In Proc. of FOCS 98, 1998.

Concurrent Reachability Games*

Lucade Alfaro

Thomas A. Henzinger

Orna Kupferman

EECS Department, University of California
Berkeley, CA 94720-1770, USA
Email:{dealfaro,tah,orna} @eecs.berkeley.edu

Abstract

An open system can be modeled as a two-player game be-
tween the system and its environment. At each round of the
game, player 1 (the system) and player 2 (the environment)
independently and simultaneously choose moves, and the
two choices determine the next state of the game. Proper-
ties of open systems can be modeled as objectives of these
two-player games. For the basic objective of reachabil-
ity —can player 1 force the game to a given set of target
states?—there are three types of winning states, according
to the degree of certainty with which player 1 can reach
thetarget. Fromtype-1 states, player 1 hasa deterministic
strategy to always reach the target. From type-2 states,
player 1 hasa randomized strategy to reach the target with
probability 1. From type-3 states, player 1 has for every
real ¢ > 0 a randomized strategy to reach the target with
probability greater than 1 — ¢.

We show that for finite state spaces, all three sets of
winning states can be computed in polynomial time: type-
1 states in linear time, and type-2 and type-3 states in
guadratic time. The algorithms to compute the three sets
of winning states also enable the construction of the win-
ning and spoiling strategies. Finally, we apply our results
by introducing a temporal logic in which all three kinds
of winning conditions can be specified, and which can be
model checked in polynomial time. Thislogic, called Ran-
domized ATL, is suitable for reasoning about randomized
behavior in open (two-agent) as well as multi-agent sys-
tems.

*This work was partially supported by the SRC contract 97-DC-
324.041, by ARO under the MURI grant DAAH04-96-1-0341, by the
ONR Y|P award N0O0014-95-1-0520, by the NSF CAREER award CCR-
9501708, by the DARPA/NASA grant NAG-2-1214, and by the NSF grant
CCR-9504469.

1. Introduction

One of the central problems in system verification is the
reachability question: given an initial state s and a target
state ¢, can the system get from s to ¢t? The dynamics of
a closed system, which does not interact with its environ-
ment, can be modeled by a state-transition graph, and the
reachability question reduces to graph reachability, which
can be solvedin linear timeand iscompletefor NLOGSPACE
[Jon75]. By contrast the dynamics of an open system,
which does interact with its environment, is best modeled
as a game between the system and the environment.

In some situations, it may suffice to have the system
and the environment take turns to make moves, yielding a
turn-based model. In this case, the game graphis an AND-
OR graph. A (deterministic) strategy for the AND player
maps every path that ends in an AND state to a successor
state, and similarly for the OR player. Thus the reacha-
bility question (can the system get from s to ¢ no matter
what the environment does?) reduces to AND-OR graph
reachability (does the OR player have a strategy so that for
all strategies of the AND player, the game, if started in s,
reaches ¢?). This problem can again be solved in linear
time and is complete for PTiIME [Imm81]. With respect to
AND-OR graph reachability, randomized strategies are not
more powerful than deterministic strategies. A randomized
strategy for the AND player maps every path that ends in
an AND state to a probability distribution on the succes-
sor states, and similarly for the OR player. In turn-based
models, it can be seen that the AND-OR graph reachability
guestion has the same answer as the probabilistic question
“doesthe OR player have arandomized strategy so that for
all randomized strategies of the AND player, the game, if
started in s, reaches ¢ with probability 17’.

The turn-based model is naive, becausein realistic con-
currency models, in each state, the system and the en-
vironment independently choose moves, and the paralléel
execution of the moves determines the next state. Such

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
1998 2. REPORT TYPE 00-00-1998 to 00-00-1998
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Concurrent Reachability Games £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

University of California at Berkeley,Department of Electrical REPORT NUMBER

Engineering and Computer Sciences,Berkeley,CA,94720-1770

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 12
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

()

e

throwR, standL
throwL, standR

throwR, standR
throwL, standL
tthrow 0

Figure 1. Game LEFT-OR-RIGHT.

a simultaneous game is a natural model for synchronous
systems where the moves are chosen truly simultaneously,
as well as for distributed systems in which the moves are
not revealed until their combined effect is apparent. In par-
ticular, the modeling of synchronization between processes
often requires the consideration of simultaneous games.

The simultaneous case is more genera than the turn-
based one, and deterministic strategies no longer tell the
whole story about the reachability question. The fact that
randomized strategies can be more powerful than deter-
ministic ones is illustrated by the game LEFT-OR-RIGHT,
depicted in Figure 1. Initially, the game is at state tron-
At each round, player 1 can choose to throw a snowball
either at the left window (move throwL) or at the right win-
dow (move throwR). Independently and simultaneously,
player 2 must choose to stand behind either the left window
(move standL) or the right window (move standR). If the
snowball hits player 2, the game proceedsto the target state
tpir; otherwise, another round of the game is played from
tthrow-

For each move of player 1, player 2 has a countermea-
sure. If we consider only deterministic strategies, then for
every strategy of player 1, there is (exactly one) strategy
of player 2 such that #4; is never reached. Hence, if we
base our definitions on deterministic strategies, we obtain
the answer NO to the reachability question. The situation
of player 2, however, is not nearly as safe as this negative
answer implies. If player 1 chooses at each round the win-
dow at which to throw the snowball by tossing a coin, then
player 2 will be hit with probability 1, regardless of her
strategy.

The coin-tossing criterion used by player 1 to select the
move isan example of arandomized strategy, and the game
illustrates the value of randomized strategies for winning
reachability games. If player 1 adoptsadeterministic strat-

egy, the moves he plays during the game are completely
determined by the history of the game, whichisvisiblealso
to player 2. Once player 1 has chosen adeterministic strat-
egy, player 2 can choose her strategy to counteract every
move of player 1, asif shewere ableto seeit before choos-
ing her own move. Randomized strategies postpone the
choice of the move until the gameisbeing played, preclud-
ing this type of spying behavior. Another way of thinking
about randomized strategies is through the concept of ini-
tial randomization. The choice of arandomized strategy is
equivalent to the choice of a probability distribution over
the set of deterministic strategies [Der70]. By choosing
such a distribution, rather than a single strategy, player 1
prevents player 2 from tailoring her strategy to counteract
the strategy chosen by player 1. The greater power of ran-
domized strategiesisawell-knownfact in gametheory, and
it hasits rootsin von Neumann's minimax theorem [vN28].
Oncewe consider randomized strategies, we can answer
the reachability question with three kinds of affirmative
answers. Thefirst kind of answer is the answer sure:

Player 1 hasa strategy so that for all strategies
of player 2, the game, if started in s, always
reachest.

To establish this type of answer, it suffices to consider
deterministic strategies only. The second, weaker kind of
answer isthe answer almost sure:

Player 1 hasa strategy so that for all strategies
of player 2, the game, if started in s, reaches
with probability 1.

