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Abstract

An open system can be modeled as a two-player game be-
tween the system and its environment. At each round of the
game, player 1 (the system) and player 2 (the environment)
independently and simultaneously choose moves, and the
two choices determine the next state of the game. Proper-
ties of open systems can be modeled as objectives of these
two-player games. For the basic objective of reachabil-
ity —can player 1 force the game to a given set of target
states?— there are three types of winning states, according
to the degree of certainty with which player 1 can reach
the target. From type-1 states, player 1 has a deterministic
strategy to always reach the target. From type-2 states,
player 1 has a randomized strategy to reach the target with
probability 1. From type-3 states, player 1 has for every
real ��� 0 a randomized strategy to reach the target with
probability greater than 1 ��� .

We show that for finite state spaces, all three sets of
winning states can be computed in polynomial time: type-
1 states in linear time, and type-2 and type-3 states in
quadratic time. The algorithms to compute the three sets
of winning states also enable the construction of the win-
ning and spoiling strategies. Finally, we apply our results
by introducing a temporal logic in which all three kinds
of winning conditions can be specified, and which can be
model checked in polynomial time. This logic, called Ran-
domized ATL, is suitable for reasoning about randomized
behavior in open (two-agent) as well as multi-agent sys-
tems.
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1. Introduction

One of the central problems in system verification is the
reachability question: given an initial state 	 and a target
state 
 , can the system get from 	 to 
 ? The dynamics of
a closed system, which does not interact with its environ-
ment, can be modeled by a state-transition graph, and the
reachability question reduces to graph reachability, which
can be solved in linear time and is complete for NLOGSPACE

[Jon75]. By contrast the dynamics of an open system,
which does interact with its environment, is best modeled
as a game between the system and the environment.

In some situations, it may suffice to have the system
and the environment take turns to make moves, yielding a
turn-based model. In this case, the game graph is an AND-
OR graph. A (deterministic) strategy for the AND player
maps every path that ends in an AND state to a successor
state, and similarly for the OR player. Thus the reacha-
bility question (can the system get from 	 to 
 no matter
what the environment does?) reduces to AND-OR graph
reachability (does the OR player have a strategy so that for
all strategies of the AND player, the game, if started in 	 ,
reaches 
 ?). This problem can again be solved in linear
time and is complete for PTIME [Imm81]. With respect to
AND-OR graph reachability, randomized strategies are not
more powerful than deterministic strategies. A randomized
strategy for the AND player maps every path that ends in
an AND state to a probability distribution on the succes-
sor states, and similarly for the OR player. In turn-based
models, it can be seen that the AND-OR graph reachability
question has the same answer as the probabilistic question
“does the OR player have a randomized strategy so that for
all randomized strategies of the AND player, the game, if
started in 	 , reaches 
 with probability 1?”.

The turn-based model is naive, because in realistic con-
currency models, in each state, the system and the en-
vironment independently choose moves, and the parallel
execution of the moves determines the next state. Such
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throwL, standR
throwR, standL
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throwR, standR
throwL, standL

Figure 1. Game LEFT-OR-RIGHT.

a simultaneous game is a natural model for synchronous
systems where the moves are chosen truly simultaneously,
as well as for distributed systems in which the moves are
not revealed until their combined effect is apparent. In par-
ticular, the modeling of synchronization between processes
often requires the consideration of simultaneous games.

The simultaneous case is more general than the turn-
based one, and deterministic strategies no longer tell the
whole story about the reachability question. The fact that
randomized strategies can be more powerful than deter-
ministic ones is illustrated by the game LEFT-OR-RIGHT,
depicted in Figure 1. Initially, the game is at state 
 throw.
At each round, player 1 can choose to throw a snowball
either at the left window (move throwL) or at the right win-
dow (move throwR). Independently and simultaneously,
player 2 must choose to stand behind either the left window
(move standL) or the right window (move standR). If the
snowball hits player 2, the game proceeds to the target state
 hit; otherwise, another round of the game is played from
 throw.

For each move of player 1, player 2 has a countermea-
sure. If we consider only deterministic strategies, then for
every strategy of player 1, there is (exactly one) strategy
of player 2 such that 
 hit is never reached. Hence, if we
base our definitions on deterministic strategies, we obtain
the answer NO to the reachability question. The situation
of player 2, however, is not nearly as safe as this negative
answer implies. If player 1 chooses at each round the win-
dow at which to throw the snowball by tossing a coin, then
player 2 will be hit with probability 1, regardless of her
strategy.

The coin-tossing criterion used by player 1 to select the
move is an example of a randomized strategy, and the game
illustrates the value of randomized strategies for winning
reachability games. If player 1 adopts a deterministic strat-

egy, the moves he plays during the game are completely
determined by the history of the game, which is visible also
to player 2. Once player 1 has chosen a deterministic strat-
egy, player 2 can choose her strategy to counteract every
move of player 1, as if she were able to see it before choos-
ing her own move. Randomized strategies postpone the
choice of the move until the game is being played, preclud-
ing this type of spying behavior. Another way of thinking
about randomized strategies is through the concept of ini-
tial randomization. The choice of a randomized strategy is
equivalent to the choice of a probability distribution over
the set of deterministic strategies [Der70]. By choosing
such a distribution, rather than a single strategy, player 1
prevents player 2 from tailoring her strategy to counteract
the strategy chosen by player 1. The greater power of ran-
domized strategies is a well-known fact in game theory, and
it has its roots in von Neumann’s minimax theorem [vN28].

Once we consider randomized strategies, we can answer
the reachability question with three kinds of affirmative
answers. The first kind of answer is the answer sure:

Player 1 has a strategy so that for all strategies
of player 2, the game, if started in 	 , always
reaches 
 .

To establish this type of answer, it suffices to consider
deterministic strategies only. The second, weaker kind of
answer is the answer almost sure:

Player 1 has a strategy so that for all strategies
of player 2, the game, if started in 	 , reaches 

with probability 1.

To establish this type of answer, it is necessary to consider
randomized strategies, as previously discussed. The third,
yet weaker kind of answer is the answer limit sure:

For every real ��� 0, player 1 has a strategy so
that for all strategies of player 2, the game, if
started in 	 , reaches 
 with probability greater
than 1 ��� .

