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Abstract

Two of the problems that the user of an image understanding system must continuously face
are the choice of an appropriate algorithm and the setting of its associated parameters. These
requirements mean that the user must have a fairly high degree of expertise with the algorithms
to accomplish a given task effectively. If, on the other hand, the system itself is able to learn
how to select among its algorithms and to set their parameters through its experience with
similar tasks, it should be possible to reduce the need for operator expertise while improving
efficiency at the same time.

This paper presents a method to accomplish this goal. Contextual information computed from
the task and the input data is used to search for similar situations, and determine whether or
not an algorithm is applicable, and which parameters are suitable for it. Different approaches
have been investigated as the basis for finding similar situations. The first one uses a measure
of similarity between context element values. The second one uses a categorization method
based on conceptual clustering. The main problem js the need to deal with both numerical and
categorical variables.

To demonstrate the efficiency of our approach, we describe experiments involving the use of
a snake algorithm to perform the task of curvilinear feature extraction. Qur implementation
allows the various parameters of this technique to be context-specific. We show in this setting
how our system makes the use of a vision process easier by reducing the needed user expertise
and improving efficiency in obtaining the desired results.

Keywords: Image Understanding, Contextual Information, Learning by Observation, Learning from
Examples, Conceptual Clustering, Parameter Learning, Description Learning, Active Contour, Snake
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1 Introduction

The research effort described here is an attempt to make computer vision systems more effective
by endowing them with a capability to learn. Our philosophy has been shaped by the following

principles, each of which has motivated some aspect of our approach:

Learning is essential — image understanding system designers cannot anticipate all

possible situations that may arise in advance.

No matter how much effort is devoted to building and refining a knowledge base, there will always
be limits to the breadth of competence provided. Even if it were possible to construct a knowledge
base suflicient for supporting the entire range of anticipated tasks, the required effort and expense
make it infeasible to do so in all but the most limited applications. Effective mechanisms for enabling
a system to acquire its expertise over time can have a significant impact on our ability to construct

systerns that become more (rather than less) competent as they age.
A vision system should improve its performance through experience.

Rather than analyzing images in isolation and throwing away the results, a vision system should
interpret an image in the context of what it already knows about the scene. In addition, the results
of its interpretation should augment its knowledge of the scene and the extraction task, and the
system should be able to use that information to analyze similar situations more effectively in the

future.
An intelligent system should never be idle.

If an intelligent system has the ability to learn through experience, it might as well devise its own
training examples to more fully exploit that ability. Rather than maintain a static knowledge base
when the system is not otherwise engaged, it should concoct new situations or revisit previous ones,
invoke its repertoire of reasoning or visual capabilities, and update and reorganize its knowledge base

according to the results.

While the accomplishment of any of these objectives is profoundly difficult, we nevertheless have

endeavored to construct a framework that allows the exploration of a particular approach to learning



that offers the promise of at least partial solutions. More specifically, our overall goal is to devise a

practical computer vision system that can

® Recognize a class of objects in a set of related images
® Build an enhanced description of the environment from the sequence of images it processes

o Use its enhanced description of the environment to improve its recognition capabilities

1.1 A Cartographic Application

Imagine a cartographic application in which the photointerpreter’s task is to model all roadways
within a given geographic area by extracting such features from a collection of overlapping overhead
images. The photointerpreter is to be assisted by a partially automated system designed to support

3-D map construction.

1

The traditional interactive approach embodied in today’s operational systems ' can be described

as follows:

The system has a collection of algorithms that are suitable for extracting model in-
stances of specified objects. The user chooses the algorithm to be used to extract a
particular object. A menu is provided containing the default values of parameters, which
the user can override if he chooses. The algorithm with the designated parameters is then
applied to the image(s) producing a resultant model instance. The user has the option to
accept the result, to modify the result manually, to rerun the algorithm with a different

set of parameters, or to choose a different algorithm.

Two of the problems that the user of such a system must face are the choice of algorithm and
the setting of its associated parameters. These requirements mean that the user must have a fairly
high degree of expertise with the algorithms to accomplish the extraction task effectively.

If, on the other hand, the system is itself able to learn how to select among its algorithms and
to set their parameters through its experience with similar extraction tasks, it should be possible to

reduce the need for operator expertise while improving efficiency at the same time.

le.g., RCDE, GLMX, DSPW, KBVision, Geoset



The approach we propose and describe in this paper addresses the feature extraction task as

follows;

The system has a collection of algorithms that are suitable for extracting model in-
stances of specified objects. The user chooses the class of objects to be extracted and
provides information about his task and the scene being analyzed. The system compares
the extraction context to its prior experience with similar extraction tasks, to choose an
appropriate algorithm and parameter settings for the current task. The algorithm with
the designated parameters is then applied to the image(s), producing a resultant model
instance. The user then has the option to accept the result, to modify the result manually,
to rerun the algorithm with a different set of parameters, to choose a different algorithm,
or to ask the system to provide an alternative selection of algorithm and parameters.
The system updates its database of experience with the outcome for use in subsequent

extraction tasks.

The focus of this paper is on establishing a foundation for machine learning in interactive im-
age understanding systems — how can a computer vision system use its experience to improve its
competence? The design and implementation of a widely used interactive computer vision system,
the RADIUS Common Development Environment (RCDE), has been discussed elsewhere {14, 23];
this effort is intended to enhance the performance of RCDE through the addition of a learning com-
ponent. We build upon the notion of a context-based vision system that has also been previously

developed [25, 26].

1.2 An Approach to Learning Visual Parameters

The user in our interactive system is a critical component in the automated learning process, even
though he is not necessarily aware of this role. The user provides the performance evaluation and
correction feedback that is necessary for directed learning and avoids the need for a computationally
infeasible trial-and-error approach. Our system takes advantage of the human review of its results
to determine how successful it has been, to reinforce its successes, and to take corrective action for

its failures.

Two different problems must be addressed. The first one is to find the best algorithm to run,
and the second one is to determine the best parameter setting for the selected algorithm in the given
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context. Only a few authors have addressed these problems, and all are concerned with finding the
best strategy to accomplish a complex task necessitating several steps or subtasks. At each step
and depending on the data, they pick the best procedure among all possible to perform the subtask.
They focus on the choice of an algorithm, and typically are unclear on how they set the control
parameters. In the domain of pattern recognition, we can cite the work of Draper et al [8, 9], which
involves learning the best strategy to identify a certain type of object. A very interesting point
about this work is that they are able to give an upper bound of the cost of each strategy [9]. We can
also cite the OKAPI system [5], which more generally, can select the best image processing chain to
perform a given task. OKAPI has been applied successfully in the domain of galaxy recognition.

Our approach has been guided by two points. First, our concern is quite different from the ones
above, because we are considering only one-step tasks?, and we assume we can have, in certain cases,
only one algorithm to achieve the task. Thus, we are primarily interested by the choice of good

parameter settings for a given algorithm.

Second, we believe that it is useless to choose a so-called best algorithm for a given task if we are

unable to set the control parameters correctly for any set of data.

Thus, the scheme we adopt is first to find the “best” parameter setting for every algorithm
available to achieve a specified task. Then we give a score to each parameterized algorithm, showing
the chances of the algorithm to succeed with the particular parameter setting. Finally, we run the

top-ranked algorithm.

Our approach is based on the use of contextual information. Many authors have used contextual
information in image understanding systems [20, 7, 4, 27], but few have made the use of context
a way to improve the performance of systems through experience and learning. We define contest
as any information that may characterize the task or input data given to a vision process. Thus,
image resolution is part of the contextual information, as is the camera geometry, a priori scene
knowledge, and the purpose of image analysis. The approach relies on the assumption that each
“running context” (or simply context), consisting in a set of contextual values, can be related to
an acceptable parameter setting with a minimum of ambiguity. This requirement implies a kind of

continuity in both context and parameter spaces. This continuity can be expressed as follows:

Different contests require, in general, different parameter settings while identical or close contezts

2Note that this is not restrictive because if a task is more complex and requires several steps we can apply the
procedure we have designed on each step of the task.



would require a single or similar parameter setting(s).

