4143

IVSS-2005

Prognostics Models of Combat Vehicles Software

ABSTRACT

The Next Generation Software and Survivability
Technology areas of TARDEC RDECOM proposed the
Dependable Automated Reconfigurable Technology
(DART). The DART’s “Health & Situation Control” will
test the processing elements with Probe/Agent
technology for software checking. Algorithms within the
Health & Situation Control will assess the health of the
processors and recommend element hand-off based on
a “Criticality Scoring System” in conjunction with the
Statistical Usage Test (SUT) model. The DART
technology represents the next generation of software
systems for ground combat vehicles. DART will
enhance the performance of a weapon system by
providing on-the-fly reconfiguration to accommodate the
loss or malfunction of processing elements or to
optimize onboard computational capability. Off-vehicle
probes will be launched to assess the health of
companion vehicles within the Operations Unit. The
SUT will be used to evaluate software reliability. The
SUT combined with a test environment that includes test
benches, simulators and automated testing will provide
the ability to arrive at a statistically valid measure of the
reliability of the software. The SUT methodology will
enhance software development and test processes.
The end result will be the increased reliability of fielded
software intensive systems.

INTRODUCTION

Modern embedded systems are getting more and more
software intensive, and successful operation of a system
requires high fidelity not only in its hardware
components, but also in the software used in such
systems. Successful prognostics in software is a
challenge to the technical community and the technology
in is in its infancy. Researchers have reported some
work on reliability of software systems [1-7]. These
imply that given a software module, some test will be
conducted on those, and based on the results, a
measure of reliability will be calculated. Reliability can
be considered to be the probability that a software will
function the way it was meant to, under a given
operational profile (input/output relationship) during a
certain time frame. Reliability can be considered to
have a one to one correspondence with prognostics.
Let's say a software is meant to be operational from its
inception till the system is disposed of, which is a

Elena Bankowski and Abul Masrur

US Army RDECOM-TARDEC, Warren, Ml 48397-5000

duration of 10000 clock hrs. At the end of 2000 clock
hrs, let's say by some means we found that its reliability
is only 90%. That will imply that for the remaining 8000
clock hrs, it most likely will be available for actual
operation for only 8000 * 0.9 = 7200 hrs. So, in a
conservative scenario, the system should be replaced
after 9200 hrs from the initial commission of the system.
Here we have translated the reliability index of 0.9 into a
prognostics index of 7200 hrs. for the remaining period
of life cycle, or 9200 hrs from the initial commission.
Hence prognostics and reliability are very much related.

Software in an embedded system, as in a vehicle, which
can be a battle tank as in our discussion later, resides in
various processors within the vehicle. Therefore, to find
the health status of the embedded system, it is
necessary to find the health situation of the processors
(hardware) and the software which resides in it. Having
found the health situation, it can, in certain situations, be
possible to reconfigure an embedded system, by
reconfiguring its hardware and software architecture.
This can lead to a more gracefully degradable mode for
the system, before the situation permits a thorough
checkup and off-line replacement in a service facility,
thus leading to higher survivability of the system. This
paper will mainly focus on software prognostics and
reliability, leading to reconfiguration by DART method,
based on SUT based testing. Information about the
system will be collected by various hardware sensors
and software probes (request for various data using
software algorithms), as detailed later.

Prior art - As noted earlier, software reliability has been
discussed by certain researchers. In order to find a
measure of reliability, some modeling techniques for
reliability have been proposed. Horgan et. al [1] has
suggested that establishing the operational profiles i.e.
input domain of the software (possible input states and
their probability of occurrence) and customer input
related to usage, can be a formidable task.
Methodology for this have been provided by Musa [2].
It has been indicated [1] that if the test method is weak
i.e. fails to identify all the features and path in the
software properly, then it can be inadequate. Obviously
such inadequacy can lead to optimistic and erroneous
results in the reliability estimation and hence prognosis
evaluation. Nelson [3] has suggested a statistical
testing which calls for randomly generated test cases
using a statistical distribution based on operational

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 2. REPORT TYPE 3. DATES COVERED
04 APR 2005 N/A -
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Prognostics M odels of Combat vehicles Software £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Elena Bankowski; Abul Masrur 5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
USA TACOM 6501 E 11 Mile Road Warren, M1 48397-5000 REPORT NUMBER
14792
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR' S ACRONY M(S)