The three kinds of answers form a proper hierarchy, in
the sense that there are cases in which almost-sure reach-
ability holds whereas sure reachability does not, and cases
in which limit-sure reachability holds whereas almost-sure
reachability does not. Note that the second gap does not
appear in reachability problems over Markov chains, or
Markov decision processes [KSK66, BT91]. While the
game LEFT-OR-RIGHT witnesses the first gap, the second
gap is witnessed by the game HIDE-OR-RUN, adapted from
[KS81] and depicted in Figure 2. The target state is 	 home,
and the interesting part of the game happens at state 	 hide.
At this state, player 1 is hiding behind a small hill, while
player 2 is trying to hit him with a snowball. Player 1
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Figure 2. Game HIDE-OR-RUN.

can choose between hiding or running, and player 2 can
choose between waiting and throwing her only snowball.
If player 1 runs and player 2 throws the snowball, then
player 2 is hit, and the game proceeds to state 	 wet. If
player 1 runs and player 2 waits, then player 1 gets home,
and the game proceeds to state 	 home. If player 1 hides and
player 2 throws the snowball, then player 1 is no more in
danger, and the game proceeds to state 	 safe. Finally, if
player 1 hides and player 2 waits, the game stays at 	 hide.

In this game, from state 	 hide player 1 does not have a
strategy (randomized or deterministic) that ensures reach-
ing 	 home with probability 1: in order to reach home re-
gardless of the strategy of player 2, player 1 may have to
take a chance and run while player 2 is still in possession of
the snowball. On the other hand, if player 1 runs with very
small probability at each round, it becomes very difficult for
player 2 to time her snowball to coincide with the running
of player 1 —and a badly timed snowball enables player 1
to reach 	 home. Thus, if player 1 runs at each round with
probability � , when � goes to 0, he is able to reach 	 home

with probability approaching 1 [KS81]. Hence, the answer
to the reachability question is limit sure but not almost sure.

In this paper, we study simultaneous reachability games,
and we consider strategies for the players that can be both
randomized and history-dependent. We focus on deter-
ministic games, in which the current state and the players’
moves uniquely determine the successor state; the more
general case of probabilistic games, in which the successor
state is chosen according to a probability distribution, is
similar, and has been described in [dAHK98].

The contributions of the paper are as follows. First,
we provide efficient algorithms that, given a finite simul-

taneous game and a set � of target states, determine the
sets Sure ����� , Almost ����� , and Limit ����� of initial states for
which the answer to the reachability question is sure,almost
sure, and limit sure, respectively. The set Sure ����� can be
determined in linear time [TW68, Bee80]. By contrast, the
determination of the sets Almost ����� and Limit ����� requires
quadratic time. All three algorithms are formulated as
nested fixed-point computations, and can be implemented
using symbolic state-space traversal methods [BCM+92].
Our algorithms also enable the effective construction of
winning strategies for player 1, and spoiling strategies for
player 2, for the three types of answers. The correctness
proofs for the algorithms, and for all results of the paper,
can be found in [dAHK98].

Second, we characterize the three kinds of reachabil-
ity in terms of the time (i.e., the number of rounds) re-
quired to reach a target state, and in terms of the types of
winning and spoiling strategies available to the two play-
ers. In particular, while the time to target is bounded from
Sure ����� , only the expected time to target can be bounded
from Almost ������� Sure ����� . From Limit ������� Almost ����� ,
neither the time to target nor the expected time to target
are bounded. We also show that the spoiling strategies
for almost-sure reachability must in general have infinite
memory, in contrast with the situation for Markov decision
processes [Der70] and for limit-sure reachability [KS81].

Third, we introduce a temporal logic for the specifica-
tion of open systems, which can be used both for two-agent
systems (system vs. environment) and for more general,
multi-agent systems. The logic, called Randomized ATL
(RATL), is an extension of the logic Alternating Temporal
Logic of [AHK97]. Both logics let us specify that a set of
agents has strategies to ensure that the paths of the global
system satisfy given temporal properties. The logic ATL
considers only deterministic strategies; hence its semantics
is defined on the basis of the sure answer for reachability
questions. The logic RATL considers instead randomized
strategies, and it distinguishes between three kinds of sat-
isfaction for path properties: sure satisfaction (as in ATL),
almost-sure satisfaction, and limit-sure satisfaction. The
proper hierarchy between sure, almost-sure, and limit-sure
reachability implies a proper hierarchy for the three kinds
of satisfaction. We show that this hierarchy collapses in the
special case of safety properties, such as invariance. Our
algorithms for solving the reachability question for simul-
taneous games lead to a symbolic, quadratic-time model-
checking algorithm for RATL.

Related work. Polynomial-time algorithms to compute
the sets Almost ����� and Limit ����� are already known for
one-player games and for turn-based games.

A one-player game is a game in which only one player
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can choose among more than one move. While determinis-
tic one-player games are equivalent to graphs, and are thus
easily analyzed, probabilistic one-player games are equiv-
alent to Markov decision processes. In Markov decision
processes, standard arguments concerning the existence
of optimal strategies show that Almost ������� Limit ����� ;
moreover, this set can be computed in polynomial time by
a reduction to linear programming [Der70]. If the only
player is player 1, who attempts to reach set � , we can also
compute Almost ����� using the polynomial-time algorithms
independently proposed by [dA97, Var95], which avoid the
use of linear programming. If the only player is player 2, to
compute Almost ����� it suffices to compute the set of states
of a Markov decision process from which � is reached with
probability 1 under all strategies. This can be done with
the polynomial-time algorithms of [HSP83, Var85, CY88],
which again avoid the use of linear programming.

In deterministic turn-based games the three types of win-
ning states coincide; that is, Sure ������� Almost �������
Limit ����� . The problem of computing these sets is equiv-
alent to the previously mentioned AND-OR reachability
problem, and the existence of memoryless deterministic
winning and spoiling strategies follows from an analysis of
the algorithms. In probabilistic turn-based games, we have
Almost ������� Limit ����� , and these sets can be computed in
polynomial time [Yan98]. The problem of computing these
sets can also be reduced to the one of solving switching-
controller undiscounted games, but this reduction does not
yield a polynomial-time algorithm [VTRF83a]. The prob-
lem of deciding which player has the greatest probability
of winning is in NP � CO-NP [Con92].

For general reachability games with finite sets of states
and actions, [KS81] shows the existence of memoryless � -
optimal strategies for both players. While these results
imply the existence of memoryless winning and spoil-
ing strategies for limit-sure reachability, they do not pro-
vide methods for the effective construction of these strate-
gies. The maximal probability with which player 1 can
force a visit to � can be computed with a successive-
approximation method proposed for total-reward stochastic
games [TV87, FV97]. However, we are not aware of previ-
ous criteria for efficiently deciding whether the sequence of
approximations converges to 1. Surveys of algorithms for
general stochastic games can be found in [RF91, FV97].

2. Reachability Games

A (two-player) game structure ���! #" , Moves, Γ1, Γ2, �%$
consists of the following components:

& A finite state space " .

& A finite set Moves of moves.

& Two move assignments Γ1 ' Γ2 : "�() 2Moves �+* . For,.-0/
1 ' 2 1 , assignment Γ 2 associates with each state	 - " the nonempty set Γ 23��	4�65 Moves of moves

available to player
,

at state 	 . For technical con-
venience, we assume that Γ 2���	7��� Γ89�:
;�<�=* unless, �?> and 	<�@
 , for all

, ' > -�/ 1 ' 2 1 and 	 ' 
 - " , so
that all moves are distinct.