Using this hypothesis, our learning problem can be defined as a problem of generalization where
the goal is to find how the use of one parameter setting for one context can be generalized to similar

contexts, or more generally, nearest contexts.

In Section 2, the general scheme of the systermn is presented. We see that the various possibilities
offered to the user make this scheme very flexible. This flexibility and the need for using various
algorithms has implied certain constraints in the design of the system. We present themn in Section 3.
The principal problem that arises is the presence of both numerical and categorical context elements.

In Section 4 we focus on the retrieval problem which, given a new context, consists in finding the
nearest contexts that are present in a data base. To find the nearest contexts, we propose a measure
based on similarity between context element values. This measure deals with both numerical and

categorical context elements.

This kind of approach has some computational limitations and limited learning capabilities. Thus,
we have investigated another method based on incremental categorization, that places a new context
into a category where nearest already encountered contexts can be found. This kind of generalization
is very important to reducing the search time for similar situations. Learning by observation, and
more particularly conceptual clustering, which is a type of learning by observation aimed at producing

a classification for the observations, are well adapted to this categorization problem.

In Section 5, we present different aspects of learning by observation and review some existing
systems using this technique. We see the extent to which the constraints of our problem are satisfied

by existing systems.

In Section 6, we focus on one particular method of conceptual clustering, and we enhance this

method to deal with heterogeneous types of variables.

In Section 7, we present the learning update, consisting in updating with new examples the data
bases where past experiences are stored, and eventually automatically learning a correct parameter
setting in cases where the system was unable to provide one. This phase is essential to improving

learning capabilities of the system.

In Section 8 and the Appendix, we describe the snake algorithm that we use to demonstrate
our system’s effectiveness. Snakes [15, 28, 12| are a very powerful technique for edge detection that

integrate information from both photometric and geometric models in an optimization framework.



More specifically, we show how our implementation allows the various parameters to be context-

specific as opposed to image-specific.

Finally, in Section 9, we present some experimental results; we show how our system makes the
use of vision algorithms easier by reducing the required user expertise while improving his efficiency.
We have implemented and tested an initial design and demonstrated successful performance. Our
experiments involved the extraction of 68 features in four images of two different sites. These results

are presented in graphical form where the effects of successful learning are clearly apparent.

2 General Scheme

The system we have designed is intended to use computer vision algorithms to extract cartographic
features from a set of imagery under human guidance. The system makes use of a collection of
algorithms, and must select appropriate parameter values prior to each invocation of an algorithm.
Choice of algorithm and parameter settings is to be made on the basis of contextual information.

In the following a contezt element defines a contextual variable. A contert will be a generic term
to define a contextual environment. Each context is characterized by a context vector regrouping
context element values. A parameter setting is a set of parameter values needed to run an algorithm.

A parameter setting is more formally represented by a parameter vector.

Let .A(D,P) be a process that takes two kinds of information as input, data represented by a
vector D (which includes specification of the task), and parameters represented by a vector P. A
gives a solution S as output. Suppose we have calculated some context information about the task

and data represented by a context vector C.

The primary performance criterion for a practical system for interactive feature extraction is its
ability to generate a good result in a previously encountered sitfuation while avoiding the repetition of
past errors. Thus, it is necessary for the system to keep a record of its successes and failures. Operator

review of the automatically generated results provides the necessary information in a natural way.

From these considerations, we derive the general scheme for our system, depicted in Figure 1.
One data base (DB) is associated with each algorithm available to perform a given task. These data
bases contain past experiences expressed by pairs (C, P) given the correct parameter setting P in

the contextual situation C. Given a new context vector C, these data bases are used to retrieve the
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Figure 1: General scheme

“best” algorithm A and a parameter vector P. The process A(D,P) is applied and the user checks
the validity of the result S. If S is acceptable, P is stored in order to update the parameter value
probabilities in the data base. If .4 failed, the user has three adjustment options. The first one is
to manually modify the parameters and to apply .4 again until it succeeds. The second option is to
manually modify the result S so it becomes reasonably good. In this case, updating the data base
consists in learning a correct parameter setting for the current situation. Because the solution § is
available, the learning can be done automatically. This phase is usually performed after the session.
Finally, the third option for the user is to modify some aspects of the input data D. In such a case,
a new context vector is calculated and the procedure starts all over again. In this way, the system
is able to improve its performance over time, as the likelihood that the system encounters a context

similar to one in which it has successfully accomplished its task increases monotonically.

This architecture can serve as the foundation of a practical system for cartographic feature ex-
traction, while affording a path to the creation of a vision system with very powerful constructs for

learning.

11



3 Application Domain Constraints

The interactive nature of our system and the wide variety of data types it must deal with pose
additional challenges to the design.

The most important constraint (or capability) we have is to be able to deal with different types of
data. Both context elements and parameters can be either numerical or categorical. Table 1 shows
examples of some context elements that can be used. The resolution is a numerical context element
with continuous values. On the contrary, the task has categorical (nominal) values. Finally, desired
accuracy is a context with ordinal values — that is, symbolic values that can be related to a numerical
discrete function (like low = 1, middie = 2, high = 3).

context element | type possible values

resolution numerical, continuous | 0.1, 10, 100

task categorical road, building delineation
desired accuracy | ordinal low, middle, high

Table 1: Different types of variables handled by the system.

Most of the existing systems found in the literature consider only one type of data. Few systems
use both numerical and categorical variables, but consider numerical values as categorical. This s

often acceptable with ordinal variables, but not with continuous numerical ones.

Employing numerical values is a major problem for generalization, because close values cannot
be considered the same as completely different values. On the other hand, dealing with categorical
variables can also be a real problem when similarities between values are required. We will see in

Sections 4 and 6 two solutions to deal with all types of variables presented in Table 1.

A second constraint we have about variables is due to the fact that our system is interactive. One
role of the user is to provide values for context elements that cannot be computed automatically.
The interactivity is an opportunity to increase system performance. However, the user must not be
annoyed with too many constraints. Thus, we have to take into account that the user can decide
not to provide every context element values, and so that some context elements may have the value

“unknown”,

The number of context elements we use as well as the number of parameters an algorithm has
can be high. For instance, results shown later involve sixteen context elements and an algorithm

12



with eight parameters. Spaces of context elements and parameters have a high dimension, and the
expertise of the system cannot cover these spaces entirely. There are two consequences. First, the
system should be able to learn in an incremental way. Second, because of high dimensions, initial

learning may be poor and the learning method has to be able to deal with radical changes.

4 Retrieval based on Similarity

Here, we focus on the retrieval module of our design as depicted in Figure 1. Given the context of a
feature extraction task, we wish to identify the previously encountered contexts that are “nearest”
to it. The parameter settings associated with those nearest contexts will be used to choose the

parameters for the current extraction task.

Using our hypothesis of continuity in context and parameter spaces, and given a new context
vector C, the retrieval problem can be more precisely defined as finding the nearest context vectors
Cj1,.,C;n present in the data base of algorithm A4;, and providing parameter vectors P;,,..,.P;,
associated with these nearest context vectors. A score has to be associated with each P;; to rank
the parameter setting according to its ability to produce a good result. The top-ranked pair (A;,
P;;) is finally provided to the user as having the maximum chance to succeed as it corresponds to

the nearest situation already encountered®.