To establish thistype of answer, it is necessary to consider
randomized strategies, as previously discussed. Thethird,
yet weaker kind of answer isthe answer limit sure:

For every real € > 0, player 1 hasastrategy so
that for all strategies of player 2, the game, if
started in s, reaches ¢ with probability greater
than1— ¢.

The three kinds of answers form a proper hierarchy, in
the sense that there are cases in which almost-sure reach-
ability holds whereas sure reachability does not, and cases
in which limit-sure reachability holds whereas almost-sure
reachability does not. Note that the second gap does not
appear in reachability problems over Markov chains, or
Markov decision processes [KSK66, BT91]. While the
game LEFT-OR-RIGHT witnesses the first gap, the second
gap is witnessed by the game HIDE-OR-RUN, adapted from
[KSB1] and depicted in Figure 2. The target state is spome,
and the interesting part of the game happens at state spige.
At this state, player 1 is hiding behind a small hill, while
player 2 is trying to hit him with a snowball. Player 1

hide, throw

Figure 2. Game HIDE-OR-RUN.

can choose between hiding or running, and player 2 can
choose between waiting and throwing her only snowball.
If player 1 runs and player 2 throws the snowball, then
player 2 is hit, and the game proceeds to state sye. |If
player 1 runs and player 2 waits, then player 1 gets home,
and the game proceeds to state spome. If player 1 hides and
player 2 throws the snowball, then player 1 is no morein
danger, and the game proceeds to state sqre. Finaly, if
player 1 hides and player 2 waits, the game stays at spige-
In this game, from state spige player 1 does not have a
strategy (randomized or deterministic) that ensures reach-
iNg shome With probability 1: in order to reach home re-
gardless of the strategy of player 2, player 1 may have to
takeachance and run while player 2 is till in possession of
the snowball. On the other hand, if player 1 runswith very
small probability at each round, it becomesvery difficult for
player 2 to time her snowball to coincide with the running
of player 1 —and a badly timed snowball enables player 1
to reach spome- Thus, if player 1 runs at each round with
probability p, when p goesto O, he is able to reach spome
with probability approaching 1 [KS81]. Hence, the answer
to the reachability question islimit sure but not almost sure.

Inthis paper, we study simultaneousreachability games,
and we consider strategies for the players that can be both
randomized and history-dependent. We focus on deter-
ministic games, in which the current state and the players
moves uniquely determine the successor state; the more
general case of probabilistic games, in which the successor
state is chosen according to a probability distribution, is
similar, and has been described in [dAHK 98].

The contributions of the paper are as follows. First,
we provide efficient algorithms that, given a finite simul-

taneous game and a set R of target states, determine the
sets Sure(R), Almost(R), and Limit(R) of initial states for
whichtheanswer to thereachability question issure,almost
sure, and limit sure, respectively. The set Sure(R) can be
determined in linear time [TW68, Bee30]. By contrast, the
determination of the sets Almost(R) and Limit(R) requires
quadratic time. All three algorithms are formulated as
nested fixed-point computations, and can be implemented
using symbolic state-space traversal methods [BCM+92].
Our agorithms also enable the effective construction of
winning strategies for player 1, and spoiling strategies for
player 2, for the three types of answers. The correctness
proofs for the algorithms, and for all results of the paper,
can be found in [dAHK 98].

Second, we characterize the three kinds of reachabil-
ity in terms of the time (i.e., the number of rounds) re-
quired to reach atarget state, and in terms of the types of
winning and spoiling strategies available to the two play-
ers. In particular, while the time to target is bounded from
Sure(R), only the expected time to target can be bounded
from Almost(R) \ Sure(R). From Limit(R) \ Almost(R),
neither the time to target nor the expected time to target
are bounded. We also show that the spoiling strategies
for almost-sure reachability must in general have infinite
memory, in contrast with the situation for Markov decision
processes [Der70] and for limit-sure reachability [KS81].

Third, we introduce a temporal logic for the specifica-
tion of open systems, which can be used both for two-agent
systems (system vs. environment) and for more general,
multi-agent systems. The logic, called Randomized ATL
(RATL), isan extension of the logic Alternating Temporal
Logic of [AHK97]. Both logics let us specify that a set of
agents has strategies to ensure that the paths of the global
system satisfy given temporal properties. The logic ATL
considers only deterministic strategies; hence its semantics
is defined on the basis of the sure answer for reachability
guestions. The logic RATL considers instead randomized
strategies, and it distinguishes between three kinds of sat-
isfaction for path properties: sure satisfaction (asin ATL),
almost-sure satisfaction, and limit-sure satisfaction. The
proper hierarchy between sure, amost-sure, and limit-sure
reachability implies a proper hierarchy for the three kinds
of satisfaction. We show that thishierarchy collapsesinthe
special case of safety properties, such as invariance. Our
algorithms for solving the reachability question for simul-
taneous games lead to a symbolic, quadratic-time model-
checking algorithm for RATL.

Related work. Polynomial-time algorithms to compute
the sets Almost(R) and Limit(R) are already known for
one-player games and for turn-based games.

A one-player game is a game in which only one player

can choose among more than one move. While determinis-
tic one-player games are equivalent to graphs, and are thus
easily analyzed, probabilistic one-player games are equiv-
alent to Markov decision processes. In Markov decision
processes, standard arguments concerning the existence
of optimal strategies show that Almost(R) = Limit(R);
moreover, this set can be computed in polynomial time by
a reduction to linear programming [Der70]. If the only
player isplayer 1, who attemptsto reach set R, we can also
compute Almost(R) using the polynomial-time algorithms
independently proposed by [dA 97, Var95], which avoid the
use of linear programming. If theonly player isplayer 2, to
compute Almost(R) it suffices to compute the set of states
of aMarkov decision processfrom which R isreached with
probability 1 under al strategies. This can be done with
the polynomial-time a gorithms of [HSP83, Var85, CY 88],
which again avoid the use of linear programming.

I n deterministic turn-based gamesthe threetypes of win-
ning states coincide; that is, Sure(R) = Almost(R) =
Limit(R). The problem of computing these sets is equiv-
alent to the previously mentioned AND-OR reachability
problem, and the existence of memoryless deterministic
winning and spoiling strategies followsfrom an analysis of
the algorithms. In probabilistic turn-based games, we have
Almost(R) = Limit(R), and these sets can be computed in
polynomial time[Yan98]. The problem of computing these
sets can also be reduced to the one of solving switching-
controller undiscounted games, but this reduction does not
yield a polynomial-time algorithm [V TRF83a]. The prob-
lem of deciding which player has the greatest probability
of winningisin NP N co-NP[Con92].

