AFRL-ML-WP-TP-2006-430

FREEZE-SPRAY PROCESSING OF LAYERED CERAMIC COMPOSITES (PREPRINT)

O. Jongprateep, Q. Fu, A. Abbott, and F. Dogan

APRIL 2006

Approved for public release; distribution is unlimited.

STINFO COPY

MATERIALS AND MANUFACTURING DIRECTORATE AIR FORCE RESEARCH LABORATORY AIR FORCE MATERIEL COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that the Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Wright Site (AFRL/WS) Public Affairs Office and is available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-ML-WP-TP-2006-430 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

*//Signature//

MARY E. KINSELLA Processing Section Metals Branch //Signature//

JEFFREY R. CALCATERRA, Section Chief Processing Section Metals Branch

//Signature//

GERALD J. PETRAK, Asst. Chief Metals, Ceramics & NDE Division Materials and Manufacturing Directorate

This report is published in the interest of scientific and technical information exchange, and its publication does not constitute the Government's approval or disapproval of its ideas or findings.

*Disseminated copies will show "//signature//" stamped or typed above the signature blocks.

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 0704-0188	
The public reporting burden for this collection of informat sources, gathering and maintaining the data needed, an information, including suggestions for reducing this burd Davis Highway, Suite 1204, Arlington, VA 22202-4302. collection of information if it does not display a currently	tion is estimated to average 1 hour per res d completing and reviewing the collection of en, to Department of Defense, Washingtor Respondents should be aware that notwith valid OMB control number. PLEASE DO I	oonse, including the time of information. Send com Headquarters Services, Istanding any other provis NOT RETURN YOUR FO	or reviewing instruction nents regarding this b Directorate for Information on of law, no person RM TO THE ABOVE	ons, searching existing data sources, searching existing data ourden estimate or any other aspect of this collection of ation Operations and Reports (0704-0188), 1215 Jefferson shall be subject to any penalty for failing to comply with a ADDRESS.
1. REPORT DATE (DD-MM-YY)2. REPORT TYPE3. DATE			ES COVERED (From - To)	
April 2006	Conference Par	per Preprint		
4. TITLE AND SUBTITLE FREEZE-SPRAY PROCESSING OF LAYERED CERAMIC COMPOSITES			5a. CONTRACT NUMBER FA8650-04-C-5704	
(PREPRINT)				5b. GRANT NUMBER
				5c. PROGRAM ELEMENT NUMBER 78011F
6. AUTHOR(S)				5d. PROJECT NUMBER
O. Jongprateep, Q. Fu, A. Abbott, and F. Dogan				2865
			5e. TASK NUMBER	
				5f. WORK UNIT NUMBER
				25100000
 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Missouri-Rolla B. 37 McNutt Hall 1870 Miner Circle Rolla, MO 65409-0340 				8. PERFORMING ORGANIZATION REPORT NUMBER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSORING/MONITORING
Materials and Manufacturing Directorate				AGENCY ACRONYM(S)
Air Force Research Laboratory				AFRL-ML-WP
Air Force Materiel Command Wright-Patterson AFB, OH 45433-7750				11. SPONSORING/MONITORING AGENCY REPORT NUMBER(S)
	TEMENT			AI KL-WI-11-2000-430
Approved for public release:	distribution is unlimited			
	distribution is unminted.			
13. SUPPLEMENTARY NOTES Conference paper submitted to PAO Case Number: AFRL/W	o the Proceedings of the 9 S 06-0690, 14 Mar 2006.	th International	Ceramic Pro	ocessing Science Symposium.
14. ABSTRACT Thermal gradients and associa conductivity. In order to reduce of composite structures. This with controlled layer thickness slurries with low binder conte parts were freeze-dried and sin thermal expansion behavior o	ated stresses are critical in ce the stresses from therm study addresses developm s and microstructural dev nt and relatively high soli ntered at elevated tempera f Al_2O_3 and Y_2O_3 -stabiliz	designing with al gradients, co nent of freeze-sp elopment. The o ds loadings (up atures. The relate ed ZrO_2 function	ceramic con mpositional g oray process to composites w to 40 vol%) ionship betw nally graded	nposites having low thermal gradients are employed in designing to fabricate layered ceramic structures vere processed by spraying of ceramic on a cooled substrate. The frozen veen microstructural development and ceramic composites is discussed.
15. SUBJECT TERMS freeze spray, rapid prototypin,	g, ceramic composites, th	ermal gradients		
. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF			F RESPONSIBLE PERSON (Monitor)	
a. REPORT b. ABSTRACT c. THIS Unclassified Unclassified Unclassified	SPAGE OF ABSTRACT: Sified SAR	OF PAGES 30	Mary Ki 19b. TELEPH	insella ONE NUMBER (Include Area Code)

