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ABSTRACT 

AUTHOR:  Colonel James D. Bass, Ph.D. 

TITLE:  Advancing Noise Robust Automatic Speech Recognition for Command and Control 
Applications 

FORMAT:  Civilian Research Project 

DATE:  31 March 2006 PAGES: 23 CLASSIFICATION:  Unclassified 

 
This is a technical assessment paper intended for use by engineers and research scientist 

working on the development and integration of Automatic Speech Recognition (ASR), it will 

cover the state of speech and recognition technologies with emphasis on noise robust command 

and control (C2) application.  The reliable elimination of the keyboard and mouse in mounted 

and un-mounted C2 systems has been a desire of systems developers and requirements writers 

since the deve lopment of PC-based ASR systems in the early 1990’s.  However, current research 

and commercial quality ASR applications never had the noise robustness to support a truly 

tactical C2 application.  As ASR achieved limited operational success in noisy environments 

around the 2002 timeframe, the C2 requirements evolved to include the emerging system of 

systems approach and multilingual operational environments in support of the Global War On 

Terrorism (GWOT)—in such environments, the system must understand not just words as 

commands (ASR), but to understand phrases and sentences (semantic and syntactic) and reply in 

a conversational manner (speech and natural language generation).  If the keyboard and mouse 

are to be truly eliminated, a system now needs to conduct a natural conversation with an operator 

and possibly others in the operational environment.  This paper will cover the advances, 

limitations, and reasonable expectations from several levels:  Research Scientist and Engineers, 

Program Executive Office (PEO), Program Manager (PM), and requirements office.  I will also 

discuss the major technical challenges that remain as well as some risk assessment to help 

decision makers align expectations with reasonable availability dates based on current and future 

research efforts.  Our user and requirements communities have waited 20 years for these 

technologies to mature to a level of effectiveness.  Now it is time to review and assess the 

available research and commercial products to see what is available for use in the tactical 

environment. 
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1.0 Introduction 

1.1 The promise of ASR 

Command and Control (C2) on the move, is a goal that has been discussed and desired 

since the introduction of communications devices on vehicles.  With the consistent advancement 

in computer power (following the timelines of Moore’s Law [1]), new innovations supporting 

robust Automatic Speech Recognition (ASR) and advances in Digital Signal Processing (DSP), 

this goal is evolving into a reality.  As the technology advanced, it has faced many difficult 

obstacles.  Human speech recognition is a science still not fully understood by both the science 

and medical communities.  How can humans filter multiple voices and “concentrate” on a single 

voice—even when it is at a much lower sound level than other competing voices and sounds?  

How does the cochlear component of the human ear play in this process?  Researchers cannot 

even decide on the fundamental starting question, “Should computers be taught to hear like 

humans or use a purely artificial digital—based paradigm?”  However, despite these difficult 

problems, they pale in comparison to the most fundamental problem faced today by the ASR 

research community—botched management of expectations.  Based on the promises of the DSP 

revolution of the 1980’s, expectations in ASR research soared.  Funding from Defense Advanced 

Research Projects Agency (DARPA), National Science Foundation (NSF), and even venture 

capital allowed centers of excellence to be established at many research universities and 

prominent commercial research institutions.  The race was on to not only research, but develop 

practical ASR products for use by the military, industry, and the physically challenged. 

1.2 The seeds of disappointment 

The initial ASR research was conducted on super computers in non-real-time with little 

expectation for small platform real-time ASR application.  At this stage it was a purely academic 

adventure in basic research.  However based on the phenomenal efforts of the Very Large 

System Integration (VLSI) community, the processing power of the small platform computer 

exploded during the 1990’s.  Moore’s law predicted a doubling of computational power for a 

given platform approximately every eighteen months.  His prediction held true throughout the 

90’s and is expected to hold for another ten years [2].  Research in massively parallel processing, 

Quantum Computing, and Bio Computing, all promise to keep the advances in processing power 
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moving forward.  During this same time frame, the military requirements community called for 

the development of real-time or near real-time ASR products to support basic on-the-move C2 

operations in garrison and the field.  In addition to the military demands, commercial companies 

like IBM and Dragon anticipated a large market for ASR products.  The results, based on these 

expectations, were massive developmental expenditures in the 1990’s designed to deliver PC-

based ASR products. 

The results of both the military and commercial research and development programs were 

a profound disappointment.  At the research level, the new algorithms and DSP techniques 

showed a steady linear improvement; however, in attempts to transition the technology to users, 

the software was unstable, prone to crashing, demanded almost exclusive use of the CPU, was 

difficult to integrate into user applications (API’s were also unstable), and the latency was too 

great for most real- time application.  In addition to these issues, the accuracy of the ASR engine 

was only in the 90% - 95% range (very poor for practical use) and dropped to unacceptable 

levels with the introduction of any form of noise (stationary or non-stationary) even with 

sophisticated noise canceling technologies.  Introduction of these software products was 

disastrous.  With user expectations shattered and promised performance levels unmet, the ASR 

R&D community experienced a massive drop in research and developmental funding.  The 

commercial community saw venture capital dry up along with a collapse of commercial sales.  

