same
inductive argument as in the base case, using the links between k-level areas as hierarchical
hops.

This proves Lemma 4.3. q.e.d.

4.4 Performance

Since LVA has been shown to outperform the ideal link-state algorithm in [GB95], it can
be expected that ALVA performs better than area-based schemes based on flooding, such
as OSPF, by reducing the control traffic both within areas as well as across the backbone.
To verify this expectation, we compared ALVA with OSPF in several simulations. Simu-
lation were performed using random graphs with 100 nodes. Nodes had an average degree
of approximately 3. Recent work [GR97] shows that this is a realistic node degree for in-
ternetworks. The topologies were produced according to two general schemes. According
to the first scheme, there is a backbone with 56 nodes, one area with 30 nodes, and 14

stub areas with one node each. We chose to use stub areas because we were particularly
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interested in the effect of changes in the backbone. This topology type allows us to have
many destination areas but to focus on the effects that a change in the backbone has within
the backbone and in the complete area. In the second scheme, the backbone contains 40
nodes and there are four areas with 15 nodes each.

To obtain random topologies according to these schemes, for each area (including the
backbone) nodes are places randomly in a plane. Any two nodes u,v within the area are
then connected according to the exponential model as proposed by Zegura et al. [ZCB96],
i.e., with probability

P(u,v) = aeﬁ,
where d is the Euclidean distance between w and v, L is the maximum distance between
any two nodes, and 0 < a < 1 is a parameter of the model. In addition, we make sure
that all areas are connected graphs. Then, each area is connected with the backbone at two
randomly chosen nodes.

This method to obtain topologies allows us to study networks that exhibit the charac-
teristic of the logical star configuration that OSPE requires for inter-area traffic [Moy94].

To simulate OSPF, we make the following assumptions:

e Areas contain exactly one mask, i.e., they are seen as a single entity from outside the

area. In terms of storage and communication overhead needed, this actually presents

the best case for OSPF.

e Border nodes belong to exactly one area and the backbone. A border node runs two
copies of the flooding algorithm, one for the backbone and one for the area to which

it belongs.

e A border node reports to the backbone that it has a link to the area of which it is

part.

e A border node reports within its area links to all other areas with costs as determined

by the shortest path algorithm in the backbone topology.
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We evaluate the performance in terms of update messages sent and number of steps
required for the algorithms to converge. When a node receives an update, it compares
its local step counter with the sender’s, takes the maximum, and increments the counter.
This way we obtain the number of sequential update message exchanges between neighbors
needed for convergence. In addition, we compare the size of the topology tables stored by
the routers. In terms of these criteria, the assumptions stated above actually represent the
best case for OSPF.

For our simulation, we assume that control packets are transmitted error free and are
processed one at a time in the order received. OSPF and protocols based on ALVA provide
their own retransmissions. Using equivalent mechanisms, ALVA requires less overhead than
topology-broadcast to ensure reliable transmission of updates. Packets sent over failed links
are dropped. To detect new connectivity or link failures, a simple hello protocol was used
(much like in the OSPF specification.)

Figures 4.6 through 4.10 show the results of our simulations. Results are shown for
changes in link cost, link failures, link establishments, node failures and node establishments.
The bars represent the average (mean) number of messages and steps, respectively, while the
markers show the standard deviation. To obtain these results, we performed the changes for
every single link and node in the network. Thus, no sampling errors need to be presented.

Figures 4.6 and 4.7 show the overall results for one representative topology of each class.
These results include changes at the borders as well as changes in the backbone and other
areas.

In Figures 4.8 and 4.9, more detailed results are shown. The left graph in figure 4.8
shows the message sent for changes within the backbone, while the right graph in that
figure represents changes within the other area of the topology of the first type. Similarly,
Figure 4.9 shows the number of messages until convergence for changes within the backbone
and in one of the areas for the topology of the second type.

It is clear that ALVA needs less time and fewer messages to converge for changes in

single links in the backbone as well as the areas. OSPF behaves better only when nodes
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fail. As expected, the number of messages required when links change or are established

within an area for OSPF is constant. (This is not true for link failures, because some of

the failures may disconnect nodes or partition the graph.) The deviation from the mean for

such changes in the backbone shows that changes in the backbone cause traffic in the areas

in addition to the traffic within the backbone.

