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Introduction 

Functionally graded materials are a new generation of engineered materials that 

have become of much interest in recent years. The graded materials are ideal candidates 

for various applications ranging from functional and structural materials. Such 

applications involve severe thermal gradients, such as components in advanced aerospace 

engines, and thermal barrier coatings for tools, to biomedical implants.'-2 A gradual 

transition of material compositions in a solid creates gradual variations in microstructural 

development which may lead to an enhancement of material properties.3-4 

The present study describes the development of a freeze-spray process for rapid 

fabrication of graded lamina composites. Freeze-spray process involves the preparation 

of ceramic slurries with a low binder content that are sprayed onto a cold substrate to 

obtain a compositional gradient. Frozen parts are then subjected to freeze drying process, 

so that green bodies with low binder content can be The process is also 

suitable when spray-freezing of non-aqueous slurries are Since the green 

bodies contain relatively low amounts of binder, a rapid binder burn-out process can be 

employed for large volume parts prior to the sintering. Freeze-spray process is a versatile 

and relatively simple technique to fabricate graded structures of various materials which 

may not he obtained by other methods such as lamination of green tapes processed by 

tape casting or thermal (plasma) spray processes. 

By changing slurry compositions during freeze-spray process, one can achieve 

gradual compositional changes between dissimilar materials in layered composite 

structures. Such materials may find various applications particularly in high temperature 

1



environments where strong temperature gradients exist and require reduced internal 

stresses in graded composites. In this study, alumina-zirconia graded laminar composites 

are fabricated to demonstrate the feasibility of freeze-spray process followed by freeze- 

drying. 

Experimental procedure 

Alumina (A16SG: Alcoa, USA) and 5.3 weight% (3 mol%) yttria-stabilized 

zirconia (Sigma Aldrich, USA) powders were used for preparation of slurries. The 

average particle sizes of powders were d5o: 0.40 ym for alumina and d5o: 0.82 pm for 

zirconia. Alumina and zirconia aqueous slurries with a solids loading of 30-50 volume% 

were prepared using 1.2 wt% ammonium polymethacrylate (Darvan C: Vanderbilt, USA) 

and 3 wt% acrylic emulsion polymer (Duramax: Rohm and Haas, USA). The amount of 

organic additives in weight percentage was calculated based on the weight of the 

powders. The optimum dispersant amount for slurries was determined by particle settling 

experiments. Well dispersed slurries were obtained by ball milling for 48 hours in 

polypropylene bottles. Viscosity of the slurries was measured using a rotating concentric 

cylinder viscometer (Haake, Model VT500) with shear rates at 0-500 s-'. 

The samples consisting of alumina and zirconia layers were obtained by spraying 

of slurries on a cooled substrate. The thickness of each layer was controlled by repetitive 

spraying of slurries on frozen material. Figure 1 shows a computerized 3D-gantry system 

equipped with a spray nozzle (Iwata, Model HP-BCS) used to spray thin layers of slurries 

on a cryogenically cooled metallic plate. The slurries freeze almost instantly, forming 

solid structures. The experimental set-up could be enclosed in a cooled chamber and dry 
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atmosphere as needed. Frozen samples were freeze-dried under vacuum at -20°C to 

remove the ice by sublimation. In order to study the effect of green density on the 

sintered microstructure, a set of samples were isostatically pressed at a pressure of 

250MPa. After freeze-drying, the samples underwent a binder burn-out process at 550°C 

with a heating rate l0C/min. Sintering of the samples was carried out at 1550°C for 6 

hours with a heating and cooling rate S°C/min. 

The sintering density of the samples was measured by Archimedes method. 

Thermal expansion behavior of sintered materials was investigated using a dilatometer 

(Orton, Model 1600). Coefficient of thermal expansion (CTE) of materials was 

determined from the linear change in the length of the samples as a function of 

temperature. Microstructural and elemental analyses were conducted on the polished and 

fracture surfaces of the samples using a scanning electron microscope, SEM (JEOL, 

Model T330), and an energy dispersive x-ray spectrometer, EDS (Hitachi, Model S-4700 

FESEM). 