TACOM TARDEC

11. SPONSOR/MONITOR’S REPORT

NUMBER(S)
12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited
13. SUPPLEMENTARY NOTES
14. ABSTRACT
15. SUBJECT TERMS
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE SAR 7
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

profile. It seems that none of the methodologies are
perfect and that a combination of methods involving
such statistical testing along with code analysis [4] may
provide better results in software reliability estimation.
it has been noted [1] that these methods are not used
in practice in spite of their merits. Our work, therefore,
shows applications where these could potentially be
used. In addition, for embedded systems, it is not
sufficient to just estimate reliability and come up with a
prognosis. If there is a safety critical implication,
appropriate methodologies should be adopted to
address the situation through reconfiguration wherever
possible. In our work, which relates to the reliability
and prognostics of embedded hardware and software
based military vehicular systems, we therefore present
in the following the methodologies for testing (SUT)
embedded software, and then the mechanism for
following up the findings of the testing through dynamic
reconfiguration (DART) when needed.

MILITARY VEHICULAR APPLICATIONS

Today's Main Battle Tanks (MBT) contain a multitude
of processors, yet systems such as the Abrams tank
provide redundancy only between the hull electronics
unit and the turret electronics unit. The Abrams
employs duplicate processors hosting redundant
software in different vehicle compartments. Over a half
a million lines of software code span multiple
processors. Future weapon platforms will host a
significant increase in software. The processing
burden of the front line vehicles will require a further
increase in processing capability. Next generation
weapon systems processing requirements will grow
with the incorporation of intelligent decision aids,
sensor fusion, and advanced communications. A
future system will have much more configuration
combinations than today's MBT. Cost, reliability,
space, and mission requirements will preclude
achieving redundancy with dedicated, embedded
processors that duplicate functionality. The next
generation systems vision is that a collection of
general-purpose processors connected to a common
bus will be scattered throughout the vehicle and
assigned dynamically to the various vehicle control and
mission-specific tasks as required. This approach,
shown in Figure 1, reduces cost and provides greater
effective redundancy, since any healthy processor can
be assigned to any task instead of having a limited
number of backups of ever decreasing capability. Line
Replaceable Units (LRU's) are: engine, displays,
electronic control units, etc.

Next generation systems process requires extensive
monitoring and analysis capabilities to track whether
the weapon system is operating properly. A robust
reconfiguration capability is required to gracefully and
rapidly reorganize the assignment of tasks to
processors to respond to hardware and software
failures and to changed mission requirements (e.g.,
switching from surveillance mode to

combat/engagement mode). The software in the

Abrams tank is created in a highly sophisticated

development and testing environment. The U.S. Army

Next Generation Software Engineering Technology

Area began implementing Statistical Usage Testing

(SUT) [5] in the Post Production Software Support

(PPSS) project for the U.S. Army’s main battle tank.

The pilot project on the Abrams M1A2 had the following

objectives:

e the determination of how SUT can improve M1A2
field reliability;

¢ the development of usage model(s) for the Driver's
Integrated Display (DID);

o development and documentation of a tailored
modeling process to allow for scale-up of SUT,
including guidance on modeling practices;
investigation of tie-in of SUT with existing PPSS
testing and future research.

LRU#3

SENSORS

Software Gateway

4 HEALTH NTELLIGENT ACCESS
CONTROL { | CONFIGURATION; | CONTROL
CONTROL

FAULT
| TOLERANCE

Figure 1: The Next Generation Dynamic Software
Assembly.

Usage model development for the DID was facilitated
by the toolset Certify® which supported Markov chain
usage model development, test management, test case
generation and statistical testing. A prototype tool for
composing top-level models and lower-level sub-
models into one flattened toolset Certify® model was
also used. This Model Compose utility allowed for the
development of sub-models similar to subroutine
development in programming. The major lessons
learned from the SUT project were:
e SUT can positively impact PPSS testing, since the
focus is on operational usage;
¢ usage modeling is feasible in the M1A2 PPSS
environment;
e usage modeling uncovers a number of issues that
relate to behavior and testing;

¢ Alogical and complementary relationship exists
between the current testing approach used by the
Next Generation Software Technology Area of
TARDEC and the SUT methodology.

The method and results of a pilot project were
discussed in a paper [5]. The SUT modeling
techniques were applied to the Driver's Integrated
Display (DID), a component of the soldier-machine
interface of the tank. Since then, additional LRU’s with
increasing complexity have been modeled using SUT.
In applying modeling techniques, a high degree of
complexity was observed, consisting of the numbers of
screens to be modeled and the amount of information
that could impact a tester's next action. These
challenges were overcome using some innovative
approaches.