For general reachability games with finite sets of states
and actions, [KS81] shows the existence of memorylesse-
optimal strategies for both players. While these results
imply the existence of memoryless winning and spoil-
ing strategies for limit-sure reachability, they do not pro-
vide methods for the effective construction of these strate-
gies. The maximal probability with which player 1 can
force a visit to R can be computed with a successive-
approximation method proposed for total -reward stochastic
games[TV87, FV97]. However, we are not aware of previ-
ouscriteriafor efficiently deciding whether the sequence of
approximations converges to 1. Surveys of algorithms for
genera stochastic games can be found in [RF91, FV97].

2. Reachability Games

A (two-player) game structure G = (S, Moves, I'1, 2, p)
consists of the following components:
¢ A finite state space S.

o A finite set Moves of moves.

o Twomoveassignmentsly, Mp: S — 2MOVES\ For
i € {1,2}, assignment I; associates with each state
s € S the nonempty set I';(s) C Moves of moves
available to player i at state s. For technical con-
venience, we assume that I;(s) N T;(¢) = 0 unless
i=jands =¢,fordli je{1,2}ands,t €S, 0
that all moves are distinct.

e A transition function 6 : S x Moves x Moves —
S, which associates with every state s € S and all
moves a1 € M1(s) and a2 € M2(s) asuccessor state
8(s,a1,a2) € S.

At every state s € S, player 1 choosesamove a; € 1(s),
and simultaneously and independently player 2 chooses a
move ay € My(s); the game then proceeds to the successor
state §(s, a1, az). A path of G isan infinite sequences =
80, 51, 52, ... Of states in S such that for all £ > 0, there
aremoves at € y(sy) and ah € My(sy,) suchthat sy, 1 =
§(sk,a’, a%). We denote by Q the set of all paths.

A reachability game (or game, for short) G = (G, R)
consists of a game structure G and aset R C S of target
states; the set R itself is called the target set. The goal
of player 1 in the game G is to reach a state in the target
set R, and the goal of player 2 is to prevent this. Thus,
a reachability game is a special case of a recursive game
[Eve5T7].

We say that agame structure GG isturn-based if at every
state at most one player can choose among multiple moves,
thet is, for every state s € S there exists at most one
i €{1,2} with|;(s)] > 1.

In the following, we consider a game G =
({S,Moves, "1, 2, p), R), unless otherwise noted. Tosim-
plify the presentation of the results, we assume that the
target set R is absorbing; that is, we assume that for all
s € Rand dl a1 € i(s) and az € Ty(s), we have
8(s,a1,a2) € R. If R isnot absorbing, it is trivial to
obtain an equivalent game with an absorbing target set. We
define the size of the game G to be equal to the num-
ber of entries of the transition function &; specifically,

1G] =2 ses ITa(s)]Ma(s)]-
2.1. Strategies

For a finite set A, a probability distribution on A is a
function p : A + [0,1] such that }° _, p(a) = L
We denote the set of probability distributions on A by
D(A). A strategy for player i € {1,2} is a mapping
71 ST — D(Moves) that associates with every nonempty
finite sequence o € ST of states, representing the past his-
tory of the game, a probability distribution =;(o), used
to select the next move. Thus, the choice of the next
move can be history-dependent and randomized. The

strategy «; can prescribe only moves that are available to
player i: for all sequences o € S* and states s € S, we
require that if m;(os)(a) > O, thena € I;(s). We de-
note by IM; the set of all strategies for player i € {1, 2}.
Given a state s € S and two strategies =; € M3 and
w2 € MMy, we define Outcomes(s, 71, m2) C Q to be the
set of paths that can be followed when the game startsfrom
s and the players use the strategies =1 and 7,. Formally,
S0, $1, S2, . . . € Outcomes(s, w1, w2) if so = s andif for all
k > 0 there exist moves a} € IM1(sy) and a§ € [a(sy)
such that 71(80, R Sk)(ai) > 0, 72(80, C Sk)((llzc) > 0,
and sp41 € 8(sr, a]f, a’zc).

Once the starting state s and the strategies 71 and =3
for the two players have been chosen, the gameis reduced
to an ordinary stochastic process. Hence, the probabilities
of events are uniquely defined, where an event 4 C Q
is a measurable set of paths. For an event 4 C Q, we
denote by Pri~™(.A) the probability that a path belongs
to .4 when the game starts from s and the players use the
strategies 71 and 7. In particular, givenasubset R C S
of states, we denote the event of reaching R by (OR) =
{50,81, $2,...€ Q | dk . s, € R} Then, Pf;rl’ﬂ—z(QR)
is the probability of reaching R when the game starts at s,
and playes 1 and 2 use strategies 7; and 5, respectively.

Similarly, for a measurable function f that associates a
number inIRU{ oo } with each path, we denoteby ET V™2 { f}
the expected value of f when the game starts from s and
the strategies w; and =, are used. In particular, we denote
by T'v r the measurable function that associates with each
path sg, s1, s2, ... thetimemin{k > 0| sy € R} of first
passagein R. Then, EJ*™{T¢ R} is the expected time to
reach R, when the game starts at s, and playes 1 and 2 use
strategies 71 and 5, respectively.

Types of strategies. We distinguish the following types
of strategies:

o A strategy = isdeterministic if for al o € St there
existsa € Movessuch that 7(o)(a) = 1.

o A strategy = iscounting if w(o1s) = w(o2s) for al
s € Sandal 01,02 € S* with |o1] = |oy|; that is,
the strategy dependsonly on the current state and the
number of past rounds of the game.

o A strategy = isfinite-memory if the distribution cho-
sen at every state s € .S dependsonly on s itself, and
on a finite number of bits of information about the
past history of the game.

o A strategy = is memorylessif x(os) = =(s) for al
seSanddlo e S*.

2.2. Classification of Winning States

A winning state of game G is a state from which player 1
can reach the target set R with probability arbitrarily close
to 1. We distinguish three classes of winning states:

e TheclassSure(R) of sure-reachability statesconsists
of the states from which player 1 has a strategy to
force the game to R. Precisely, s € Sure(R) iff
thereis 1 € My such that for all 7> € M, we have
Outcomes(s, w1, w2) C (OR).

e The class Almost(R) of almost-sure-reachability
states consists of the states from which player 1 has
a strategy to reach R with probability 1. Precisely,
s € Almost(R) iff thereis w1 € M4 such that for all
w2 € My wehave Priv™(OR) = 1.

e The class Limit(R) of limit-sure-reachability states
consistsof the statesfrom which for every real ¢ > 0,
player 1 has a strategy to reach R with probabil-
ity greater than 1 — e. Precisaly, s € Limit(R) iff

SUp, cp, iNf Priv™(OR) = 1.

Clearly, Sure(R) C Almost(R) C Limit(R). There are
gamesfor which both inclusionsarestrict. The strictnessof
theinclusion Sure(R) C Almost(R) followsfrom the well-
known fact that randomized strategies are more powerful
than deterministic strategies [VN28], and is witnessed by
the state # o Of the game LEFT-OR-RIGHT. The strictness
of theinclusion Almost(R) C Limit(R) iswitnessed by the
state spige Of the game HIDE-OR-RUN [K S81].