& A transition function A : "CB Moves B Moves ()" , which associates with every state 	 - " and all
moves D 1

-
Γ1 ��	4� and D 2

-
Γ2 ��	7� a successor stateA9��	 ' D 1 ' D 2 � - " .

At every state 	 - " , player 1 chooses a move D 1
-

Γ1 ��	4� ,
and simultaneously and independently player 2 chooses a
move D 2

-
Γ2 ��	7� ; the game then proceeds to the successor

state A9��	 ' D 1 ' D 2 � . A path of � is an infinite sequence 	E�	 0 ' 	 1 ' 	 2 '7F4F7F of states in " such that for all GIH 0, there
are moves DKJ1 - Γ1 ��	 J � and DKJ2 - Γ2 ��	 J � such that 	 J7L 1 �A9��	 J ' DKJ1 ' DMJ2 � . We denote by Ω the set of all paths.

A reachability game (or game, for short) NC�O P� ' ��$
consists of a game structure � and a set �Q5=" of target
states; the set � itself is called the target set. The goal
of player 1 in the game N is to reach a state in the target
set � , and the goal of player 2 is to prevent this. Thus,
a reachability game is a special case of a recursive game
[Eve57].

We say that a game structure � is turn-based if at every
state at most one player can choose among multiple moves;
that is, for every state 	 - " there exists at most one,R-�/

1 ' 2 1 with SΓ 2T��	7�4SU� 1.
In the following, we consider a game N � V #" ' Moves ' Γ1 ' Γ2 ' �%$ ' ��$ , unless otherwise noted. To sim-

plify the presentation of the results, we assume that the
target set � is absorbing; that is, we assume that for all	 - � and all D 1

-
Γ1 ��	4� and D 2

-
Γ2 ��	4� , we haveA9��	 ' D 1 ' D 2 � - � . If � is not absorbing, it is trivial to

obtain an equivalent game with an absorbing target set. We
define the size of the game N to be equal to the num-
ber of entries of the transition function A ; specifically,S N<SW�YX[Z]\_^=SΓ1 ��	4�7S`SΓ2 ��	7�4S .
2.1. Strategies

For a finite set a , a probability distribution on a is a
function � : ab() c 0 ' 1d such that Xfe7\Wg �h��DK�[� 1.
We denote the set of probability distributions on a byi �Pa�� . A strategy for player

,j-O/
1 ' 2 1 is a mappingk 2 : "lL�() i � Moves � that associates with every nonempty

finite sequence m - " L of states, representing the past his-
tory of the game, a probability distribution k 2 ��mh� , used
to select the next move. Thus, the choice of the next
move can be history-dependent and randomized. The
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strategy k 2 can prescribe only moves that are available to
player

,
: for all sequences m - "ln and states 	 - " , we

require that if k 2���mh	4�o��DK�p� 0, then D - Γ 2V��	7� . We de-
note by Π 2 the set of all strategies for player

,q-r/
1 ' 2 1 .

Given a state 	 - " and two strategies k 1
-

Π1 andk
2
-

Π2, we define Outcomes ��	 ' k 1 ' k 2 �p5 Ω to be the
set of paths that can be followed when the game starts from	 and the players use the strategies k 1 and k 2. Formally,	 0 ' 	 1 ' 	 2 '7F4F7F - Outcomes ��	 ' k 1 ' k 2 � if 	 0 �r	 and if for allG@H 0 there exist moves DKJ1 - Γ1 ��	 J � and DKJ2 - Γ2 ��	 J �
such that k 1 ��	 0 '4F7F7F;' 	 J �]��DKJ1 �s� 0, k 2 ��	 0 '4F7F4F]' 	 J �o��DKJ2 �.� 0,
and 	 J4L 1

- A9��	 J ' DMJ1 ' DKJ2 � .
Once the starting state 	 and the strategies k 1 and k 2

for the two players have been chosen, the game is reduced
to an ordinary stochastic process. Hence, the probabilities
of events are uniquely defined, where an event tu5 Ω
is a measurable set of paths. For an event tv5 Ω, we
denote by Pr w 1 x w 2Z �ytz� the probability that a path belongs
to t when the game starts from 	 and the players use the
strategies k 1 and k 2. In particular, given a subset �{5="
of states, we denote the event of reaching � by ��|E�����/ 	 0 ' 	 1 ' 	 2 '4F7F4F - Ω S~}+G F 	 J - ��1 . Then, Pr w 1 x w 2Z ��|E���
is the probability of reaching � when the game starts at 	 ,
and playes 1 and 2 use strategies k 1 and k 2, respectively.

Similarly, for a measurable function � that associates a
number in IR � /W� 1 with each path, we denote by E w 1 x w 2Z / ��1
the expected value of � when the game starts from 	 and
the strategies k 1 and k 2 are used. In particular, we denote
by � |�� the measurable function that associates with each
path 	 0 ' 	 1 ' 	 2 '7F4F7F the time min

/ G�H 0 S%	 J - ��1 of first
passage in � . Then, E w 1 x w 2Z / � | � 1 is the expected time to
reach � , when the game starts at 	 , and playes 1 and 2 use
strategies k 1 and k 2, respectively.

Types of strategies. We distinguish the following types
of strategies:

& A strategy k is deterministic if for all m - "lL there
exists D - Moves such that k ��mh�]��DM�s� 1.

& A strategy k is counting if k ��m 1 	7��� k ��m 2 	7� for all	 - " and all m 1 ' m 2
- "ln with S m 1 S+��S m 2 S ; that is,

the strategy depends only on the current state and the
number of past rounds of the game.

& A strategy k is finite-memory if the distribution cho-
sen at every state 	 - " depends only on 	 itself, and
on a finite number of bits of information about the
past history of the game.

& A strategy k is memoryless if k ��mh	7��� k ��	4� for all	 - " and all m - "ln .

2.2. Classification of Winning States

A winning state of game N is a state from which player 1
can reach the target set � with probability arbitrarily close
to 1. We distinguish three classes of winning states:

& The class Sure ����� of sure-reachability states consists
of the states from which player 1 has a strategy to
force the game to � . Precisely, 	 - Sure ����� iff
there is k 1

-
Π1 such that for all k 2

-
Π2 we have

Outcomes ��	 ' k 1 ' k 2 �.5[� | ��� .
& The class Almost ����� of almost-sure-reachability

states consists of the states from which player 1 has
a strategy to reach � with probability 1. Precisely,	 - Almost ����� iff there is k 1

-
Π1 such that for allk

2
-

Π2 we have Pr w 1 x w 2Z � | ���.� 1.

