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Ahbstract

Although a variety of buffer layers have been routinely reported, a standard
architecture commenly used for the YBa,Cu:O0;_, (YBCO) coated

conductor is YBCO/CeO:Y5Z /CeOs /substrate or

YBCOCeOu/YSZ/Y 10, /substrate where ceria is typically the cap layer.
Ce(; is generally used as only a seed (or cap layer) since cracking within the
film occurs in thicker CeOy layers due to the stress of laltice mismatching,
Y20y has been proposed as a seed and as a cap layer but usually not for both
in a given architecture, especially with all layers deposited in sin. Yttrium
oxide films grown on nickel by electron beam evaporalion processes were
found to be dense and crack free with good epitaxy. In this report, pulsed
laser deposition (PLD) of ¥,0; is given where Y103 serves as both the seed
and cap layer in the YBCO architecture. A comparison to PLD CeO; is
pravided. Deposited layers of the YBCO coated conductor are also grown
by laser ablation. Initial deposition resulted in specimens on textured Ni
substrates with current densities of more than | MA em™ at 77 K, self-field.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In high remperature superconducting (HTS) wire fabrication,
YBaxCuyOq_y (YBCO) superconductors are generally incor-
porated using coated conductor technology.  To achieve the
necessary bi-axial alignment, YBCO coated conductors are
primarily made using the ion beam assisted deposition (IBAD),
rolling assisted bi-axially textured substrate (RABITS), or in-
clined substrate deposition (15D} processes [1-3]. The RA-
BiTS or texturcd substratc approach generally uses Ni al-
lows for the substrate which tend to be mechanically robust
and as non-magnetic as possible, and allow high grain align-
ment [6, 7], Different combinations of buffer layers are em-
ployed to transfer the cube texture in the metallic substrate to
the subsequent YBCO layer providing proper epitaxial transler
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while ensuring an adequate diffusion barmer. Primary consid-
erations for the buffering stack must include proper matching
to the adjacent crystalline lattice and thermal expansion co-
efficient as well as being chemically compatible and easily
deposited.

Textured metallic substrate based YBCO coated conduc-
tors with the YBCOVCeOYSZCeOy/Ni-alloy architecture,
Y5Z = Zri~8&% Y)0y, vitrum stabilized zirconium, have al-
ready demonstrated excellent performance with current densi-
ties greater than 107 A cm ™2 in the superconducting layer [8],
With this architecture, the CeQ; seed layer can effectively min-
imize the formation of NiQ during the initial deposition on
the substrate while the CeO; cap layer provides good lattice
matching for the subsequent YBCO layer. The intermediate
Y52 laver serves as an oxygen and nickel diffusion barrier. The
Ce; cap layer on Y52 also provides chemical compatibility
by suppressing the growth of BaZrO; which may occur at a
Y3Z/YBCO interface, causing degraded eritical currents in the
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Table 1. Comparison of lattice parameters and thermal expansion
coetficients for ceria and ytiria,

Lattice matching

Relative mismatch

Buffer Pseudo-cubic

layer lattice parameter YBCO (%) Ni(%) YSZ{%)

Cel); 3830 [a/2%5] 0.24 2,00 614

Ya0: 3750 [af(2 = 2% —1.8% 6.22 4.03
Thermal expansion coefficient (TEC) matching

Relative TEC mismatch

Buffer

layer  TEC value (*C~"} YBRCO (%) N (%)

Ced); 95= 100 —14 —29

Y0, 77k 107" ~=30 —43

YBCO, Even so, the Ce(; and YBCO lavers may sometimes
interact, resulting in the formation of BaCeO; [9]. The reac-
tion 15 especially relevant at temperatures greater than 790 °C.
The resulting barium cerate is not lattice matched with the
YBCO and thereby degrades its superconducting properties.
However, in peneral, the CeQy cap layer has besn shown to
be compatible with the growth of epitaxial YBCO using most
YBCO deposition technigues, As either the sced or cap layver,
the CeQ layer must remain quite thin or cracks will develop
in the thicker films due to mismatching with the adjacent lat-
tices. A University of Houston Group uses a ~3-8% Sm dop-
ing of Ce(; for thicker single buffer layers by photo-assisted
MOCVD [10].