Results and discussion 

Freeze-spray process of graded materials requires a delicate control of slurry 

properties and spray conditions. To achieve dense ceramic structures after sintering, the 

slurries should have high solids loadings yet still have a low enough viscosity to be 

dispensable without causing clogging of the nozzle. Preparation of well dispersed and 

stable slurries is essential to prevent flocculation of the particles in the liquid which in 

turn affects the uniformity of the layer during deposition process and microstructural 

3



development of green and sintered bodies. Electrostatic, steric and electrosteric 

stabilization are common techniques employed in preparation of stable slurries?-" 

Ammonium polymethacrylate was used as a dispersant to achieve steric 

stabilization in the slurries. Alumina and zirconia slurries with solids loadings of 30,35, 

40,4S and 50 vol% were prepared and characterized by viscosity measurements. Fig. 2 

shows that all slurries exhibit shear thinning behavior. It is revealed that the increase of 

viscosity as a function of solids loading is more pronounced for zirconia slurries as 

compared to that for alumina slurries. Note that at high shear rates, the shear stress of the 

zirconia slurry with 50 vol% solids loading was too high for the sensor to be measured 

and not included in Fig. 2. Viscosities of alumina and zirconia slurries with 30 and 

45~01% are compared separately in Fig. 3. While at low solids loadings (30 ~01%) no 

significant difference between the viscosities of both slurries was observed, viscosities of 

zirconia slurries were higher than that of alumina slurries at higher solids loadings (45 

~01%). 

Dispensing behavior of the slurries with the spray nozzle used in this study is 

strongly affected by the slurry viscosity which depends on the level of solids loading. 

Slurries with solids loadings up to 30 and 40 vol% could be sprayed uniformly without 

clogging of the spray nozzle. However, at higher solids loadings, slurries became highly 

viscous and were more difficult to spray continuously. As the solids loading of the 

slurries increased to 45 vol% and higher, clogging of spray nozzle was experienced, 

particularly for zirconia slurries. Based on the observations made from viscosity 

measurements and dispensing behavior of slurries, the optimum range of the solids loading 

was 35 to 40 vol% so that uniform spray pattern could be obtained without clogging of spray 

nozzle. 
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The sintering density of alumina samples, fabricated using slurries with 35~01% 

solids loading, ranged from 75 to 86 % of theoretical density. To obtain higher densities, 

green samples were isostatically pressed at 250MPa. Isostatic compaction of freeze-dried 

alumina samples resulted in 90-98 % theoretical density after sintering. The 

microstructural development of sintered alumina prepared with and without isostatic 

compaction of freeze-dried samples is shown in Fig. 4. It is evident that unpressed 

samples are highly porous while denser microstructures are obtained after isostatic 

compaction. Higher green and sintering densities could be obtained by spraying of 

slurries with higher solids loading and lower viscosity which could be prepared using 

organic additives5. 

Laminar alumina and zirconia composites were processed by freeze-spray 

deposition of alternating layers as shown in Fig. 5. The EDS analysis of the samples 

revealed that the layers of dark contrast are alumina while the layers of bright contrast 

correspond to zirconia. Relatively pore-free alumina/zirconia interface is revealed. To 

obtain unique designs for microstructural development, laminated structures with smooth, 

wavy or more complex shape interfaces can be processed by adjusting the spray 

conditions during slurry deposition. Fig. 5 reveals that the thicknesses of alumina and 

zirconia layers are in the range of 200-300p and 80-100p,  respectively. During 

deposition process, alumina and zirconia slurries were sprayed for 10 passes to constitute 

each observed layer. Each pass for spraying of slurries corresponds to formation of 

alumina and zirconia layers with a thickness of 2 0 - 3 0 p  and 8-10pm, respectively. The 

layer thickness can be adjusted by controlling the solids loading of slurries, the flow rate 

and the speed of nozzle movement during spray process. 
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Fig. 6 shows the microstructure of a graded structure composed of alumina, 

alumindzirconia composite, and zirconia layers. Layers A, B, and C correspond to 

alumina, alumindzirconia (1: 1 volume ratio, buffer layer), and zirconia, respectively. 

Such structures could be utilized in high temperature applications to reduce internal stress 

development within the material when composites are exposed to extreme temperature 

gradients at elevated temperatures'z' 1 3 .  As revealed in Fig 10, the interfaces between 

each layer are crack-free and appear to have a strong interfacial bonding. This can be 

attributed to alumindzirconia buffer layer which forms a continuous alumina and 

zirconia at each interface. 

Fig 7 shows that differential densification of alumina and zirconia layers during 

the sintering process may lead to warping of samples. Since densification of zirconia 

layer takes place at lower sintering temperatures as compared to that of alumina, 

excessive differential shrinkage due to constrained sintering may also result in crack 

formation perpendicular to the layers. The presence of a buffer layer can reduce the 

differential shrinkage so that less warping and crack-free samples can be obtained as 

shown in Fig 6. For the samples with planar geometries, the dimensional changes due to 

warping could be reduced by controlling of porosity of each layer in green samples or by 

applying pressure during the sintering process. 