Winning and spoiling strategies. A winning strategy
for sure reachability is a strategy =; for player 1 that
acts as a witness to all states in Sure(R); that is, for
al states s € Sure(R) and all strategies w of player 2,
Outcomes(s, w1, m2) € (CR). Similarly, awinning strat-
egy for almost-surereachability isastrategy = for player 1
such that for all states s € Almost(R) and all strategies w»
of player 2, Priv™(OR) = 1. A winning strategy fam-
ily for limit-sure reachability is a family {m[¢] | ¢ > 0}
of strategies for player 1 such that for al reas e > 0,
al states s € Limit(R), and all strategies =, of player 2,
Pl (ORY > 1— ¢,

A spoiling strategy for sure reachability is a strat-
egy m for player 2 that acts as a witness to all states
s ¢ Sure(R) and all strategies of player 1; that is, for
al states s ¢ Sure(R) and all strategies w1 of player 1,
Outcomes(s, 7, m2) € (CR). Similarly, a spoiling strat-
egy for almost-surereachability isastrategy = for player 2
suchthat for all statess ¢ Almost(R) and all strategies of
player 1, Priv™2(GR) < 1. Finally, aspoiling strategy for
limit-surereachability isastrategy = for player 2 such that

Reachability
Sure | Almost | Limit
Complexity O(n) | O(n?) | O(n?)
Winning strategies || DM M M
Spoiling strategies M C M
Time Bnd Unb Unb
Expected time Bnd Bnd Unb

Table 1. Overview of results about sure, almost-
sure, and limit-sure reachability. The input size
of the game is indicated by n. The abbrevia-
tions DM, M, C stand for deterministic memory-
less, (randomized) memoryless, and (random-
ized) counting, respectively; the abbreviations
Bnd and Unb stand for bounded and unbounded.

thereexistsareal ¢ > Osuchthatfor al statess ¢ Limit(R)
and all strategies 1 of player 1, Pr;v™(OR) < 1—gq.

We will show that for all three types of reachability,
winning and spoiling strategies always exist.

2.3. Overview of Our Results

In Table 1 we present an overview of the main results on
reachability games that are presented in this paper. The
first row lists the complexity of the algorithms for com-
puting the sets of winning states with respect to the three
types of reachability. The second and the third row list
the types of winning and spoiling strategies available to the
players. For each type of reachability, we list the tightest
class of strategies that always contains at least one such
winning and spoiling strategy (according to the classifica-
tion of Section 2.1). The last two rows state whether the
time to the target, and the expected time to the target, are
bounded on the winning states.

For a state s € S and an integer m > 0O, we say that
the time from s to R is bounded by m if there exists a
strategy w1 for player 1 such that for all strategies =, of
player 2, sup {Tor(5) | 5 € Outcomes(s, 1, m2)} < m.
If the time from s to R is not bounded by any integer m,
we say that the time from s to R is unbounded. We say that
the expected time from s to R isbounded if there exists an
integer m > 0 and a strategy = for player 1 such that for
al strategies 7, of player 2, we have E;v™{To R} < m.
Notethat for every state s ¢ Sure(R), thetimefromsto R

is unbounded, because not all paths reach R, and for every
state s ¢ Almost(R), the expected time from s to R is
unbounded, because R is reached with probability aways
smaller than 1.

3. Computing the Winning States

In this section we present algorithms for computing the
three sets Sure(R), Almost(R), and Limit(R).

3.1. Sure-Reachability States

To compute the set Sure(R), we introduce the notion of
move subassignments, and the functions Pre and Stay.

A move subassignment + for player 1 is amapping = :
S+ 2MOVES that associateswith each state s € S asubset
v(s) C I'1(s) of moves. We use move subassignments to
limit the set of moves that player 1 can play during the
game. We denote by A the set of all move subassignments
for player 1.

The function Pre; : 25 x A+ 2° isdefined by

Prei(U,vy) =
{s €S |3a1€7(s) .Vaz €Tas).6(s,a1,a2) €U}.

Intuitively, Prei(U,v) is the set of states from which
player 1 can be sure of being in U/ after one round us-
ing only moves from +, regardless of the move chosen by
player 2. Thefunction Prey: 2° x A+ 2° isdefinedin a
similar way:

Prex(U,y) =
{ses | Jap € To(s) . Vay € ¥(s) . 8(s,a1,a2) € U}.

Notethat in both Prey (U, v) and Pre;(U,) the subassign-
ment v refersto player 1. The function Say, : 2° — Ais
defined such that for all statess € .S,

Stay, (U)(s) =
{al € li(s) | Vay € Ta(s) . 6(s,a1,az) € U}.

Intuitively, Stay, (U) isthe largest move subassignment for
player 1 that guarantees that the game is in U &fter one
round, regardless of the move chosen by player 2.

The set Sure(R) can be computed using the following
algorithm.

Algorithm 1
Input: Reachability gameg = (G, R).
Output: Sure-reachability set Sure(R).

Initialization: Let Uy = R.

Repeat For £ > 0, let Uy 11 = Uy, U Preg(Uy, 1)
until Ugy1 = Up.

Return: Uy.

The algorithm is identical to the one used for turn-based
games [TW68], and it can be implemented to run in time
linear in the size of the game [BeeB0]. The algorithm
can also be implemented symbolically, as a fixed-point
computation on state sets [BCM+92]. The theorem below
summarizes some basic facts about the set Sure(R).

Theorem 1 For areachability game with target set R:

1. Algorithm 1 computes the set Sure(R). The algo-
rithm can beimplemented to run intimelinear in the
size of the game.

2. Player 1 has a memoryless deterministic winning
strategy for sure reachability.

3. Player 2 has a memoryless spoiling strategy for sure
reachability. This spoiling strategy cannot in general
be deterministic.

4. For every state s € Sure(R), thetimefrom s to R is
bounded by the size of the state space.

If R = U, Us,...,Uyn = Sure(R) is the sequence of
sets computed by Algorithm 1, a deterministic memoryless
winning strategy consistsin playing at eachstates € Uy 1\
Uy afixed move in Stay(Uy)(s), where 0 < k < m. A
simple memoryless spoiling strategy for player 2 consists
in choosing amove uniformly at random from the available
moves at each state. To see that deterministic spoiling
strategies may not exist in general, it suffices to consider
the state ¢ o Of the game LEFT-OR-RIGHT.

Reachability in turn-based games. If a reachability
gamewith target set R isturn-based, then player 2 hasade-
terministic spoiling strategy «» suchthat Pri»™2(GR) = 0
for all strategies w1 € MMy for player 1 and all states
s ¢ Sure(R). Such a spoiling strategy simply chooses
at each s ¢ Sure(R) one of the moves b € IM,(s) such that
8(s,a,b) ¢ Sure(R) foral a € I1(s) [Tho95].

