
An Efficient Path Selection Algorithm for On-Demand Link-State Hop-by-Hop
Routing

Soumya Roy and J.J.Garcia-Luna-Aceves
Computer Engineering Department

University of California

Santa Cruz, CA 95064

soumya, jj@cse.ucsc.edu

Abstract—
Traditional routing protocols based on link-state information

form a network topology through the exchange of link-state infor-
mation by flooding or by reporting partial topology information
and compute shortest routes to each reachable destination using a
path-selection algorithm like Dijkstra’s algorithm or the Bellman-
Ford algorithm. However, in an on-demand link-state routing pro-
tocol, no one node needs to know the paths to every other node in
the network. Accordingly, when a node chooses a next hop for a
given destination, it must be true that the next hop has reported
a path to the same destination; otherwise, packets sent through
that node would be dropped. In this paper, we present a new
path-selection algorithm that unlike traditional shortest path algo-
rithms, computes shortest paths with the above on-demand rout-
ing constraint.

I. I NTRODUCTION

To minimize control overhead in mobile ad-hoc networks,
on-demand routing protocols (e.g., dynamic source routing
(DSR) [1], ad-hoc on-demand distance vector (AODV) [2] rout-
ing, temporally ordered routing algorithm (TORA) [3], source-
tree on-demand adaptive routing(SOAR) [4])) maintain paths to
only those destinations to which data must be sent and the paths
to such destinations need not be optimum.

In link-state routing protocols meant for mobile ad-hoc net-
works, partial link-state information can be used for computa-
tion of paths to destinations, because all nodes need not have
to compute paths to every other destination. Hence, each node
may not know how to reach every other node in the network,
even when all nodes remain connected. For correct hop-by-hop
routing, every node that receives a data packet for forwarding
should have a correct route for the destination. Therefore, while
computing routes, a node should be allowed to choose a neigh-
bor as the next hop for certain destinations only if that neighbor
has advertised routes for those destinations; otherwise, packet
forwarding would be incorrect. Unfortunately, the Bellman-
Ford algorithm or Dijkstra’s algorithm do not place any con-
straint for the computation of routes, and new path selection
algorithms are needed to account for the on-demand routing
constraint. In this paper, we present such a new path selection
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algorithm that computes shortest paths with on-demand routing
constraint.

Section II describes how the path selection algorithm should
be specified for on-demand link-state routing protocols. Sec-
tion III describes the details of the path selection algorithm.
Section IV proves that the given path selection algorithm is
correct, i.e. it correctly computes the best path to reach any
destination under the on-demand routing constraint. Section V
concludes the paper.

II. PATH SELECTION FORON-DEMAND LINK -STATE

ROUTING
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Fig. 1. Example explaining the requirements of a new path selection algorithm
for routing protocols using link-state information on-demand

Considerable effort has been devoted for using distance-
vector information or path-vector on-demand (e.g., AODV [2],
DST [5], DSR [1]), but not much work has been done exploring
the use of link-sate information on-demand in routing. Most of
the link-state routing protocols that have been devised for mo-
bile ad-hoc networks are pro-active, like OLSR [6], STAR [7],
FSR [8], TBRPF [9] while the source tree on-demand adaptive
routing (SOAR) [4] is the only protocol reported to date that
uses link-state information on-demand.

The key idea in SOAR is for wireless routers to exchange
minimal source trees, consisting of the state of the links that
are in the paths used by the routers to reach onlyimportant
destinations. Important destinations are active receivers of data
packets, relays, or possible relays. Minimal source trees can be
reported incrementally or atomically, and updates to individual
links in source trees are validated using sequence numbers. A
wireless router uses its outgoing links and the minimal source
trees received from its neighbors to get a partial view of the
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(a) Partial Topology (b) Source Graphs of neighborsa, b, c at node i (c) Final Source Tree

Fig. 2. Partial Topology (a) and Source Graphs of neighbors (b) are the inputs to the path selection algorithm, (c) is the output i.e. the final source tree for packet
forwarding

network topology and computes its source tree using a local
path selection algorithm.