By 1999 there was only one major DARPA ASR program left, Communicator, and several ASR 

commercial deve lopers were forced to merge for survival and while others completely closed 

shop. 

1.3 A call for reassessment 

Out of the ashes of these unsuccessful efforts, a call for an assessment was made by the 

leading researchers in the various fields that supported ASR.  Their goal was to establish the next 

generation of research and to repair the reputation of the community.  This group of researchers 

and engineers held this meeting in December 1999 under the auspices of the IEEE ASRU 

Workshop (the IEEE Signal Processing Society has sponsored ASRU biannual workshops on 

various topics since 1989).  It was at this meeting tha t a complete reassessment was openly 

discussed and new research paradigms were debated. 
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1.4 Roadmap for achieving the promise of ASR 

At the time of the ASRU workshop in 1999, the major research in ASR was 

concentrating on use of Hidden Markov Models (HMM), adaptive systems for speaker 

independence (systems that do not require user to read sample speech to calibrate the system), 

large vocabularies, use of far field microphones, systems resilient to multi-speakers interference, 

and use of ASR in conversational telephony based systems.  The community had become caught 

up in a game of metrics showing only modest improvements.  The term “local optima” was the 

refrain heard throughout the ASRU meeting [3].  Subsystems were being optimized for small 

improvements in performance, but the overall system showed barely statistically significant 

improvement [4].  At ASRU the old template based and current statistical approaches were 

challenged and new feature-based methodologies were introduced.  The result was an 

invigorated community given a chance to develop new approaches through several new funded 

research programs: the DARPA Communicator, TIDES, and Babylon programs [5]. 

 

2.0 State of the Technology 

2.1 Review of State of the Practice Systems 

ASR is a complex system of software processes, hardware devices and computational 

engines.  From the input microphone and digital processing of those utterances to the generation 

of sound or text (as required by the application), each step must be integrated emphasizing 

accuracy and speed.  In state-of-the-practice commercial and current militarized systems, the 

processes are well defined.  Major differences in commercial vs. military are variations in corpus 

and vocabulary and the integration of military input devices and speech filtering techniques such 

as those used in military vehicle intercoms.  Here is a brief outline showing the major processes 

of ASR as a complete system.  Proprietary solutions exist between vendors and developers, but 

most of these “state of the practice” systems deliver statistically similar results with similar 

fundamental methods [6]: 

 

1. Speech Model 
a. Mapping of speech production 

i. Vocal tract 
ii. Voiced and unvoiced speech 
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iii. Articulatory phonetics 
iv. Phoneme development 
v. Prosodic modeling 
vi. Dialect compensation 

b. Representing speech in a computer 
i. Input devices (microphone, inducer, etc.) 

ii. Audio sampling 
iii. Quantization 
iv. Speech digitization 
v. Wave coders 
vi. Voice coders 

vii. Transforms (DFT, FFT, etc.) 
2. ASR Engine 

a. Mapping system performance parameters 
i. Continuous vs. non-continuous speech 

ii. Speaker independence vs. speaker dependence 
iii. Vocabulary size 

b. Acoustic feature selection 
c. Comparing features 

i. Dynamic Time Warping 
ii. Hidden Markov Models 
iii. Other methods 

d. Error detection and correction 
e. Learning system techniques 

3. Language Model 
a. Corpus collection or generation 
b. Bi, Tri, and N-gram techniques 
c. Confusion matrix 

4. Speech/Text Generation  
(NOTE:  Not all systems generate speech, some are text only.) 

a. Method selection 
i. Parametric 

ii. Concatenative 
b. Text-to-Speech processing 

i. Rule and exception processing 
ii. Morphological analysis 
iii. Articulation effects 
iv. Prosody 

 

In a relatively quite environment such as an office setting (=13db Signal to Noise Ratio) with a 

close talking microphone, users of theses systems with speaker training (speaker dependent 

system), with a vocabulary in the 80K word range can expect approximately a 90% accuracy rate 

[7].  Unfortunately that error rate is usually not tolerated by normal officer workers.  Follow-on 

system training and user corrections added to the learning system usually boost performance by 
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only 2-3% [8].  In industrial and military applications where the noise level can easily exceed 

30db, system performance quickly degrades to less that 50% word accuracy.  Training in the 

noise yields some increase in performance; however, in the noise has some variation, the 

performance increase is not reliable.  In addition to accuracy, the latency of receiving the results 

of these systems is unacceptable for real- time or near-real time applications.  Thus the standard 

commercial systems have minor application in sterile office environments or use by the 

physically challenged.  To address the shortcomings of the commercial quality systems, 

DARPA, Naval Research Lab (NRL), Army Research Lab (ARL), and the NSF all funded basic 

research in new approaches to ASR in noisy environments. 