We investigate a measure based on similarity to find the nearest context vectors C;,,..,C;, present
in a data base. Information retrieval is a domain that has produced a large number of similarity
measures to comparing two vectors (see [29] for an extended list). Let u and v be two vectors in a
n dimensional space. An important family of pseudo linear similarity measures between u and v is
defined by:

u.v
m(u,v) = —————— 1
(u,v) AOIAD (1)
where u.v = 3 }_, upvr denotes the scalar product between u and v, and N; and N; are two

normalizing functions (generally Ny = N;). For example, the very popular cosine measure is defined
with N;(u) = ||u||, and Na(v) = |v||, where ||.|| denote the {; or Euclidean norm.

91n general, a few pairs will be retrieved at the same time. It offers the user the possibility to choose the one he
considers the best.
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This kind of ranking guarantees under certain conditions, that the less preferred objects are not
ranked ahead of the preferred [29]. However, because of the possible categorical context elements in
our problem formulation, this kind of interesting ranking function is not directly usable.

A heuristic solution to this problem is to use one of these ranking functions in a real valued space,
transformed from the context space. The transformation we apply can be viewed as a normalization
of context element values. We define a transform function T¢ : C — {0, 1], ¢ = Te(c). If we consider
a context C which value is ¢, T¢(c) is the normalized value of C'. To better understand what kind of
normalization we are performing, and by analogy to fuzzy logic, let us associate a predicate to each
context element. Ty is going to quantify how much the value of C supports the predicate associated
with C.

Table 2 shows the result of the transform for different kinds of context element. Look Angleis a
numerical context, taking its value between 0 and 90. In this particular case, we have T (c) = 1—¢/90.
For example, if Look Angle = 0, the context value fully supports the predicate “Look Angle is nadir”,
and so T¢(0) = 1. Sensor Type is a categorical context. In this case, T¢(c) is one if ¢ = Visual,
and zero otherwise. With this kind of transform, all differences between two categorical elements
are considered identically (i.e., zero, the maximum of disagreement). Finally, Desired Accuracy is
a numerical discrete context element. In this case T¢ is a discrete step function (with three steps in

this particular example).

Context Element | Context Type Predicate €1 €3 Te(ey) | Te(esz)
Lock Angle Numeric Continuous | “Look Angle is nadir” g° 45° 1 0.5
Sensor Type Categorical “Sensor type is Visual” Visual | Radar 1 0
Desired Accuracy | Numerical Discrete “Desired Acuracy is high” | middle | low 0.5 0

Table 2: Exemple of normalization performed on three types of context element.

In the transformed context space, we use a similarity measure defined by Equation 1 to rank
nearest context vectors. Normalization (N7 and N, functions) is required when we want to keep the
length of the vector from being taken into account in the similarity measure. This is particularly
interesting for parallel vectors with different lengths. However, because vector norms and parallelism

have no special meaning in our problem, we have chosen N;(u) = Ny(v) = 1.

Thus, given the new context vector C = (¢, .., ¢n), and one context vector C; = (¢i1,..,Cin) of a
data base, we define the similarity S between C and C; by the following inner product:

14



n
S(C,Ci) = > Ti(er)Tu(cin) (2)

k=1
where Ti is the transform function associated with context element &. Let n; be the number of
parameter settings provided to the user. The n; highest similarity values provide the nearest context
vectors present in a data base and, so, n; parameter settings associated with these context vectors.
If we perform this ranking for every algorithm available, the n; overall highest similarities provide

the n; best algorithm and parameter settings that can be proposed to the user.

As we will see in Section 9, the performance of this method is reasonably good. However, if the
number of context vectors present in a data base 1s too large, it may take too long to use this method

in an interactive scheme. Moreover, the method provides very limited learning capabilities.

Thus, in the next sections we present another method based on the notion of learning by obser-

vation, and more specifically based on conceptual clustering.

5 Learning by Observation

The main goal in learning by observation is to build a representation of concepts supported by exam-
ples presented to the system. Generally, two problems must be addressed in learning by observation.
The first one is to identify relevant concepts from the examples, and the second one is to find an ap-
propriate representation of these concepts. Here, we describe some systems that learn by observation,

and we focus on the two problems of concept formation and concept representation.

BACON [17] is a domain-specific system dedicated to chemical concept (law) formation. Concepts
are represented by mathematical equations. Given a general a priori form of equation, BACON
searches through the space of data, and the space of laws, to discover relations between data variables.
If the way of representing concepts is natural in BACON, this is not the case for general-purpose
systems of learning by observation. It is important to see that the choice of a particular representation

is essential and dictates what concept a system is going to be able to learn.

The UNIMEM system [18, 19] uses a technique called Generalization Based Memory (GBM) that
stores examples in a hierarchical data base (memory) describing concepts with increasing specificity.
Concepts (generalizations) are represented by nodes in a discrimination net. Each node is a set of

examples supporting the concept of the node. Learning is incremental. Each time a new example
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is considered, a controlled search is performed in the GBM to find the most specific concept(s)
that describe the new example. During the search process, the matching of a new example to a
generalization is based on a numerical measure of similarity between values of the new example, and

values of a generalization [19].

In the BLIP system [30], both knowledge and concepts are represented by rules and predicates.
To try to minimize the bias introduced by the representation mode of knowledge, knowledge rules
are translated into domain-independent meta rules. These meta rules are used to generate new rules
(concepts) and meta rules. The generation of new concepts is demand driven — that is, it is triggered

by the weakness (lack of information) of the current representation of knowledge.

Both BACON and BLIP employ constructive learning. In the process of concept formation they
create descriptors not present in the input data. This creation is very important in the learning

process.

In our particular problem of finding a parameter setting for an algorithm in a given situation, we
could think of expressing the expertise to determine a correct parameter setting by a set of rules as
in the BLIP system — that is,

In situation 1, parameter A has to be increased by 0.1 from its standard value

However, this kind of expertise has major limitations, because many counter examples are going
to be found to rules like the one above. Moreover, it is known that systems employing this kind of
expertise perform poorly in complexr domains. Studies have shaken the theory of learning involving
general rule sets and imply that human expertise is based on the ability to compare a current situation
to previous ones [10]. This theory is supported by neural network implementations that show that
it is possible to design expert systems that do not reason (in the sense of manipulating rules) but

rather act using similarity with past experiences [13].

A particular type of learning by observation is called Learning from examples. Both types of
learning have the same goal, the determination of concept generalization. However, in the case of
learning from examples, concepts are created for a particular purpose: the classification of examples.
This implies new constraints for existing concepts. They have to form a partition in the space of

examples — each example must verify or refine only one concept.

There are two types of learning from examples. The first one, called concept learning, assumes
that a teacher is available to preclassify examples. The system has to produce a description of the

16



examples of each class, which is general enough to accommodate every example, but discriminating
enough to avoid interclass ambiguity. Among existing systems using the learning-from-examples
approach, we cite INDUCEL.1 [21] and the system introduced by Cromwell and Kak [6]. Both
systems use conjunctions of predicates to represent concepts, and both manipulate four types of
data: nominal (categorical), ordinal (numerical discrete), numerical (continuous), and hierarchical.
The Cromwell and Kak system includes more kinds of generalization rules, and is applied to a real

case of pattern recognition in the domain of electronic component recognition.

When a system does not need preclassified examples, but rather is able to determine by itself the
relevant classes {concepts) to create, we talk about concept clustering. The classification problem is
then generally performed in two steps. The first consists in determining appropriate clusters, and the
second one consists in characterizing clusters (as in concept learning). The main problem is to deter-
mine a measure to evaluate the quality of the clustering. Several criteria have been tested. Systems
like CLUSTER/2 [22] and CLUSTER/S [24] use the notion of simplicity (comprehensibility) of the
concept representation. Unlike statistical clustering techniques {based on numerical similarities) that
produce clusters difficult to analyze, they make the assumption that the simpler the class description,
the better. To avoid having a trivial partition with all examples in the same class, the final description
must closely match the original examples. This clustering criterion relies on a psychological study
showing that people who are asked to classify complex data choose only one or a few simple features
from the data to build a set of disjoint classes. CLUSTER/2 and CLUSTER/S use conjunction of
predicates to represent concepts. In addition, CLUSTER/S uses a priori knowledge related to the
application domain {expressed with a semantic net called Goal Dependency Network) to determine

the relevant descriptive predicates for a given goal, and thus guide the concept formation.