& The class Limit ����� of limit-sure-reachability states
consists of the states from which for every real �s� 0,
player 1 has a strategy to reach � with probabil-
ity greater than 1 �Y� . Precisely, 	 - Limit ����� iff
sup w 1

\ Π1
inf w 2

\ Π2
Pr w 1 x w 2Z � | ����� 1.

Clearly, Sure ������5 Almost �����p5 Limit ����� . There are
games for which both inclusions are strict. The strictness of
the inclusion Sure ������5 Almost ����� follows from the well-
known fact that randomized strategies are more powerful
than deterministic strategies [vN28], and is witnessed by
the state 
 throw of the game LEFT-OR-RIGHT. The strictness
of the inclusion Almost �����.5 Limit ����� is witnessed by the
state 	 hide of the game HIDE-OR-RUN [KS81].

Winning and spoiling strategies. A winning strategy
for sure reachability is a strategy k 1 for player 1 that
acts as a witness to all states in Sure ����� ; that is, for
all states 	 - Sure ����� and all strategies k 2 of player 2,
Outcomes ��	 ' k 1 ' k 2 ��5!� | ��� . Similarly, a winning strat-
egy for almost-sure reachability is a strategy k 1 for player 1
such that for all states 	 - Almost ����� and all strategies k 2

of player 2, Pr w 1 x w 2Z � | ����� 1. A winning strategy fam-
ily for limit-sure reachability is a family

/ k
1 c ��d�S%�p� 0 1

of strategies for player 1 such that for all reals ��� 0,
all states 	 - Limit ����� , and all strategies k 2 of player 2,
Pr w 1 � �T� x w 2Z � | ���.� 1 ��� .

A spoiling strategy for sure reachability is a strat-
egy k 2 for player 2 that acts as a witness to all states	��- Sure ����� and all strategies of player 1; that is, for
all states 	Y�- Sure ����� and all strategies k 1 of player 1,
Outcomes ��	 ' k 1 ' k 2 ���5!� | ��� . Similarly, a spoiling strat-
egy for almost-sure reachability is a strategy k 2 for player 2
such that for all states 	E�- Almost ����� and all strategies k 1 of
player 1, Pr w 1 x w 2Z � | ���s� 1. Finally, a spoiling strategy for
limit-sure reachability is a strategy k 2 for player 2 such that
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Reachability

Sure Almost Limit

Complexity �6���h� �6��� 2 � �6��� 2 �
Winning strategies DM M M

Spoiling strategies M C M

Time Bnd Unb Unb

Expected time Bnd Bnd Unb

Table 1. Overview of results about sure, almost-
sure, and limit-sure reachability. The input size
of the game is indicated by � . The abbrevia-
tions DM, M, C stand for deterministic memory-
less, (randomized) memoryless, and (random-
ized) counting, respectively; the abbreviations
Bnd and Unb stand for bounded and unbounded.

there exists a real ��� 0 such that for all states 	��- Limit �����
and all strategies k 1 of player 1, Pr w 1 x w 2Z � | ���.� 1 ��� .

We will show that for all three types of reachability,
winning and spoiling strategies always exist.

2.3. Overview of Our Results

In Table 1 we present an overview of the main results on
reachability games that are presented in this paper. The
first row lists the complexity of the algorithms for com-
puting the sets of winning states with respect to the three
types of reachability. The second and the third row list
the types of winning and spoiling strategies available to the
players. For each type of reachability, we list the tightest
class of strategies that always contains at least one such
winning and spoiling strategy (according to the classifica-
tion of Section 2.1). The last two rows state whether the
time to the target, and the expected time to the target, are
bounded on the winning states.

For a state 	 - " and an integer ��H 0, we say that
the time from 	 to � is bounded by � if there exists a
strategy k 1 for player 1 such that for all strategies k 2 of
player 2, sup

/ � | � � 	7��S 	 - Outcomes ��	 ' k 1 ' k 2 �o1p��� .
If the time from 	 to � is not bounded by any integer � ,
we say that the time from 	 to � is unbounded. We say that
the expected time from 	 to � is bounded if there exists an
integer ��H 0 and a strategy k 1 for player 1 such that for
all strategies k 2 of player 2, we have E w 1 x w 2Z / � |�� 1���� .
Note that for every state 	6�- Sure ����� , the time from 	 to �

is unbounded, because not all paths reach � , and for every
state 	f�- Almost ����� , the expected time from 	 to � is
unbounded, because � is reached with probability always
smaller than 1.

3. Computing the Winning States

In this section we present algorithms for computing the
three sets Sure ����� , Almost ����� , and Limit ����� .
3.1. Sure-Reachability States

To compute the set Sure ����� , we introduce the notion of
move subassignments, and the functions Pre and Stay.

A move subassignment � for player 1 is a mapping � :
"�() 2Moves that associates with each state 	 - " a subset�h��	4��5 Γ1 ��	4� of moves. We use move subassignments to
limit the set of moves that player 1 can play during the
game. We denote by ∆ the set of all move subassignments
for player 1.

The function Pre1 : 2
^ B ∆ () 2

^
is defined by

Pre1 �3� ' ������ 	 - "[�� }+D 1
- �h��	4� F]  D 2

-
Γ2 ��	7� F A9��	 ' D 1 ' D 2 � - �z¡ F

Intuitively, Pre1 �3� ' ��� is the set of states from which
player 1 can be sure of being in � after one round us-
ing only moves from � , regardless of the move chosen by
player 2. The function Pre2 : 2

^ B ∆ () 2
^

is defined in a
similar way:

Pre2 �3� ' ������ 	 - "[�� }+D 2
-

Γ2 ��	7� Fo  D 1
- ����	7� F A9��	 ' D 1 ' D 2 � - � ¡ F

Note that in both Pre1 �3� ' ��� and Pre2 �3� ' ��� the subassign-
ment � refers to player 1. The function Stay1 : 2

^ () ∆ is
defined such that for all states 	 - " ,

Stay1 �V���]��	4���� D 1
-

Γ1 ��	7����   D 2
-

Γ2 ��	7� F A9��	 ' D 1 ' D 2 � - � ¡ F
Intuitively, Stay1 �3��� is the largest move subassignment for
player 1 that guarantees that the game is in � after one
round, regardless of the move chosen by player 2.

The set Sure ����� can be computed using the following
algorithm.

Algorithm 1
Input: Reachability game N��� #� ' ��$ .
Output: Sure-reachability set Sure ����� .
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Initialization: Let � 0 �[� .
Repeat For G�H 0, let � J4L 1 ��� J � Pre1 �3� J ' Γ1 �
Until � J7L 1 �C� J .
Return: � J .

The algorithm is identical to the one used for turn-based
games [TW68], and it can be implemented to run in time
linear in the size of the game [Bee80]. The algorithm
can also be implemented symbolically, as a fixed-point
computation on state sets [BCM+92]. The theorem below
summarizes some basic facts about the set Sure ����� .
Theorem 1 For a reachability game with target set � :

1. Algorithm 1 computes the set Sure ����� . The algo-
rithm can be implemented to run in time linear in the
size of the game.