2.2 Review of State of the Art Systems 

State of the art noise robust ASR systems are being designed for both specific noise 

environments and as general adverse condition systems.  The key research domain for these 

systems is adaptive methodologies.  Systems are created with samples of noise that are expected 

in the operating environment (e.g., automobiles, aircraft, military vehicles, etc) [9].  The speech 

models are enhanced by incorporating prosody (speech variation in pitch and speed usually 

based on stress) and attempt to evaluate the users stress level to adapt the feature interpretation to 

support higher accuracy rates.  Other system developers are concentrating on adaptation at the 

input level.  These developers are looking at technologies for noise cancellation, steerable 

microphone arrays, use of lip reading technology, and other novel approaches [10]. 

Beyond adaptation a few researchers are looking at enhanced speech features for 

enhancing the accuracy and no ise robustness of ASR systems [11].  These researchers are using 

such methods as Maximum A Posteriori (MAP) or the use of clustering techniques with spectral 

vectors of clean speech [12].  These techniques allow noise corrupted components of noisy 

speech to be identified and cleared.  These noise robust systems developed by such organizations 

as BBN, IBM, Carnegie-Mellon, SRI, and MIT all show superior noise robust capabilities over 

commercial systems; however, their latency, restricted vocabularies, and/or computational and 

hardware requirements make practical application of these systems in the operational 

environment difficult and expensive.   
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2.3 Assessment 

For commercial application current state of practice systems have found relative success 

in the automated conversational telephone system market.  Spurred by the DARPA 

Communicator program, there are several hundred of these conversational systems operating in 

Europe and the United Sates [13].  These systems take advantage of the fact that the user is 

calling to complete a finite set of tasks.  Thus the vocabulary can be constrained to some extent 

by the domain.  As the user gets deeper into task completion, the domain becomes more 

constrained—thus enhancing its accuracy and speed as it collects information from and provides 

information to the user. 

For military application, the only reasonably effective applications of ASR in a (non-

office) military environment have been in limited domain devices such as the Phraselator [14].  

This small hand-held translation device uses a non-continuous speech (set phrases), speaker 

independent, small vocabulary paradigm.  The ASR is used to identify one of several thousand 

fixed phrases that are tied to set of identical fixed phrases in a foreign language.  The user speaks 

an English phrase and the system transmits the same phrase in one of several languages (e.g., 

Arabic, Pashto, or Urdu).  This PDA sized system has been procured and used with some success 

in the harsh environments of Afghanistan and Iraq.  For a Command and Control (C2) application 

in the harsh noise of an operational environment, the current crop of commercial and 

developmental systems could only be effective in limited domain directive (command based) 

applications. 

3.0 Hard Unsolved Problem Domains 

3.1 Acoustic Domain 

Noise is fundamentally defined as, “Sound, or a sound that is loud, disagreeable, or 

unwanted” [15].  The major acoustic objective in ASR involves the detection and enhancement 

of speech features and the degradation or elimination of noise.  There are three sources of noise 

in speech recognition:  the speaker, the background, and the channel(s) [16].  Within the ASR 

acoustic domain, noise from those sources fall into three categories:  channel noise, ambient 

noise, and processing noise.  In commercial ASR systems, the minimal acceptable Signal-to-

Noise Ration (SNR) is approximately 10db.  With a conventional cardioic microphone, a well 

trained operator and system can achieve 85-90% accuracy rates under ideal conditions.  This 
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SNR with microphones and standard audio filters is achievable in relatively quite commercial 

office environments, but are very difficult to achieve in any operational military environment.  

The current technology thrusts have focused on these three major categories of noise.  As is the 

nature of potential solutions, each alternative brings resource requirements that must be 

accommodated in the target system. 

3.1.1 Ambient Noise 

Ambient noise can come from the external environment or even the operator of an ASR 

system.  Ambient noise can be steady (periodic) or constantly varying (non-periodic).  Both 

forms (generally labeled as stationary and non-stationary noise) must be significantly degraded 

or eliminated for current technology ASR systems to work.  There are four general approaches to 

attack this category of noise: noise canceling technologies, highly directional microphones, 

steerable microphone arrays, and alternative filtering (most noticeable of late cochlear filters) 

[17].  Each of these technologies offers help in raising the effective SNR by either notching out 

noise, enhancing desired speech components (features), or a combination of the two. 