This observation leads to the fact that in turn-based
games we have Sure(R) = Almost(R) = Limit(R), i.e,
the three notions of reachability coincide. Another conse-
guence of the above observation is that deterministic turn-
based reachability games have “0-1 laws’; that is, for all
states s € S of aturn-based game,

sup inf Priv™(OR) € {0, 1}.
7€M, T2€M2

This 0-1 law only applies to deterministic, turn-based
games. As an example of a (hon-turn-based) determin-
istic game without a 0-1 law, consider a one-round version
of thegameLEFT-OR-RIGHT. After theonly round, thegame
moves from the state ¢ oy €ither to the state ¢ or to the
state ¢ misseg. Then,

. miT 1
sup inf Prib"2 (O{thie}) = 5

t
rreMy T2€M2 throw

3.2. Almost-Sure-Reachability States

The agorithm for the computation of the set Almost(R)
uses the function Safe. For i € {1, 2}, the function Safe; :
25 x A\ — 25 associateswith each stateset I/ C S and each
move subassignment y C A thelargest subset V' C U such
that Pre;(V,v) C V. Theset Pre;(V,) can be computed
asthelimit of the decreasing sequence Uy = V, Uy, Ua, . . .,
wherewetake Uy, 11 = V N Pre; (U,) for k > 0. Hence,
the set V' is the largest subset of U that player : can be
sure of not leaving at any time in the future, regardless of
the moves chosen by the other player, given that player 1
chooses moves only according to 4. Using an appropriate
data structure, as suggested in [Bee80], the computation of
Safe; (V,) can beimplemented to run in linear time.

The set Aimost(R) can be computed using the following
algorithm. The algorithm has running time quadratic in the
size of the game, and it can be implemented symbolically
as a nested fixed-point computation.

Algorithm 2
Input: Reachability gameg = (G, R).
Output: Almost-sure-reachability set Almost(R).

Initialization: Let Ug = S, v0 = ;.
Repeat For k£ > 0, let

Cr = Safey(Ux \ R, 7)),
Uk4+1 = Safe (Ur \ Cr, 1),
Vi1 = Say; (Ug41)

until Ugy1 = Up.
Return: Uy.

The algorithm can be understood as follows. The set Cp is
the largest subset of S\ R to which player 2 can confinethe
game. Player 1 must avoid entering Cy at all costs: if Co
is entered with positive probability, R will not be reached
with probability 1. The set U/; is the largest set of states
from which player 1 can avoid entering Co. The move
subassignment +; then associates with each state the set of
movesthat player 1 can select in order to avoid leaving Us.
Sincey1 C I'1, by choosing only moves from +4, player 1

may lose some of the ability to resist confinement. The
set C1 is the largest subset of U3 \ R to which player 2
can confine the game, under the assumption that player 1
uses only moves from ;. The set U, is then the largest
subset of U3 from which player 1 can avoid entering C1,
and the subassignment v, C ~; guarantees that player 1
never leaves U,. The computation of C, Ug4+1, and 41,
for £ > 0, continues in this way, until wereach m > 0
such that:

o if player 1 chooses moves only from v,,, the game
will never leave U,,,;

¢ player 2 cannot confine the gameto U,,, \ R, even if
player 1 chooses moves only from 4, .

At thispoint, we have Uy, 41 = Uy, = AImost(R).
Theorem 2 For areachability game with target set R:

1. Algorithm 2 computes the set Aimost(R). The algo-
rithm can be implemented to runin time quadraticin
the size of the game.

2. Player 1 has a memoryless winning strategy for
almost-sure reachability. Thiswinning strategy can-
not in general be deterministic.

3. Player 2 hasa counting spoiling strategy for almost-
sure reachability. This spoiling strategy cannot in
general be deterministic, nor finite-memory.

4. For every state s € Almost(R), the expected time
from s to R is bounded.

If S = Uog,Ux,..., Uy = Aln']OS(R) and YL, - -5 Ym
are the sequences of sets and move subassignments com-
puted by the algorithm, a memoryless winning strategy
for player 1 consists in playing at each state s € U, a
move chosen uniformly at random from =, (s). Result 4
then followsfrom results about the stochastic shortest-path
problem[BT91].

The game HIDE-OR-RUN is an example of a game that
does not have a finite-memory spoiling strategy. In fact, it
can be seenthat for each finite-memory strategy of player 2,
player 1 has astrategy to get from spige tO spome With prob-
ability 1. To construct an infinite-memory spoiling strat-
egy, we proceed as follows. Consider the two memoryless
strategies 73 and =2 for player 2 defined by

{ W%(Shide)(thI'OW) =0 { T%(shide)(thI'OW) = %
w%(sh,-de)(wait) =1 w%(sh,-de)(wait) = % .

Thestrategy =1 iseffective against the strategies of player 1
that wait till player 2 throws the snowball before running.
On the other hand, the strategy =3 is effective against the

strategies of player 1 that may run before having seen
player 2 throw the snowball. To obtain a spoiling strat-
egy, which must work in all cases, we“mix” the strategies
73 and 73, asif player 2 could secretly flip acoin before the
gamestartsto decidewhich of thetwo strategiesto use. The
idea of flipping a coin before the game starts to determine
which strategy to use is known as initial randomization,
and it constrasts with on-the-fly randomization, which is
the process of flipping coins during the game to choose
the move to be played. Our definition of strategy allows
only on-the-fly randomization. Nevertheless, from [Der70]
we know that initial randomization between finitely many
strategies 71, 72, .. ., 7™ canbesimulated by asingle strat-
egy = that uses on-the-fly randomization only. However,
thereisapriceto pay: evenwhen strategies7t, 72, ..., ™
are memoryless, strategy = may need infinite memory. In
our case, by mixing the strategies 73 and 73 with equal
probability, we obtain the strategy =, defined for al £ > 0
by
moshige’) (wait) = 20-1/2)

where spige® is the path consisting of k states spige. It is
easy to check that if player 2 playsaccording to =, then she
eventually throwsasnowball with (cumulative) probability
1/2, consistent with thefact that 7, isthe“equal probability
mix” of 73 and 72. Note that m, is an infinite-memory,
counting strategy.

3.3. Limit-Sure-Reachability States

Similarly to the algorithm for almost-sure reachability, the
algorithmfor limit-surereachability computesadecreasing
sequence Ug = S, Uy, Us, .. .of candidate winning states,
the set Limit(R) is the limit of this sequence. At each
iterationk > 0O, theagorithmdeterminesasetCy, C Ui\ R
of states from which player 1 cannot force a visit to R
with probability arbitrarily closeto 1, and assigns Uy 41 =
Uk \ Ck.

The set C} is also determined in an iterative fashion.
Initially, we set C,S = U \ R; then, we remove states
from this set, computing a decreasing sequence C?, C1,
C,f, ... that convergesto C',. To understand how thislatter
sequenceis computed, consider the stage of theseiterations
when sets U, and C} have been computed, and consider
adtate s € Ci. From the point of view of player 1, the
situationfrom s isasfollows. By construction, the statesin
S\ Uy are not winning states, so that player 1 must avoid
leaving Uy,. Moreover, asC N R = 0, player 1 must also
avoid being trapped in Ci. Hence, player 1 must try to
escape from ¢!, and at the same time avoid leaving Uy.