The Next Generation Software Technology Area of
TARDEC investigated the feasibility of using SUT in the
PPSS test environment. The primary motivation was
the realization that there were not enough test assets,
people or time to test the main battle tank software for
each release. US Army TACOM personnel completed
training in SUT. Q-Labs (army contractor) had
expertise and provided mentoring. Next Generation
test staff and Q-labs developed practical techniques to
link current black box, and regression test procedures
with SUT tools and models. Software Engineering
Technology (SET, acquired by Q-Labs) delivered SUT
training. The purpose of the experiment was to
determine better ways to test increasingly complex
systems. The paper [5] reported the work performed in
1998-1999. Significant progress has been made since
that time. Efforts are now well underway to combine
SUT with a number of other approaches and scale up
the approach even further.

THE SUT METHOD

The SUT modeling process was proposed by the Q-
Labs. The steps of the SUT modeling process were
tailored for the Next Generation situation and for easier
hand-off in the future. These steps are shown below:

1. Define testing goals — The goals to be defined
inciude the boundaries of what will be tested,
reliability goals, etc. These goals appeared in the
Test Plan.

2. Define a ‘use’ — The use was defined as the start
and end of a test case. It related to some ‘real-
world’ interpretation of usage, as the testing results
are to be used to make inferences on future usage.
These tests ensured that the functionality was
indeed independent. This also appeared in the Test
Plan.

3. Build List of Stimuli — Build the list of all things that
enter through the boundary defined in the previous
step. The organization of the stimuli list was critical.
Grouping the inputs by screen, protocol, or other
factor enhanced readabilty and. usability.
‘Exceptional’ stimuli included time lags, for the

10.

situation where certain actions did not occur until a
defined time period had passed. They were also
used in the models as needed, and appeared in the
stimuli fist.

Define usage variables — All factors that modify the
possibility/probability of inputs are listed here.
Possible values for each factor are also
enumerated. Typically this list was larger than the
final list of usage variables, since some usage
variables were abstracted away.

Define . models to develop based upon usage
variables and testing goals — The number of ‘unique’
models was defined here. Significant factors
include the potential size of models, potential yield in
testing variants in certain areas, etc.

Decompose model(s) into sub-models — Defined a
rule/approach by which sub-models were created.
This was based upon screens, functionality, model
distribution or other factors. While doing this, the
rules by which lower level models were composed
with higher level models were defined. The key was
that all the models/sub-models were built
consistently so that testing could go on with a single,
smooth approach.

Build ‘single variable’ state transition diagrams -
For each usage variable state transition diagrams
were built. These diagrams defined the manner in
which that usage variable could have changed the
state. It only included the stimuli that could have
caused state changes for the usage variable.

. Build sub-models and models — The Models were

built one at a time, using the Microsoft Word
template. All modifications in the models, except for
the assignment of probabilities, were done in Word.
Models were created by working from the bottom
up. Models had four types of states: Entry/Exit,
Model States, Composition States, and Collector
States. There was one Entry and one Exit state for
each model. Model states were typical states of a
usage model. Each model state represented a
different case of use and a different input of a
possibility/probability. = Composition states were
those which were replaced by a sub-model.
Collector states addressed the situations where
multiple identical arcs were identical exit arcs of the
model. The Collector state had a single exit arc,
making model composition less complex. Models
addressed all usage variables that could have been
impacted within the model or its sub-models.
Review sub-models and models — Each model was
reviewed to ensure that the model was constructed
correctly, appropriate state transitions were made,
correct entry and exit states were defined, and lower
level models were properly defined.

Do initial model composition — We had to perform
conversion and transformation first to convert
models from Word files into tool SET Certify.
Check/analysis was performed next to ensure that
models were structurally valid. Finally, we checked
that models were composed. This was done to
ensure that Composition states had the right

numbers of entry and exit arcs same as sub-model
actually had.

11. Determine expected outputs — When tests were
executed, the tester had to ensure that two things
occurred (in ascending order). First, that the correct
state transition in the usage model was made.
Second, that the correct response was issued within
the performance requirements defined for the
system. The correct response and performance for
each state transition was documented.

12. Insert probabilities into models/sub-models —
Insertion of probabilities that were consistent with
the definition of use and test goals. Two or three top
arcs were selected at each state, and the
probabilities were assigned to these arcs. The rest
of the weight was uniformly distributed across the
remaining arcs. Probability information was
gathered; this information was inserted directly into
the tool SET Certify models.