The present work cxplores an alternative approach by
using ytirium oxide, Y03, as both a seed and cap layer
replacement for CeCa. Ya0ys is more recently being used as
the seed layer in the YBCO coated conductor architecture, but
generally not as the cap laver, The use of yitria allows less
sensitivity to thickness by alleviating the potential cracking
problems although CeO; is still preferred for the cap layver. A
comparison of the lattice parameters and thermal expansion
coefficients is given in table 1. From these doa, Y203 has
a better lattice match with both Ni and Y57, indicating a
better choice than Ce(y for the seed layer. However, for the
cap layer, CeQ; has an excellent lattice match with YBCO,
whereas ytirium oxide has the better lattice match with YSZ.
Both are fairly comparable and compatible. though Y305 on
the other hand has good chemical compatibility with YBCO
and its lattice misfit with YBCO is not that great. These factors
indicate Y30y may also perform well as a cap layer,

The growth of thicker Y;04 buffers layers is present in
the literature [I1-13]. There are successful reports of the
deposition of thick biaxially textured yttna layvers on textured
nickel by electron beam evaporation [11]. Ichinose er al [12]
have described the process-related crystalline alignment and
microstructure of Y705 buffer layers deposited under various
deposition conditions by e-beam evaporation.  Paranthaman
ef af have deposited other buffer layvers by sputtering on
top of the yitrium oxide followed by pulsed laser deposition
of the YBCO layer which resulted in high current densities
(de o~ 18 108 Aem™)[12], The present work uses Y20
by pulsed laser deposition (PLDY in lieu of Ce(); as both the
seed and cap layer. Limited experiments were also conduoeted
using Yk as a single buffer layer over nickel 1o evaluale
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its performance.  All layers, including YSZ and YBCO, are
deposited in the same PLD chamber in sin.

2. Experimental details

PLD was used to deposit all oxide layers: Celdy, Y20h, Y52,
and YBCO. A Neocera chamber was used in conjunction with
a Lambdla Physik excimer laser, model LPX 3051, operating
at the KrF wavelength of 248 nm, The laser energy was set at
625 mJ for all depositions, With losses associated with oplics
and beam shaping, a final laser enerey of ~2.5 Jem™ was
applied to an on target spot size of ~4.6 mm?. The deposition
chamber included a multiple target rotator allowing all oxide
depositions for the YBCO coated conductor specimens to be
deposited in the same chamber in site, On select samples
reguiring contacts for characterization, a Ag laver of ~3 um
was applied by dc magnetron sputtering.

The background pressure of the PLD chamber was less
than 107% Torr,  Textured nickel substrates were obtained
from Oxford Instruments—the generally used processing
details have been presented elsewhere [14], The particular
substrates used in this investigation had an in-plane alignment
of 6.7°=7.2° FWHM and out-of-plane alignment of 8.4°. The
Wi substrates were mounted on the chamber’s 27 diameter
substrate heater.  Prior to deposition, substrates were heated
from room temperature to Y50 °C in a 180 mTorr atmosphere
of forming gas, Ar+5%H; gas mixture, to prevent
oxidation of the nickel substrate. Specimens wene fabricated
to different stages in the YBOOWCeOwYSZCeO/MNi and
YBCOY 204 YSEMN 2041 architecture. This allowed for a
study of the texture. smoothness, and microstructure of each
of the deposited layers and the development of the stack.

The Y303 (or Celd;) seed layer was deposited in the
Ar + Hy forming gas mixture for 3 min at a 4 Hz laser repetition
rate. The gas fill in the chamber was then evacoated and the
chamber lowered to the base pressure of 107 Torr, The Y20h
(or CeQq) deposition was continued for an additional 1.5 min
in these conditions. Oxyeen gas was then introduced into the
chamber, After stabilizing the pressure at 1.5 mTorr, the Y, 04
{or Ce0;) layer was further deposited for 2 min. Depaosition
times can be increased or decreased to change the thicknesses
of the layvers, The temperature was then increased from 750 o
TH0°C, and the YSZ buffer layer was deposited Tor 20 min in
the current oxygen atmosphere. For the Y57 deposinon, the
base laser energy was increased to 650 mJ and the repetition
rate to 10 Hz, A cap layer of Y305 (or Ce(h) was deposited
at the original laser energy of 625 ml and repetition rate of
4 Hz for 2 min. After deposition of the final butfer layer, the
ey gen pressure was suhsequently increased to 300 mToar and
the superconducting YBCO layer was then deposited on the
buffer layers. Tt is nit suggested that these are the optimal
conditions for FLD of the various layvers, but are the ones used
in this investigation [15]. Post-oxyvgenation of the Glms was
conducted in sife by lowering the temperature to 500 °C and
raising the oxyeen pressure o 700 Torr. After 005 b, the heater
was shut off,