2. Player 1 has a memoryless deterministic winning
strategy for sure reachability.

3. Player 2 has a memoryless spoiling strategy for sure
reachability. This spoiling strategy cannot in general
be deterministic.

4. For every state 	 - Sure ����� , the time from 	 to � is
bounded by the size of the state space.

If �¢�v� 0 ' � 1 '4F7F7F3' ��£¤� Sure ����� is the sequence of
sets computed by Algorithm 1, a deterministic memoryless
winning strategy consists in playing at each state 	 - � J7L 1 �� J a fixed move in Stay �3� J �]��	7� , where 0 �QG?�¥� . A
simple memoryless spoiling strategy for player 2 consists
in choosing a move uniformly at random from the available
moves at each state. To see that deterministic spoiling
strategies may not exist in general, it suffices to consider
the state 
 throw of the game LEFT-OR-RIGHT.

Reachability in turn-based games. If a reachability
game with target set � is turn-based, then player 2 has a de-
terministic spoiling strategy k 2 such that Pr w 1 x w 2Z � | ���l� 0
for all strategies k 1

-
Π1 for player 1 and all states	[�- Sure ����� . Such a spoiling strategy simply chooses

at each 	��- Sure ����� one of the moves ¦ - Γ2 ��	4� such thatA9��	 ' D ' ¦��§�- Sure ����� for all D - Γ1 ��	4� [Tho95].
This observation leads to the fact that in turn-based

games we have Sure �����¨� Almost ������� Limit ����� , i.e.,
the three notions of reachability coincide. Another conse-
quence of the above observation is that deterministic turn-
based reachability games have “0-1 laws”; that is, for all
states 	 - " of a turn-based game,

supw 1
\ Π1

infw 2
\ Π2

Pr w 1 x w 2Z ��|���� -�/ 0 ' 1 1 F

This 0-1 law only applies to deterministic, turn-based
games. As an example of a (non-turn-based) determin-
istic game without a 0-1 law, consider a one-round version
of the game LEFT-OR-RIGHT. After the only round, the game
moves from the state 
 throw either to the state 
 hit or to the
state 
 missed. Then,

supw 1
\ Π1

infw 2
\ Π2

Pr w 1 x w 2©
throw

� | / 
 hit 1ª�l� 1
2 F

3.2. Almost-Sure-Reachability States

The algorithm for the computation of the set Almost �����
uses the function Safe. For

,�-�/
1 ' 2 1 , the function Safe 2 :

2
^ B ∆ () 2

^
associates with each state set �[5Y" and each

move subassignment �p5 ∆ the largest subset «C5f� such
that Pre 2 �3« ' ���§5C« . The set Pre 2 �3« ' ��� can be computed
as the limit of the decreasing sequence � 0 �[« ' � 1 ' � 2 '7F7F4F ,
where we take � J7L 1 ��«¬� Pre 2 �3� J ' �%� for G6H 0. Hence,
the set « is the largest subset of � that player

,
can be

sure of not leaving at any time in the future, regardless of
the moves chosen by the other player, given that player 1
chooses moves only according to � . Using an appropriate
data structure, as suggested in [Bee80], the computation of
Safe 2 �V« ' ��� can be implemented to run in linear time.

The set Almost ����� can be computed using the following
algorithm. The algorithm has running time quadratic in the
size of the game, and it can be implemented symbolically
as a nested fixed-point computation.

Algorithm 2
Input: Reachability game N��� #� ' ��$ .
Output: Almost-sure-reachability set Almost ����� .

Initialization: Let � 0 �[" , � 0 � Γ1.
Repeat For G�H 0, let

­ J � Safe2 �V� J ��� ' � J � '� J7L 1 � Safe1 �V� J � ­ J ' � J � '� J7L 1 � Stay1 �V� J7L 1 �
Until � J4L 1 ��� J .
Return: � J .

The algorithm can be understood as follows. The set
­

0 is
the largest subset of "E�~� to which player 2 can confine the
game. Player 1 must avoid entering

­
0 at all costs: if

­
0

is entered with positive probability, � will not be reached
with probability 1. The set � 1 is the largest set of states
from which player 1 can avoid entering

­
0. The move

subassignment � 1 then associates with each state the set of
moves that player 1 can select in order to avoid leaving � 1.
Since � 1 5 Γ1, by choosing only moves from � 1, player 1
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may lose some of the ability to resist confinement. The
set
­

1 is the largest subset of � 1 �E� to which player 2
can confine the game, under the assumption that player 1
uses only moves from � 1. The set � 2 is then the largest
subset of � 1 from which player 1 can avoid entering

­
1,

and the subassignment � 2 5Q� 1 guarantees that player 1
never leaves � 2. The computation of

­ J , � J7L 1, and � J4L 1,
for G?H 0, continues in this way, until we reach �®� 0
such that:

& if player 1 chooses moves only from � £ , the game
will never leave � £ ;

& player 2 cannot confine the game to � £ ��� , even if
player 1 chooses moves only from � £ .

At this point, we have � £ L 1 �C� £ � Almost ����� .
Theorem 2 For a reachability game with target set � :

1. Algorithm 2 computes the set Almost ����� . The algo-
rithm can be implemented to run in time quadratic in
the size of the game.

2. Player 1 has a memoryless winning strategy for
almost-sure reachability. This winning strategy can-
not in general be deterministic.

3. Player 2 has a counting spoiling strategy for almost-
sure reachability. This spoiling strategy cannot in
general be deterministic, nor finite-memory.

4. For every state 	 - Almost ����� , the expected time
from 	 to � is bounded.

If "��¯� 0 ' � 1 '4F7F7F;' � £ � Almost ����� and � 1 '7F4F7F]' � £
are the sequences of sets and move subassignments com-
puted by the algorithm, a memoryless winning strategy
for player 1 consists in playing at each state 	 - � £ a
move chosen uniformly at random from � £ ��	7� . Result 4
then follows from results about the stochastic shortest-path
problem [BT91].