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18

Introduction

Functionally graded materials are a new generation of engineered materials that have become of much interest in recent years. The graded materials are ideal candidates for various applications ranging from functional and structural materials. Such applications involve severe thermal gradients, such as components in advanced aerospace engines, and thermal barrier coatings for tools, to biomedical implants.¹⁻² A gradual transition of material compositions in a solid creates gradual variations in microstructural development which may lead to an enhancement of material properties.³⁻⁴

The present study describes the development of a freeze-spray process for rapid fabrication of graded lamina composites. Freeze-spray process involves the preparation of ceramic slurries with a low binder content that are sprayed onto a cold substrate to obtain a compositional gradient. Frozen parts are then subjected to freeze drying process, so that green bodies with low binder content can be **obtained**.⁵⁻⁶ The process is also suitable when spray-freezing of non-aqueous slurries are **required**^{7,8}. Since the green bodies contain relatively low amounts of binder, a rapid binder burn-out process can be employed for large volume parts prior to the sintering. Freeze-spray process is a versatile and relatively simple technique to fabricate graded structures of various materials which may not be obtained by other methods such as lamination of green tapes processed by tape casting or thermal (plasma) spray processes.

By changing slurry compositions during freeze-spray process, one can achieve gradual compositional changes between dissimilar materials in layered composite structures. Such materials may find various applications particularly in high temperature

environments where strong temperature gradients exist and require reduced internal stresses in graded composites. In this study, alumina-zirconia graded laminar composites are fabricated to demonstrate the feasibility of freeze-spray process followed by freezedrying.

Experimental procedure

Alumina (A16SG: Alcoa, USA) and 5.3 weight% (3 mol%) yttria-stabilized zirconia (Sigma Aldrich, USA) powders were used for preparation of slurries. The average particle sizes of powders were d_{50} : 0.40 µm for alumina and d_{50} : 0.82 µm for zirconia. Alumina and zirconia aqueous slurries with a solids loading of 30-50 volume% were prepared using 1.2 wt% ammonium polymethacrylate (Darvan C: Vanderbilt, USA) and 3 wt% acrylic emulsion polymer (Duramax: Rohm and Haas, USA). The amount of organic additives in weight percentage was calculated based on the weight of the powders. The optimum dispersant amount for slurries was determined by particle settling experiments. Well dispersed slurries were obtained by ball milling for 48 hours in polypropylene bottles. Viscosity of the slurries was measured using a rotating concentric cylinder viscometer (Haake, Model VT500) with shear rates at 0–500 s⁻¹.

The samples consisting of alumina and zirconia layers were obtained by spraying of slurries on a cooled substrate. The thickness of each layer was controlled by repetitive spraying of slurries on frozen material. Figure 1 shows a computerized 3D-gantry system equipped with a spray nozzle (Iwata, Model HP-BCS) used to spray thin layers of slurries on a cryogenically cooled metallic plate. The slurries freeze almost instantly, forming solid structures. The experimental set-up could be enclosed in a cooled chamber and dry

atmosphere as needed. Frozen samples were freeze-dried under vacuum at -20°C to remove the ice by sublimation. In order to study the effect of green density on the sintered microstructure, a set of samples were isostatically pressed at a pressure of 250MPa. After freeze-drying, the samples underwent a binder burn-out process at 550°C with a heating rate 1°C/min. Sintering of the samples was carried out at 1550°C for 6 hours with a heating and cooling rate 5°C/min.

The sintering density of the samples was measured by Archimedes method. Thermal expansion behavior of sintered materials was investigated using a dilatometer (Orton, Model 1600). Coefficient of thermal expansion (CTE) of materials was determined from the linear change in the length of the samples as a function of temperature. Microstructural and elemental analyses were conducted on the polished and fracture surfaces of the samples using a scanning electron microscope, SEM (JEOL, Model T330), and an energy dispersive x-ray spectrometer, EDS (Hitachi, Model S-4700 FESEM).