The as-deposited films were analysed by a variety of
characterizations. A Rigaku x-ray diffractometer was used
Lo perform two-theta scans, To study the crystalline alignment
of the substrate, buffer layers and superconductor film, omega,
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Figure 1. Planar view SEM micrographs for the Y BCO/CeO:Y SZ0Ce00/Ni architecture at intermediale stages when using a thicker PLD
Ce)y seed layer. {a) Cracks in the thicker Ce(; seed layer are apparent, but the grain to grain misorientation indicates excellent texture in
the nickel substrate. (b) The YBCO layer displays some cracks on the surface which probably emanate from the CeOk layer.

fa)

S0pm
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Figure 2. Planar view SEM micrographs for the YBCOOY; O YSZAY 304N architecture at intermediate stages. (1) The surface of the
Y200 seed layer is relatively smooth and uniform overall, (h) The Y52 buffer laver over the Y05 seed layer is uniform but rougher

compared to the initial Y205 layer,

phi and ps1 scans were collected using a Philips MED with four-
circle diffractometry. The microstructure of the various films
was evaluated under scanning electron microscopy (SEM)
using a4 Leica SEM microscope and field emission gun for
the surface roughness and flm structure morphology. A
Digital Instruments atomic force microscope (AFM) was
used to more fully characterize the roughness of the buffer
layers. The guality of Y BCO was additionally evaluated by ac
susceptibility measurements to determine the critical transition
temperatures { T ). Electrical property characterizations of the
samples’ full width, 5 mm. were made using a standard four-
probe technique with a 1 2V em™! criterion 1o determine the
critical current (1) as well as the resistive T,, The thicknesses
of the films were determined by etching the YBCO at an edge
and measuring step height using a profilometer.

3. Results and discussion

Scanning electron micrographs (SEMs) for the YBCO/CeO,/
YSZ/CeOy/Ni {using a thicker ceria seed layer) amd

YBCOMY ;00 Y 5ZMY 2 05/MNi architecture are given in figures 1
and 2, respectively.  Although thickness variations of layers
were performed in this study as outlined in this section, the
standard thicknesses wsed for the two architectures are a Ce(s
seed layer of 80 nm, a Y20 seed layer of 130 nm, a Y52 layer
of 360 nm, a CeQ: cap layer of 40 nm, a Y,05 cap layer of
40 nm and a YBCO layer of 300 nm. Typically, CeQ; seed
layers <~~100 nm thick do not crack. As the seed layer gets
thicker cracking increases as evident in figure 1{a) fora 100 nm
thick Ce(s layer. In the figure, the low misorientation in the
nickel substrate can be gauged from the cracking pattern in the
Ce0y on adjacent Ni grains, Cracking is not the case with a
Y205 layer, figure 2(a), which tends not o crack even at a few
hundred nm thick, as determined in this study and elsewhere,
Thicker cena seed layers induced cracking although yetria
layers did not crack even as the thickness increased. Some
cracking is evident in the Y BCO layer per ligure 1ib) (left-hand
side of SEM) which probably emanates from the underlying
cracks in the initial CeQs layer. Figure 2{b) is an SEM of the
Y32 layer grown on top of a Y;Oj seed layer. At this point the
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Figure 3. SEM micrographs of the superconducting YBCO laver at different magnifications when using the ¥ BOOVY S Oy 570 04/

architecture.
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Figure 4. Phi scans for the YBCQ/CeO, /Y 52/Celn/MNi architecture
al intermediate stages. The Ce(d; seed layer is used and the Ni
substrate is of the same lot as used for the sample phi scans in
figure 5.

underlying Ni grain boundaries are not evident in the SEM but
are probably imprinted in the Y5Z layer [16]. This is clear in
figure 3 which displays different magnifications of the YBCO
layer on the Y.Ou/YSZY,04/Ni buffered tape architecture
where they are apparent.

To examine the epitaxial growth of the successive
layers and determine the transfer of the underlying textured
alignment, a series of XRD scans was taken. X-ray theta—
two-theta scans on the intermediate buffer lavers of both
architectures showed sharp (00! peaks indicating excellent
c-axis texture in buller lavers which was camed over to the
superconducting YBCO layer. Phi scans of the different oxide
layvers on nickel indicate excellent in-planc alignment of the
various layers although better for the ceria architecture using
the present deposition conditions. Figure 4 gives the different

el
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Figure 5. Phi scans for the YBCOYY :O0/Y 520Y .05 /Mi architecture
at intermediate stages. The Y20y seed laver is used in the phi scans.