In all simulations, ALVA clearly outperforms OSPE when link changes occur, links fail,

or new links are established. The only case where OSPF converges with less overhead is

when a node fails. In this case, the delete operation in LVA causes ALVA to create slightly

more packets than OSPF. However, altogether a router going down and coming back up

still creates less traffic in ALVA than in OSPI, because ALVA outperforms OSPF by a wide

margin when a new node is established.
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FIGURE 4.9: Topology type 2, backbone (left) and area (right)

Figure 4.10 shows the average size of the topology tables at routers in the backbone and
in another area for both types of topologies. It can be seen that routers using ALVA need to
keep only about half as many links in their tables on the average when compared to routers
OSPF. This is true in particular for backbone routers, which include the border-nodes that
run two copies of the topology broadcast (one for the backbone and one for their area.) As
the size of the areas grows, this advantage for ALVA becomes even more pronounced. We
have also obtained results using flat LVA for larger topologies than the areas shown here.
The results obtained that way confirmed the significant savings in the number of links in
the tables.

In these simulations we did not address the quality of the paths. Since border nodes in

OSPF advertise their actual distance to remote areas rather than just connectivity, paths
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derived this way can potentially be shorter. However, we expect border nodes of the same
area to be close together and do not expect significant gains when compared to paths
obtained by ALVA. On the other hand, ALVA does not require the star configuration forced
by OSPF (i.e., using a backbone.)

As an internetwork grows larger, the backbone-based topology required in OSPF forces
the backbone to become larger or the areas that connect to it to grow larger. Figure
4.11 illustrates the savings that can be derived with ALVA over OSPF by not requiring a
backbone. The topology used for this experiment is of type 1. There are 179 edges in the

topology, giving the nodes an average degree of 3.58, with a maximum degree of 9. For the

first part of the experiment, the node addresses were chosen such that the backbone was
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partitioned into three connected areas; ALVA was used in this scenario. For the second part,
the backbone was one contiguous area; both ALVA and OSPF were used in this scenario.
The results of this experiment show that the more flexible choice of topologies can widen
the margin by which ALVA outperforms OSPF significantly. With the large backbone area
required by OSPF partitioned into smaller areas, ALVA outperforms OSPF even when
nodes fail.

In addition, in contrast to OSPF, ALVA allows for multiple levels of hierarchy and ALVA
does not require a backbone, which means that very large backbones can be broken into
smaller areas that provide the same connectivity. These added features make it possible to

further reduce communication as well as storage overhead.

4.5 Summary

We have presented a new hierarchical routing algorithm based on link-vector routing and
areas for aggregation of routing information. The main idea of LVA is to use link-state
information to compute optimal paths but without replicating the complete topology infor-
mation at every node. This idea has been extended to allow multiple levels of hierarchy. At
each level of the hierarchy, partial topology is stored.

The performance of ALVA was compared with that of OSPF. Our simulation results
show that, even with only one level of hierarchy, ALVA clearly outperforms OSPF in terms
of storage and communication requirements. ALVA does not require a backbone-centered
topology, and our simulation experiments illustrate performance advantages gained by al-
lowing arbitrary area-based topologies. In addition, allowing multiple levels of hierarchy
makes the new algorithm far more scalable than OSPF. ALVA constitutes the basis for the
development of more efficient Internet routing protocols based on link-state information. In

particular, new versions of OSPI can be derived in which no backbone is required.
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4.6 Appendix: Pseudo Code for ALVA

Variables and Data Structures for ALVA specification

e, sn, type, [h])

update: tuple (j, k, ¢,

7, k: origin and destination of link

cé?: cost of link (7, k)

sn: sequence number

type: ADD or DELETE

h: head of link, if origin is area address

topology table TT; at node 7 with entries:

7, k: origin and destination of link
if j local address in same area:
ck: cost

J
ST sequence number

list of reporting node
if j area address
c;?: connectivity info
for each reported head of link
sm: sequence number
list of reporting nodes
if more than one head in list, indicate which one forwarded

TT; can be subdivided into TTZ»Z7 where [ indicates the level in the hierarchy.

source graph ST;, new source graph NewST;
Process Update

This procedure processes an update message. If the content of the message caused a change
in the topology table, compute new source graph and routing table, and send update packets

to neighbors if necessary.