The game HIDE-OR-RUN is an example of a game that
does not have a finite-memory spoiling strategy. In fact, it
can be seen that for each finite-memory strategy of player 2,
player 1 has a strategy to get from 	 hide to 	 home with prob-
ability 1. To construct an infinite-memory spoiling strat-
egy, we proceed as follows. Consider the two memoryless
strategies k 1

2 and k 2
2 for player 2 defined by

° k 1
2 ��	 hide �o� throw ��� 0k 1
2 ��	 hide �o� wait ��� 1

° k 2
2 ��	 hide �]� throw �l� 1

2k 2
2 ��	 hide �]� wait ��� 1

2 F
The strategy k 1

2 is effective against the strategies of player 1
that wait till player 2 throws the snowball before running.
On the other hand, the strategy k 2

2 is effective against the

strategies of player 1 that may run before having seen
player 2 throw the snowball. To obtain a spoiling strat-
egy, which must work in all cases, we “mix” the strategiesk 1

2 and k 2
2 , as if player 2 could secretly flip a coin before the

game starts to decide which of the two strategies to use. The
idea of flipping a coin before the game starts to determine
which strategy to use is known as initial randomization,
and it constrasts with on-the-fly randomization, which is
the process of flipping coins during the game to choose
the move to be played. Our definition of strategy allows
only on-the-fly randomization. Nevertheless, from [Der70]
we know that initial randomization between finitely many
strategies k 1 ' k 2 '7F4F7F]' k £ can be simulated by a single strat-
egy k that uses on-the-fly randomization only. However,
there is a price to pay: even when strategies k 1 ' k 2 '4F7F4F]' k £
are memoryless, strategy k may need infinite memory. In
our case, by mixing the strategies k 1

2 and k 2
2 with equal

probability, we obtain the strategy k 2, defined for all G�� 0
by k

2 ��	 hide J �o� wait �l� 2 ±P² 1 ³ 2 ´]µ '
where 	 hide J is the path consisting of G states 	 hide. It is
easy to check that if player 2 plays according to k 2, then she
eventually throws a snowball with (cumulative) probability
1/2, consistent with the fact that k 2 is the “equal probability
mix” of k 1

2 and k 2
2. Note that k 2 is an infinite-memory,

counting strategy.

3.3. Limit-Sure-Reachability States

Similarly to the algorithm for almost-sure reachability, the
algorithm for limit-sure reachability computes a decreasing
sequence � 0 �C" , � 1, � 2, F7F7F of candidate winning states;
the set Limit ����� is the limit of this sequence. At each
iteration G�H 0, the algorithm determines a set

­ J 5[� J �+�
of states from which player 1 cannot force a visit to �
with probability arbitrarily close to 1, and assigns � J7L 1 �� J � ­ J .

The set
­ J is also determined in an iterative fashion.

Initially, we set
­ 0J �¤� J �¨� ; then, we remove states

from this set, computing a decreasing sequence
­ 0J ,

­ 1J ,­ 2J , F7F4F that converges to
­ J . To understand how this latter

sequence is computed, consider the stage of these iterations
when sets � J and

­ 8J have been computed, and consider
a state 	 - ­ 8J . From the point of view of player 1, the
situation from 	 is as follows. By construction, the states in"¶�§� J are not winning states, so that player 1 must avoid
leaving � J . Moreover, as

­ 8J ���C�[* , player 1 must also
avoid being trapped in

­ 8J . Hence, player 1 must try to
escape from

­ 8J , and at the same time avoid leaving � J .
Denote by · 1

-pi � Γ1 ��	4�V� and · 2
-�i � Γ2 ��	7�3� the distri-

butions used by players 1 and 2 at 	 , respectively. Given
a subset «¸5¹" of states, indicate by ����	 ' · 1 ' · 2 �o�3«E� the
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probability of going from 	 to « in one round under distri-
butions · 1 and · 2. Consider the ratio

�h��	 ' · 1 ' · 2 �]��"�� ­ 8J ��h��	 ' · 1 ' · 2 �]��"¶�§� J � (1)

between the probabilities of escaping from
­ 8J and of leav-

ing � J . If player 1 can choose · 1 to make the ratio (1)
arbitrarily large, then any attempt of player 2 to confine
the game to

­ 8J can involve 	 only in a transitory fashion:
in fact, infinitely many visits to 	 would lead to escaping
from

­ 8J with arbitrarily high probability, while losing the
game by leaving � J with negligible probability. On the
other hand, if the ratio (1) cannot be made arbitrarily large,
then player 2 can choose · 2 so that, at each visit to 	 , the
probability of leaving

­ 8J is compensated by a proportional
probability of leaving � J . In this case, player 1 cannot use
state 	 to escape from

­ 8J .These considerations motivate our definition of limit-
escape states. Given the sets ��5¹" and

­ 5Q� , and a
state 	 - ­ , we say that 	 is limit escape with respect to

­
and � if

supº
1
\W» ± Γ1 ± Z µyµ

infº
2
\ª» ± Γ2 ± Z µyµ

�h��	 ' · 1 ' · 2 �]��"¶� ­ ��h��	 ' · 1 ' · 2 �]��"¶�§��� �
� F (2)

A state 	 is then removed from
­ 8J to form

­ 8 L 1J iff it is
limit escape with respect to

­ 8J and � J .
Let us illustrate the algorithm for limit-sure reachability

on the game HIDE-OR-RUN. The algorithm first computes­
0 � / 	 wet 1 and � 1 � / 	 hide ' 	 safe ' 	 home 1 . The state 	 safe

is easily eliminated from
­ 0

1 � / 	 hide ' 	 safe 1 , leading to­ 1
1 � / 	 hide 1 . At 	 hide, player 1 can play either hide or

run. To escape from
­ 1

1 and reach 	 home with arbitrarily
high probability, player 1 must be “patient” and choose
move run with sufficiently low probability at each round.
Precisely, for every 0 �O�f� 1, define the distribution· 1 c �¼d -½i � Γ1 ��	7�3� by:

· 1 c �¼d�� run ���f� ' · 1 c �¼d�� hide ��� 1 ��� F (3)

By using distribution · 1 c ��d and letting �E) 0, player 1 can
make the ratio (1) diverge (for G���>E� 1); in fact,

lim�]¾ 0
infº

2
\W» ± Γ2 ± Z µyµ

�h��	 ' · 1 c ��d ' · 2 �]��"¶� ­ 1
1 ��h��	 ' · 1 c �¼d ' · 2 �]��"p�§� 1 �

� lim�]¾ 0
inf

0 ¿hÀ]¿ 1

�_� 1 ���W�hÁY� 1 ���ª�V�
�W� � lim�;¾ 0

1 ���
� � � F

The divergence of the ratio between the one-round prob-
ability of escape and the one-round probability of capture
enables player 1 to eventually escape with probability ar-
bitrarily close to 1. To verify this, let k 1 c ��d be the mem-
oryless strategy for player 1 that uses distribution · 1 c �¼d at

state 	 hide. Once k 1 c ��d is fixed, results on Markov decision
processes ensure that the optimal strategy for player 2 to
avoid reaching � is memoryless (and also deterministic)
[Der70]. Hence, simple calculations show that

infw 2
\ Π2

Pr w 1 � ��� x w 2Z
hide

��| / 	 home 1ª��� 1 ��� F
The fact that 	 hide

-
Limit ����� follows by taking the limit�Q) 0 in this equation. This confirms that 	 hide

-
Limit ������� Almost ����� , as we mentioned in the introduc-
tion.