Kodratoff and Tecuci [16] use a conceptual distance as a criterion for cluster formation. Exam-
ples are represented using conjunction of predicates. The defined conceptual distance is based on
the idea that two very different examples are generalized in an expression very different from the
original examples (in terms of predicates, arguments of predicates, and number of predicates in the
expression), while similar examples can be generalized to themselves. Thus, both the generalization
and the process of obtaining this generalization indicate the conceptual distance between examples.

A third criterion used to evaluate cluster quality consists in maximizing the inference ability of the
resulting partition. The idea is that the better you can predict features based on class membership,
the more advantageous it is to create such a class. Both COBWEB [11] and the system presented
by Anderson [2, 3] use this kind of criterion in an incremental learning scheme. A new example is
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placed in the class that maximizes the predictability of the category formed by the addition of the
new example, or is classified in a new category if adding the example to an existing category does
not improve predictability of any of the classes. The number of classes is determined automatically
by the system. These incremental schemes are interesting because learning is easily accomplished by
considering new examples. However, the resulting clustering is sensitive to the order in which new
examples are presented to the system. To minimize this dependency, as new examples are added,

COBWERB tries to split or merge classes to improve the partitioning.

Table 3 presents a summary of important features of the learning systems described above. These

features are;

e Learning type: Conceptual clustering is the most appropriate method for our problem. It does
not require a teacher giving preclassified examples, and so reduces to a minimum the need for

human expertise. It also produces a partition of the space of examples.

e Concept formation: similarity-based models, predictability-driven models, and maximizing
comprehensibility models are fairly similar. In general, predictability-driven methods will be
sensitive to the number of features shared among objects and, therefore, they tend to make
the same predictions as similarity-based models [1]. The predictability-based quality measure
used by COBWEB can be viewed as a continuously valued analog of the quality measure used
in CLUSTER/2 based on comprehensibility [11].

o Representation mode: As mentioned earlier an appropriate representation of concepts is essen-
tial to be able to express all expected concepts. Representation of concepts using conjunction
of predicates is valuable for its ability to manipulate heterogeneous types of data. However,
no method of conceptual clustering, using conjunction of predicates, is effective when dealing
with numerical variables (in contrast with categorical ones). Hierarchical structures (trees) are
also interesting because, associated with some controlled heuristic search, they provide faster

methods of categorization.

o Constructive learning: This feature remains a challenge for most existing systems. For us, 1t
consists in learning a new similarity relation between context elements, and ultimately new

context elements.

o Data manipulated: As mentioned previously, we need to manipulate three kinds of data: nom-
inal (categorical), ordinal (numerical discrete), and continuous numerical. Only learning-from-
example systems, and Anderson’s systems use all these types of data simultaneously.
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o [ncremental learning capability: In the domain of conceptual clustering, only Anderson’s system

and COBWEB provide an incremental scheme required in our problem formulation.

o Teaching required: Because we want to make the use of new algorithms easy, we cannot use a
teacher for training. The role of a human operator using our systemn must only be to evaluate

the algorithm results.

o Eramgple order and concepts are dependent: Incremental schemes of conceptual clustering are
computationally effective, but sensitive to the order in which examples are presented to the
system. COBWEB uses a technique of split and merge to reduce this effect. Anderson [3]
states that though the category structure can vary substantially as a function of order, the

predictions delivered by the different categories do not differ much themselves.

o Number of categories are determined automatically: Because we have no teacher, this feature

is essential.

o (Concepts produce a partition: This feature is preferred to avoid ambiguities, but 1s not strictly

required, if examples appear in only a few categories.

From this evaluation, we can see that the most appropriate method of learning seems to be
the conceptual clustering approach using an incremental scheme of clustering and a hierarchical
representation of concepts. However, no systems having these characteristics and the ability of
dealing with both categorical and numerical variables already exists. Only two systems use conceptual

clustering in an incremental scheme: Anderson’s system and COBWEB.

Anderson’s system is not hierarchical, and has the following major inconveniences. (1) It uses a
Bayesian approach relying on strong assumptions about independency of probability distributions,
and form of distributions of the manipulated variables. (2) A priori knowledge that we may not
have for every algorithm we use is required to set some of the several parameters of the system.
(3) The number of different values of a categorical context element has to be known a priori. (4)
Finally, as we will see in Section 9, parameters of the system seem to be very sensitive and hard to
set correctly. Anderson’s approach is concerned with deducing psychological conclusions from the
parameters associated with the best (or expected) categorization — parameter values are found just
by doing experiments. Furthermore, it seems that no standard values exist; parameter values are

really application-dependent.



So, even if COBWEB does not deal with continuous numerical variables, it seems to be the most
adapted to our problem, and it is possible to enhance COBWEB capabilities to take into account

numerical variables.

6 Retrieval based on Conceptual Clustering

Because of the number of context vectors that can be present in the data base, we cannot afford an
exhaustive search for the nearest contexts. By categorizing context elements, we reduce the amount
of search, because as a new context is presented to the system, it can be compared to each category
instead of each context. A hierarchical organization of categories allows the search process to be

even faster.

Thus, the incremental conceptual clustering scheme using a hierarchical representation of concepts
seems well adapted to our problem. A conceptual clustering method of categorization can be used as
a search method to categorize a new context vector C. The resulting category can be considered as
containing the contexts nearest to C. The conceptual clustering quality measure after categorization
of the new context vector can be used to rank the algorithms available.

~ As mentioned earlier, COBWEB [11] is the only system using incremental conceptual clustering
that is well-adapted to our problem. It seems now necessary to present in more details COBWEB,
focusing on the quality measure of clustering and the search (categorization) process of this system.

6.1 COBWEB

In COBWEB, examples are represented using attribute-value pairs. Values are only nominal or
ordinal. Concept formation is based on predictability. The quality of a clustering partition {wy,..,w,}

is measured using the following category utility:

U = Sioy Plwr) i i -

Tt

with

7

Ui = ZP(Ci = Viilwe)? = 3 P(Ci = Vi;)? (4)
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where n denotes the number of classes in the partition. P(C; = Vj;]ws) is the probability for context
element C; to have value V}; in class wy, and P(C; = V;;) is the probability for context element C; to
have value V;; over the whole partition. U measures the increase in the expected number of context
element values that can be correctly guessed knowing the partition {w,..,w,} over the expected
number of correct guesses when no partitioning is given [11]. As we can see, Equations 3 and 4 are

fully applicable only for categorical, and eventually for ordinal values.

The search structure (called Control Structure) used to categorize a new example in COBWESB is
presented in Table 4. At each level of the classification tree, the utility of the creation of a new class
in the partition is compared to the one of the insertion of the new example in an existing class. The
search is a recursive descent into the tree of categories. At each level, the best host for a new object
is defined as the class having the maximum category utility (as calculated with Equations 3 and 4)
after having added the new example. Splitting or merging is attempted on best hosts to reduce the
effect of example order.

