N N o —
Ny s
LSl B S § l 3 E ATNE
cod M Hea il
NP U T U I B O O O |] Pobd l\,".,ﬂ,i (L

Procedural Knowledge
~ Technical Note No. 411

January 1987

By: Michael P. Georgeff, Program Director
Amy L. Lansky, Computer Scientist
Representation and Reasoning Program

“ Artificial Intelligence Center

and

- Center for the Study of Language and Information
Stanford University

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

This .paper was originally published in The Proceedings of the Institute of Electrical and
Electronics Engineers, Special |ssue on Knowledge Representation, Volume 74, Number 10,
pages 1383-1398, October 1986. _ o '

This research has been made possible in part by a glit from the System Davelopment Foundation, by ha Olfice of Naval Research under
.Contrads NO0014-80-C-0296 and NG0014-85-C-0251, and by the National Aercnautics and Space Adminisiration, Amas Research Cenler
under Contract NAS2-11864. The views and conclusions conlainad In this paper are those of the authors and shouid not be Inlerpreted as
representaliva of the offlcial policles, elther expressed or Implied, ol 1he Olfice of Naval Raesearch, NASA, of tha Unitad Slates Government.

Lo

3373 Ravenswood Avenue » Menlo Park, CA 54025-3493 o (415) 326-6200 o FAX: {415)326-5512 » Telex: 534485

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
JAN 1987 2. REPORT TYPE 00-01-1987 to 00-01-1987
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Procedural Knowledge 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

SRI International,333 Ravenswood Avenue,Menlo Park,CA,94025 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THISPAGE 33
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Abstract

Much of commonsense knowledge about the real world is in the form of procedures or
sequences of actions for achieving particular goals. In this paper, a formalism is presented
for representing such knowledge using the notion of process. A declarative semantics for
the representation is given, which allows a user to state facts about the effects of doing
things in the problem domain of interest. An operational semantics is also provided, which
shows how this knowledge can be used to achieve particular goals or to form intentions
regarding their achievement. Given both semantics, our formalism additionally serves as
an executable specification language suitable for constructing complex systems. A system
based on this formalism is described, and examples involving control of an autonomous
robot and fault diagnosis for NASA’s space shuttle are provided.

1 Introduction

There is an increasing demand for systems or artificial agents that can interact with dynamic
environments to achieve particular goals. Common applications of this type include robotic
functions, contruction and assembly tasks, navigation and exploration by autonomous ve-
hicles, control and monitoring of systems, and servicing and maintenance of equipment.
Agents capable of operating effectively in these kinds of domains must be able to reason
about their tasks and determine how to act in given situations — i.e., they must be capable
of practical reasoning [6]). To build such systems we need to be able to represent knowledge
about the effects of actions and how these actions can be combined to achieve specific goals.

Within artificial intelligence (AI), there have been two approaches to this problem,
with a somewhat poor connection between them. In the first category, there is work on
theories of action, i.e., on what constitutes an action per se [1,12,17). This research has
focused mainly on problems in natural-language understanding concerned with the meaning
of action sentences. Some attempts have also been made to indicate how these theories could
be used for general reasoning about actions [2,17]. Second, there is work on planning - that
is, the problem of constructing a plan by searching for a sequence of actions that will yield
a particular goal [2,7,21,22,23,25,26,27).

Surprisingly, almost no work has been done in Al concerning the execution of preformed
plans or procedures — yet this is the almost universal way in which humans go about their
day-to-day tasks, and probably the only way other creatures do so. Actually searching the
space of possible future courses of action, which is the basis of most Al planning systems,
is relatively rare.

For exaniple, consider the task of driving to work each day. For most of us, our plan
of action has been worked out in advance. Once we establish a goal for ourselves to leave
llome and get to work, we follow some internal procedure or pattern of getting to the car,
getting in, driving a certain route, searching the parking lot in a particular fashion once we
get there, parking, and then walking to the office. Rarely do we ever derive this plan from
first principles. In fact, we often seem to perform these actions without even thinking! This
pattern applies to many of the tasks we perform everyday.

Of course, there are often situations in which our normal procedures or plans must be
modified or reconsidered. Rather than derive completely new plans, we usually adjust to
situations by operating in a piecemeal fashion; we keep an overall plan in mind and elaborate
it as we proceed and acquire more knowledge of the world. For example, if we run into an
obstacle on the road to work, a new route may need to be found for part of the journey.
Although the top level plan of action may remain the same, different means of realizing
pieces of the plan would be used, depending on the particular situation. For instance, one
might be able to avoid the obstacle simply by driving around it. On the other hand, if the
obstacle were large, one may have to use more complex avoidance procedures that involved
turning onto side streets, continuing in the same general direction, and the like.

This strategy of operation might be called partial hierarchical planning. The idea is
simply to intermix the formation of plans and their execution; i.e., form a partial overall
plan, figure out near term means, execute them, further expand the near-term plan of action

some more, execute, and so on. This approach has many advantages. First of all, systems
generally lack sufficient knowledge to expand a plan of action to the lowest levels of detail
— at least if the plan is expected to operate effectively in a real-world situation. The world
around us is simply too dynamic to anticipate all circumstances. By finding and executing
relevant procedures when they are truly needed, a system may stand a better chance of
achieving its goals effectively.

A combined planning/execution architecture can also be reactive. By reactive, we mean
more than a capability of modifying current plans in order to accomplish given goals; a
reactive system should also be able to completely change its focus and pursue new goals
when the situation warrants it. This is essential for domains in which emergencies can occur
and is an integral component of human practical reasoning. In a system that expands plans
dynamically and incrementally, there are frequent opportunities to react to new situations
and changing goals. Such a system is therefore able to rapidly modify its intentions (plans of
action) on the basis of what it currently perceives as well as upon what it already believes,
intends, and desires.

Of course, how we represent knowledge is just as important as how we use it. Rep-
resenting knowledge of dynamic environments as procedures, rather than as sets of rules
about individual atomic actions, has many advantages. Most obvious is the computational
efficiency gained in not having to reconstruct particular plans of action over and over again
from knowledge of individual actions.

Second, much expert knowledge is already procedural in nature: for example, consider
the knowledge one might have about kicking a football, performing a certain dance move-
ment, cooking a roast dinner, solving Rubik’s cube, or diagnosing an engine malfunction.
In such cases, it is highly disadvantageous to “deproceduralize” this knowledge into disjoint
rules or descriptions of individual actions. To do so invariably involves encoding the control
structure of the procedure in some way. Usually this is done by linking individual actions
with “control conditions,” whose sole purpose is to ensure that the rules or actions are
executed in the correct order. This approach can be very tedious and confusing, destroys
extensibility, and lacks any natural semantics.

By having direct access to the particular behavior that a procedure has or will follow,
we can also make much more effective use of procedural knowledge. For example, suppose
that an agent knows that in order to achieve G it will follow a course of action of the form:
X — Y — Z. When performing X, the agent will know that it is setting up a situation for
later performance of Z. When the agent finally does get around to Z, it will likewise know
that X and Y have been performed, thereby allowing it to make various assumptions — for
instance, that certain environmental conditions will be in place because X and Y tend to
make them that way.