A key difference in the local path-selection algorithm needed
in on-demand link-state routing protocols compared to tradi-
tional shortest-path algorithms used in proactive routing proto-
cols is that each router advertises only those links necessary for
data forwarding, rather than all links in the network. Fig. 1 il-
lustrates this situation. The figure shows the partial topology
at nodea, which has been built based on its outgoing links
and the inputs from its two neighbors,b and c. Each link in
the partial topology lists the neighbors of nodea that have re-
ported the links. For example, nodeb has only reported the link
b � d, while link g � h has been advertised by nodec only.
A traditional path-selection algorithm (e.g., Dijkstra’s shortest
path first algorithm or the Bellman-Ford algorithm) finds the
shortest path from a source to any destination. However, when
any of these algorithms is run on the partial topology at node
a, nodeb will be selected as the next hop to reach nodeg or
nodeh. Nodeb has not advertised any path to nodeh, and
nodeb may not know about nodeh0s existence. In such a case,
packets for nodeh forwarded to nodeb will be dropped. The
valid path along which packets for nodeh can get forwarded is
[acefgh] and the path selection algorithm should find that valid
path, rather than the shortest path. Correct hop-by-hop routing
would then be possible.

Of course, if source routing is enabled as in DSR, then the
packets can always be forced on the shortest path[abdgh], with-
out the intermediate routers setting up any route for destination
h. However, our focus is on correct route establishment at each
node for hop-by-hoppacket forwarding, rather than source rout-
ing because source routing requires modification of current IP
forwarding mechanism and incurs extra overhead in each data
packet. Accordingly, we need a new path-selection algorithm
for on-demand link-state routing, which should satisfy the fol-
lowing property for choosing a route for a destination.
Property A : All links in the computed path to a destination
through a neighbor should be advertised by the neighbor itself.

Because our objective is to choose the shortest among the
possible valid paths, the path selection algorithm should satisfy
the following rules :

Rule 1: If p
j
i be the path computed to reachj at i through

neighbork, thenpji = [lki p
j
k] , i.e., there should be a pathpjk,

which has been reported byk to i (lki : link from i to k), which
becomes a subpath ofpji . This rule follows from Property A.
Rule 2: There can be several potential paths that satisfy Rule
1. However, for final route computation paths with the smallest
length should be chosen.
Rule 3: Only a single path is chosen to reach any node in the
network. For example, in Fig. 1 there are two valid paths for
nodeg, namelyabdg to reach noded andacefg while reach-
ing nodeh. Pathabdg through neighborb has to be selected
because that is the shortest path to noded. In that case, nodeh
will become unreachable, because the only valid path to reach
h has been advertised by neighborc and neighborb is the next
hop for the predecessor of nodeh.

The optimal path selection algorithm should choose the ap-
propriate predecessor and successor with the objective to mini-
mize the number of nodes becoming unreachable, i.e., to max-
imize the number of nodes for which routes can be obtained.
Finding the optimal solution is an NP-complete problem1 and
hence we propose a heuristic.

III. D ETAILS OF THE ALGORITHM

Dijkstra’s algorithm or the Bellman-Ford algorithm cannot
be used directly as the path selection algorithm for on-demand
link-state routing because they do not satisfy Rule1. The pro-
posed path selection algorithm for selecting shortest paths in
on-demand link-state routing protocols consists of selecting the
valid paths for a destination, and then choosing the shortest
among the valid paths with the objective of having finite cost
paths for maximum number of destinations. The following two
sections describe each phase of the path selection process.

A. Finding Valid Paths for a Destination

The first step of the proposed algorithm is to rebuild the
source trees advertised by each neighbor based on the links

1Proving that the problem of finding the optimal solution is an NP-complete
is beyond the scope of this paper



Node fnext hop, predecessor, distanceg min dist bestoptions cx bnh px [selecbestoptions, count,fnh, distg] [nh, pred, dist]
a fa, i, 1g 1 1 n1; n1 a i X [a, a, 1]
b fb, i, 1g 1 1 n1; n2 b i X [b, b, 1]
c fc, i, 1g 1 1 n1; n3; n4 c i X [c, c, 1]
n1 fa, a, 2g, fb, b, 2g, fc, c, 2g 2 3 n5; n6 a, b, c a, b, c [2, 3,fa, 3g, fb, 3g] [b, b, 2]
n2 fa, a, 2g, fb, b, 2g 2 2 X a, b a, b [2, 1,fa, 1g, fb, 1g] [b, b, 2]
n3 fb, b, 2g, fc, c, 2g 2 1 X c c [1, 1,fc, 1g] [c, c, 1]
n4 fc, c, 2g 2 1 n7 c c [1, 4,fc, 4g] [c, c, 1]
n5 fa,n1 , 3g, fb,n1, 3g 3 2 n8 a, b n1; n1 [2, 2,fa, 2g fb, 2g] [b, n4 , 3]
n6 fc,n1, 3g 3 1 X c n1 [1, 1,fc, 1g] [NULL, NULL, 1]
n7 fb,n3 , 4g, fc,n4, 3g 3 1 n9; n10 c n4 [1, 3,fc, 3g] [c, n4, 3]
n8 fa,n5 , 4g, fb,n5, 4g 4 2 X a, b n5; n5 [2, 1,fa, 1g fb, 1g] [b, n5 , 4]
n9 fb,n7 , 5g 5 1 X b n7 [1, 1,fb, 1g] [NULL, NULL, 1]
n10 fc,n7, 4g 4 1 n11 c n7 [1, 2,fc, 2g] [c, n7, 4]
n11 fc,n10, 5g 5 1 X c n10 [1, 1,fc, 1g] [c, n10, 5]