Function COBWEB(Object, Root)
1) Update probabilities of the root
2) If Root is a leaf
THEN return the expanded leaf to accommodate the new object
ELSE find that child of Root that best hosts Object and perform one of the following
a) Consider creating a new class and do so if appropriate
b) Consider merging two best hosts and do so if appropriate and call COBWEB(Object, Merged node)

¢) Consider splitting best host and do so if appropriate and call COBWEB{Object, Root)
d) call COBWEB(Object, Best child of Root)

Table 4: Control Structure of COBWEB. From [1]1]

6.2 Enhancing COBWEB capabilities

Fisher’s idea dictates that the category utility, expressed by Equation 4, is a measure of the increase
of expectation of a value knowing a partioning, over the one when no partitioning is given. For
numeric values the expectation of a value is measured by the variance of the value distribution. The
narrower the distribution, the smaller the variance, and the better a value from the distribution can
be predicted. Thus, for numerical values, we suggest the following term to take place in the category

utility measure:
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where s}, is the variance of the distribution of values of the i’st context element in class wy, and s?
is the variance of the distribution over all the partitions. Adding one to the denominator is necessary
to avoid problems with null variances. If a numerical context element is identically distributed on a
class w; and on the whole partition, the context element is irrelevant in any partitions, and we have

Siw, = S;j and uy =0

Varl | Var2 | Vard
Catl 3 5000 | 60
Cat2 2 1000 | 100
Cat3 3 2000 | 150

Table 5: Example of categorization with three variables and three categories.

To demonstrate the categorization ability of our measure, let us consider the following simple
example. Table 5 shows a categorization example with three categories and three variables. Variables
are centered on the values indicated in the table. From this definition we have created 15 examples
(5 from each category) by adding gaussian noise on central values. Resulting examples have been
presented randomly for categorization, using COBWEB search structure and the category utility
measure based on Equation 5. The final tree we obtain is presented in Table 6.

As we can see, the system was able to rediscover the three categories {Class 1, Class 3, and
Class 4). Since Category 2 is nearer to Category 1 by considering the two last variables, it is
comforting to see that we find this relation in the tree. In all experiments performed using this
example we always found the tree shown in Table 6. Thus, the search structure, designed to minimize
the effect of example order, seems to perform reasonably well even with numerical values. Results of

different retrieval methods are presented in Section 9.

Since a new context has been categorized, parameters associated with nearest contexts can be
retrieved. After being categorized, the new context becomes a leaf of the category tree. Near

categories (brothers) in the tree represent nearest contexts from the new context.

However, the structure of the category tree can vary locally. It may be deep at some places, and
not in others. As a result, the number of brothers a leaf has can be very different from place to place.
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-===> Class 0 --=> Class 2 ---> Class 4 —---> Class 25 : Ex = (4 5558 E8)
| ======> Clags 8 : Ex = (3 4939 62}
| mm——- > Clasg 7 ===> Class 16 -==-> Class 18 : Ex = (3 5181 52)
| ==———— > Class 17 : Ex = (3 5164 53)
| wmr—— > Class 15 : Ex = (2 5135 48)

|—eemm= > Class 3 =---> Class 14 : Ex (1 9506 100)
| ====— > Class 6 : Ex (2 10497 103)
| ————— > Class 5 ---> Class 13 : Ex = (2 10100 106)
|=———— > Clasa 12 ~--> Class 24 : Ex = (2 9058 111)
| =m————— > Class 23 : Ex = (3 9947 110)

|-———- > Class 1 ---> Class 11 : Ex = (0 19230 141)
{————- > Class 10 ---> Class 22 : Ex

jmm—— > Clasa 21 : Ex

| === > Claas 9 ---> Class 20 : Ex

|=mm——— » Class 19 : Ex

{1 19718 147)
(1 19810 150)
(2 20439 146)
(1 20618 148)

Table 6: Example of categorization with three variables and three categories.

Thus, the generalization may be sometimes too wide and sometimes not wide enough. To avoid
this problem, and be able to always provide the same number n, of acceptable parameter settings,
we adopt the following strategy. From the new category, we climb in the tree to pick surrounding
leaf categories until a number ny of categories is reached (ng > n;). Then we sort the contexts of
each category depending on their similarities from the new context {nearest context first) using the
similarity measure expressed in Section 4 by Equation 2. Parameter settings associated with the

ny’th first contexts are provided to the user.

This method has several advantages over the one presented in Section 4. First, it may be faster
to retrieve a correct parameter setting when data bases contain a large number of examples. Second,
the predictability measure performs well when lots of examples are involved. During categorization,
when we approach the leaves of a tree, performance decreases. By using a similarity measure over
the ng nearest contexts, we greatly improve final performance. Finally, the tree structure gives very
useful information about contexts and parameters, and particularly their discriminatory ability with

regard to contextual situations.

7 Data Base Update

Updating the data bases is necessary for the system to improve its performance through experience.

This process is performed at the end of a session; thus, update running time is not important. During

24



the session, update data are accumulated in a file. This file contains the successes as well as the
failures of the system to provide correct parameters. Every attempt to provide a parameter vector
is analyzed (see Figure 1). If the attempt was a success - that is, if the solution S returned by the
process A(D, P) was really the one expected by the user - the automatically retrieved parameter(s),
and the manually set parameters (in the case where the user had to set P manually), are incorporated

into the data base, and associated probabilities are adjusted.

If an attempt resulted in a failure — that is, if the user had to manually indicate the solution &
he wanted - then a search process is run to find the parameter vector that best reproduces the given
correct solution. The context vector and the best parameter vector(s) are then added to the data

base.

Any solution S is stored during a session, even if the attempt was a success. It allows the same
search process to be used to learn correct parameter settings for every algorithm available, even if an
algorithm was not chosen as appropriate. Like this, learning about all available algorithms improves

at the same time.

Because the data base update is performed off-line, it can be performed continuously whenever
the system is not otherwise engaged. We have not yet implemented it, but our design allows for this
time to be spent finding new context elements that better resolve the selection of algorithms and
parameters. This facility would constitute a very powerful capacity for the discovery of new concepts

— a challenging problem in machine learning.

8 Snakes

The automated procedure for parameter setting that we have described is, in theory, suitable for
setting the parameters of virtually any algorithm. For purposes of evaluation, we have performed
our experimentation using one class of feature extraction algorithms — an optimization approach

known as snakes.

Snakes were originated by Terzopoulos, Kass, and Witkin [15, 28] and have since given rise to a
large body of literature. In the original implementation, the parameters were chosen interactively,
and potentially had to be changed from image to image. In our own implementation [12], which
1s further described in the Appendix, those parameters are computed automatically and become

amenable to context-specific setting.
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A 2-D snake is treated as a polygonal curve C defined by a set S containing n equidistant vertices
S={(ziyi), 1=1,...,n}

that can deform itself to optimize an objective function £(C).

Formally, we can write the energy £(C) that the snake minimizes as a weighted sum of the form
E(C) = M&E(C)

where the magnitudes of the &; depend on the specific radiometry and geometry of the particular
scene under consideration and are not necessarily commensurate. To determine the values of the A;
weights in a context-specific way as opposed to an image-specific one, we have found it necessary to
normalize out those influences. The dynamics of the optimization are controlled by the gradient of
the objective function {Appendix, Equation A-6). We have therefore found that an effective way to

achieve this result is to specify a set of normalized weights A! such that
> A=1.
1<i<n

The A define the relative influences of the various components, and we use them to compute the A,

as follows:

_ N
| V&S |

where S° is the estimate at the start of each optimization step. In this way we ensure that the
contribution of each £; term is roughly proportional to the corresponding A! independently of the

Ai

specific image or curve being considered.