Having access to one’s history of actions can also free an agent from stringent reliance on
its sensors — the agent can derive much information about the state of the world simply from
knowledge of its previous activities (see also [4,20,19]). For example, if cooks follow the steps
of a recipe exactly, they can usually assume the food will turn out right — they don’t have
to perpetually taste it. They might not even know what it should taste like, especially at
intermediate points in the recipe. Work by Lansky [14] has taken very seriously the notion of

encoding domain requirements primarily in terms of actions and their interrelationships and
deriving knowledge from past activity. Such an approach appears particularly advantageous
for describing the properties of multiagent domains.

Another advantage of representing knowledge as procedures is that we are able to reason
about those procedures as whole entities. For example, given two procedures for fixing a
broken pipe, we can evaluate those procedures in their entirety and decide which has the
best cost/benefit properties in a particular situation. This type of “metalevel” or reflective
reasoning about our own internal procedures enables us to perform effectively and would
be intractible if the steps of the procedure had been broken down into seemingly unrelated
rules.

The primary aim of this paper is provide a basis for representing and reasoning about
procedural forms of knowledge in a way that allows an agent to deal effectively with a
dynamically changing world. It is important that the agent be able to use these procedures
to form intentions to achieve given goals, to react to particular events, to modify intentions
in the light of new beliefs or goals, and to reason about these things in a timely way.

To do this, we first introduce the notions of action and process. We then provide a means
for describing these and define a declarative and operational semantics for our formalism.
Together, these provide a way of both stating procedural facts about the problem domain
and a method of practical reasoning about how to use this knowledge to achieve given goals.

More generally, the formalism may also be viewed as the basis for an executable spec-
ification language. Just as for Prolog [5], the declarative semantics provides a means for
stating facts about the problem domain, and the operational semantics yields a means of
using these facts to achieve given goals.

A system based on the proposed representation has been implemented in ZETA-LiSP.
It is currently being used for the control of an intelligent robot and has been applied to
problems of fault isolation and diagnosis on NASA’s space shuttle. An early version of
an implemented system is described by Georgeff and Bonollo [9] and the latest work by
Georgeff and Lansky [11].

2 Processes and Actions

We assume that, at any given instant, the world is in a particular world state. This state
embodies not only the external environment, but also the world inside an agent —its internal
cognitive world. As time progresses, the world state changes through the occurrence of
actions (or events).!

Most early work in Al represented actions as mappings from world states to world states
[7,16,21). However, these models can describe only a limited class of actions and are too
weak to be used in dealing with multiagent or dynamic worlds. Some attempts have recently
been made to provide a better underlying theory for actions. McDermott [17] considers an
action or event to be a set of sequences of states, and describes a temporal logic for reasoning

! Although some authors make a distinction between actions and events, in this paper we treat the two
terms synonymously.

about such actions and events. Allen [1] also considers an action to be a set of sequences of
states and specifies an action by describing the relationships among the intervals over which
the action’s conditions and effects are assumed to hold. However, although it is possible to
state arbitrary properties of actions and events, it is not obvious how these logics can be
used effectively for practical reasoning. 2

Our notion of action is essentially the same as that of McDermott and Allen; namely,
we consider actions to be sets of sequences of world states. However, to reason about how
to achieve given goals or test certain properties of the world, the concept of action alone is
not sufficient. In particular, we need to know how the actions are actually generated.

To do this, we introduce a notion of process. Informally, a process can be viewed as
an abstract mechanism that can be executed to generate a sequence of world states, called
a behavior of the process. The set of all behaviors of a process constitutes the action (or
action type) generated by the process. 3

Having a notion of process allows us to make a distinction that is critical for practical
reasoning — we can distinguish between behaviors that are successful executions of the
process (i.e., successful instances of the action) and those that are unsuccessful (those that
have failed). The ability to represent both successful and failed behaviors is very important
in commonsense reasoning and is critical in multiagent and dynamic environments (e.g., see
[13])- |

The need for representing both failed and successful behaviors is most clearly seen in
problems that involve multiple agents. In such worlds, the potential side effects of an agent's
activities can have a dramaticinfluence upon other agents. In a system that uses a combined
planning/execution framework as described earlier, and in which knowledge of the world is
incomplete or uncertain, it is usually not possible to predict whether a process will succeed
or fail. (Of course, even if we were fully planning everything out in- advance, we still could
not realistically anticipate all of the consequences of executing a process.) Given this, it is
clear that both failed and successful process executions will occur, and thus both must be
available for reasoning about potential process interactions.

Using a notion of process is particularly important for reasoning about failed attempts
to accomplish given goals. For example, suppose that we have two ways to get to the
airport to catch a plane; one involving making a bus connection and the other, although
less convenient, by car along a busy route frequented by numerous taxis. Clearly, the
successful behaviors of both methods (processes) will result in catching the plane. However,
failure to make the bus connection could leave us in a state from which we could not recover
(because the next available means of transport to the airport will arrive too late), whereas
failure of the other method, given the availability of taxis, would not be so catastrophic.
We might, therefore, decide to use the second, less convenient method, if we compare their
possible modes of failure. And this can only be done with a notion of process — an intrinsic

2 Allen [2] does, however, propose a method of forming plans that is based on a very restricted form of
his interval logic.

®In this paper we restrict our attention to sequential, nonconcurrent processes. Our work on implementing
a system based on this theory, however, has incorporated the notion of concurrently active, communicating
processes.

part of deducing a failed behavior is knowing exactly how that behavior was generated in
the first place.

The need for representing failed behaviors also arises in natural-language understand-
ing. For example, it is important to have a denotation for action sentences (such as “she
was painting a picture”) that allows for action failure, even in midperformance (“she was
painting a picture when her paints ran out”). The action referred to in the second sentence
must be one of the failed behaviors of the picture-painting process, and there is no way to
derive this solely from a set of successful picture-painting behaviors.*

Finally, the notion of process failure also allows us to represent tests on world states in a
particularly simple way without the introduction of knowledge or belief structures (cf. [18]).
To do this, we let certain successful process behaviors stand as tests for a given condition.
This can only be done if we are guaranteed that the process will only succeed when the
condition is indeed true. (If the process fails, we can, of course, assume nothing about the
condition. Although we might usually be happy to equate process failure with the negation
of the condition being tested, we may not always wish to do so. In such cases, we might
need one process to test for a given condition and another process to test for its negation.)

3 Process Descriptions

-

Abstractly, a process can be modeled by two sets of behaviors, one set representing the
successful behaviors of the process and the other the failed behaviors. However, to rea-
son about these behaviors we need some means for describing them; moreover, whatever
descriptions we use need to be amenable to efficient reasoning techniques.

In this section we present a means of describing processes as sequences of particular
subgoals or behaviors to be achieved. Each process is represented by a labeled transition -
network with distinguished start and finish nodes and arcs labeled with subgoal descriptions
(see Figure 1). Any realizable behavior that achieves each of the subgoals labeling some path
through the network from the start node to a final node constitutes a successful behavior
of the process; a failed behavior is one which terminates with failure to achieve a subgoal
on the path.