All of these potential solutions are limited by their impact on the operator, the system, or 

external restrictions.  For example highly direction microphones are only effective if the user is 

able to stay within the very narrow beam of the microphone.  Steerable arrays are good on 

vehicles or in conference room environments.  Noise cancellation technologies are advancing 

well, but for real-time systems noise canceling systems introduce small bits of noise created by 

the delay in sampling the sound and then creating the canceling signal.  These small noise 

features are referred to as artifacts and take on a random appearance.  Such artifacts fall within 

the category of processing noise and must be dealt with by the ASR system.  These artifacts, 

though a nuisance, pale in comparison to the general system performance increase provided by 

noise canceling technologies—especially in stationary noise.  The last proposed solution is the 

most immature and least understood.  Filtering is fundamentally the feeding of all frequencies 

received by the input device, but outputting only certain frequencies.  Basic filter types include 

high-pass, low-pass, and band-pass filters. 

Modern filters are far more flexible and are able to mimic the type of filtering done in 

biological systems—such as the human ear.  Though not fully understood, the cochlear filter in 

humans can be emulated to some degree with modern non- linear digital signal processing 

technologies.  Early linear types offered only marginal improvements in speech feature 
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enhancement; however, with the introduction of non-linear processing, the characteristics of the 

artificial cochlear is much closer to that of its biological counter part.  The primary issues with 

this solution are system latency, enhanced processing, and power requirements.  At this time the 

maturity of Cochlear filters offers the greatest potential for enhancing speech in ambient noise.  

Research now revolves around the mix and integration of all of these technologies and the 

impact on system design, power, latency, and thus fundamental usability.  For the foreseeable 

future, any practical implementation of ASR in an operational environment will use one, a 

combination or all of these techniques. 

3.1.2 Channel Noise 

The source of most channel noise is typically introduced by the microphone or 

transmission medium and manifests itself as hum or static.  Sound engineering practices to 

eliminate ground loops and good shield ing of external signals usually eliminate these problems.  

The RF rich environments of the military usually require much more attention than typical 

commercial office environments—though with the introduction of WiFi, Bluetooth, and other 

wireless technologies, even commercial applications need a good understanding of the ir RF 

environment.  Another source of noise is variation caused by a mismatch between channels.  The 

most common channel mismatches are introduced by variations in band-pass filters or reactive 

resistance to the physical transmission lines (commonly measured as the Standing Wave Ration 

(SWR) [18]. Again sound engineering practices and training operators to use the correct cables 

and microphones usually eliminate this form of channel noise.  Of all the categories of noise, 

these should be the least tolerated by the community.  Channel noise is a reflection of good 

engineering practices and knowledge of the operational environment. 

3.1.3 Processing Noise 

The most critical form of processing noise in ASR is introduced through quantization of 

the speech signal for digital processing.  Noise in this context is defined as unwanted deviations 

from the original signal. Quantization noise may be represented in decibels as a signal-to-noise 

ratio [19]. SNR is measured as the relative cumulative errors in a reconstructed signa l and can be 

improved by increasing the quantize—at the cost of increased resources (e.g., power, 

computational support, etc.). 
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The sampling rate and the quantizer size are the two primary parameters of sampling; 

these two factors determine how faithfully the original signal can be recovered after the analog-

to-digital and digital-to-analog process.  These two parameters are independent of each other 

with respect to fidelity of the digitized signal.  An increase in sampling rate will not reduce the 

overall quantitization error, and aliasing will occur if the sampling rate is too low—regardless of 

the size of the quantizer.  The development of new nonlinear quantizers such as logarithmic and 

adaptive seek to reduce overall quantization error by concentrating the greater part of their 

quantization levels in information rich audio ranges in the hopes of achieving better resolution at 

the expense of poor resolution in those other audio ranges—an example would be a non- linear 

quantizer optimized for the human audio range.  The elimination of processing noise is very 

much an art at this stage of development in ASR.  The identification of new or alternative speech 

features is usually associated with a modification of the quantizer to extract the information 

within that feature. 

As the multidisciplinary research community tries to identify the most critical speech 

features for exploitation, the digitization community must continue its development of new 

quantization routines to keep processing noise at the absolute minimum.  So far the history of 

their efforts aiding the ASR community has proven effective. 

3.2 Speech Extraction 

We have a signal; the signal has been digitally filtered to remove as much noise as 

possible while preserving as much of the speech component as practical.  What’s next?  All 

computer speech recognition systems are based on training the computer system by exposing it 

to known speech from which a reference model is created.  Then the new unknown speech is 

compared to the reference model to produce a hypothesis solution (translation) which is then 

validated by various support modules further along of the ASR process.  The reference models 

may be built on speech units as large as a phrase or as small as a fraction of an allophone.  There 

are tradeoffs based on these choices.  After a speech model is selected, a unit of representation 

must be selected to allow robust comparison of new speech against the reference model, here 

again a brief discussion of major methods and their advantages and disadvantages need to be 

covered.  The final major component of the speech extraction process is the method by which the 
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units will be compared.  There are currently two major methods with a new novel approach on 

the horizon, all three will be covered. 