13. Compose models and sub-models - Once
probabilities have been defined, a final composition
could occur for each set of models. The model
composition utility was implemented to achieve this
objective. Models were composed from the bottom
up. All intermediate compositions were available,
along with the fully composed modeis. Figure 2
shows an example of the SUT states transition
diagram — a top-level model.

DID Auxiliary Top-Level Model

Aux SubMoce! has many
enties and many exis
cormesponding o the
\alues of Heater and Engine

Main Menu Button Master Power Button

R étsm Button

Master Pofler Bution

Figure 2: The SUT state transition diagram - an example of a
Top-Level model.

14. Conduct test — Tests were executed and the results
were compared to actual results.

15. Compile test results — Passed tests, failed tests, and
unresolved/un-executed test were recorded in tool
SET Certify.

16. Analyze test results — Quality and stoppage criteria
information were computed by tool SET Certify,
once the test results have been entered.

17. Make decisions based upon test results.

We adapted the SUT methods for health monitoring and

diagnostics of selected line replaceable units of ground

combat vehicles, such as driver's integrated display
(DID).

THE DART METHOD

The DART’s health and situation control continually tests
the processing elements with Probe/Agent technology.
Algorithms within the Health & Situation Control assess
the health of the processors based on a criticality
scoring system that considers mission requirements.
Software probes launched by the DART controller query
processing elements.

Probes are able to capture events that occur in the
software systems. They must be able to be inserted
automatically to avoid software rework simply to install
the probes. A variety of probes will be necessary in
order to capture the various kinds of information desired.
For example, probes that inspect a software
environment checking for the presence or absence of
required software are likely to be very different that
probes that capture functions calls or messaging
information. The probes must have negligible impact on
the behavior of the software; particularly they must not
interfere with operations by slowing response to a
noticeable extent. While this is an issue in conventional
testing where the act of monitoring changes the timing
behavior, in testing environment it is misleading,
whereas in operational environments it could be
catastrophic. The solution to this is three fold:
e Probes must be engineered to have minimal space
and performance impact.
e Performance thresholds must be defined and
monitored for critical software interactions.
e It must be possible to turn off monitoring when these
thresholds are in danger of being violated.

Unlike testing environments, in operational
environments the testing model is only implied. Thus, in
addition to capturing the software interactions, probes
must capture external stimuli from the environment and
the users. In a test environment, these would have been
generated by the test harness and recorded directly
from here.

Gauges analyze probed event streams and report
summaries/conclusions in a more usable fashion.
Gauges output can be used in four distinct ways:

e Gauges can feed back to previous software
activities. Example of the feedback included detailed
graphs of the developed software configuration
compared to design specification, violations of
timing constraints, logs of software exceptions
thrown, summaries of functions calls, CPU usage of
various modules, etc.

e Gauges can be used to affect previous software
lifecycle steps. A prime example is the use of
gauges to validate that a testing model conforms to
reality as observed by probes of the environment.
Specifically, if testing is conducted according to a
Marko model defining environmental patterns of

stimuli and user responses, it would be desirable to
validate that observed patterns are statistically
compatible with such a model.

e Gauges can control the operation of the target
software, possible by triggering a reallocation of
resources, shutting down nonessential functionality,
and even compensating for errors.

e Gauges can control the data collection activities by
activating and deactivating probes to avoid
impacting performance or to focus collection
activities on suspect or critical areas.

The probed data is sent to a gauge that has a variable
sensitivity or gain. Statistical Usage models and
criticality scoring control the sensitivity of the gauge. In
response to the gauge, the replicating process launches
agents that can insert anomalous events for diagnostic
purposes. In this context, a probe is a subset of an
agent having only the ability to query without affecting
framework, /O protocol or Quality of Service. Each
weapon system fitted with a DARTS Controller will
control self-repair and reconfiguration of on-board
processors utilizing a statistical based intelligent scoring
system. It considers criticality of the function in the
current battlefield situation.

A Modern Weapon System is composed of many
processing elements as shown in Figure 3. The
processing elements are grouped into seven categories,
shown as pie segments. Typically, each processing
element represents a software program that operates on
a dedicated processor. Most often, the elements are co-
located inside of the LRU that contains three to nine
processors. Current vehicles have more than half of the
total processing activity performed on embedded
processors.

Figure 3. Embedded Processing System’'s Health Controller.