Fig. 3. Table depicting the step-wise execution of the path selection algorithm. (min dist)minimum length of the best paths to a destinationx, bestoptions)
total number of neighbors that have advertised paths of smallest length,cx ) nodes which are directly reachable along the least-cost paths through nodex, bnh
(best next hop)) neighbors that have advertised least-cost paths to nodex, px ) predecessors through which nodex can be reached,selec best options )
number of best choices among the shortest paths,count ) total number of nodes farther from a node that can be potentially included in the final source tree
whennh is chosen as next hop)

in the given topology and the list of neighbors, which have
reported each link. The source trees become the inputs for
the path selection algorithm. The complexity of this step is
O(nd2), wheren is the number of nodes in the network and
d is the neighbor density. Fig. 2(a) shows the partial topol-
ogy at nodei, where corresponding to each link the neighbors
who have advertised that link have been listed. Fig. 2(b) shows
the source trees of neighborsa, b andc rebuilt from the partial
topology of nodei. Table 3 shows the step-by-step execution of
the path selection algorithm.

Next, the valid paths for each destination in the form of tu-
plesfdistance; nexthop; predecessorg are determined by do-
ing depth first traversal on the source graph of each neighbor.
Atmostd valid paths are theoretically possible for each destina-
tion, depending on whether a neighbor has advertised a path for
it or not. The complexity of a depth-first traversal isO(n) for a
tree withn nodes; therefore,the total complexity isO(nd) for d
neighbors. Column 2 of Table 3 shows the different valid paths
possible for each node in the network of Fig. 2 in the form of
fnexthop; predecessor; distanceg tuples. For example, cor-
responding to noden8 the valid paths are: (1) through neighbor
a, with predecessorn5 and distance four, and (2) through neigh-
bor b, with predecessorn5 and distance four. By making paths
belonging to the source trees of neighbors eligible for path se-
lection, Rule 1 is automatically satisfied.

B. Choosing The Best Routes

After computing all valid paths for a particular destination,
the least-cost paths to any destination are only considered for
the final route selection, thereby satisfying Rule 2. That process
requires two operations: (a) finding the minimum cost among
the possible options (O(nd)), and (b) selecting the paths which
are of least cost (O(nd)). Columns 5, 6, and 7 of Table 3
show the least-cost paths possible based on the source graphs
of neighborsa, b andc. As shown in Table 3, the least-cost path
to reach noden7 among the two valid paths through neighbors
b andc (as shown in Table 3) is through neighborc, with the
predecessor beingn4 and the direct children beingn9 andn10.

The next step of the operation is to choose among the valid
least-cost paths only those paths aggregation of which will form
the source tree with maximum number of nodes in it. This op-
eration can be formally described as follows.

Problem statement: Given a set of least-cost paths by which
the nodes in a network can be reached, the successor in the
route for each destination in the network topology has to be
determined such that finite-cost paths for the maximum number
of nodes can be obtained.

Finding the optimal solution is an NP-complete problem.
Hence, a heuristic is proposed for the final path selection. The
heuristic can be divided into two distinct operations, the steps
of which have been depicted in Fig. 4. During the first opera-
tion, choices are made regarding predecessors and next hops for
nodes, starting from the farthest nodes towards the ones nearer
to the source, while maximizing the count of children at each
node. The count of children at a nodex refers to the total num-
ber of nodes farther fromx that can be included in the final
source tree when a particular next hop is chosen. To illustrate,
if noden1 is reached viac, then the total number of children
which can be reached fromn1 is two, while if eithera or b is
chosen the count becomes three. Hence,c is excluded as a next
hop choice forn1 and the total number of paths of minimum
cost, (referred to asselecbestoptions in Table 3) becomes two.