3.2.1 Words and Phrases 

Early recognizers used single words or groups of words spoken together (phrases) as the 

basic unit of speech.  Developers quickly recognized that some common word pairs or phrases 

when built together in the reference model improved overall system accuracy.  For example a 

phrase such as come here would be entered as a single unit instead of the two separate units of 

come and here.  The reason is that the more dynamic components a unit of speech has, the better 

chance of a successfully recognition.  In such utterances as the cook, the wife, the thief, etc. the 

the in these examples are usually poorly articulated and would be missed by most recognizers.  

Designers learned to create such word pairs and phrases to add to the reference model—thus 

increasing the accuracy of the model at the cost of model size and reference model processing 

time. 

In the early days of ASR development, such brute force techniques as word and word 

phrase modeling were practical only for very small vocabulary applications.  Storage space for 

the reference model and computational horsepower for access and comparison were not powerful 

enough to overcome the system latency of these prototypes.  They were simply too slow and too 

limited for any practical application. 

3.2.2 Syllables 

By building the reference model from components of words instead of words and 

phrases, designers can reduce the size of the model.  Words are composed of syllables and a 

great amount of redundancy can be reduced.  This efficiency is very language dependent.  

Languages like English with more than 10,000 syllables realize a modest efficiency; however, 

Japanese and other languages built on only a few hundred syllables can experience a substantial 

reduction in the reference model size.  Syllable based reference models have fallen out of favor 

do to the fact that most speakers in all languages alter the classic pronunciation of suffixes and 

predicates based on long term social or cultural norms.  For example, the suffix –less (e.g., 

godless) tend to be pronounced with a schwa E (?).  This is but one example of thousands, and 
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they exist in all languages.  This results in the creation of thousands of exceptions to the basic 

syllable rules.  Worse yet, they tend to be applied by speakers on a near random basis.  Even low 

syllable count languages like Japanese are subject to these same events.  Unfortunately, when all 

of the variations are accounted for, the hoped for efficiency in reference model size becomes 

quite modest, leading researchers to look for alternative solutions. 

3.2.3 Phonemes 

As indicated by some researchers and authors, the term phoneme-based recognition is 

actually more correctly described by the label allophone-based recognition.  Since an allophone 

is the smallest unit of sound that is actually produced for speech.  Similar to the hopes in the 

development of syllable-based models, the hopes in phoneme-based models was that by using 

the basic sound elements of speech, a highly efficient reference model could be designed.  Most 

languages in the world are based upon approximately 100 allophones. 

Unfortunately, the interaction problems (e.g., interallophone articulatory effects) as 

experienced in the syllable-based model, as well as others issues not anticipated, have forced 

researchers to look beyond the phoneme-based model as a potential solution.  The major problem 

involved in the use of phoneme-based models is the fundamentally infinite variations in the 

actual sound of each phoneme.  Also, the interactions with adjacent phonemes create unique 

sounds – worse yet, these sounds are not consistent.  The problem of infinite variation was 

overcome to some extent by the use of cardinal points of identification.  An example would be 

the presence or absence of aspiration.  For English, there are six forms of articulation [20]:  

stops, nasal stops, fricatives, approximants, affricatives, and flaps.  Consonants in English are 

further described by three parameters [21]:  place of articulation, manner of articulation, and 

voicing.  All of these articulators and parameters have been successfully modeled and can be 

identified by acoustic means with extremely high accuracy in quiet environments.  However, in 

noise, or with speaker stress, the accuracy of these phoneme-based models fails. 

As in previous model examples, the size of the phoneme provides little room for error in 

detection and identification.  Thus researchers began to argue that the community was using a 

too small a unit of information.  But what was available to the community that was in between a 

syllable and an allophone?  The answer is our current state of the art unit of speech. 
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3.2.4 Diphones and Triphones 

The current state of the practice is to use one of two blending technique of allophones 

known a diphones or triphones.  In an effort to avoid interallophonic effects, researchers 

developed diphones.  A diphone is the second-half of one allophone concatenated with the first-

half of another allophone [22].  The center of a diphone is the boundary of the two allophones.  

This permits the interallophonic phenomena to be modeled.  The number of reference models 

climbs.  One hundred allophones produces 4,950 diphones if all combinations are used, which 

they are not.  However, approximately 5000 reference models are manageable with modern 

processing equipment and this model has no exceptions and essential covers all the words in 

English. 

Triphones offer the modeling of the interallophonic effects like diphones, but are large 

enough to reveal contextual information supported by a vocabulary.  As the names implies, 

triphones use three phonemes.  The center is relatively invariant with respect to a fully modeled 

diphone reference model which is present.  The endpoints vary with context and are the center of 

the modeling effort to capture the articulation effects.  The number of triphone models needed 

for a practical system is enormous.  They are so numerous that for practical applications they are 

collected and modeled automatically from large speech databases.  To the extent possible, a wide 

variety of speakers and dialects are desired for a high degree of speaker- independence.  To help 

limit the scope of the collection and modeling effort, if possible, the vocabulary to support the 

system is identified.  Thus the triphone collection and modeling may be limited to support the 

vocabulary helping limit the size of the model.  A speaker adaptation algorithm is required to 

adjust the reference models of the triphones to the individual speaker.  For large vocabularies it 

can take weeks or even months to complete the adaptation process.  These systems are intended 

for long use by the same speakers. 