Operationally, we may view a process description as being ezecuted in the following
manner. At any moment during execution, control is at a given node n. An outgoing arc a
may be transitted by successfully executing a process that achieves the subgoal (behavior)
labeling a. If none of the outgoing arcs from n can be transitted, process execution fails.
Execution begins with control at the start node and succeeds if control reaches the finish
node.

*The reason is that different processes or procedures can generate the same set of successful behaviors
yet have different failure modes. For example, consider two procedures for jumping across a stream. In the
first procedure, we check that the stream is sufficiently narrow to jump and, if so, jump it; otherwise, we
do not even attempt to cross. In the second procedure we perform the same test bul attempt the jump
irrespective of the outcome of the test. Assuming the test accurately determines whether or not the stream
can be jumped, both procedures yield the same set of successiul behaviors, but the failed behaviors are quite
different!

subgonll

subgoal3

subgoald

subgoal5

Figure 1: A Process Description

We now give a more formal definition of our process description language. First, we
assume a fixed set §, possibly infinite, of sfate descriptions and a fixed set G, also possibly
infinite, of ection descriptions.

A process description can then be represented as a tuple P = (N,F,8,n;, Np, A,) ,
where \

s NN is a set of nodes

E is a set of ares

§: N x E— N is the process control function

n; € N is the start node

Nr C N is a set of final nodes

o A: E — (G associates an action description with each arc; these action descriptions
are called goal descriptions.

Rather than represent process descriptions in this formal mathematical way, we use a graph-
ical form as typified in Figure 1.

Both the state and action description languages are based on predicate calculus. Each
state description is a first-order predicate-calculus formula and can be viewed as denoting
a set of states; namely, those in which it is true. For example, a formula of the form ((on
ab) A (on b c)) could be used to denote the world states in which block a is on top of
block b, which in turn is on top of block c.

An action description consists of an action predicate applied to an n-tuple of terms. Each
action description denotes an action type or set of behaviors. For example, an expression

like (walk a, b) could be taken to denote the set of behaviors in which an agent walks
from point a to point b.

It is also desirable to allow a class of action descriptions that relate directly to world
states. We thus extend the action description language to include actions that achieve a
given state condition p (represented by an action description of the form (p)), actions to
test for p (represented as (?p)), and actions that preserve p (represented as (#p)). We
call these temporal action descriptions. In each of these, p is a state description - i.e., a
description of the type of state to be achieved, tested for, or preserved. For example, an
action that achieves a state in which block a is on block b might be described by a temporal
action description of the form (! (on.a b)).

Action descriptions may also be combined into action ezpressions. These are composed
in the usual way using conjunctive and disjunctive operators. Thus, an action expression
of the form (!p) A (?g) denotes an action that both tests for ¢ and achieves p.

-Having a means for describing processes, we now need a way to state properties about
them. In this paper, we are interested primarily in describing the effects of successful
behaviors of a process; that is, we want to be able to express the fact that, under cer-
tain conditions, successful execution of the process will result in a certain behavior being
achieved. We will call such facts process assertions.

A process assertion consists of a process description, P, describing a Iirocess; a precon-
dition, c, denoting a set of world states in which the process is applicable; and an effect,
¢, characterizing the set of successful behaviors the process can actually generate when
commenced in a state satisfying ¢. We will write such an assertion as e{F)g.

The intent or mearning of this assertion is that any successful behavior of process P
whose first state satisfies precondition ¢ will also satisfy the effect g. From an operational
viewpoint, if ¢ holds at the commencement of execution of process P, g will be realized by
a successful execution of the process.

Process assertions may also use variables. Such variables may appear in the precondition
¢, in the process description P, as well as in the effect g. We make a distinction between
local variables (prefixed by %) and global variables (prefixed by $). All global variables must
have a fixed interpretation over the entire process assertion and are taken to be universally
quantified. In contrast, local variables must have a fixed intepretation in the interval of
states during which a given arc is transitted, but can otherwise vary. They cannot appear
in the preconditions or the effect of a process assertion, and are existentially quantified over
the scope of the arc on which they appear. (Local variables are often needed in loops where
it is necessary to identify different elements from one iteration to next). ®

A typical process assertion is shown in Figure 2.

5In fact, because we want to allow local variables to denote different objects on different transitions of the
same arc, we strictly have to interpret variables with respect to the underlying tree structure of a process
obtained by “unwinding” all loops appearing in the process description.

Precondition: TRUE
Effect: (! (DEFEATED $GIANT))

(FIND SGIANT)
T . {TRANSFER XSTONE $PILE}

i

(GRASP SLINGSHOT)

{GRASPMEMBER $PILE)

(7 (HIT TWHAT LWHERE)) -~
{ [7 (¢ SWHAT SGIANT)) -
{7 (« TWHERE HEAD)))

(FIRE SLINGSHOT $GIANT)

{7 (HiT SGIANT HEAD))

Figure 2: David and Goliath
4 Declarative Semantics

The declarative semantics of process assertions is intended to describe what is true about
the underlying system of processes and the world in which they operate. Such a semantics
says nothing about how such knowledge can be used to achieve particular goals — rather,
it simply allows one to state facts about certain behaviors. In the preceding section we
provided a preliminary, intuitive meaning for process assertions. In this section we present
a more formal declarative semantics. First, however, we begin with a closer examination of
the process assertion depicted in Figure 2.

The “David and Goliath” procedure can be viewed as a plan for defeating a giant with
a slingshot. The procedure involves gathering stones, placing them in a pile, getting a
slingshot, and then repeatedly taking up a stone and shooting it until the giant is hit on
the head. In this particular domain, hitting a giant on the head with a stone hurled by a
slingshot always results in the giant’s defeat. The procedure is nondeterministic and allows
agents to gather as many stones as they wish, limited only by their ability to continue
gathering them. The procedure is not guaranteed to be successful — it may fail if any
one of the actions labeling the arcs of the network cannot be accomplished (and no other
alternative path can be taken). : '

It is important to note how the process assertion captures implicit knowledge of the
problem domain. This knowledge is of two kinds: one concerning the validity of the proce-
dure, the other heuristic. For example, hitting giants on the head with an object propelled
from a slingshot will not always defeat them (e.g., if it is a cotton ball), but will if it is a
stone. Thus, the validity of the effects of the procedure depends critically on the structure
of the procedure itself, which ensures that only stones are placed in the pile. (Strictly, the
procedure should also ensure that the pile is initially empty or contains nothing but stones.)

The procedure also captures heuristic knowledge in that earlier actions may make sub- .
sequent actions more likely to succeed. For example, the slingshot may require a certain
size and weight of stone; however, instead of this being represented as an explicit test that
precedes the shooting action, it is represented implicitly by the context established by the
procedure. In this case, the assumption is that any stone that can possibly be gathered
will most likely possess the appropriate characteristics. Note that this does not affect the
validity of the procedure; if a stone does not have the necessary properties, the action of
shooting the slingshot will fail.