The Health and Situation Controller, see Figure 4,
provides the Probe/Agent Controller, Health and

Criticality Scoring and the Auditor Function. The Health
and Situation Controller provides the following
capabilities that contribute to system assurance.

o Probe/Agent Controller: This activity will determine
the frequency, format, type and distribution of
queries that the Health Controller will send to the
elements so that element health can be determined.

o Health Scoring: This activity will evaluate collected
and processed data to determine if it lies within the
output bands of the element.

e Criticality Scoring: Based on the nature of the
mission, and the battlefield situation, this activity will
prioritize vehicle functions that require processing.

o Auditor: This activity will compile and report the
collective operational and health status of all of the
elements to the Health Controller.

This health monitoring experiment provides software
parallels to hardware survivability. The software attacks
were encountered in a cyber battlefield. Health
monitoring provides protection and
compartmentalization of software with the same
diligence applied to armor protection of hardware.

Health & Situation
Control

PROBE/AGENT
CONTROLLER

¥

HEALTH
SCORING

v

CRITICALITY
SCORING

¥

L__ AUDITOR

Figure 4. Health and Situation Controller.

The following conditions will require the Health
Controller to reconfigure the system:

e Software Failure

e Hardware Failure (Catastrophic such as Battle
Damage)

Hardware/Software Failure (Graceful Degradation)
Hardware Installation

Hardware Removal

Software Instaliation or Upgrade

Change in Mission (In-route System Optimization)
Reorganization of Operations Unit: Change in
complexion of Unit. Example:

Re-assignment of Weapon System Duty Role
Transfer of TOC

Training and Simulation.

The reconfiguration process for the first condition
“Software Failure” is shown below. Reconfiguration due
to “Software Failure” has the following steps:

tep 1: A probe detects a symptom of a software-
manifested failure. The Health Controller determines
that probe reconnaissance has returned data that is out
of the operational bands of the processing element.
Figure 14 illustrates a flow chart of the Health Check
Process.

Step 2: The Health Controller algorithmically computes
the next viable state of the software architecture
considering the processing assets available and
mission requirements.

Step 3: The Health Controller dispatches a new
operational publication of the failed software to a
new host processor. Once the transfer is
complete, the surrogate is brought on line with a
replicating processing effecting
repair/replacement of the incumbent. The
Content Repository issues the operational
publication. Contained in the Content
Repository are programs or program objects
that dedicated processors host (For example:
Ballistic Program, Auto Target Tracker, and
Engine Controller).

Step 4: Persistent object data is either extracted from
the defective element or retrieved from a
synchronized replicator and transferred to the
new host (surrogate) as part of the replicating
process. If the defective element fails
catastrophically, object data will have to be
reinstated with default values or acquired real
time data. The resident programs use
Persistent Data. It is unique to the mission or
the systems on-board and is maintained in non-
volatile memory when the system is powered
down. (Example: Round Zero, and Total Engine
hours) Non-Persistent Data is time sensitive, it
is stored in volatile memory and is typically re-
sampled at initialization. (Example: wind speed,
vehicle speed, and target-lead angle.)

Step 5: Dispatched Probes validate the performance of
the surrogate. The Health Controller will bring
the surrogate on-line and retire the incumbent at
time consistent with the operational state and
usage of the element.

The DART Probe Controller will employ the following
tool: the Probe as an agent of the DART Controlier,
reporting the health of the weapon system elements.
Off-vehicle probes will be also launched to assess the
health of companion vehicles within the Operations Unit.
Figure 5 illustrates the DART controller system health
check process. Selected software components of
soldier machine interface in a crew station will be
modeled using DART architecture modeling techniques.
The hardware environment will be modeled so that
DART analysis tools can select compatible hosts from
candidate processors. Missions will also be modeled so
that DART tools can make intelligent choices

considering the task criticality. DART models will
automatically insert software probes into the crew station
to monitor the system behavior.

System Health Check Process

Initiate
an expanded

Assess Operational
Bands of Element

i 1
Assess Criticality Assess Availability of
of Element to mission Processing Resources

I T

—_‘L Local Administrator
Probe Query Evaluates Probe
(P-test) Query (assess

operational bands
of top level query)

Receive Mission
Requirements

Initiate

Initiate
Shadowing

Dynamic
Reconfiguration?

Determine extent
of Reconfiguration

Figure 5: DART controller system health check process.

Gauges will determine if the system is operating within
acceptable performance bands by monitoring data
provided by the probes. DART will detect faults and
select the optimal crew station configuration to maintain
essential functionality in response to current battlefield
conditions.