The current state of the art consists of highly optimized diphone, triphone and even 

experimental N-phone models.  While providing better modeling flexibility than word(s) and 

syllable-based models in medium or large vocabulary applications, so far none of these models 

have proven to be successful in large vocabulary noisy environments or effect in the presence of 

speaker stress.  These models do not overcome speaker variation, dialect variation, and the 

articulatory degradation that normally accompanies continuously spoken speech.  Speech 

extraction continues to represent a hard unsolved problem to the ASR community. 
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3.3 Latency 

Similar to noise, latency is aggravated by the number of channels and processes 

encountered throughout the system as it executes.  The major sources of latency include:  

communications channels, process transfer channels; internal or external process holds, 

distributed or internal data accesses, processing performance, and system support bus sizes.  A 

typical commercial quality ASR application when fully trained and operated in a noise 

environment of 10db SNR or better can be expected to deliver response in 500 to 3000 

milliseconds.  In higher noise environments or when using a speaker independent system-latency 

can be as great as 10 seconds.  This latter delay is unacceptable in most commercial applications, 

but is specifically unacceptable in military applications.  Latency in cumulative and any 

decreases along the system path yield performance enhancement.  Here are some techniques 

being researched to help with latency for ASR.  

3.3.1 Increased Computational Power 

Advances in this technology are out of the direct hands of the ASR community in so 

much as CPU and bus performance is concerned; however, like other applications we gain 

performance with every sub-system advancement in the computer.  In addition to simple clock-

speed enhancements and bus size, new designs support parallel processing which help reduce the 

latency created by data transfer between linear processes.  These reductions in latency are 

benefits we get without direct improvements in the ASR application.  More reductions are 

available in areas of the computer unique to the audio requirements of ASR and other acoustic-

based applications. 

3.3.2 Preprocessing Speech and Noise 

New co-processors supporting audio input are being refined by members of the acoustic 

and ASR communities [23].  Digitized audio data files are large, even when compressed and the 

processes to evaluated audio in noisy or multi-speaker environments require enormous 

computational support.  Continued development of dedicated audio processing components with 

floating point calculation routines will achieve reductions in latency that are not attributed 

directly to the ASR system’s internal processes.  At this point in the development of portable 

computing, most hand held PDA devices use processors that only support integer mathematics.  
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This requires writing computation routines in software rather than system calls to floating point 

calculations.  This requires high quality programmers dedicated to elegant design for efficiency 

and speed in all calculations.  Most research developers are adding separate audio processing 

capability or sophisticated pre-processing microphones to enhance the performance levels for 

their PDA-based prototypes.  Speech and noise processing has good funding beyond the ASR 

community and the potential for improvement in noisy environments is good. 

3.3.3 System Process Engineering 

The final critical issue of latency is integration of the ASR system.  This integration has 

two aspects:  intra- integration of the ASR system with its own internal processes, and an external 

integration with the systems that the ASR will support.  The current team of researchers and 

developers are working of functional process improvement to ensure minimal latency within the 

ASR system.  However, the community has not put a major effort into the performance 

parameters required to fully integrate into a functional C2 system with ASR [24].  Latency will 

not be dependent only on the response time of the core C2 application and the ASR, but a 

calculation of the entire system of systems design model for future C2 systems.  Assuming the 

ASR system will not be a distributed network design, the latency impacts can be estimated with a 

fair accuracy.  If the ASR is distributed (a possible solution for far forward deployment in 

computational stressed environments), latency will need to be monitored by some Quality of 

Service (QOS) manager within the ISO computer stack [25].  Regardless of the scenario of 

employment, the integration component of this effort for external integration is immature.  All 

current and future ASR projects, as well as their C2 counterparts need to look at latency with an 

eye on user satisfaction and mission requirements. 

3.4 Error Rate 

The issue of error rate is aggravated in ASR systems due to the modular makeup of the 

systems design.  All current state of the art ASR systems are component designed.  The audio 

input, speech extraction, quantization, and other components are all capable of introducing small 

amounts of error that are passed on from process to process.  Unlike other information systems 

that can have trusted or verified data, the speech (as impacted by noise, stress, or dialect), can be 

easily misinterpreted at any stage of the ASR process and the error magnified by subsequent 

processes.  Certain ASR paradigms are more subject to these cascading error effects than others.  
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For example, the use of a universal symbolic language to represent meaning in a language 

neutral design creates two additional error points as the systems translates to and from the inter-

lingua process.  Whereas single language (e.g., English) or direct language to language (e.g., 

English to Spanish), have only a single translation point of error.  To counter accumulating 

errors, many systems introduce self correcting algorithms or direct human verification methods 

at strategic points in the process.  An example was the creation of the language model to validate 

that the string of words being generated represented possible intelligent speech.  Now that 

systems are being used in harsh environments, accumulative errors are more critical, and 

research is starting to develop more novel approaches to reducing error without human 

intervention.  Within the research realms, resolving the cascading error effect of component 

based speech systems may well prove one of the most significant areas to support ASR in tactical 

environments.  The goal will be to not only eliminate the errors, but also to do it with adding any 

significant latency. 