At first glance, it seems that the semantics of a process description could be determined
solely on the basis of successful behaviors which satisfy each of its subgoals. On closer
examination, however, it becomes clear that this will not quite do. For example, if 2 node
has multiple outgoing arcs (such as nodes ¥1 and N4 in Figure 2) we need to allow several
of these arcs to be tried until one is found successful. This is exactly the sort of behavior
required of any useful conditional plan or program; if a test on one branch of a conditional
fails (returns false), it is necessary to try other branches of the conditional. Similarly, in
many real-world situations, it is often desirable to allow multiple attempts to achieve a goal
before relinquishing that goal (for example, if a stone is accidently dropped when trying to
pick it from the pile). The problem with failed attempts, however, is that they may change
the state of the world. Thus, to obtain a proper semantics, paths through a process network
must allow behaviors that explicitly include failed attempts at realizing tests and actions
as well as successful ones.

We now give a more formal definition of the semantics of process assertions. We first
need to specify the interpretation for the symbols appearing in our description language.
We will assume a fixed domain D of objects and a possibly infinite set of states. Given a
particular state, a stale inierprefation associates with each constant symbol and variable
an object from D, with each predicate symbol a relation over IJ, and with each function
symbol a function on D. The meaning of a given state description is then defined under
the usual semantics for first-order predicate calculus.

Similarly, we can define a behavior interpretation that associates a set of behaviors
with each action predicate. The meaning of an action predicate is then taken to be the
corresponding set of behaviors in the interpretation of that predicate. We also need to
specify the meaning of temporal action descriptions. If p is a state description, then

¢ (!p) denotes those behaviors whose last state satisfies p.
s (?p) denotes those behaviors whose first state satisfies p.

e (#p) denotes those behaviors all of whose states satisfy p.

10

Conjunction and disjunction of action descriptions denote behavior-set intersection and
union, respectively.

Finally we are in the position to give a meaning to process descriptions. Each process
description will be taken to denote a set of successful behaviors and a set of failed behaviors.
To build a description of these behaviors, we first introduce the notion of process applica-
bility. A process P is said to be applicable to a goal (i.e., an action type) B for a set of
states §, if every behavior in the success set of P that begins in a state s € S is also in B.

Now let n be a node in a process description P. An allowed behavior starting at node n
is a sequence composed of behaviors of processes applicable to the goals labeling the arcs
emanating from n. Each allowed behavior represents a series of attempts by applicable
processes to transit an arc leaving n, until one succeeds or they all fail. Thus, the set of
allowed behaviors starting at a node n can be partitioned into two sets: those representing
successful transits to a succeeding node, and those that represent failures'to leave the node.
The first set is denoted by suce(n,a). Each of its behaviors must be a sequence of zero
or more unsuccessful attempts by processes applicable to goals on arcs emanating from n,
followed by a behavior of an applicable process that succeeds for some arc a. The second
set, fail(n), consists of the null behavior along with those behaviors composed only of failed
attempts of applicable processes.

Given these two types of allowed behaviors, we can then recursively define the success
and failure sets for a node n, denoted §(n) and F(n) respectively, as follows: ¢

1. If n» is a final node, then S(n) and F{n} are both empty.

2. If n has arcs a; to nodes m;, 1 <1<k, then’
S(n) = |J; suce(n, a;).5(m;) and
F(n) = H{ fail(n),UJ; suec(n,a;). F(m;)} .

The success and failure sets of a process description P are then taken to be the success and
failure sets, respectively, of the initial node of P.

As an example, consider the process networks shown in Figure 3 where the arcs are
labeled with applicable processes. For a process A, let A denote the set of its successful
behaviors, and Ap the set of its failed behaviors. Then the success and failure sets for each
of the process networks in Figure 3 may be described as follows:?

P1: (Ap)'.A.(Bp|Cp)'.J§ Plp: (Ap)*
(AF)".A.(BF|CF).C (Ar).A(Br|CFr)*

P2: (Ar)".A.(Bp)".B P2p: (Ap)*
(AF)*.A(CF)*.C (Ap)*.A.(Bp)*
(Ap)*.A.(Cr)*

®If wy = s1,...8x and wz = Sy,...8n, then wiawy = 81,...8k-1,8k, 8k41,...5n. This operation is
extended to sets of sequences in the usual way. Note that this formulation allows a single state to satisfy a
sequence of goals.

"The notation used is that for standard regular expressions. The symbols * and + denote zero or more
and one or more repetitions, respectively. The symbol | is used Lo denote a choice between aliernatives, e.g.,
{A|B) denotes a behavior of form A or B.

11

Pl:

Figure 3: Sample Process Networks

Notice that, while the semantics given above allows for multiple attempts to achieve the
goals exiting any given node, it does not allow for backtracking to previous nodes in the
net.

Now that we have given an interpretation for process descriptions, we can specify the
meaning of a set of process assertions. Consider a process assertion ¢(P)g. This assertion is
actually a requirement of the following form: for each behavior b in the success set denoted
by P, if the first state of b satisfies ¢, then b satisfies g. A set of processes is a model for
a set of process assertions (or satisfies a set of process assertions) if and only if all process
assertions are true of the processes.

5 Operational Semantics

Process assertions provide a way of describing the effects of actions in some dynamic problem
domain. But how can a system or “agent” use this knowledge to achieve its goals? That
is, we currently have a knowledge representation that allows us to state certain properties
about actions and what behaviors constitute what actions. We have not explained, however,

12

how an agent’s wanting something can provide a rationale for or cause an agent to actin a
certain way.

One way to view the causal connection between reasoning and action is as an interpreter
that takes goals as well as knowledge about the state of the world as input and, as a
result, forms intentions to perform certain actions and then acts accordingly. An abstract
representation of such an interpreter may be considered to be the operational semantics of
the knowledge representation language. In this section we provide a description of such an
interpreter.

To ground our interpreter in some executable framework, we must make certain assump-
tions. First of all, if a system is to be able to achieve its goals, it must be able to bring about
certain actions, and thus be able to affect the course of behavior. Thus, we assume a system
containing certain primitive processes capable of activating various external effectors. The
system must also be able to sense the world to the extent of determining the success or
failure of primitive processes — indeed, this is the only way it can sense the state of the
world.

Given these capabilities, the system tries to achieve its goals by applying the interpreter
given in Figure 4 to applicable processes.® The interpreter works by exploring paths from
a given node n in a process description P in a depth-first manner. To transit an arc, the
interpreter unifies the corresponding arc assertion with the effects of the set of all process
descriptions, and executes a set of the unifying processes, one at a time, until one terminates
satisfactorily. I there are no matching processes, or none of the matching processes on any
of the outgoing arcs are successful, the execution of P fails. Note that the precondition of
each process must be satisfied when it is applied, in order for it to be truly applicable.

The function processes-that-unify takes a set of arcs and returns the set of processes
that unify with some arc in the set, along with the specific arc with which each unifies.
The functions process and arc select out the process instance and corresponding arc from
each element of this set. The function randomly-select randomly selects an element from a
set, The order in which selections are made is called the selection rule. We call the rule
governing the number of times a process may be tried the application rule (for this particular
interpreter, the application rule is embodied in the function processes-that-unify).® The
function return returns from the enclosing function, not just the enclosing do. The system
starts by executing a process description with a single arc labeled with the initial goal.