There is a relation between the computation of the
sets

­ J in the algorithms for almost-sure and limit-sure
reachability. In Algorithm 2, the set

­ J is computed by­ J � Safe2 �V� J ��� ' � J � . If we expand the computation of­ J , we see that
­ J is again computed as the fixpoint of a

decreasing sequence
­ 0J ,

­ 1J ,
­ 2J , F7F4F For >�H 0, a state 	

is removed from
­ 8J if there is · 1 such that for all · 2, the

numerator of (1) is nonzero, and the denominator is 0. In
this case, player 1 from 	 can use · 1 to escape

­ 8J with pos-
itive probability, while not risking a retreat from � J . Such
an 	 is called a safe-escape state. For almost-sure reach-
ability, player 1 must use safe escape, because in order to
reach the target with probability 1 he cannot risk to lose.
For limit-sure reachability, player 1 can instead use limit
escape: as long as the ratio between risk (of retreat) and
escape (towards the target) can be made arbitrarily large,
the player can reach the target with probability arbitrarily
close to 1.

3.3.1 Computing Limit-Escape States

The following algorithm determines whether a state is limit
escape.

Algorithm 3
Input: Game structure � , two sets

­ 5��=5r" of states,
and a state 	 - ­ .
Output: YES if 	 is limit escape with respect to

­
and � ,

NO otherwise.

Initialization: Let Â ² 1 �[* .
Repeat For G�H 0, let

t J �
� D - Γ1 ��	4����   ¦ - Γ2 ��	4� F

if A9��	 ' D ' ¦¼�<�- � then ¦ - Â J ² 1 ¡ '
Â J �

� ¦ - Γ2 ��	7� �� }ÃD - t J F A9��	 ' D ' ¦��§�- ­ ¡
Until t J4L 1 �@t J and Â J7L 1 �fÂ J .
Return: YES if Â J � Γ2 ��	4� , NO otherwise.

We say that a move D - Γ1 ��	7� is labeled if D - t J for someGjH 0; if D is labeled we define ÄW��DK��� min
/ª, S+D - t 2 1 .
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Similarly, we say that a move ¦ - Γ2 ��	7� is labeled if ¦ - Â J
for some G¬H 0. The algorithm declares the state 	 limit
escape with respect to

­
and � iff all moves Γ2 ��	7� for

player 2 at 	 are labeled. When Algorithm 3 is given as
input state 	 hide of the game HIDE-OR-RUN and

­ � / 	 hide 1 ,�=� / 	 hide ' 	 safe ' 	 home 1 , it labels the moves of player 1 at	 hide with

ÄW� hide ��� 0 ' Äª� run ��� 1 F (4)

If a state 	 is declared limit escape, then also all moves
in Γ1 ��	7� are labeled, and their labels provide us with an� -indexed family · 1 c ��d of distributions that make the ratio
(2) diverge. Precisely, for 0 �?�E� 1 ÅK� 2 SΓ1 ��	4�7S � , the distri-
bution · 1 c �¼d plays move D - Γ1 ��	7� with probability �¼Æ ± e µ ifÄW��DK�s� 0, and it plays all moves in

/ D - Γ1 ��	4��S¼ÄW��DK��� 0 1
uniformly at random with the remaining probability. From
(4), we see that the distribution constructed in this fashion
for the state 	 hide of the game HIDE-OR-RUN coincides with
the one given in (3).

3.3.2 Computing Limit-Sure Reachability States

Given the target set � and a subset ��5Ç" with ��5� , the following algorithm computes the largest subset
Cage �3����� ­ 5Q�@��� that does not contain any limit-
escapestate with respect to

­
and � . The set

­
is computed

as the limit of the previously described decreasing sequence­ 0,
­ 1,

­ 2, F7F4F
Algorithm 4
Input: Reachability game NY�¥ P� ' ��$ , and �Q5!" with�[5[� .
Output: Cage �V���.5@" .

Initialization: Let
­ 0 ���I��� .

Repeat For >�H 0, let
­ 8 L 1 �/ 	 - ­ 8 SÈ	 is not limit escape w.r.t.

­ 8 and �E1
Until

­ 8 L 1 � ­ 8 .
Return:

­ 8 .
The set Limit ����� can be computed using the following algo-
rithm, which uses the computation of Cage as a subroutine.

Algorithm 5
Input: Reachability game N��� #� ' ��$ .
Output: Limit-sure-reachability set Limit ����� .

Initialization: Let � 0 �[" .
Repeat For G�H 0, let � J4L 1 ��� J � Cage �V� J �
Until � J7L 1 �C� J .
Return: � J .

The followingtheorem summarizes the results on limit-sure
reachability.

Theorem 3 For a reachability game with target set � :

1. Algorithm 5 computes the set Limit ����� . The algo-
rithm can be implemented to run in time quadratic in
the size of the game.

2. Player 1 has a family of memoryless winning strate-
gies for limit-sure reachability. These winning strate-
gies cannot in general be deterministic.

3. Player 2 has a memoryless spoiling strategy for limit-
sure reachability. This spoiling strategy cannot in
general be deterministic.

To obtain a version of the algorithm that runs in quadratic
time it is necessary to optimize the implementation of Al-
gorithm 4; the optimized version is given in [dAHK98].
Results 2 and 3 are from [KS81]; the construction of the
winning and spoiling strategies is explained in [dAHK98].

To see that deterministic memoryless winning strategies
may not exist in general, it suffices to consider the state
 throw of the game LEFT-OR-RIGHT. To see that deterministic
memoryless spoiling strategies may not exist in general,
it suffices to consider again the one-round version of the
game LEFT-OR-RIGHT, in which after the only round the
game moves from the state 
 throw either to the state 
 hit or
to the state 
 missed. Then, it is immediate to check that
Limit � / 
 hit 1W�<� / 
 hit 1 ; moreover, by considering the state
 throw we see that there are no deterministic spoiling strate-
gies.

4. Randomized ATL

For the specification and verification of open systems,
[AHK97] introduced the temporal logic Alternating Tem-
poral Logic (ATL). The logic ATL is interpreted over multi-
player game structures, and includes formulas of the form  ya�$ $VÉ , which asserts that a team a of players (called agents)
has a strategy to ensure that all outcomes of the game sat-
isfy the path property É . The semantics of the logic ATL is
defined with respect to deterministic strategies only. Con-
sequently, in a two-player game structure, if Ê � is a formula
defining the target set � , then the formula   Player1 $ $ | Ê �
is true exactly in the sure-reachability states.