4.0 Expectations 

Unrealistic expectations were a major contributor to the failures of earlier attempts to 

introduce ASR into military and commercial systems.  Three communities will be briefly 

covered in this section.  The requirements, user, and developers all must have realistic 

expectations and driven by achievable requirements if a new generation of ASR technology is to 

be integrated into next generation C2 systems. 

4.1 Requirements 

There have been several rapid prototype projects exploiting and evaluating ASR 

technology in field environments:  Phraselator and Babylon projects from DARPA and the 

Language and Speech Exploitation Recourses (LASER) ACTD [26].  However these 

demonstration and proof of concept type efforts never created a stable set of requirements.  That 

effort has begun with the Sequoyah program [27].  Sequoyah is to be the first program of record 

for development of multilingual translation and ASR technologies for integration into Army and 

Joint systems.  Sequoyah is currently being stood up at PEO EIWS and is sponsored by the 

Combatant Command Interoperability Program Office located at Fort Monmouth, NJ.  It is here 

that the initial draft requirements, based on the LASER ACTD and the DARPA projects, will be 

generated.  The first step is the development of the Initial Capabilities Document, the ICD.  As of 
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the publication of this paper, the ICD is being drafted and is expected to be staffed by 3rd quarter 

FY 2006 [28].  The development of a realistically achievable set of performance parameters and 

key performance parameters are essential to allowing the development community to build a 

practical ASR system.  It is incumbent on this community to evaluate what features can and 

cannot be exploited in the initial delivery from our developers. 

4.2 Users 

Several Commercial Off The Shelf (COTS) and semi-militarized products have been 

delivered to operational forces in support of Operation Enduring Freedom (EOF) and Operation 

Iraqi Freedom (OIF).  Most of these were developed by the Army Research Laboratory (ARL) 

and the Defense Research Projects Agency (DARPA).  The most successful (as determined by 

most produced and requested by operators) has been the DARPA developed Phraselator [29].  

Developed under a Small Business Innovative Research (SBIR) effort, by the submission of this 

paper over 1000 have been produced and delivered to the field.  The Phraselator has gone 

through four major version enhancements all based on user needs to support field operations.  

Based on these lessons learned experiences, here is a list of major user requirements and their 

expectations for field use.  These parameters (not exhaustive) should be carefully cons idered 

along with the formal ICD’s technology gaps and requirements when developing and packaging 

a system for delivery in an operational environment.  The final prototypes should have extensive 

user tests to ensure performance levels in operational environments support the user’s mission.  

If not, the technology will be rebuffed by the user and another generation of users will be tainted 

against the insertion of ASR technology. 

4.3 Developer 

At this stage of capabilities development, the software requirements are critical mainly 

from the perspective of achieving easy system-of-systems integration.  Beyond integration, there 

are three additional factors that require careful monitoring as the system is matured:  power, 

weight, and packaging.  Disregarding any of these factors could destroy developer expectations 

by created system requirements beyond current or next generation hardware and power 

capabilities. 
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4.3.1 Power 

The system needs to have its own power source (batteries) capable of supporting an 

operation of 10 days without recharging.  Through experience and observation, the DARPA 

program office determined that to meet this need, the battery must have charge hold ing 

capability of 12 days with support for 10 hours of “on” time within that 12 days [30].  Here “on” 

is defined as fully functional with no sleep system degradation of the CPU.  With sleep support, 

days and hours of operation may be extended beyond the minimum requirement.  The system 

should support charging from any power source.  The latest DARPA version uses a switching 

power supply technology capable of charging the system from any voltage (3-220 VAC or VDC) 

at any frequency (40, through 100 Hertz (AC)) or DC.  This was special important for overseas 

and multination operations.  The final design request was that the rechargeable battery pack 

should be removable and replaceable with conventional “AA” batteries.  These “AA” batteries in 

a soldier’s environment are common and could be used in an emergency. 

4.3.2 Weight and Packaging 

Whether the user was a special operations team or a conventional force, everyone 

expected the system to be rugged and light weight.  The first version of the Phraselator was a 

notebook computer with an integrated noise canceling microphone/speaker package.  It became 

immediately clear that users needed and integrated uni-body package [31].  The second version 

was developed on an iPAQ; however, the integrated microphone and computational power 

proved unacceptable.  The current solution, the Phraselator 2000 is a semi-militarized package 

providing a single package with sufficient battery life and computational power to run the ASR 

package.  The weight of the Phraselator 2000 is 16 ounces – this weight seems to be the 

maximum for special operators and a preferred weight for conventional forces.  Any future 

system should not exceed these weight and package parameters. 