Of course, it is important that the operational and declarative semantics be consistent
with each other. The declarative semantics defines a set of behaviors for each process. The
operational semantics also defines a set of behaviors for each process, but this set depends
on the selection and application rules used in the above algorithm. Let Pp be the set of

8This interpreter is very similar to the parsers and generators used for Angmented Transition Networks
[28]). 1t differs in the amount of backtracking allowed and in the nse of unification to match arc labels and
networks.

®In a practical implementation of the operational semantics, it is usually best to use an application rule
that tries each matching process exactly once. This allows the realization of all the control constructs of
standard programming languages while meeting reasonable bounds on time resources. However, variations
in which each process is tried multiple times could be incorporated without conflicting with the declarative
semantics of process characterizations. '

13

function successful (P n)
if (is-end-node n) then
return true
else
arc-set := (outgoing-arcs n)
pr-a-set := (processes-that-unify arc-set)
do until {empty pr-a-set)
pr-a := (randomly-select pr-a-set)
pr := (process pr-a)
a := (arc pr-a)
if (satisfied (precondition pr)) then
if (successful pr (start-node pr)) then
return (successful P (terminating-node a))
pr-a-set .= (processes-that-unify arc-set)
end-do
return false
end-function

- Figure 4: Abstract Interpreter

successful behaviors for a process P as given by the declarative semantics, and let Po g 4
be the set of successful behaviors for P as given by the operational semantics for selection
rule R and application rule A. It is not difficult to show that Po r 4 C Pp.

This means that any behavior generated by the interpreter given above will satisfy the
declarative semantics. The proof involves showing that both the success set and failure set
of a process under the operational semantics are each a subset of the success set and failure
set, respectively, of the process under the declarative semantics. This can be done using
double induction, first, on the number of processes that are applied at a node, and second,
on the length of a particular path through the process (where length is measured in number
of nodes in the path). The proof is straightforward once it is recognized that any path
resulting from use of a selection rule R and an application rule 4 will automatically be one
of the paths covered by the declarative semantics, and that any sequence of process attempts
(as well as primitive actions) will be considered successful (or a failure) both declaratively
and operationally.

Note that we have made no assumptions about whether a process will succeed or fail
~ this is determined solely by the environment. As discussed earlier, in the real world
the success or failure of processes simply cannot always be predicted. Thus, the above
interpreter must be embedded in an environment in order {o be truly useful. Without this,
the operational semantics given above would be of little interest: it would produce just one
possible success set for a given process or goal without any expectation that this behavior
could be realized. However, because the interpreter is actually operating using a mixed
planning/execution strategy, the environment itself determines process success or failure.

14

This is quite different from standard Al planning systems, where success of primitive actions
is assumed. It is also quite different from the operational semantics of pure Prolog, though
would be similar to a semantics for Prolog with input and output streams.

Of course, if we did have additional knowledge about the state of the environment and
the success or failure of the primitive actions, we could use the above interpreter in a pure
planning mode. However, the inclusion of Pp g 4 in Pp would be, in general, strict. That
is, the interpreter may not achieve some given goal even when, according to the declarative
semantics, there exists a way to achieve it. This is partly because the interpreter fixes the
selection rule and application rule. Even by allowing all possible selection and application
rules, however, we would still not attain completeness. The problem is that the interpreter
does not have the machinery to deduce facts about world state that can be inferred using the
declarative semantics. If an interpreter were capable of deducing all possible behaviors of a
process from its description, and if it could also arbitrarily combine processes to generate
any achievable behavior, that interpreter would also be able to generate any behavior in
Pp. 1t is clear that such an interpreter would be extremely difficult (if not impossible) to
construct. However, in the next section we provide a limited set of proof rules for deducing
facts about process behaviors as well as for combining processes to achieve particular effects.

6 Action Decomposition Rules

As described above, the operational semantics we have provided is actually not as strong
as it could be. For example, if an arc is labeled with a goal of the form (I(p V ¢)}), we can
determine from the declarative semantics that a process with effect p (or effect g) will be
applicable (assuming its preconditions are satisfied). The interpreter given above, however,
cannot make this determination. .

One way of strengthening our interpreter is to provide it with additional proof rules
about the behavior of processes. For example, we might use standard rules of logic along
with proof rules such as the following:

cl{P)gl A c2{P)g2 = (cl A c2){P)(gl A g2)
cl{P)glV c2(P)g2 D (cl A c2)(P)(glV g2)

We can also devise additional rules for combining processes. As before, we use the
notation ¢{P)g to mean that every successful behavior of P whose first state satisfies ¢ also
satisfies the temporal assertion g. However, we extend the notation to failed behaviors as
well, using assertions of the form ¢{P)rg to describe the effects of failed behaviors. The
symbols “” and “|” represent sequential composition and |[nondeterministic] branching,
respectively.

15

Conjunctive Testing

(PP AL A (FqV #(-9)))
{P)(19)
(P P2)(2(pAg))

Conjunctive Achievement

PP A"
c'(P2)(!g A #p)
c(Pr; P2)({(p A g))

Disjunctive Testing

(PY(Tp)
c{P2}(1q)
(P r((FeV #(~g)) A le)
c(Po)r((#p VvV #(op)) Ale)
c{Pr | P2)(M(pVq))

Disjunctive Achievement

e{P1)('p)
e(P)(lq)
c{(P)r(Fc)
c{Pz) r(#c)
(P | P2)({pVq))

The above rule for disjunctive achievement, for example, can be read as follows: if
process P, achieves p when begun in state ¢, and if process P, achieves ¢ when begun in
state ¢, and if, in addition, failures of processes P, and P; leave c intact, then processes P,
and P, can be combined into a disjunctive process that generates a behavior of the form
{{(pV g)) when begun in state c.

To obtain a new operational semantics that incorporates these proof rules, the interpreter
provided in the previous section would have to be modified to allow application of the proof
rules when necessary.

7 System Description

We now describe a procedural reasoning system (PRS) based on the theory described in
the previous sections. It goes beyond the theory in several ways, including the addition of
a data base of heliefs and an enhancement of the way procedures can be invoked. These
additions enable the system to exhibit not only goal-directed behavior, but behavior that
is reactive to particular situations.

16

The PRS system also makes extensive use of world states and actions that refer to an
agent’s internal cognitive components. These “metalevel” states and actions are manipu-
lated by the system in the same way it handles states and actions that deal solely with the
outside world. They enable the system to form goals or react to situations that deal with
the system’s internal workings — for example, to figure out how to choose between multiple
applicable procedures for a particular task, how to establish new desires, beliefs, or inten-
tions based on particular situations, and so on. All of this metalevel reasoning, however, is
done within the same formal context in which reasoning about the external world is done -
i.e., in the context of the formalism presented in this paper.

The overall structure of a procedural reasoning system is shown in Figure 5. The system
consists of a data base containing currently known facts (or beliefs) about the world, a set
of current goals (tasks) to be accomplished, a set of process assertions (plans) that describe
procedures for achieving given goals or reacting to particular situations, and an interpreter
(inference mechanism) for manipulating these components. At any moment in time, the
system will also have a process stack that contains all currently active processes. This stack
can be viewed as the system’s current intentions. We now look at these components in
more detajl.