procedure update (i, message)
— — Parameters:
— — 1: name of node that executes procedure
— — message: message to be processed
begin
update_topology_table (i, message)
if updated then
build_source_graph
build routing table
compare_source_graphs (i)
ST, = NewST;
end if
end update
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Update Topology Table

procedure update_topology_table (i, message)
— — Parameters:
— — 1: name of node that executes procedure
— — message: message to be processed
begin
for all updates in message do
if local_address (j ) then
update as in plain LVA, using table T'T}
else — — remote address at level I (implies that & is remote address as well)
if type = ADD then
if (j,k) ¢ TT} then
add link to 7T}
else if h is head of link then
if sn > TT!(j, k).h.sn then
change link values
else if sn = TT!(j, k).h.sn then
add reporting node n
else if sn < TT!(j, k).h.sn then
send correction to n
end if
else
add h as head of link
end if
else — — type = DELETE
if h is head of link then
if (j, k) € TT! then
if sn > TT!(j, k).h.sn then
mark h as deleted
if no other head then
mark link as deleted
end if
else if sn = TT}(j, k).h.sn then
delete reporting node n
if no reporting node for h then
mark h as deleted
if no other head then
mark link as deleted
end if
end if
else if sn < TT!(j, k).h.sn then
send correction to n
end if
else
TT!(j, k).h.sn = sn
end if
end if
end if
end if
end for
end update_topology_table
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Link Change

This procedure is called by the underlying protocol when the cost of a link changed. It
changes link information in the topology table at the appropriate hierarchy level; then

computes a new source graph and routing table and sends updates to neighbors if necessary.

procedure link_change ( 4,j )
— — Parameters:
— — 1: name of node that executes procedure
— — 7: name of destination of link
begin
if local_address (j) then
TTz'O(ia Jj) = (Ci, new_sn, {i})
else
TT?(i,area(j)) = (cf, new_sn, {1})
end if
build_source_graph
build routing table
compare_source_graphs (7)
ST, = NewST;
end link_change

Link Up

Called by underlying protocol when new neighbor is discovered. Change link information in
topology table at appropriate hierarchy level; compute new source graph and routing table

and send updates to neighbors if necessary.

procedure link_up (4,7 )
— — Parameters:
— — 1: name of node that executes procedure
— — j7: name of destination of link
begin
N, =N;Uj
if local_address (j) then
TTz'O(ia .7) = (C‘Z: new-sn, {Z})
else
TT?(i,area(j)) = (cf, new_sn, {1})
end if
build_source_graph
build routing table
compare_source_graphs (7)
ST; = NewST;
end link_up
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Link Down

Called by the underlying protocol when a link failed. Changes the link information in the
topology table; removes the destination of the link from all sets of reporting nodes; computes

a new source graph and routing table and sends updates to neighbors if necessary.

procedure link_down (4,7 )
— — Parameters:
— — 1: name of node that executes procedure
— — j7: name of destination of link
begin
Ni=N; —j
for all (k,l) € TT; do
TT2(k,).r =TT (k,).r —j
if TT?(k,1).r = 0 then
mark (k,!) as deleted
end if
end for
if local_address (j) then

T2, ) = (¢l new-sm, 1))
else

TT?(i,area(j)) = (¢!, new_sn, {i})
end if
build_source_graph
build routing table
compare_source_graphs (7)
ST; = NewST;

end link_down
Compare Source Graphs

This procedure assembles update packets to be sent to neighbors. It uses procedure

check link_in_source_graphs to determine the right type of update.

procedure compare_source_graphs (%)
— — Parameters:
— — 1: name of node that executes procedure
begin
for all (j, k) € NewST;, (4, k) ¢ ST; or NewST;(j, k).sn > ST;(j, k).sn
or change in head of link do
check_link_in_source_graphs (i, j, k, ADD)
end for
for all (j,k) € ST;, (j,k) ¢ NewST; do
check_link_in_source_graphs (i, j, kK, DELETE)
end for
if border-node (i) then
send (inter_area_message)
send (intra_area_message)
end compare_source_graphs
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Check Link in Source Graph

Determines which type of updates need to be sent; converts addresses in updates that are

sent across borders to hierarchical form if necessary.