Denoteby &1 € D(IM1(s)) and &2 € D(I2(s)) the distri-
butions used by players 1 and 2 at s, respectively. Given
asubset V C S of states, indicate by p(s, €1, &2)(V) the

probability of going from s to V' in one round under distri-
butions &, and &,. Consider theratio

p(s,61.6)(S\ C})
p(s,€1,&2)(S\ Us)

between the probabilities of escaping from Ci and of leav-
ing Ug. If player 1 can choose ¢; to make the ratio (1)
arbitrarily large, then any attempt of player 2 to confine
the gameto C} caninvolve s only in atransitory fashion:
in fact, infinitely many visits to s would lead to escaping
from C? with arbitrarily high probability, while losing the
game by leaving Uy with negligible probability. On the
other hand, if theratio (1) cannot be made arbitrarily large,
then player 2 can choose ¢> so that, at each visit to s, the
probability of leaving C?, is compensated by a proportional
probability of leaving U;.. Inthiscase, player 1 cannot use
state s to escape from C7.

These considerations motivate our definition of limit-
escape states. GiventhesetsU C Sand C C U, and a
state s € C, we say that s islimit escape with respect to C'
and U if

D

p(5,£1,6)(S\ O)

su inf =oc0. (2
EleD(Fpl(s)) £€D(Ta(s)) P(5,61,€2)(S\U) @)

A state s is then removed from ¢ to form ¢4t iff it is
limit escape with respect to Ci and Uy,

Let usillustrate the algorithm for limit-sure reachability
on the game HIDE-OR-RUN. The algorithm first computes
Co = {swe} and U1 = {Shide, Ssafe, Shome}. The state sere
is easily eliminated from C? = {spide, ssae}, l€ading to
Cl = {shice}. At spige, player 1 can play either hide or
run. To escape from Cll and reach spome With arbitrarily
high probability, player 1 must be “patient” and choose
move run with sufficiently low probability at each round.
Precisely, for every 0 < ¢ < 1, define the distribution

&1le] € D(T1(s)) by:
&1le](run) = ¢,

By using distribution &3 [¢] and letting e — 0, player 1 can
make theratio (1) diverge (for £ = j = 1); in fact,

p(s.&le], &)(S\ C1)

&1le](hide) =1—¢ . 3

lim inf

e—0 £eD(Mo(s)) p(s,&1[e], €2)(S\ U1)

—im inf Ao+ A-ee 1o
e—0 0<g<1 £q e—=0 ¢

The divergence of the ratio between the one-round prob-
ability of escape and the one-round probability of capture
enables player 1 to eventually escape with probability ar-
bitrarily close to 1. To verify this, let 71[¢] be the mem-
oryless strategy for player 1 that uses distribution &1[¢] at

state spige. ONce m1[e] isfixed, results on Markov decision
processes ensure that the optimal strategy for player 2 to
avoid reaching R is memoryless (and also deterministic)
[Der70]. Hence, simple calculations show that

0t PO (smamel) = 1<
The fact that spige € Limit(R) follows by taking the limit
¢ — 0 in this equation. This confirms that spige €
Limit(R) \ Aimost(R), as we mentioned in the introduc-
tion.

There is a relation between the computation of the
sets C, in the algorithms for almost-sure and limit-sure
reachability. In Algorithm 2, the set . is computed by
Cr = Safe,(Uy \ R, vi). If we expand the computation of
C, we seethat Cy, is again computed as the fixpoint of a
decreasing sequence C?, C%, CZ, ... For j > 0, astate s
is removed from Ci if thereis ¢, such that for al &, the
numerator of (1) is nonzero, and the denominator is 0. In
this case, player 1 from s can use ¢, to escape C}, with pos-
itive probability, while not risking aretreat from Uy. Such
an s is called a safe-escape state. For almost-sure reach-
ability, player 1 must use safe escape, because in order to
reach the target with probability 1 he cannot risk to lose.
For limit-sure reachability, player 1 can instead use limit
escape: as long as the ratio between risk (of retreat) and
escape (towards the target) can be made arbitrarily large,
the player can reach the target with probability arbitrarily
closeto 1.

3.3.1 Computing Limit-Escape States

Thefollowing algorithm determineswhether a stateis limit
escape.

Algorithm 3

Input: Game structure G, two setsC' C U C S of states,
and astates € C.

Output: YESIf s islimit escape with respect to C and U,
No otherwise.

Initialization: Let B_; = 0.
Repeat For k£ > 0, let

A ={aely(s) | Vb€ Ty(s).
if (5(5,(1,])) ¢ U thenb € Bk_]_},
By ={beTa(s)|Ja€ Ay .5(s,a,b)¢C}

Until Ax41 = Ay and By, 41 = Bi.
Return: YEesif B = Na(s), No otherwise.

Wesay that amovea € M1(s) islabeledif a € Aj, for some
k > 0; if a islabeled we define £(a) = min{i | a € A;}.

Similarly, wesay thatamoveb € Iy(s) islabeledif b € By,
for some k > 0. The algorithm declares the state s limit
escape with respect to C' and U iff al moves I'x(s) for
player 2 at s are labeled. When Algorithm 3 is given as
input state spige Of the game HIDE-OR-RUN and C' = {shige},
U = {Shide, Ssare; Shome}, it 18bels the moves of player 1 at
Shige With

£(hide) = O, L(run) = 1. 4
If a state s is declared limit escape, then also all moves
in [1(s) are labeled, and their labels provide us with an
e-indexed family &1[¢] of distributions that make the ratio
(2) diverge. Precisely, for 0 < € < 1/(2|T"1(s)]), thedistri-
bution &[¢] plays move a € 1(s) with probability £(%) if
f(a) > 0, and it playsall movesin {a € T'1(s) | £(a) = 0}
uniformly at random with the remaining probability. From
(4), we see that the distribution constructed in this fashion
for the state spiqe Of the game HIDE-OR-RUN coincides with
the one givenin (3).

3.3.2 Computing Limit-Sure Reachability States

Given the target set R and a subset U C S with R C
U, the following agorithm computes the largest subset
Cage(U) = C' C U \ R that does not contain any limit-
escapestatewith respectto C'and U. Theset C' iscomputed
asthelimit of the previously described decreasing sequence
co ct e

Algorithm 4

Input: Reachability game G = (G, R), and U C S with
RCU.

Output: Cage(U) C S.

Initialization: Let C°= U \ R.
Repeat For j > 0, let C/+1 =
{s € C7 | sisnot limit escapew.r.t. C7 and U}
Until Ci+t = ¢J.
Return: C7.

Theset Limit(R) canbecomputed using thefollowing algo-
rithm, which uses the computation of Cageasa subroutine.