Results and discussion

Freeze-spray process of graded materials requires a delicate control of slurry properties and spray conditions. To achieve dense ceramic structures after sintering, the slurries should have high solids loadings yet still have a low enough viscosity to be dispensable without causing clogging of the nozzle. Preparation of well dispersed and stable slurries is essential to prevent flocculation of the particles in the liquid which in turn affects the uniformity of the layer during deposition process and microstructural

development of green and sintered bodies. Electrostatic, steric and electrosteric stabilization are common techniques employed in preparation of stable slurries.⁹⁻¹¹

Ammonium polymethacrylate was used as a dispersant to achieve steric stabilization in the slurries. Alumina and zirconia slurries with solids loadings of 30, 35, 40, 45 and 50 vol% were prepared and characterized by viscosity measurements. Fig. 2 shows that all slurries exhibit shear thinning behavior. It is revealed that the increase of viscosity as a function of solids loading is more pronounced for zirconia slurries as compared to that for alumina slurries. Note that at high shear rates, the shear stress of the zirconia slurry with 50 vol% solids loading was too high for the sensor to be measured and not included in Fig. 2. Viscosities of alumina and zirconia slurries with 30 and 45vol% are compared separately in Fig. 3. While at low solids loadings (30 vol%) no significant difference between the viscosities of both slurries was observed, viscosities of zirconia slurries were higher than that of alumina slurries at higher solids loadings (45 vol%).

Dispensing behavior of the slurries with the spray nozzle used in this study is strongly affected by the slurry viscosity which depends on the level of solids loading. Slurries with solids loadings up to 30 and 40 vol% could be sprayed uniformly without clogging of the spray nozzle. However, at higher solids loadings, slurries became highly viscous and were more difficult to spray continuously. As the solids loading of the slurries increased to 45 vol% and higher, clogging of spray nozzle was experienced, particularly for zirconia slurries. Based on the observations made from viscosity measurements and dispensing behavior of slurries, the optimum range of the solids loading was 35 to 40 vol% so that uniform spray pattern could be obtained without clogging of spray nozzle.

The sintering density of alumina samples, fabricated using slurries with 35vol% solids loading, ranged from 75 to 86 % of theoretical density. To obtain higher densities, green samples were isostatically pressed at 250MPa. Isostatic compaction of freeze-dried alumina samples resulted in 90-98 % theoretical density after sintering. The microstructural development of sintered alumina prepared with and without isostatic compaction of freeze-dried samples is shown in Fig. 4. It is evident that unpressed samples are highly porous while denser microstructures are obtained after isostatic compaction. Higher green and sintering densities could be obtained by spraying of slurries with higher solids loading and lower viscosity which could be prepared using organic additives⁵.

Laminar alumina and zirconia composites were processed by freeze-spray deposition of alternating layers as shown in Fig. 5. The EDS analysis of the samples revealed that the layers of dark contrast are alumina while the layers of bright contrast correspond to zirconia. Relatively pore-free alumina/zirconia interface is revealed. To obtain unique designs for microstructural development, laminated structures with smooth, wavy or more complex shape interfaces can be processed by adjusting the spray conditions during slurry deposition. Fig. 5 reveals that the thicknesses of alumina and zirconia layers are in the range of 200-300µm and 80-100µm, respectively. During deposition process, alumina and zirconia slurries were sprayed for 10 passes to constitute each observed layer. Each pass for spraying of slurries corresponds to formation of alumina and zirconia layers with a thickness of 20-30µm and 8-10µm, respectively. The layer thickness can be adjusted by controlling the solids loading of slurries, the flow rate and the speed of nozzle movement during spray process.

Fig. 6 shows the microstructure of a graded structure composed of alumina, alumina/zirconia composite, and zirconia layers. Layers A, B, and C correspond to alumina, alumina/zirconia (1:1 volume ratio, buffer layer), and zirconia, respectively. Such structures could be utilized in high temperature applications to reduce internal stress development within the material when composites are exposed to extreme temperature gradients at elevated temperatures^{12, 13}. As revealed in Fig 10, the interfaces between each layer are crack-free and appear to have a strong interfacial bonding. This can be attributed to alumina/zirconia buffer layer which forms a continuous alumina and zirconia at each interface.