In this section, we generalize the logic to Randomized
ATL (RATL). The logic RATL is defined with respect to ran-
domized strategies, and distinguishes between three kinds
of satisfaction for path properties: sure satisfaction, almost-
sure satisfaction, and limit-sure satisfaction; correspond-
ingly, the single path quantifier   �$ $ of ATL is replaced by
the three quantifiers   �$ $ sure,   �$ $ almost, and   �$ $ limit. For
example, the formula   Player1 $ $ almost | Ê � will be true ex-
actly in the almost-sure-reachability states.
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Formally, a system Ë=�Ì #� ' " ' Moves ' Γ ' A ']Í�']Î $ con-
sists of a number �!� 0 of agents, a finite state space" , a finite set Moves of moves, a move assignment
Γ : "[B / 1 '4F7F4FV' �~1p() 2Moves �E* , a transition functionA : "0B MovesÏp()®" , a finite set Í of propositions, and a
function Î : "�() 2 Ð that labels each state with the proposi-
tions that are true in the state. Thus, a system with � agents
is a labeled � -player game structure: at every state 	 - " ,
each agent

,l-�/
1 '7F7F4FV' �~1 chooses a move D 2 - Γ ��	 ' , � , and

the game proceeds to the state A9��	 ' D 1 '4F7F4F]' D Ï � . Typically,
the agents model individual processes, or components, of
a reactive program. The paths of Ë are defined in anal-
ogy to two-player game structures. A strategy k g for a
(possibly empty) set aÌ� /W,

1 '7F4F7F]' , J 105 /
1 '7F4F7F3' �~1 of

agents is a mapping k g : "lL¸() i � Moves J � such thatk g ��mh	7�]��D 1 '7F4F7F]' D J ��� 0 implies D 8 - Γ ��	 ' , 8 � for all
1 ��>¨�rG . Given a set a of agents, we denote by Π g the
set of strategies for a .

The temporal logic RATL is defined with respect to a
set Í of propositions and a set Σ � / 1 '7F4F7F3' �~1 of agents.
A Randomized ATL formula is one of the following:

& � , for propositions � - Í .

&�Ñ Ê or Ê½ÒpÓ , where Ê and Ó are RATL formulas.

&   :a�$ $ win Ê or   ya�$ $ win Ô Ê or   :a�$ $ win Ê<ÕEÓ , wherea 5 /
1 '4F7F7F;' �~1 is a set of agents, win

-/
sure ' almost ' limit 1 is a type of winning condition,

and Ê and Ó are RATL formulas.

The operators   9$ $ win are path quantifiers, and (“next”), Ô
(“always”), and Õ (“until”) are the usual temporal opera-
tors [MP91]. We interpret RATL formulas over the states of
a system Ë that has the same sets of agents and propositions
used to define the formulas. The subformulas of RATL of
the form Ê , Ô Ê , or Ê§ÕEÓ are called path subformulas,
and they are interpreted over the paths of Ë . For a path
subformula É , we denote by c cÖÉ¼d d the event consisting of all
paths that satisfy É , as defined by the standard semantics of
the temporal operators. Subformulas of RATL of the form� , Ñ Ê , Ê�Ò�Ó , or   ya�$ $ win É are called state subformulas,
and they are interpreted over the states of Ë . For a state
subformula Ê , we write 	�S ��Ê to indicate that the state 	
satisfies Ê . We present here only the semantics for state
subformulas of the form   ya�$ $ win É ; the propositional and
boolean cases are standard. For a path subformula É , we
define:

& 	 S �   :a�$ $ sure É iff there exists k g -
Π g

such that for all k
Σ × g -

ΠΣ × g we have
Outcomes ��	 ' k g ' k Σ × g ��5¤c cÖÉ¼d d .

& 	½S �Q  ya�$ $ almost É iff there exists k g - Π g such that
for all k Σ × g - ΠΣ × g we have Pr w7Ø x w Σ Ù ØZ �;c cÖÉ¼d d#�l� 1.

& 	�S �C  ya�$ $ limit É iff

supw Ø \ Π Ø infw Σ Ù Ø \ ΠΣ Ù Ø Pr w7Ø x w Σ Ù ØZ �]c cÖÉ¼d d:�l� 1 F
In particular, the logic ATL is the fragment of RATL where
the only path quantifier is   ya�$ $ sure.

If 	¬S �Ú  :a�$ $ win É , for win
-[/

sure ' almost ' limit 1 , then
the winning strategies provide a controller

­
for the set

of agents a . When the controller
­

is composed with
the set a of agents, the resulting system is guaranteed to
satisfy É with win confidence. If win � sure, then the
controller can always be chosen to be deterministic and
memoryless. If win

-�/
almost ' limit 1 , then the controller

can still be chosen to be memoryless, but it may need to be
randomized.

From the classification of winning states in Section 2, it
follows that 	�S ��  ya�$ $ sure É implies 	�S �C  ya�$ $ almost É , which
in turn implies 	�S ��  :a�$ $ limit É ; the reverse implications do
not necessarily hold. Interestingly, the implications can be
strict only for path subformulas É of the form Ê<ÕEÓ , which
specify liveness-like properties (such as reachability). By
contrast, for path subformulas É of the form Ê and Ô Ê ,
which specify safety-like properties, the three winning con-
ditions are equivalent.

Theorem 4 Consider a path subformula É of the formÊ or Ô Ê . Then, for every state 	 of a system Ë , we have	¨S �C  :a�$ $ sure É iff 	�S ��  :a�$ $ almost É iff 	�S ��  ya�$ $ limit É .
The model-checking problem for RATL asks, given a

system Ë and an RATL formula Ê , for the set of states ofË that satisfy Ê . A model-checking algorithm for RATL
can proceed bottom-up on the state subformulas of Ê , as
in CTL and ATL model checking [CE81, QS81, AHK97].
The nontrivial cases are   :a�$ $ sure Ê§ÕEÓ ,   :a�$ $ almost Ê§ÕEÓ ,
and   ya�$ $ limit Ê<ÕEÓ . The subformula   ya�$ $ sure Ê<ÕEÓ can be
checked as in ATL. In order to check the other two sub-
formulas, we first construct a two-player game structure,
in which player 1 corresponds to the set a of agents, and
player 2 corresponds to the set Σ �sa . We define the target
set to be �Q� / 	 - "!Sh	�S �{Ós1 . If � is not absorbing,
we locally modify the game structure to make it absorbing.
To check the subformula   ya�$ $ almost Ê§ÕEÓ , we modify Al-
gorithm 2, so that

­
0 � / 	 - "CSK	¶�S �CÊjÒ¶Ós1 . To check

the subformula   :a�$ $ limit Ê§ÕEÓ , we modify Algorithm 5, so
that � 0 � / 	 - "CSK	½S �=ÊpÒ¶Ós1 . Intuitively, while in the| � reachability game player 1 only has to avoid states in
which player 2 can keep him away from the target set � , in
the Ê¨Õ¬Ó game player 1 also has to avoid states that satisfy
neither Ê nor Ó .

Theorem 5 The model-checking problem for RATL spec-
ifications can be solved in time quadratic in the size of the
system and linear in the size of the formula.
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