Algorithm 5
Input: Reachability gameg = (G, R).
Output: Limit-sure-reachability set Limit(R).

Initialization: Let Ug = S.

Repeat For £ > 0, let Uy 41 = Uy, \ Cage(Uy,)
uUntil Ugy1 = Up.

Return: Uy.

Thefollowingtheorem summarizestheresultson limit-sure
reachability.

Theorem 3 For a reachability game with target set R:

1. Algorithm 5 computes the set Limit(R). The algo-
rithm can be implemented to runin time quadraticin
the size of the game.

2. Player 1 has a family of memoryless winning strate-
giesfor limit-surereachability. Thesewinning strate-
giescannot in general be deterministic.

3. Player 2 hasa memorylessspoiling strategy for limit-
sure reachability. This spoiling strategy cannot in
general be deterministic.

To obtain aversion of the algorithm that runs in quadratic
time it is necessary to optimize the implementation of Al-
gorithm 4; the optimized version is given in [dJAHK98].
Results 2 and 3 are from [KS81]; the construction of the
winning and spoiling strategiesis explained in [dAHK98].

To see that deterministic memorylesswinning strategies
may not exist in general, it suffices to consider the state
tihrow Of the game LEFT-OR-RIGHT. To seethat deterministic
memoryless spoiling strategies may not exist in general,
it suffices to consider again the one-round version of the
game LEFT-OR-RIGHT, in which after the only round the
game moves from the state ¢ o €ither to the state ¢ or
to the state ¢misseq. Then, it is immediate to check that
Limit({¢nit}) = {¢nit}; moreover, by considering the state
tihrow WeE See that there are no deterministic spoiling strate-
gies.

4. Randomized ATL

For the specification and verification of open systems,
[AHK97] introduced the temporal logic Alternating Tem-
poral Logic(ATL). Thelogic ATL isinterpreted over multi-
player game structures, and includes formulas of the form
{(A)8, which assertsthat ateam A of players(called agents)
has a strategy to ensure that all outcomes of the game sat-
isfy the path property 6. The semanticsof thelogic ATL is
defined with respect to deterministic strategies only. Con-
sequently, inatwo-player gamestructure, if ¢ isaformula
defining the target set R, then the formula ((Player1)) Cyr
istrue exactly in the sure-reachability states.

In this section, we generalize the logic to Randomized
ATL (RATL). Thelogic RATL isdefined with respectto ran-
domized strategies, and distinguishes between three kinds
of satisfactionfor path properties: sure satisfaction, almost-
sure satisfaction, and limit-sure satisfaction; correspond-
ingly, the single path quantifier {{ })) of ATL is replaced by
the three quantifiers { Ysure, { Naimost, and { Nimit. For
example, the formula {(Player 1)) aimos O e Will betrue ex-
actly in the amost-sure-reachability states.

Formally, a system § = (n, S,Moves T, 6, @, L) con-
sists of a number n» > 0 of agents, a finite state space
S, a finite set Moves of moves, a move assignment
F:Sx{1,... n}w— 2MOVES\ g a transition function
6.5 x Moves® — S, afinite set @) of propositions, and a
function L : S +— 29 that |abelseach statewith the proposi-
tionsthat aretruein the state. Thus, asystem with n agents
isalabeled n-player game structure: at every state s € S,
eschagent: € {1,...,n} choosesamovea; € I'(s, i), and
the game proceedsto the state é(s, ay, . . ., a,). Typicdly,
the agents model individual processes, or components, of
a reactive program. The paths of S are defined in anal-
ogy to two-player game structures. A strategy =4 for a
(possibly empty) set A = {i1,...,ix} C {1,...,n} of
agents is a mapping 74 : St — D(Moves®) such that
ma(os)(as,...,ax) > O implies a; € I(s,i;) for dll
1< j<k. Givenaset A of agents, we denote by M 4 the
set of strategies for A.

The temporal logic RATL is defined with respect to a
set () of propositionsand aset ¥ = {1,...,n} of agents.
A Randomized ATL formulais one of the following:

e ¢, for propositions ¢ € Q.
e —pOr ¢ V1, whereyp and ¢ are RATL formulas.

o ((AWwinOp or {(AMwinDp or {(ANwinp Uy, Where
A C {1,...,n} is a set of agents, win €
{sure, almost, limit} is a type of winning condition,
and ¢ and 1) are RATL formulas.

Theoperators {())win arepath quantifiers, and O (“next”), O
(“always’), and ¢ (“until”) are the usual temporal opera-
tors[MP91]. Weinterpret RATL formulasover the states of
asystem S that hasthe same sets of agentsand propositions
used to define the formulas. The subformulas of RATL of
the form Oy, O, or pU 1 are called path subformulas,
and they are interpreted over the paths of S. For a path
subformula ¢, we denote by [#] the event consisting of al
pathsthat satisfy 6, as defined by the standard semantics of
the temporal operators. Subformulas of RATL of the form
P, e, @ V1, or ({Awin @ are called state subformulas,
and they are interpreted over the states of S. For a state
subformula ¢, we write s |= ¢ to indicate that the state s
satisfies . We present here only the semantics for state
subformulas of the form {(A))win 6; the propositional and
boolean cases are standard. For a path subformula 8, we
define:

o s | (A)suwef iff there exists 74 € Ty
such that for al =54 € Tz we have
Outcomes(s, 74, ms\4) C [0].

o s = (A)amos @ iff there exists m4 € M4 such that
for al 75\ 4 € My 4 Wehave Prg* ™4 ([4]) = 1.

11

o 5= (ANt 0 iff

sup inf

Pre ™\ A([6]) = 1.
Sp inf P (Ie1)

In particular, thelogic ATL isthefragment of RATL where
the only path quantifier is ({(A)) sure-

If s E {A)winfl, for win € {sure, almost, limit}, then
the winning strategies provide a controller C' for the set
of agents A. When the controller C' is composed with
the set A of agents, the resulting system is guaranteed to
satisfy 6 with win confidence. If win = sure, then the
controller can always be chosen to be deterministic and
memoryless. If win € {almost, limit}, then the controller
can still be chosen to be memoryless, but it may need to be
randomized.

From the classification of winning statesin Section 2, it
followsthat s |= (A sure f iMpliess = {(A)) amos , Which
inturnimplies s |= {(A)imit ; the reverse implications do
not necessarily hold. Interestingly, the implications can be
strict only for path subformulas § of theform ¢ ¢+, which
specify liveness-like properties (such as reachability). By
contrast, for path subformulas ¢ of the form Oy and O,
which specify safety-like properties, the three winning con-
ditions are equivalent.

Theorem 4 Consider a path subformula ¢ of the form
Og or Ogp. Then, for every state s of a system S, we have

s = (Aswe 8 iff s |= (Aaimost 0 iff s [= {(A))rinic 6.