Fig 7 shows that differential densification of alumina and zirconia layers during the sintering process may lead to warping of samples. Since densification of zirconia layer takes place at lower sintering temperatures as compared to that of alumina, excessive differential shrinkage due to constrained sintering may also result in crack formation perpendicular to the layers. The presence of a buffer layer can reduce the differential shrinkage so that less warping and crack-free samples can be obtained as shown in Fig 6. For the samples with planar geometries, the dimensional changes due to warping could be reduced by controlling of porosity of each layer in green samples or by applying pressure during the sintering process.

To study the role of buffer composition on the bonding strength of interfaces, alumina and zirconia bilayers with and without a buffer layer were prepared. It is known that macroscopic defects at the interfaces can cause de-lamination and result in catastrophic failure of the composites¹². While the interface between zirconia and alumina layers in Fig 8 shows formation of voids or microcracking, the interfaces

between alumina/buffer and zirconia/buffer layers are dense and free of micro-cracks (Fig. 9) as discussed previously. This indicates that the stress concentrations along the interface of alumina and zirconia layers caused by the mismatch of thermal expansion coefficients can be reduced by the presence of a buffer layer. Moreover, the composition within the buffer layer can be graded by changing the ratio of alumina/zirconia in the composite to achieve a graded transition between alumina and zirconia layers. Similarly, the thickness of the graded buffer layers can be optimized to meet the design requirements for structural components.

Figure 10 shows the microstructure of composites with decreasing ratio of alumina to zirconia which can be used as buffer layers for graded structures. Polished surfaces of the samples reveal a uniform distribution of alumina and zirconia grains within the composite. The fracture surface of the samples show equiaxed grains of the composites with an average grain size about 1µm. Graded buffer layers prepared using such compositions may prove to be beneficial for further reduction of internal stresses caused by high temperature gradients.

Measurement of the coefficient of thermal expansion (CTE) for alumina/zirconia composites are shown in Fig 11. The mean coefficient of thermal expansion was calculated using data collected between 250°C and 750°C. CTE values for alumina and zirconia were determined as 8.8×10^{-6} /°C and 11.3×10^{-6} /°C, respectively. It is revealed that the CTE increases linearly as the volume fraction (ranging from 0.2 to 0.8) of zirconia in alumina increases. Stress concentration at the interfaces caused by the mismatch of CTE between dissimilar materials can be reduced by the presence of a buffer layer which is composed of graded alumina/zirconia composites.

Summary

A freeze-spray deposition technique coupled with freeze-drying process was developed for rapid prototyping of alumina/zirconia lamellar structures. Such components may find various applications particularly in high temperature environments where a wide range of temperature gradients is present and a reduction of internal stresses in composite materials is required.

The process involves preparation of alumina and zirconia slurries with a solids loading in the range of 35-40vol% which were sprayed on a cooled substrate layer by layer to build desired structures. Rapid solidification of slurries with low binder content allows a rapid processing of composite materials. Freeze-dried parts were sintered and characterized by measurement of thermal expansion coefficients and studying of microstructural development. To achieve higher sintering densities, a set of freeze-dried samples were isostatically pressed.

Alumina and zirconia bilayers were processed with and without a buffer layer which was prepared using composite powders of alumina and zirconia. A graded interface between alumina and zirconia laminates using a buffer layer, was effective to reduce stress concentrations so that crack-free interfaces with strong bonding could be obtained. Linear dimensional change of the samples as a function of the temperature was determined by dilatometer measurements. The results were discussed with respect to microstructural development of graded ceramic composites.

Acknowledgement

This work was supported by the Air Force Research Laboratories, Dayton, OH through the Center for Aerospace Manufacturing Technologies (CAMT) at the University of Missouri-Rolla. We also thank Drs. M. Leu, G. Hilmas, R. Landers, S. Reis at UMR and M. Hayes (Boeing) for useful discussions. D. Aiken, V. Satittavornchai, J. Mattingly, and C. Volek are acknowledged for their contributions to sample preparation.

k

References

¹M. Gasik, A. Kawasaki, and Y-S Kang, "Optimization of FGM TBC and Their Thermal Cycling Stability," *Mater. Sci. Forum*, **492**, 9-14 (2005).

² K. An, K. Ravichandran, R. Dutton, and S. Semiatin, "Microstructure, Texture, and Thermal Conductivity of Single Layer and Multilayer Thermal Barrier Coatings of Y₂O₃-Stabilized ZrO₂ and Al₂O₃ Made by Physical Vapor Deposition," *J. Am. Ceram. Soc.*, 82, 399–406 (1999).