The data base is intended to describe the state of the world at the current instant, and
thus contains only state descriptions. Its primary function is to keep track of facts about
world state that can be inferred as consequences of process executions. We also use the
data base to provide the system with knowledge of the initial world state. A STRIPS-like
rule is used for determining the full effects of processes; that is, facts are assumed to remain
unchanged throughout a process unless we can infer otlierwise. Updates to the data base
require the use of consistency maintenance procedures.

As in the preceding sections, goals are represented by action descriptions, and can be
viewed as specifying a desired behavior of the system. This view of goals as behaviors is -
unlike that used by most planning systems. In such systems, goals can only be represented
as descriptions of state conditions to be achieved. The scheme adopted here allows us to
express a much wider class of goals, including goals of maintenance (e.g., “achieve p while
maintaining ¢ true”) and goals with resource constraints (e.g., “achieve p without using
more than one tool”).

As indicated earlier, we have also enhanced the way procedures supplied to PRS may
be invoked. Rather than just being applicable to given goals, some procedures become
applicable when certain facts become known to the system — i.e., they are fact invoked.
Fact-invoked procedures are particularly useful for creating a reactive system — i.e., one
that can change focus in reaction to particular situations. Such procedures are usually
associated with some implicit goal. For example, a fact-invoked procedure for putting out a
fire might become applicable whenever the system notices that there is a fire. Although this
procedure does not respond to any explicit goal per se, it actually achieves an underlying
implicit goal of all organisms ~ to stay alive. Within the context of the formalism presented
in the preceding sections, a process assertion for a fact-invoked procedures has a precondition
that describes the condition under which it is applicable and an effect part that matches
all implicit goals of the system. This guarantees that each fact-invoked procedure becomes
applicable whenever its precondition becomes true.

17

- AR, T MONITOR

DATA BASE KAs
(Beliefs) (Plans)
\ / SENSORS
(Perceptors) '—l
SYSTEM/USER INTERPRETER ENVIEON MEN;
INTERFACES (Reasoner)
CONTROLLERS
/ \ (Effectors)
GOALS PROCESS STACK
(Desires) (Intentions)
| | DaTA || COMMAND
OUTPUT , GENERATOR

Figure 5: System Structure

The PRS interpreter runs the entire system. From a conceptual viewpoint, it operates
in a relatively simple way. At any particular point in time, certain goals are active in the
system, and certain facts or beliefs are held in the system data base. Given these goals and
facts, a subset of the procedures in the system (both fact invoked and goal invoked) will
be applicable. One of these procedures will then be chosen for execution. In the course of
transitting the body of the chosen procedure, new goals will be formulated and new facts
will be derived. When new goals are added to the goal stack, the interpreter checks to see if
any new procedures are relevant, selects one, and executes it. Likewise, whenever a new fact
is added to the data base, the interpreter will perform appropriate consistency-maintenance
operations on the data base and possibly activate newly applicable procedures.

Because the system is repeatedly assessing its current set of goals, beliefs, and the
applicability of procedures, the system exhibits a very reactive form of behavior, rather
than being merely goal driven. For example, when a new fact enters the system data base,
execution of the current process network might be suspended, with a new relevant process
network taking over. One of the ways the system resolves which procedures to execute at
any given time is by using other metalevel process networks. These metalevel procedures are
manipulated and invoked by the system in the same way as any other procedure. However,

18

they respond to facts and goals pertaining to the system itself, rather than just those of the
application domain. For example, one typical metalevel procedure might respond to the
metalevel goal (CHOOSE-BEST-PROCESS $GOAL $LIST-OF-PROCEDURES); i.e., choose the
best procedure to execute from among a given a list of procedures ($L1ST-OF-PROCEDURES)
that achieve a given object-level goal ($goal) to execute among the various given list of of
the form: which we can take to have the . Besides the task of process selection, metalevel
procedures can also be used to combine process networks in order to achieve composite
goals. For example, metalevel procedures are used in the current system to apply some of
the proof rules described in Section 6.)

As in the interpreter of Section 5, unification is used to determine whether or not a
given process matches a given goal or data base fact. Just as in Prolog, and unlike standard
programming languages, this means that it is not necessary to decide before execution
which process variables are to count as input variables and which are to count as output
variables. This is important for providing flexibility and ease of verification. It also means
that variables will not be unnecessarily bound, which can often be advantageous in allowing
difficult decisions to be avoided or deferred. For example, if we had a goal of the form (P
$X) (where $X is not bound), and a procedure for achieving (P $X} for all objects $X, we
could use this procedure for achieving the goal without having to select a particular object
to apply it to.

PRS also differs from conventional programming languages in its more flexible means of
representing and using procedural information. For example, procedures are not “called”
as in standard programming languages. Instead, they are invoked whenever they can con-
tribute to accomplishing some goal or reacting to some situation. Just as procedures cannot
be called, neither can they call any other procedure; they can only specify what goals are
to be achieved and in what order. This makes PRS procedures much more amenable to
modular verification techniques. Another difference that sets PRS apart from standard pro-
gramming languages is that it is not deterministic. For example, several procedures may
be relevant to a goal at any one time, and the order in which they are chosen for execution
may, in general, be nondeterministic.

We have implemented an experimental system based on the ideas presented above.
The implemented system is written in LISP and runs on a Symbolics 3600 machine. User
interaction occurs via a graphical package that allows direct entry and manipulation of
process networks. ‘

8 Sample Problem Domains

8.1 Space Shuttle

One area in which advanced automation could be of particular practical benefit is fault
isolation and diagnosis in complex systems. PRS is particularly suited to this kind of
application not only because a diagnostic domain is dynamic, requiring quick response to
faults, but also because much of diagnostic knowledge is specifically procedural in nature.
In this section we describe one such application — diagnosis of the Reaction Control System

19

(RCS) of NASA’s space shuttle. The structure of an RCS module is depicted in Figure 6.
Sample malfunction procedures from the NASA diagnostic manuals are shown in Figure 7.

The manner in which we have represented procedures for our RCS application reflects
what we have said in the preceding sections — i.e., that actions and tests must be rep-
resented by whatever condition they achieve or test for, rather than by some arbitrary
name. For example, there exist several malfunction procedures for lowering the pressure in
tanks that have high pressure readings, and likewise, raising the pressure in tanks with low
pressure. Currently, the NASA diagnostic procedures for these tasks make explicit calls to
particular procedures that raise and lower tank pressure. Whenever the desired methods
for altering tank pressure change, these procedure calls also have to be explicitly changed.

Our methodology for invoking procedures obviates the need for such changes; goals to
lower or raise tank pressure may be posted as such — any applicable procedure may then
respond. In fact, for this particular example, the goal underlying the pressure alterations
may simply be to “normalize” the pressure of the tank. Invoking procedures on the basis of
desired effects results in a much more modular and useful way of constructing large systems.
Given a set of procedures associated with the actual goal that they achieve, the procedures
may be reused in other circumstances in which they might be useful, or easily replaced by
other procedures that achieve their particular goal in a better way.