5.0 Risk 

5.1 Program and Product Risks 

Programmatic risk for a technology insertion is best assessed by the Technology 

Readiness Level (TRL) used by the Department of Defense [32].  The evaluation of TRL is for 

this component-based technology is categorized on the demands of the environment (noise and 
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stress levels) required for successful operation of the supporting C2 system.  Here is an 

assessment based on interviews with research developers, requirements officials, and the current 

DARPA program manager [33]: 

1. For “office environments” similar to standard indoor and non- industrial 

commercial business situations, the current set of commercial ASR products is 

assessed to be TRL level 8: Actual system completed and ‘flight qualified’ 

through test and demonstration.  The product will only need minor modification 

to operate with selected office equipment (or systems) and training for adaptation 

to selected noise reduction microphones used in the office environment. 

2. For Tactical Operations Center (TOC) and other field operations where reliable 

power is available and major C2 systems are operational, commercial ASR 

systems are not advised.  For noise robust industrial/military ASR systems under 

development, the technology maturity is assessed to be TRL level 5:  Component 

and /or breadboard validation in a relevant environment.  Substantial 

development is still required to overcome the noise and speech stresses 

experienced in a TOC.  Use at this point is recommended only for demonstration 

and concept validation or as part of a forward deployed experimental command 

center for evaluation by a voluntary, fully- informed field commander. 

3. For forward operations in a mounted or dismounted environment in conjunction 

with far- forward C2 or data collection/situational awareness systems, ASR 

technology will be challenged with noise (both stationary and non-stationary) and 

extreme variations in user speech stress.  This environment is harsh, power 

constrained, and likely to experience hostile fire.  Very few commercial based 

systems have been used in this environment.  Success has been experienced only 

for applications with very small vocabularies.  The most successful application 

has been for hand-held translation devices such as the Phraselator used in support 

of Special Operations Forces (SOF) in OIF and OEF.  Further use of commercial 

systems in this environment is not recommended.  For the noise robust 

industrial/military ASR systems under development, the technology maturity is 

assessed to be TRL level 4:  Component and/or breadboard validation in 

laboratory environment.  The greatest risk here is in maintaining the system 



19 

effectiveness and accuracy experienced in the larger power and computationally 

hungry systems designed for use in the TOC, but applied to the forward operating 

environment with their limited platforms and weight restrictions.  At this stage of 

development, only highly customized prototype systems given to enthusia stic 

volunteer evaluators is recommended. 

5.2 System Integration Risk 

Integration risks are most likely to manifest themselves as system latency or data error 

input through incorrect ASR translations.  Commercial ASR systems used in office environments 

have substantial error correcting capability.  When fully trained and used on modern computers, 

they have little latency.  Thus for office environment, use of ASR technology offers minimal 

integration risk [34]. 

Integration risk for TOC-oriented or forward-oriented C2 systems is very high [35].  The 

TRL levels are still too low fully assess the level of effort required to ensure proper operation of 

the base C2 system once the ASR technology is inserted.  For the immediate future, it is 

recommended that only stand-alone systems or screen navigation systems use ASR at the TOC 

and forward. 

6.0 Conclusion 

Given the dynamics of the operational environment and the relative immaturity of noise 

robust ASR systems, the technology at this time is only deployable in systems requiring very 

small vocabularies (1-500 words) for use in speech translation systems, as a direct control, or 

system navigation and retrieval functions.  These systems will most assuredly be speaker 

dependent (specific user voice training).  For systems with speaker independent (no user 

training) applications in noise controlled office environments, systems requiring medium (2500 

words) to large (5000+ words) vocabularies are viable.  Based on the current R&D work and an 

anticipated increase in current funding over the next three years, the requirements and program 

communities should plan (Pre-Planned Product Improvement) on the insertion of robust ASR 

systems with large vocabularies by the 2011 timeframe [36].  Program offices should anticipate 

complete redesign of microphone and speaker systems to support the noise robust functionality 

during this same timeframe.  Computational power requirements will also need to be carefully 

monitored if a dedicated CPU for ASR is not available.  Noise robust ASR is becoming a reality, 
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this is not the time to suspend or delay research dollars.  The commercial community will not 

develop noise robust technologies on there own [37].  The expected market is just too small 

outside the military community to warrant commercial development.  Thus it is up to 

organizations like DARPA, ARL, NRL, and AFRL to continue to push the envelope on noise 

and speaker stress technology.  The core research is complete; all we need now are the 

developmental dollars to get the components integrated and the first prototype in the field. 

WORD COUNT:  7445. 
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