³V. Gupta, S. Singh, H. Chandrawat, and S. Ray, "Creep Behavior of a Rotating Functionally Graded Composite Disc Operating under Thermal Gradient," *Metal. Mater. Trans. A*, **35**, 1381-1386 (2004).

⁴M. Ohki, Y. Mutoh, M. Takahashi, and T. Ishibashi, "Damage Mechanism of Functionally Graded Thermal Barrier Coatings in Thermal Cycling," *J. Jap. Thermal. Spray. Soc.*, **38**, 190-199 (2001).

⁵S. Sofie and F. Dogan, "Freeze Casting of Aqueous Alumina Slurries with Glycerol," J. Am. Ceram. Soc., 84, 1459–1464 (2001). ⁶D. Koch, L. Andersen, T. Schmedders, and G. Grathwohl "Evolution of Porosity by Freeze Casting and Sintering of Sol-Gel Derived ceramics" *J. of Sol-Gel Sci. Tech.*, **26**, 149-152 (2003).

⁷F. Dogan and S. W. Sofie, "Microstructural Control of Complex-Shaped Ceramics Processed by Freeze Casting," *CFI-Ceram. Forum Int.*, 79 (5), E35-E38, (2002).

⁸K. Araki and J. W. Halloran, "Room-Temperature Freeze Casting for Ceramics with Nonaqueous Sublimable Vehicles in the Naphtalene-Camphor Eutectic System," *J. Am. Ceram Soc.* 87 (11) 2014-2019 (2004).

⁹J. Reed, Introduction to the Principles of Ceramic Processing, 2nd ea.

Wiley, New York, 1995.

¹⁰Q. Tana, Z. Zhanga, Z. Tanga, S. Luoa, and K. Fang, "Rheological Properties of Nanometer Tetragonal Polycrystal Zirconia Slurries for Aqueous Gel Tape Casting Process," *Mater. Lett.*, **57**, 2375–2381 (2003).

¹¹J. Cesarano, I. Aksay, and A. Bleier, "Stability of Aqueous a -Alumina Suspensions with Poly(methacrylic acid) Polyelectrolyte," *J. Am. Ceram. Soc.*, 71, 250-255 (1988).
¹²L. An, H. Chan, N. Padture, and B. Lawn, "Damage-Resistant Alumina-Based Layer Composites," *J. Mater. Res.*, 11, 204-210 (1996).

¹³T. Parthasarathy, G. Jefferson, and R. Kerans, "Design of Ceramic Composites to Minimize Stresses during Service"; pp. 271-277 in High Temperature Ceramic Matrix Composites 5. Edited by M. Singh, R. Kerans, E. Lara-Curzio, and R. Naslain. American Ceramic Society, Westerville, OH, 2005.

Figure captions

Figure 1 A preliminary experimental apparatus showing freeze-spray deposition technique for processing of layered structures.

Figure 2 Viscosity of alumina and zirconia slurries as a function of shear rate showing the effect of the solid loading on viscosity.

Figure 3 Comparison of viscosities of alumina and zirconia slurries with solids loadings 30 and 45 vol%.

Figure 4 Microstructural development of sintered alumina samples: a) as freeze-dried, b)freeze-dried and isostatically pressed.

Figure 5 SEM micrographs of alumina/zirconia layered structures processed by freeze-spray deposition.

Figure 6 SEM micrographs showing a cross sectional view of a) polished and b) unpolished alumina/buffer (50 vol% alumina + 50 vol% zirconia)/zirconia layered structures.

Figure 7 Image of an alumina/zirconia (left) and an alumina/buffer/zirconia (right) layered structures.

Figure 8 SEM micrographs showing micro cracks and voids along the alumina and zirconia interface

Figure 9 Microstructural development at the interface of alumina-zirconia buffer/alumina (left), and buffer/zirconia layers.

Figure 10 SEM micrographs of buffer layers a) 80% alumina + 20% zirconia, b) 60% alumina + 40% zirconia, and c) 20% alumina + 80% zirconia. Polished surfaces (left) and fracture surfaces (right). Note that the bright phase corresponds to zirconia.

Figure 11 Coefficient of thermal expansion (CTE) of alumina/zirconia composites as a function of zirconia volume fraction in alumina.

Figure 1.

Figure 2

Figure 3.

a)

Figure 5

Figure 6.

Figure 7.

Figure 8

Figure 9

c) Figure 10

Figure 11.