Table 7 lists the parameters of the snake algorithm that we use to test the learning capability
of our system. In practice, there are a few more, like those that define the rate of increase of the
viscosity or the stopping conditions. However, since the algorithm is not very sensitive to these, we
simply fix them once and for all. The categorical parameters determine the type of snake to be used,
the presence or absence of a smoothing term, the optimization procedure to be used in the absence
of a smoothing term, and whether or not the endpoints of the snake ought to be fixed.
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| Categorical parameters | |

Type of snake Snakes can model smooth, polygonal or ribbon curves.
Fixed endpoints The endpoints of the snake can be either fixed or not.
| Numerical parameters | |
Gaussian smoothing Size of the gaussian mask used to compute image gradients
Initial step size Ap, pixel step size of Equation A-7 used to compute the initial viscosity
Stick length Initial intervertex spacing of the snake, in pixels
Smoothness constraint Xp weight of the deformation component, Equation A-4
Width constraint ty weight of the width component, Equation A-9
Curvature/tension ratio Relative contribution of tension and curvature, Equations A-4 and A-8

Table 7: Snake categorical and numerical control parameters. These parameters and related equa-
tions are defined in the Appendix.

9 Experimental Results: Learning and Selecting Snake
Parameters

We have applied our approach to learning the snake algorithm parameters described in Table 7. Qur
implementation makes use of the RADIUS Common Development Environment {(RCDE) [23].

9.1 Presentation

First, let us illustrate the general scheme of our systemn on the following example. Suppose the user’s
task 1s to delineate the ridge present in the two images depicted in Figure 2a. The user sketches the
3-D curve in the left image of Figure 2b. The camera models and digital terrain model associated

with the image site are used to draw the curve in the right image of (Figure 2b).

Then the user reviews contextual information (Figure 3). There are two categories, corresponding
respectively to global image context elements and curve-specific context elements. We have eight
global context elements: Look Angle giving the look angle of the sensor, GSD giving the resolution,
Sensor indicating the type of the sensor, Element type, Site type, Season Characteristics that point
out some season particularity (snow or rain), [llumination, and Sun Angle which is important for
predicting shadows. We also have eight context elements for characterizing local contextual infor-
mation: Task indicating the class of object to be extracted, Seed accuracy indicating the distance

between the seed curve and the expected solution, Desired accuracy indicating whether or not the
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(b)

Figure 2: (a) Two images from one site used in our tests. (b) 3-D seed curve defined in two views.

user wants the optimized curve to strictly follow the contours of the image, Site type, Material type,
Terrain elevation, Seed min angle which is the smallest computed angle between two consecutive
lines defining the seed curve (minimum local curvature), and Gradient mean which is the average of

the intensity gradient around the seed curve.

These sixteen context elements form the context vector C. Most of the items are calculated
automatically. The user can choose to not provide every item. The Parameter Selection button
returns a selection of parameters based on the nearest context vector present in the data base. The
user can select one of the provided parameter sets and invoke the algorithm. If the user can’t find

any parameter sets giving an acceptable optimized curve, he can adjust the solution manually, set
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Figure 3: Context menus: global context elements (left), site-specific context elements (right).

his own parameters, or modify the initial seed curve (thereby setting a new context). When the user
finds an acceptable solution, the initial curve, optimized curve, and parameters are automatically

saved to update the data base. The optimized curve is presented in Figure 4.

Figure 4. Snake-optimized 3-D curve

Figures 5 and 6 show subimages of the two sites we used in our tests. A site consists of several
images, generally aerial images of dimensions greater than 1000 x 1000 pixels. The two test sites
are very different from each other: the first one is a mountainous rural area with several industrial
facilities (Figure 5a), while the second is an urban area in flat terrain (Figure 6a). Figures 5b
and 6b show curves used as seeds in the snake optimization process. Figures 5c and 6¢ show the
results of the optimization. Although the building boundaries presented in Figures 6b and c appear
very similar, careful inspection will reveal that there are significant differences between the two —
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the optimized version is much more precise than the sketch. Finally, Figures 5d and 6d show the
parameters provided by the system. The Smoothness constraint for the ribbon of the first site is
relatively small because of the relatively high curvature of the ribbon. This aspect is captured by
the context element Seed min engle. Gaussian smoothing needs to be smaller for the curve of the
second site because of the relatively high edge density around the curve and, more particularly, the

presence of shadow. This aspect is captured by the Gradient mean context element.
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| Parameters | Values |

Type of snake ribbon
Fixed endpoints true
Gaussian smoothing 2

- Initial step size 2.0
Stick length 10
Smoothness constraint | 0.6
Width constraint 0.5
Curvature/tension ratio | 1.0

(c) (d)

Figure 5: (a) Example of images of the first test site. {(b) Ribbon seed curve.
{(c) Snake-optimized ribbon curve. (d) Provided parameters
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| Parameters | Values

Type of snake Polygonal
Fixed endpoints not used
(Gaussian smoothing 1

Initial step size 2.0

Stick length not used
Smoothness constraint | not used
Width constraint not used
Curvature/tension ratio | not used

(d)

Figure 6: (a) Example of images of the second test site. (b) Closed 2-D curve.
(c) Snake-optimized 2-D curve. (d) Provided parameters
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9.2 System Evaluation

Testing the efficiency of our system poses three major problems with respect to maintaining test
objectivity. The first one is the choice of the image curves to optimize. The snake algorithm requires
some initial curves as input data. A bias in the experiments can be easily introduced by providing
initial curves too close to the expected solution. In this case, the snake is going to converge toward

the good solution whatever the parameters are.

The second problem is the order in which curves are optimized. Depending on the way evalu-
ation is performed, another bias can be introduced by placing simpler examples at the end of the
experiment, creating the illusion that the learning capability of the system has improved. Moreover,
we have seen that the incremental scheme of retrieval is sensitive to the order of experiments. The
best solution would be to define all the curves we want fo test, and present them randomly to the

user.

The last problem is the evaluation of the results. Some results may be acceptable for one user but
not for another. This paper describes an ongoing study, and determining how well the learned result
will carry over from one user to another has not yet been attempted. All the test results presented

below come from a single user.

One very natural method of evaluation consists in using the system and counting the cumulative
number of times the user has to adjust the result by hand. As the data base grows, the intervention

required of the user should decrease, and so required adjustments should be fewer in number.

Results of this evaluation for the retrieval method based on the similarity measure expressed by
Equation 2 are presented on Figure 7. We can see that for both sites, system reactivity is similar.
There is a continuous decrease in the slope of each curve. This decrease is due to the effect of
successfully learning suitable parameter assignments and represents an improvement in efficiency.
The frequency of manual parameter setting that is required clearly decreases and tends toward zero,
which is the theoretical ideal. The slope decrease also means that the user needs fewer trials to

achieve his goal.

The third curve shows the hypothetical number of manual parameter settings for a user who does
not use the learning module, but simply sets the parameters himself before each optimization. This
curve fits the two others when the system starts to learn, and then tends to an asymptotic line with

slope 2.0, indicating a mean of two manual settings per curve to optimize. The difference between
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Figure 7: Cumulative number of manual settings of parameters

the amount of hypothetical manual parameter setting and the results obtained by a user employing
the learning process indicates the improvement in efficiency provided by the learning module. From

the graph it is apparent that the improvement increases as the system gains experience with the site.

Without the assistance of the parameter learning module, a novice user can require ten or more
invocations of the snake algorithm before he attains a suitable parameter setting for each seed curve
to be optimized. The capacity of the learning module to reduce the required number of invocations
(to less than one per task in our experiments) represents a significant improvement in the efficiency

with which snake algorithms can be employed in an interactive system.

9.3 Evaluation of Retrieval Procedure

This first experiment demonstrates clearly the learning ability of the system. However, it is sensitive
to the three problems mentioned earlier: choice of original curves, order of examples, and evaluation

of the results.

We therefore propose another method to evaluate more specifically the retrieval procedure. We
consider the set of n curves that have already been optimized in the first experiment. For each
curve : < n, we know Cj the contextual information associated with the curve, and P; the parameter
setting that has been used to find the optimized curve. Each context C; is presented randomly to the
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systemn that provides a set of n, possible parameters. Because we know what the correct parameter

setting is (P;) we can measure the percentage of success of the system.