To study the role of buffer composition on the bonding strength of interfaces, 

alumina and zirconia bilayers with and without a buffer layer were prepared. It is known 

that macroscopic defects at the interfaces can cause de-lamination and result in 

catastrophic failure of the composites12. While the interface between zirconia and 

alumina layers in Fig 8 shows formation of voids or microcracking, the interfaces 
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between alumindbuffer and zirconidbuffer layers are dense and free of micro-cracks 

(Fig. 9) as discussed previously. This indicates that the stress concentrations along the 

interface of alumina and zirconia layers caused by the mismatch of thermal expansion 

coefficients can be reduced by the presence of a buffer layer. Moreover, the composition 

within the buffer layer can be graded by changing the ratio of alumindzirwnia in the 

composite to achieve a graded transition between alumina and zirconia layers. Similarly, 

the thickness of the graded buffer layers can be optimized to meet the design 

requirements for structural components. 

Figure 10 shows the microstructure of composites with decreasing ratio of 

alumina to zirconia which can be used as buffer layers for graded structures. Polished 

surfaces of the samples reveal a unifonn distribution of alumina and zirconia grains 

within the composite. The fracture surface ofthe samples show equiaxed grains of the 

composites with an average grain size about 1 pm. Graded buffer layers prepared using 

such compositions may prove to be beneficial for further reduction of internal stresses 

caused by high temperature gradients. 

Measurement of the coefflcient of thermal expansion (CTE) for alumindzirconia 

composites are shown in Fig 1 1. The mean coefflcient of thermal expansion was 

calculated using data collected between 250°C and 750°C. CTE values for alumina and 

zirconia were determined as 8 . 8 ~  ~ o - ~ / " c  and 1 1.3 x ~o-~/"c ,  respectively. It is revealed 

that the CTE increases linearly as the volume fraction (ranging from 0.2 to 0.8) of 

zirconia in alumina increases. Stress concentration at the interfaces caused by the 

mismatch of CTE between dissimilar materials can be reduced by the presence of a buffer 

layer which is composed of graded alumindzirconia composites. 
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Summary 

A freeze-spray deposition technique coupled with freeze-drying process was 

developed for rapid prototyping of alumina/zirconia lamellar structures. Such 

components may find various applications particularly in high temperature environments 

where a wide range of temperature gradients is present and a reduction of internal stresses 

in composite materials is required. 

The process involves preparation of alumina and zirconia slurries with a solids 

loading in the range of 3540~01% which were sprayed on a cooled substrate layer by 

layer to build desired structures. Rapid solidification of slurries with low binder content 

allows a rapid processing of composite materials. Freeze-dried parts were sintered and 

characterized by measurement of thermal expansion coefficients and studying of 

microstructural development. To achieve higher sintering densities, a set of freeze-dried 

samples were isostatically pressed. 

Alumina and zirconia bilayers were processed with and without a buffer layer 

which was prepared using composite powders of alumina and zirconia. A graded 

interface between alumina and zirconia laminates using a buffer layer, was effective to 

reduce stress concentrations so that crack-free interfaces with strong bonding could be 

obtained. Linear dimensional change of the samples as a function of the temperature was 

determined by dilatometer measurements. The results were discussed with respect to 

microstructural development of graded ceramic composites. 
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Figure captions 

Figure 1 A preliminary experimental apparatus showing freeze-spray deposition technique for processing 

of layered structures. 

Figure 2 Viswsily of alumina and zirconia slurries as a function of shear rate showing the effect of the 

solid loading on viscosity. 

Figure 3 Comparison of viscosities of alumina and drwnia slurries with solids loadings 30 and 45 vol%. 

Figure 4 Microstructural development of sintered alumina samples: a) as freeze-dried, b)freeze-dried and 

isostatically pressed. 

Figure 5 SEM micrographs of alumina/zirwnia layered structures processed by freeze-spray deposition. 

Figure 6 SEM micrographs showing a cross sectional view of a) polished and b) unpolished alumina/buffer 

(50 vol% alumina + 50 vol% zirconia)/zirconia layered structures. 

Figure 7 Image of an alumina/zirwnia (left) and an alumindbufferlzirwnia (right) layered structures. 

Figure 8 SEM micrographs showing micro cracks and voids along the alumina and zirconia interface 

Figure 9 Micro~ t~c tu ra l  development at the interface of alumina-zirconia bufferlalumina (left), and 

buffer/zirconia layers. 
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Figure 10 SEM micrographs of buffer layers a) 80% alumina + 20% zirconia, b) 60% alumina + 40% 

zirconia, and c) 20% alumina + 80% zirconia. Polished surfaces (lei%) and fracture surfaces (right). Note 

that the bright phase corresponds to zirconia. 

Figure 11  Coefficient of thermal expansion (CTE) of aluminalzirconia composites as a function of zirconia 

volume fraction in alumina. 
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Figure 1. 
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