The model-checking problem for RATL asks, given a
system S and an RATL formula ¢, for the set of states of
S that satisfy ¢. A model-checking algorithm for RATL
can proceed bottom-up on the state subformulas of ¢, as
in CTL and ATL model checking [CE81, QS81, AHK97].
The nontrivial cases are {(A)swee U1, {(A)amost ¢ U,
and ((A)iimit ¢ U1p. The subformula ((A))swe U1 can be
checked as in ATL. In order to check the other two sub-
formulas, we first construct a two-player game structure,
in which player 1 corresponds to the set A of agents, and
player 2 correspondsto the set > \ A. We define the target
settobe R = {s € S| s E ¢}. If Risnot absorbing,
we locally modify the game structure to makeit absorbing.
To check the subformula ({A)) aimes ¢ U1, we modify Al-
gorithm 2, sothat Co = {s € S | s [£ ¢ V ¥ }. To check
the subformula ((A))imit ¢ U1, we modify Algorithm 5, so
that Up = {s € S | s |E ¢ V ¢}. Intuitively, whilein the
< R reachability game player 1 only hasto avoid statesin
which player 2 can keep him away fromthe target set R, in
the p U 1 gameplayer 1 also hasto avoid statesthat satisfy
neither ¢ nor 1.

Theorem 5 The model-checking problem for RATL spec-
ifications can be solved in time quadratic in the size of the
system and linear in the size of the formula.

Acknowledgments. We thank Rajeev Alur, Jerzy Filar,
Christos Papadimitriou, T.E.S. Raghavan, Valter Sorana,
Moshe Vardi, and Mihalis Yannakakis for helpful discus-
sions and pointersto the literature.

References

[AHK97] R. Alur, T.A. Henzinger, and O. Kupferman.
Alternating-time temporal logic. In Proc. 38th IEEE
Symp. Foundations of Comp. Sci.., pages 100-109, 1997.

[BCM+92] JR. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill,
and L.J. Hwang. Symbolic model checking: 10% states
and beyond. Information and Computation, 95:142-
170, 1992.

C. Beeri. On the membership problem for functional
and multivalued dependencies in relational databases.
ACM Trans. Database Systems, 5:241-259, 1980.

D.P. Bertsekas and JN. Tsitsiklis. An anaysis of
stochastic shortest-path problems. Math. of Op. Res,,
16:580-595, 1991.

E.M. Clarke and E.A. Emerson. Design and synthe-
sis of synchronization skeletons using branching-time
temporal logic. In Proc. Workshop on Logic of Pro-
grams, volume 131 of Lect. Notesin Comp. i, pages
52-71. Springer-Verlag, 1981.

R. Cleaveland and B. Steffen. A linear-time model-
checking agorithm for the aternation-free modal p-
caculus. In Proc. Computer-aided \erification, vol-
ume 575 of Lect. Notes in Comp. <ci., pages 48-58.
Springer-Verlag, 1991.

A. Condon. The complexity of stochastic games. In-
formation and Computation, 96:203—224, 1992.

C. Courcoubetis and M. Yannakakis. Verifying tem-
poral properties of finite-state probabilistic programs.
In Proc. 29th |IEEE Symp. Foundations of Comp. <ci.,
pages 338-354, 1988.

[dAHK98] L. de Alfaro, T.A. Henzinger, and O. Kupferman.
Concurrent Reachability Games. Technical Report
UCB/ERL-M98/33, University of Californiaat Berke-
ley, 1998.

[BeesO]

[BT91]

[CES81]

[CS91]

[Con92]

[CY8s]

[dA97] L. deAlfaro. Formal Verification of Probabilistic Sys-
tems. PhD Thesis, Stanford University, 1997. Technical
Report STAN-CS-TR-98-1601.

[Der70] C. Derman. Finite-state Markovian Decision Pro-
cesses. Academic Press, 1970.

[Eve57] H. Everett. Recursive games. In Contributions to the
Theory of Games| |1, volume 39 of Ann. Math. Sudies,
pages 47—78, 1957.

[FV97] J Filar and K. Vrieze. Competitive Markov Decision
Processes. Springer-Verlag, 1997.

[HSP83] S.Hart, M. Sharir, and A. Pnueli. Termination of prob-

abilistic concurrent programs. ACM Trans. Program-
ming Languagesand Systems, 5:356-380, July 1983.

12

[Imm81] N. Immerman. Number of quantifiers is better than
number of tape cells. J. Computer and System Sciences,
22:384-406, 1981.

N.D. Jones. Space-bounded reducibility among com-
binatorial problems. J. Computer and System Sciences,
11:68-75, 1975.

P.R. Kumar and T.H. Shiau. Existence of valueand ran-
domized strategies in zero-sum discrete-time stochas-
tic dynamic games. S AM J. Control and Optimization,
19:617-634, 1981.

J.G. Kemeny, J.L. Snell, and A.W. Knapp. Denumer-
able Markov Chains. Van Nostrand Company, 1966.

Z.Mannaand A. Pnueli. The Temporal Logic of Reac-
tive and Concurrent Systems: Specification. Springer-
Verlag, 1991.

J. von Neumann. Zur Theorie der Gesellschaftsspiele.
Math. Ann., 100:295-320, 1928.

J.P. Queille and J. Sifakis. Specification and verifica-
tion of concurrent systems in Cesar. In Proc. Symp.
Programming, volume 137 of Lect. Notes in Comp.
i, pages 337-351. Springer-Verlag, 1981.

T.E.S.Raghavan and JA. Filar. Algorithmsfor stochas-
tic games —a survey. ZOR —Methods and Models of
Op. Res., 35:437-472, 1991.

W. Thomas. On the synthesis of strategies in infinite
games. In Proc. Symp. Theoretical Aspects of Comp.
ci., volume 900 of Lect. Notes in Comp. Sci., pages
1-13. Springer-Verlag, 1995.

F. Thuijsman and O.J. Vrieze. The bad match, a total

reward stochastic game. Op. Res. Spectrum, 9:93-99,
1987.

JW. Thatcher and J.B. Wright. Generalized finite au-
tomatatheory with an applicationto adecision problem
of second-order logic. Math. Systems Theory, 2:57-81,
1968.

M.Y. Vardi. Automatic verification of probabilistic con-
current finite-state programs. Proc. 26th IEEE Symp.
Foundations of Comp. Sci., pages 327-338, 1985.

M.Y. Vardi. Infinitegames against nature. Unpublished
manuscript, 1995.

[VTRF83a] O.J. Vrieze, SH. Tijs, T.E.S. Raghavan, and JA.
Filar. A finite algorithm for the switching-controller
stochastic game. Op. Res. Spectrum, 5:15-24, 1983.

M. Yannakakis. Personal communication, 1998.

[Jon75]

[KS81]

[KSK66]

[MP91]

[VN28]

[QS81]

[RF91]

[Thoos]

[TV8T7]

[TW68]

[Var8s5)]

[Var95]

[Yanos]