There are two ways to measure this percentage of success. The first one is to count the number
of times parameter vector P; belongs to the set of n; parameter vectors provided by the system.
Because the systemn does not make constructive learning, and so does not propose new parameter
values but instead only provides parameter vectors that have already been used, another measure is
more accurate. It consists in counting the number of times parameter vector Pj belongs to the set
of n; parameter vectors presented to the user when P; was known to already belong to one of the
categories of the system (P; has already been used in a similar situation). Among the 68 optimized

curves used in the experiments (n = 68), 39 appear to be in this situation®.

This method is better than the first one for three reasons. First, randomly presenting the context
vectors to the system is practically very easy to perform. Thus, we are going to be able to test
the impact of example order on the different methods. Moreover, the user evaluation of the snake
algorithm does not influence the measure that evaluates the performance of the system. Finally,
the method is much less sensitive to the choice of the initial curves. Actually, this choice influences
only the final structure of the category tree. “Too easy” curves tend to be associated with the same
standard parameter setting, and thus always classified in the same category, thereby decreasing the

number of categories and facilitating the categorization.

Experimental results:

Table 8 shows the performance results of the three different approaches based on conceptual
clustering presented in Section 6: COBWEB, Anderson’s method, and our method, which use the
variance for numerical variables. COBWEB uses numerical context values as categorical ones. An-
derson’s and our method discriminate between numerical and categorical context elements. In all
experiments, unless otherwise mentioned, the number ny of contexts considered as the nearest con-
text in the category structure is set to 10, and n;, the number of parameter settings presented to the

user is set to 3.

Percentages presented in Table 8 are an average of success over twenty runs where examples
are presented randomly to the system. As we can see, results are similar for all methods. This is

explainable knowing that among the sixteen context elements used in this experiment, only two have

SNote that globally this number is independent of the order of the examples, even if the curves taken into account
are not always the same.
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COBWERB | Anderson’s | Variance method
site I + 2 77.6 78.9 78.1
site 1 83.9 83.3 81.7
site 2 85.8 86.5 83. 8

Table 8: Percentage of success of the different retrieval techniques.

numerical values that are different for each example (gradient-mean and seed-mean-angle). All other
numerical values are associated with discrete functions or do not vary much (like Sun angle). These
kinds of numerical values can be considered as categorical ones. Thus, the influence of the distinction
between numerical and categorical values is low in this experiment. However, we can see that the
system performs reasonably well, even with a small number of examples (39 examples on Site 1, 29
on Site 2}.

Anderson’s approach is favored by the method of parameter extraction we use after having selected
the nearest contexts. Anderson’s category structure is flat, and as a result, the number of context
elements selected is generally greater than ng. This is very sensitive when a small number of examples
are present in the data base (as it is the case for Site 2). A priori knowledge required by the method
has been set to some standard values. Other parameters required an exhaustive search among possible
values to be set properly. Only one set of parameters gives correct categorization. Moreover, for
the simple example presented in Section 6, the required setting was completely different, and very

sensitive to the examples that were generated.

The tree structure produced by the hierarchical methods (COBWEB and Variance) are fairly
similar for both methods. Analysis of normative context values® at the tree root shows that the
classification first uses the fask context element to categorize examples. Children of the root regroup
examples with similar task. This is very satisfactory, because in the case of the snake algorithm, we
know that the task is of first importance to determining a good parameter setting. For instance,
roads and building delineation will require totally different settings.

Influence of example order:

As mentioned earlier, incremental schemes are sensitive to the order in which examples are pre-
sented. To test this influence, we compute the standard deviation over twenty runs of the number

of successes for the three retrieval techniques. Results are presented in Table 9. Again, we can

SContext values V;; that are present in class wy with a conditional probability P(Ai = V;;|ws) greater than 0.67.
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see that the values are similar. They are small, too. This means that the search structure of the
categorization process does not affect the inference ability of the final category structure, as pointed
out by Anderson [3].

COBWEDB | Anderson’s | Variance method
site 1 + 2 1.52 1.54 1.43
site 1 0.79 0.80 0.80
site 2 0.58 0.85 0.78

Table 9: Standard deviation of the number of successes for the different retrieval techniques.

Influence of ny; and n;:

The only two parameters of the system are ng, the number of contexts selected as being the final
nearest contexts in the category structure, and n;, the number of parameter settings presented to
the user. Figure 8 shows the influence of n; (with np = 10) on the percentage of success. As we can
1. It means that more than half of the

time, the first guess of the system was the good one. A value of 3 seems to be reasonable for n;.

see, the percentage of success is over 50%, even with n; =

Parcentags of succwss am a [unctlon of nl
100 T T T T T T

a0 =

20 COWER —
Andarson‘s ——
¥Yarlonce Mathod :---:

Figure 8: Influence of n; values over percentage of success.

As shown in Figure 9, the influence of ng is less important. A value ng > 7 is already sufficient to
provide good results. It is important to note that the three methods presented use predictability to
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categorize a new context and similarity to retrieve n; parameter settings from the ng nearest contexts
from the new context. By increasing np, we give more importance to the similarity measure, and
less to the predictability one. When ng equals n, the number of examples present in the data base,
all three methods are equivalent to the one presented in Section 4 based only on similarity and with
exhaustive search in the data base. As we can see in I'igure 9, for ny > 7, performance of the variance
method does not improve any more. It means that we have identical performances if the new context
1s categorized and then compared to only ng contexts, or if the new context is compared to the whole

data base. This proves the ability of the heuristic search of categorization.

Parcentage of auccwss as a funeclion of nb
T T T

100

[1:

40 F
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Figure 9: Influence of ny values over percentage of success.

Influence of number of context elements

We explained the similar performance of the different retrieval methods by the large number of
categorical elements in the context vector we use. To draw a more accurate view of the retrieval
methods, we performed tests on a subset of context elements containing three categorical, two nu-
merical, and two ordinal context elements. These elements where chosen as the most important
for categorization. Partial results we obtained are shown in Table 10. Performance of Anderson’s
and Variance method,s which separate categorical and numerical variables, are now better than

COBWEB’s method using only categorical variables.

Results of the three methods are also globally better than those shown in Figure 8. This points
out an important factor ;: Context elements have to be adapted to the examples present in the data
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COBWEB | Andersen’s | Variance method
site 1 + 2 82.2 83.8 85.4

Table 10: Percentage of success of the different retrieval techniques using a subset of seven context
elements.

base. Qur system has been designed for large data bases. The large number (sixteen) of context
elements we use is not adapted to the small number of examples we have now in the data base. By
removing context elements that are not essential because their values do not vary much in the whole
data base, we improve the performance of the system. The automatic selection of context elements

with regard to the number of examples already encountered is of primary interest in our future works.

Other future work remains on testing the ability of our system to choose an algorithm among
several, and analyzing the various probabilities provided by the category structure. For instance,
joint analysis of conditional probabilities P{A; = V;j|wi) and P(wi|A; = V;;) should be an easy way
to find out the discriminatory ability of each context element. This also should be a way to find a
posteriori similarities between context element values. Computing this kind of similarity is essential
for categorical context elements, and should greatly improve the search of similar contexts, and thus

improve the retrieval performances.

10 Conclusion

This paper grew out of an attempt to solve a practical and important problem in interactive scene
analysis: the automated selection of feature extraction algorithms and their parameters, as a function
of image content and task requirements. An abstract characterization of this problem is that of
mapping a multidimensional context space (representing image data and task specification) into a
multidimensional algorithm-selection space (the extraction algorithms and their parameter settings).
It was immediately apparent that an analytic design was infeasible. Two of the many reasons are

e We don’t have effective ways of analytically describing image content.

e The range of possible tasks and image types is essentially infinite — no a priori design can

hope to subsume all possible situations.
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A “learning” approach appeared to be the only alternative.