8.1.1 The RCS Data Baée

Our first task in encoding the RCS application was to capture the structure of the physical
RCS system(depicted in figure 6} as a set of data base facts. Once inserted into the system
data base, these facts are used during fault diagnosis to identify particular components of
the system and their properties. For example, a sample set of structural facts is given below.

(TYPE RCS F RCS.1)

(TYPE HE-PRESSURIZATION OX HEP.1.1)
(TYPE HE~PRESSURIZATION FUEL HEP.1.2)
(PART-OF HEP.1.1 RCS.1)

(PART-OF HEP.1.2 RCS.1)

(TYPE HE-TANK HET.1.1.1)
(PART-OF HET.1.1.1 HEP.1.1)
(TYPE HE-TANK HET.1.2.1)
(PART-OF HET.1.1.1 HEP.1.2)

Two types of structural facts have been used for this application — TYPE facts, which de-
clare specific components or subsystems and assign to them unique identifiers, and PART-0F
facts, which state which components are part of which subsystems. For example, (TYPE
RCS F RCS.1) declares the entire front RCS and assigns it the identifier RCS.1. Each RCS
contains two helium pressurization subsystems, one for the oxidant part of the system,
the other for the fuel subsystem. For the system RCS.1 these are labeled as HEP.1.1 and

20

FWD RCS

He
He TK P [P P] HeTKP
meter + TK
GNC 23 RCS | [encsvs summz] +[BFs]
A B
He
PRESS
DUAL He
AFT RCS REGS
HeTKP [F] H® Y5 HeTKP
meter + TK
| ane 23 RS | [ancsyssumm2| +| BFS | avap [Ty
" = cKvLvs [y
He RLF > &
PRESS VLV
DUAL He
REGS
TKP
METER +
GNC 23 RCS
Y|¥{ auaD
7] ok vLvs +[BFS, GNC SYS SUMM 2| TKP
N7 PLF 7] |BFS. GNC 5YS SUMM 2
VLV
METER +
o TK ISOL
GNC 23 RCS X 3sa/5
+[BFS, GNC SYS SUMM 2|
MANF MANF | MANF| ManF
ISOL isoL | tsoL | 1soL
1 3 4 5
TK P
MANF {MANF 51 MANF [r{MANF
BFS, GNC SYS SUMM 2| [F] P1 P3 P4
L R L R L
TK ISOL ¢ 7 ap Yy TKISOL g g g D R
/2 L A 3/4/5 F F F
MANE | MANF MANF | MANF| MANF
isoL | 1soL isoL | 1soL| 1soL
1 2 3 4 5
MANF = MANF MANE ;=] MANF
P1 P2 P3 Pa
XFEED M M b N 5 XFEED
112 D A D 3/4/5

Figure 6: The Reaction Control System

21

I RCS JET I

BACKUP C/wW
ALARM

FRCS D JET
or
F ACS F JET

or
FRCS LJET

or
FRCS U JET
or
L RCS A JET

or
LRCS D JET
or
LRCS L JET
or
LRCS U JET
or
RRCS AJET
or
RRACS D JET
or
RRARCS R JET

or
RACS U JET

Primary Jet OX In-
jector Temp < 30

Primary Jet FU In-
jectorTemp < 20
Vemier Jet In-
jector Temp < 130

Fire Command
and no PC
Discrete

No Fire Command
with Jet Driver
Qulpul

SW: 0F08.01

FWD (LR} RCS

BACKUP C/W
ALARM

F({L.R) RCS
LEAK

M:
FILR)RCS A
OX-FU>» 126%

or
F ACS R JET r

! | GNC23RCS |
RCS JET FAIL {ON)
1. Atiectad MANF ISOL - CL{tb-CL),
then GPC H MANF 5
2. Go to MALF, RCS, 10.1a [1]
12 | eNC23RCS |
RCS JET FAIL (LEAK)

" 1. Check RCS FU and OXID quantity diverging:

If diverging affected, MANF ISOL - CL(tb-CL),
then GPC if MANF &
2. Go to MALF, RCS, 10.1a [23]

13

| oncaames |

RCS JET FAIL (OFF)
1. Go to MALF, RCS, 10.1a[1]

14

| eNCsyssumm2 |

RCS LEAK ISOL
it FU or OXID TK P high, go to RCS TK PRESS (FU or OX) HIGH, G2

ll FU and OXID TK P low, check FU (OXID) He P {(CRT & mster) @
Il decreasing, go to step 1

It not decreasing, go to RCS TK PRESS (FU er OX) LOW, [1.5] step 2

i FU or OXID TK P normal:
Check FU(OXID) He P (CRT & meter) decr: (D@
1. DAP: free drift
Secure RCS
2. Perlorm affecled RCS SECURE, . then:
3. If afiected RCS receiving XFEEDA'CNECT, go lostep 6

Check Single MANF:
4, Check only one MANF P decr
If decr, retumn to normal config excep! leave leaking MANF dosed »>>»

Check PRPLT TK Leg (chack two MANF P):
5. Check MANF 1,2 or MANF 3.4 P decr
Il two MANF P decr, retum to normal config except leave alected TK
1SOL (172 or V4/5), MANFs, and conresponding XFEED valves dosed.
i 3/4/5, go to LOSS OF VERNIERS (ORB OPS, RCS) »>

Check He TK:
6. Check He P decr
H decr, call MCC for use of LEAKING Ha RCS BURN, MALF, RCS,
SSR-5. When att control reguired:
M Aft RCS, FCNECT trom OMS [1.8] or [18]

When He TK P < 556 perform FCNECT from OMS,

Al E1 perform XFEED from good RCS, [111] or
if Fwd RCS, return to normal conlig:

When He P < 556, -overide FWD MANFs STAT

closed perform LOSS OF VERNIERS. (ORB OPS, RCS) then

ovemide open prior 1o deorbil. When PRPLT TK P < 180,

perform RCS SECURE (FWD) >

or
g

then open all MANFs, Prior to deorbit TIG refum 1o straight RCS feed.
'

®u Gne sys
SUMM 2 and meter
disagree, He P iIn-
strumentation

failure. Do no! use
to
cross-check meler.

@ H GNC SYS
SUMM 2 and meter
agree but not decr,
qty input instrument
failure. Do not use
o

cross-check meter.

Figure 7: Some RCS Malfunction Procedures

22

HEP.1.2 respectively. Finally, each helium pressurization system contains its own helium
tank.