The experiment will inject artificial faults into the system
according to known and anticipated patterns common to
the weapon platform. The induced faults will reach a
magnitude that will ultimately force DART to replicate a
new processing element, bringing it on line as a
replacement to the failed element. The architectural
models of the system software are part of the build
standards that provide the software framework for
processing elements expected to reside on a future
military vehicles. The build standards will document
structure of the reconfigured software and hosting
processors. Failures will be inserted into the Systems
Integration Lab (SIL) to exercise and validate each of
the build standard requirements.

DART will construct correct configurations of software to
load onto a vehicle for combinations of weapons
systems, sensors, and missions. It will collect usage
and runtime error data that can be used to improve the
software development and testing processes. DART
models will automatically insert software probes into the
crew station to monitor the system behavior. Gauges
will determine if the system is operating within
acceptable performance bands by monitoring data
provided by the probes. DART will detect faults and
select the optimal crew station configuration to maintain
essential functionality in response to current battlefield
conditions. DART-collected usage information and
runtime error patterns will be fed back into Next
Generation SUT models to improve the modeling fidelity
and software testing process. Success of this aspect of
DART will be measured by the reduction in time for the

SUT models to identify, isolate and repair errors. DART
architecture descriptions will be used to improve SUT
usage modeling techniques and processes. The DART
process can be summarized as follows, see Figure 6.

Figure 6: The DART Process.

DISCUSSIONS AND CONCLUSIONS

Software reliability and prognostics modeling have been
described in this work, with particular reference to
military vehicular systems. The conceptual architecture
and algorithm to implement the methodologies have
been shown. As indicated earlier in the introduction
section, there has been some work done in the area of
software reliability. The formidable tasks in those areas
relate to the establishment of operational profiles.
Although researchers have indicated testing
methodologies using various concepts, those have not
been implemented in reality. In addition, it seems that
not much work has been done in the area of embedded
systems and their reconfiguration when the reliability of
the software is detected to be low. This work relates to
both testing and reconfiguration in a dynamic manner
and is important for safety critical systems. This work
provides a vision of the future possible architecture and
is believed to be an addition to the current state of the
art.

Based on the work, the authors feel that it is possible to
implement a reconfiguration methodology to an
embedded system with a significant redundancy to the
system without additional expenditure, if the probes are
included as part of the initial design.

The authors will try to show some specific examples of
implementations in their future publications.

REFERENCES

1. J.R.Horgan, A.P. Mathur, A. Pasquini, and V.J. Rego,
“Perils of Software Reliability Modeling, Purdue Univer:: ty
Research Report, 1995.

2. J. D. Musa, “Operational Profiles in Reliability
Engineering’, IEEE Software, March 1993.

3. E. Nelson, “Estimating Software Reliability from Test
Data”’, Microelectronics and Reliability, Vol. 17, 1978.

4. K. W. Miller, L.J. Morell, R. E. Noonan, S. K. Park, D. M.
Nicotl, B.W. Murrill, and J.M. Voas, “Estimating the
Probability of Failure When Testing Reveals No Failure: 37,
IEEE Trans. On Software Engineering, Vol. SE-18, No 1,
1992.

5. M. S. Saboe, P. Gilbert, A. Kouchakdjian, “Applying
Statistical Usage Testing (SUT) on a High-Complexity
Application”, Proceedings of the Workshop on Statistic.
Methods in Software Engineering for Defense System:
National Academy of Sciences, Washington DC, July
2001.

6. E.Bankowski, C. Miles, M. Saboe, “Health Monitoring
and Diagnostics of Ground Combat Vehicles”,
Proceedings of SPIE, Vol. 5049, pp. 138-145, 2003.

7. C. Miles, E. Bankowski, “Embedded Diagnostics in
Combat Systems”, Proceedings of SPIE, Vol. 5391, pp
158-165, 2004.

CONTACT

Dr. Elena N. Bankowski

TARDEC, AMSRD-TAR-R, MS-263
6501 E. 11 Mile Road

Warren, Ml 48397-5000, USA

E-Mail: elena.n.bankowski@us.army.mil

Dr. M. Abul Masrur

US Army TACOM, AMSRD-TAR-R, MS-264
6501 E. 11 Mile Road

Warren, Ml 48397-5000, USA

E-Mail: masrura@tacom.army.mil

Mr. Christopher Miles

US Army TACOM, AMSRD-TAR-R, MS-264
6501 E. 11 Mile Road

Warren, Mi 48397-5000, USA

E-Mail: milesc@tacom.army.mil