During the second operation, traversals are made from the
source towards the nodes farther away and final selections of
next hops amongselec best options are made. For example,
noden2 can be reached via neighbora, as well as via neighbor
b. Any one ofa or b can be chosen asnext hop. However, if
any of the nodes is the previous successor, then to prevent route
flapping that node will be chosen automatically as the current
successor. Nodeb also becomes next hop for noden1’s succes-
sorsn5 andn8. Noden5 chooses nodeb, since its only possible
predecessorn1 has chosen that also. Noden6’s only path is
through nodec with predecessorn1, but n1 is only reachable
through nodeb. Therefore, noden6 would be excluded from
the final tree. If nodeb would have advertised linkn1-n6, then
n6 could have been included in the final source tree. Through



message exchange in the routing protocol, intermediate nodesb

andn1 can be forced to advertise a path ton6. Fig. 2(c) shows
the minimal source tree computed drawn from the final results
in the last column of Table 3.

The complexity of the above two operations isO(nd+2nd2).
Accordingly, by considering each step taken for the path selec-
tion the complexity of the entire path selection algorithm be-
comesO(nd2). In comparison, the complexity of Dijkstra’s
algorithm is O(n2).
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Fig. 4. Depiction of the process of final selection of next hop for each node

IV. CORRECTNESS OFPATH SELECTION

Theorem 1:If STi(= (V
0

; E
0

)) is the final computed
source tree, the distance to eachv 2 V

0

, according toSTi is
the shortest path based on the given topology (G = (V;E))
under the constraint of Rule 1.

Proof: Let dv be the distance to vertexv 2 V
0

according
to STi andÆ�(i; v) be the shortest distance fromi to v under
the constraint of Rule 1, given a topology at nodei. Using
depth-first traversals through each neighbor’s source graph, we
computeÆn(i; v), i.e., the distance fromi to v through neighbor
n.

Let dnv = Æn(i; v) 8n 2 Ni (Ni : neighbor set).
According to the algorithm, the best next hops (bnh 2 Ni)

for any destinationv are chosen such that the following is sat-
isfied,

dbnhv = min[Æn(i; v)] 8n 2 Ni.
Because of Rule 1,dbnhv = Æ�(i; v) for eachbnh. In STi,

snh is the selected next hop for reachingv andsnh is selected
from the set ofbnhs, which implies thatdv = dsnhv = Æ�(i; v).

Theorem 2:Using a given topology if one run of path se-
lection algorithm does not yield optimal solution, the opti-
mal solution can be obtained by message passing with cer-
tain relevant nodes.

Proof: Let v be any node that is included inSTi, i.e.,
v 2 V

0

. Let nhv be the next hop to reachv according toSTi.
This implies thatcountv:nhv = max[countv:ni] 8 ni 2 Ni,
wherecountv:n is the total number of nodes in the subtree
rooted atv and advertised by neighborn.

Let us assume that a nodeu has been left out ofSTi (i.e.,
u 2 (V � V

0

)). Let an upstream node ofu according to one
possible least cost path fromi to u (through neighbornhv) be
v and letv be the last node in the path tou that belongs toSTi.

An on-demand routing protocol based on link-state informa-
tion can be defined such that, a node could ask its neighbor(s)
to enact a form offorced routingalong the path [nhv, ...., v]
such thatv; ::::; nhv would be forced to advertise toi the sub-
tree (SUBT v), rooted atv, containing path tou and that has
been excluded fromSTi.

Let c be the total nodes inSUBT v excluding v. Then
the new count value,count

0

v:nhv = (countv:nhv + c) >

max[countv:ni] = max[count
0

v:ni], because forced routing
throughnhv increasescountv:nhv only.

This implies thatnhv would be selected as the next hop forv,
and any nodeu left out inSTi before would be included, hence
giving the optimal solution.

V. CONCLUSIONS

Traditional shortest-path algorithms work correctly only
when all nodes maintain routes to all destinations. However, in
on-demand routing protocols, a node need not maintain routes
to all destinations. Accordingly, such algorithms as Dijkstra’s
shortest path first or the Bellman-Ford algorithm cannot be ap-
plied for computing paths when there is an on-demand rout-
ing constraint dictating that a neighbor can be chosen as the
next hop to a destination only if that neighbor has advertised a
path to the destination. In this paper, we have presented a new
path selection algorithm that enables correct path computation
in routing protocols based on the exchange of link-state infor-
mation on-demand and on hop-by-hop packet forwarding.
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