procedure check_link_in_source_graphs (1, j, k, type)
— — Parameters:
— — 1: name of node that executes procedure
— — 7: name of head of link
— — k: name of destination of link
— — type: type of update (ADD/DELETE)
begin
if border-node (i) then
if 2 = 7 then
if not local_address (k) then
inter_area_message = inter_area_message U (area(i),k,connectivity,sn,type,i)
end if
intra_area_message = intra_area_message U (j, k, c?, sn,type)
else
if remote_address (j) (level {) then
inter_area_message =
inter_area_message U (7, k,connectivity, TT} (5, k).h.sn,type, TT} (5, k).h)
intra_area_message =
intra_area_message U (J, k,connectivity, TT} (4, k).h.sn,type, TT} (3, k).h)
if change in h and type = ADD then
inter_area_message =
inter_area_message U (j, k,connectivity, TT} (5, k).h.sn,DELETE,TT} (5, k).h)
intra_area_message =
intra_area_message U (J, k,connectivity, TT} (4, k).h.sn,DELETE,TT! (5, k).h)
end if
else
intra_area_message = intra_area_message U (7, k,c?,TT,—l (7, k).sn,type)
if remote_address (k) (level {)then
inter_area_message =
inter_area_message U (7, k,connectivity, TT} (5, k).h.sn,type,j)
end if
end if
end if
else — — interior node
if remote_address (j) (level {)then
intra_area_message =
intra_area_message U (g, k,connectivity, TT} (4, k).h.sn,type, TT} (3, k).h)
if change in h and type = ADD then
intra_area_message =
intra_area_message U (j, k,connectivity, TT} (4, k).h.sn,DELETE,TT! (5, k).h)
end if
else
intra_area_message =
intra_area_message U (7, k,cé€ T, k).sn,type)
end if
end if
end check_link_in_source_graphs
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Chapter 5

Conclusions

A new method for distributed routing in computer communications networks and internets,
LVA, has been introduced. LVA uses link-state information to derive the forwarding tables,
keeping partial topology information at every node. The topology database at each node
is comprised of the links adjacent to that node and the links used by the neighbors. It has
been proven that LVA is correct under different types of routing policies, assuming that a
correct mechanism is used for routers to ascertain which updates are recent or outdated.

The performance of LVA has been analyze both analytical and with simulations. The
results obtained show that LVA outperforms link-state algorithms as well as distance-vector
algorithms based on the distributed Bellman-Ford algorithm. In addition, LVAs have good
scaling properties, they scale well with the number of service types and with the number of
destinations.

To validate the link-state updates disseminated by LVA or link-state algorithms, se-
quence numbers are used, and must be drawn from a finite sequence number space. We
introduced an algorithm to reset the sequence number assigned to a link that is based on
a recursive query-response process and does not need periodic retransmissions or aging, or
the establishment of trusted neighbors. This is the first such reset algorithm reported to

date.
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We have shown that the reset algorithm leads to a correct routing protocol when applied
to the selective dissemination of link-state information, and presented a topology broadcast
algorithm based on it.

To make link-vector algorithms scale to very large networks, we extended the basic
algorithm to an area-based hierarchical routing algorithm. In this algorithm, the internal
structure of an area is transparent to routers that are not part of the area. The basic idea
of LVA is extended to allow for multiple levels of hierarchy. At each level of hierarchy, a
partial view of the connectivity between areas is stored.

An obvious question for future research is the performance of ALVA with multiple levels
of hierarchy. Because the simulation tool limited our experiments to graphs with 100 nodes,
we were not able to fully analyze the scalability of ALVA in this thesis.

One important area for future research is the optimization of the local computations. A
major drawback of link-state protocols is that they need to run a computationally expensive
shortest-path algorithm at every node. Although the smaller topology table size in LVA
improves the running time for the shortest-path algorithm, the local computations are still
far more complex than those needed in distance-vector algorithms. Improvements may be
possible by taking advantage of the structure of the topology table and the source graph.
An ideal solution for the local computations would provide for incremental changes in the
source graph, rather than a complete rebuilding after any change.

Multimedia and teleconferencing applications using the Internet create a demand for
quality of service (QoS) guarantees, such as a guaranteed bandwidth and delays. To pro-
vide such guarantees, it is necessary to avoid congestion in the network. Today’s routing
algorithms are poorly integrated with congestion control [Kou97]. To be able to support
QoS, congestion control and avoidance need to be better integrated with the routing de-
cisions. Extending LVA to provide multiple loop-free paths to the same destination, as
well as computing such paths based on multiple constraints (e.g., delay, capacity, jitter)

are research topics that need to be addressed. Another important topic in this context
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is investigating the support of multicast routing as part of LVA, i.e., extending LVA to

accommodate multicasting like DVMRP extends the distributed Bellman-Ford algorithm.
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