The fact that the learning system is embedded in an interactive system (to deal with continuous
change) offers both a challenge and an opportunity. The human operator must be aided rather than
burdened by the presence of the learning system but can provide directed feedback about system

performance.

Thus, the primary contribution of this paper lies in the structuring of an interactive, embedded
learning system for an important problem in the design of computer vision systems — the automated
selection of feature extraction algorithms and their parameters, as a function of image content,
collateral data, and task requirements. The framework we have described lays the foundation for new
learning mechanisms to be developed and tested — we have taken the first steps toward applying
machine learning in a nonconventional learning context. We have also offered solutions to some
of the subproblems that arise: how to define similarity of context vectors in which elements are
both numerical and categorical, how to choose among the multiple parameter vectors that might
be retrieved from the data base, and how to update the data base with experience gained through
continual use of the feature extraction system. We have implemented and tested an initial design and

demonstrated successful performance within a cartographic modeling domain using snake algorithms.
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A Snakes

Here we provide a mathematically precise account of the snake algorithms that we have employed

within our system for learning the parameters of vision algorithms.

A.1 2-D Linear Snakes

A 2-D snake is treated as a polygonal curve C defined by a set S containing n equidistant vertices
Sz{(:r,'y;),i:l,...,n} (A—l)

that can deform itself to maximize the average edge strength along the curve G(C):
1 il
6(C) =z [ IVIEG)] ds, (A-2)

where I represents the image gray levels, s is the arc length of C, f(s) is a vector function mapping
the arc length s to points (z,y) in the image, and |C| is the length of C. In practice, G(C) is
computed by sampling the polygonal segments of the curve at regular intervals, looking up the
gradient values |VZI(f(s))| in precomputed gradient images, and summing them up. The gradient
images are computed by gaussian smoothing the original image and taking the z and y derivatives
to be finite differences of neighboring pixels. We have shown [12] that the points along a curve
that maximizes G(C) are maxima of the gradient in the direction normal to the curve wherever the
curvature of the curve is small. Therefore, such a curve approximates edges well except at corners.
Unfortunately, G(C) is not convex functional and to perform the optimization, following Terzopoulos

et al., we minimize an energy £C) that is a weighted difference of a regularization term £p(C) and

of G(C):

EC) = Ap€p(C)—AcG(C) (A-3)
Ep(C) = 1 Z(mf —zi1)? + (yi — yia1)?
+  p2 Z(ZI; — Ti—1 — $i+1)2 + (2 — yic1 — y-’+1)2 (A-4)

The first term of £p approximates the curve’s tension and the second term approximates the sum of
the square of the curvatures, assuming that the vertices are roughly equidistant. In addition, when

starting, as we do, with regularly spaced vertices, this second term tends to maintain that regularity.
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To perform the optimization we could use the steepest or conjugate gradient, but it would be slow
for curves with large numbers of vertices. Instead, it has proven much more effective to embed the

curve in a viscous medium and solve the equation of the dynamics

o0& dS
%']‘QE = 0, (A-5)
., O0F 0fp 0G
with — =

as ~— 8s  as’
where £ is the energy of Equation A-3, a the viscosity of the medium, and S the state vector of
Equation A-1 that defines the current position of the curve. Since the deformation energy £p in
Equation A-4 is quadratic, its derivative with respect to S is linear and therefore Equation A-5 can

be rewritten as

13
I(sSt + CI(S: - Sg_]) = - ES,' s
£
= (I(s + CEI)St = QSI:._] - g_— (A-ﬁ)
S Si—1
where 6@ res
35’ = 52,

and K5 is a sparse matrix. Note that the derivatives of £p with respect to z and ¥ are decoupled so
that we can rewrite Equation A-6 as a set of two differential equations in the two spatial coordinates

0
(I( + Q’I)Xg = O.’X-;_] + é_i; s
g
(K+alYe = o¥at gp|

where K is a pentadiagonal matrix, and X and Y are the vectors of the z and y vertex coordinates.
Because K is pentadiagonal, the solution to this set of equations can be computed efficiently in
O(n) time using LU decomposition and backsubstitution. Note that the LU decomposition need be

recomputed only when a changes.

In practice a is computed in the following manner. We start with an initial step size A, expressed
in pixels, and use the following formula to compute the viscosity:

x/:%a_s‘

A, |88 (A=17)

o =
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where n is the number of vertices. This ensures that the initial displacement of each vertex is on
the average of magnitude A,. Because of the non linear term, we must verify that the energy has
decreased from one iteration to the next. If, instead, the energy has increased, the curve is reset to
its previous position, the step size is decreased, and the viscosity recomputed accordingly. This is
repeated until the step size becomes less than some threshold value. In most cases, because of the
presence of the linear term that propagates constraints along the whole curve in one iteration, it

takes only a small number of iterations to optimize the initial curve.

The snakes described above have proved very effective at modeling smooth curves. Some objects,
however, such as buildings, are best modeled as polygons with sharp corners. They can be handled in
this context by completely turning off the smoothness term. Such objects typically have a relatively

small number of corners, and the optimization is performed using a standard optimization technique.

A.2 3-D Linear Snakes

Snakes can be naturally extented to three dimensions by redefining C as a 3-D curve with n equidis-
tant vertices S = {(z; ¥ z)}, ¢ = 1,...,n} and considering its projections in a number of images
for which we have accurate camera models. The average edge strength G(C) of Equation A-2 be-
comes the sum of the average edge strengths along the projection of the curve in the images under

consideration, and the regularization term of Equation A-4 becomes

Ep(C) = my (zi—zic)® + (v — vim1)® + (20 — 2000)° (A-8)

+ o 2(235{ - Ti-1 — 5'3:'+1)2 + (2y.' — Vi1 — y.-+1)2 + (Zzi — Zi-1— Z«‘+1)2

1

Since the derivatives of £p with respect to z, y, and z are still decoupled, we can rewrite Equation

A-6 as a set of three differential equations in the three spatial coordinates:

8

(I( + Q'I)Xf_ = CXX{_] + a—i s
8

(I( + CEI)Y;, = CYY;_I —+ % v
8

(K+al)Z, = aZ i+ a—g .
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where X,Y, and Z are the vectors of the z,y, and z vertex coordinates.

The only major difference with the 2-D case is the use of the images’ camera models. In practice,
G(C) is computed by summing gradient values along the line segments linking the vertices’ projections.
These projections, and their derivatives, are computed from the state vector S using the camera
models. Similarly, to compute the viscosity, we use the camera models to translate the average

initial step A,, a number of pixels, into a step A,, expressed in world units and use the latter in
Equation A-7.

A.3 Ribbons

2-D snakes can also be extended to describe ribbon-like objects such as roads in aerial images. A
ribbon snake is implemented as a polygonal curve forming the center of the road. Associated with
each vertex 7 of this curve is a width w; that defines the two curves that are the candidate road
boundaries. The state vector S becomes the vector S = {(z; y; w;)}, i =1,...,n} and the average
edge strength the sum of the edge strengths along the two boundary curves. Since the width of roads

tends to vary gradually, we add an additional energy term of the form

Ewl(C) = Z(w,-—w;_l)z (A-9)

JEw
:W = LW,

where W is the vector of the vertices’ widths and L a tridiagonal matrix. The total energy can then

be written as

EC) = Ap&p(C) + Awéw(C) — AG(C)

and at each iteration the system must solve the three differential equations:

d
(K +al)X; = aXig+ % .
oG
(K+al)Y, = aYi + W v
oG
(I( + O’I)Wg = oW1+ W "

44



2-D ribbons can be turned into 3-D ones in exactly the same way 2-D snakes are turned into
3-D ones. The state vector S becomes the vector S = {(z; y; 2; wi)}, i1 = 1,...,n} and at each

iteration the system must solve four differential equations, one for each coordinate.
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