phi scans of the YBCO/CeO2YSZ/Ce0y/Ni architecture for
the given deposition conditions. Figure 5 displays phi scans
of the YBCO/Y 204 Y S 2 Ow/MNi architecture which includes
the phi scan of the Ni substrate; this phi scan is not duplicated
in figure 4 but is also applicable for those figures. With a
starting Ni phi scan full width at half maximum (FWHM) of
6.7%, the subsequent phi scans are for the ceria architecture
CeQ seed = 6.7°, YS5Z = 6.7° and YBCO = 7.1°, and for
the yitria architecture ¥-05 seed = B.0°, Y57 = 8.3 and
YBCO = 10° In the present work, a larger degradation in
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Figure 6. Psi scan on the (111) peak of the YBCO layer of specimen for (a) the YBCOVCe (/Y SE/CeCn/MNi architecture, and (b) the

YBRCOMNY ;04 S2Y 04N architecture,
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Figure 7. Ac susceptibility data indicating the onset T, for (a) the YBCOO/CeO,/ Y SZCe0y/Ni architecture, and (b) the
YBEOOWY ;05 S2Y 5 00N architecture, The different curves result from the different applied helds listed in the legend—the licld

increases from right to left.

epitaxial transfer occurred for the YiOn layer; FWHMs of
the YaOs, Y52 and YBCO layers were increased =17, as
opposed to the FWHMs of Ce0s and related layers which had
= 17 variation. Even so, both layer structures were acceptable
from this standpoint. Psi scans of the final YBCO layer are
given in figure & for the different architectures, Both indicate
acceptable FWHMSs although the architecture using the Ce;
seed and cap layers is again slightly better than the architecture
with Y03 layers.

Preliminary experiments resulted in specimens with
current densities of more than | MA cm™ at 77 K in self-
field for both architectures, The =V plot of the currem
measured in a specimen using the YBCOMNY O Y 520 1 04N
architecture indicated a 3 mm wide sample carried a critical
current (J.) of 18 A at liquid nitrogen temperature which is
equivalent to a J. of 1.2 MA cm™, A 5 mm wide specimen
measured using CeO; as the seed and cap layer in the coated
conductor architecture carried an [, of 15 A across itequivalent
toaf. of LOMA cm™. Ac susceptibility data of the same
samples measured for J. are given in figure 7 in which x",
the imaginary loss component, 15 plotted versus temperature,
The data were obtained for different applied magnetic fields
as indicated in the figure. The onset T, obtained for the
YBCOMY 03 SEY 100N architecture 15 slightly  higher
than that for the YBOOWCeOw /Y 52/Ce0/Ni anchitecture. The
spread of the magnetic field lines in the ac susceptibility data
indicate a generally good film [17). This preferved value for

the use of the Y20 seed and cap layer is in agreement with
the transport measurements but differs from the XRED given
previously. Even so, values are farly similar in each case.

The SEM micrographs of the superconducting YBCO
layer with yttria cap and seed layers, given previously in
ligure 3, indicate the surface is relatively smooth with uniform
coverage and without too many overgrowths. An AFM image
af the YBCO layer using the YBCO/Y 04/ Y SEY . 0w/Ni
architecture is given in figure &, although from another sample
grown under the same conditions as the sample used for
figure 3. The outgrowths, or particulates on the surface, are
evident here as the dark peaks. The AFM scan on this specimen
gives the following RMS roughness over a 30 pm = 50 pm
area: R, = 62.6 nm including the outgrowths and R, =
36,763 nm over the same area if outgrowihs are excluded. This
can be eompared 1o the roughness of the YSZ layer, which is
R, = 35.1 nm, and the Y, (h seed layer, being £, = 8.8 nm,
The final surface increases in roughness with the additional
layers and greater thickness as is expected.

4. Conclusions

Yitrium oxide was successfully incorporated as both a seed and
a cap layer in fabricating YBCO coated conductor specimens
on a textured nickel substrate in a single chamber using
pulsed laser deposition. Its usefulness is comparable to the
YECOM O Y SZ/Ce0/MNi architecture where Ce0; 15 used
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Figure 8. AFM showing the surface morphology and roughness of
the YBCO layer. Note the planar scale iz 10 pom per division and the
vertical scale is 300 nm per divizion,

instead. This is more advantageous to pulsed laser deposition
when a limited number of targets can be placed in the target
holder for in site deposition. Good epitaxy was observed in
all the deposited layers of the YBCOMY 000 525200/ as
well as the YBCOVCeOy Y SZCe0y/M1 architectures leading
to a high onset T, {(~W-91 K) and self-field J. of more
than 1 MA em~ on multiple samples created under similar
conditions. The microstructure of the yitrium oxide and the
superconducting YBCO layers were dense and crack free with
uniform coverage across the sample incomparison to the Ce;
and YBCO layers in the Ce(s structures,
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