Once we encode the structure of the RCS in this fashion, the diagnostic procedures can
make use of this information to perform what might be considered simple commonsense
tasks for an astronaut. For example, if a malfunction procedure has the test “Is the oxidant
helium tank pressure greater than the fuel helium tank pressure for the front RCS?”, the
test can be represented in a way that is impervious to system reconfiguration, is not hard-
wired to particular identifiers, and can be used for any RCS. This is done using unification
— matching data base facts against queries composed as logical combinations of atomic
formulas. In this case, the query would have the following form:

(? C((TYPE RCS F $rcs-id) A
(TYPE HE-PRESSURIZATION 0X $hep-ox) A
(PART-OF $hep-ox $rcs-id) A
(TYPE HE-PRESSURIZATION FUEL $hep-fuel) A
(PART-OF $hep-fuel $rcs-id) A
(TYPE HE-TANK $he-ox-tank) A
(PART-OF $he-ox-tank $hep-ox) A
(TYPE HE-TANK $he-fuel-tank) A
(PART-OF $he-fuel-tank $hep-fuel) A
(PRESSURE $he-ox-tank $ox-press) A
{PRESSURE $he-fuel-tank $fuel-press) A
(> $ox-press $fuel-press)))

8.1.2 JET-FAIL-ON Process

We will now concentrate on the procedure called RCS JET FAIL (ON), which can be seen as
Step 1.1 of Procedure 10.1, as well as 10.1a (a portion of the entire malfunction procedure is
shown in Figure 8). Notice how diagnostic conclusions (such as “JET DRIVER FAILED-ON
ELECTRICALLY™) are displayed in highlighted boxes.

PRS uses several processes to implement this diagnostic procedure. The main top-level
process for dealing with the “JET FAIL (ON)” failure is called JET-FAIL-ON and is shown
in Figure 9. This process is fact invoked — that is, it responds when the system notices
that certain lights, alarms, and computer monitor readings appear. Its precondition has
the form:

(LIGHT RCS-JET) A (ALARM BACKUP-CW) A
(FAULT $rcs-id RCS $jet-id JET) A
(JETFAIL-INDICATOR ON $manf-id)

In order to get JET-FAIL-ON running, these four facts (with instantiations of the three
variables $rcs-id, $jet-id, $manf-id) must be added to the system data base. For
example, we might add the facts:

23

RCS JET 1.1 [RCS JET FAIL (ON) | oNc 2aRcs
> 1. Atfected MANF ISOL - CL{tb-CL),
then GPC if MANF 5
BACKUP C/W 2. Go to MALF, RCS, 10.1a
ALARM
10.1a
F ACS D JET 11113
. i
F RCS F JET ‘o
or 1 — 2 Rates or large RCS 12
F RCS L JET GNC 23 RCS usage cbserved? [
or
cs
FR NR JET] RCS Jet FAIL-ON | ves
FRCS UJET I RCS Jat FAIL-OFF
or 7> e 4 | JET DRIVER FAILED-ON
L ACS A JET j ELECTRICALLY
or
LRCS D JET : “
or []
L RCS L JET o | 1f MANF 5, go 1o RCS,
o e LOSS OF VERNIERS
L RCS U JET (ORB OPS}
or
R RCS A JET
or
R RCS D JET
or ' .
RRCS RJET ‘ (:X:)
o MDM INPUT PARAM
R RCS U JET VES | '3 | FAIL HIGH OR JET Il AT
12 | Manf57 |[—p DAIVER FALEDON RCS, LOSS OF
VERNIERS (ORB OPS5)
NO ELEGTRICALLY
¥
YES
15 | FWDRCS 7 ——+| 16 | Which Orbiter:
- Wait for MCC call for
NO | 17 | ERCS reconfig
| —
® Y @) }
18 | RCs oxib and Fu Mank | YES [1o Tvom meut PARAMI 21| | GNCZ3RCS |
Ps » 130 7 FAIL HIGH « Override 1o CL status
1 NO B affected Manf and al)
other Manfs which
share same RJD
22 | JETDRI .
EE;C?THYCE:LEyED N 2 Open affected Mant - + ACS FWD(LR) - ITEM
1(2.3) EXEC (")
o7 + MANF VLV OVRD -
« F(L.R) RCS MANF ITEM 42{43,44,45)
1{2.3.4) 1ISOL-OP EXEC

)

26 | (014.015016)
» Aftected Jat RID
DRIVER - OFF

Figure 8: RCS JET FAIL {ON) Malfunction Procedure

24

Preconditlon: (LIGHT RCS-JET) A C(ALARM BACKUP-CW)} A
(FAULT $RCS-ID RCS $JET-ID JET) A JET-FAIL-ON
(JETFAIL-INDICATOR ON $HANF-ID)

Effect:
1 (CLOSED-MANIFOLD Rk -1o7)

[T ¢~ (MIGH-USACE SRCS-101)) [T (HIGH-USAGE $ACS-IOn

(v> (JET-FAR. FAR-ON ELECTRICAL ZJET-TO)
(7 (TYPE MANF-(S0L-VALVE 3 SUMANF-I0)

WANF~1SOL-VALVE 5 SUMANF-10]1)

- - . ..m
(=) (V (JET-FAN FAIL-ON ELECTRICAL 07 (TYPE MANE-IS0C-VALVE S " CNTYPE MANF-ISOL-VALVE 5 SMANF-OY)}

1-10)
(MO 1T <P ARAMF AL FAIL=RIGH SJET10))) m
(> (LOST-OF IE! %

0 [WARNING ‘CONSULT MCC FOR DTHER FARAMS
LOST W SAME MOM'CARD")) TYPE RUS F SACS-TD))

07 (- (VL ACs F Acs-o [7 (CRSITER OVA02))

{1 (~ (IN-OFERATION- SEQUENCEVENIER))

@:'/\rn (- THON-SEQUENCE VERMIER))
{*) (LOSS-OF VERNIERS .E‘T'*Oll_ﬁ

0 (WAIT-MCC-CALL "F-RCS MECONF G FRESPONSE]

~{ORALTEA OVIDZ)}

(RECONFIG SACS-10 1LY
ph!

(T (R [TY™E HANE-IS0L-VALVE BN BMANF-DYFART-OF $PS0-0 S-IONTYPE PROP-STOME -OIST OX SPSO-OXNFART-OF BFEC-FUEL SACS-IPXTYPE PROP-STOME-D1ST FUEL P SD-FUELI

[T (6 (PART-OF JUANF-OX SPSD-OXYTYPE MANE-1SCL-VALVE BN SMANF-0X) (PANT-0F BMANF-FURL $FS0-FUELYTYPE SANF-ISOL-VALVE SN SAAN -FUEL))

(T (PAESSURE SMANF -OX SP-0X))

7 (PRESSURE SMANF -FUEL SP-FUEL))

{4) $#-OX 130} (> SF-FUEL 1300
J’\?pl:%llwt ~PARAM-FANL FAL-HGH SJET-M))

{OPENED~MANIFOLD SMANF-TDY

CVERRIDE CLDSED “wHICH EWARE AFPECTEO PO OrVER B ET-10))

[{SET-RJD-DRIVER OFF l.E'-«IDnE“

Figure 9: JET-FAIL-ON Process

25

Precondition: (TYPE MANF-ISOL-VALVE $N $MANF-ID) A (# ¢N 5)

Effect: (! (CLOSED-MANIFOLD $MANF-ID))

CLOSED-MANIFOLD

(! (ISOLATED-MANIFOLD SWITCH CLOSED SMANF-ID))

f
Kl

(=> { (CLOSED-MANIFOLD SMANF-10) ~

{~ (OPENED-MANIFOLD SMANF-ID})))
\
finisn

Precondition: (TYPE MANF-ISOL-VALVE 5 $NANF-ID)
Effect;: (! (CLOSED-MANIFOLD $MNANF-ID))
CLOSED-MANIFOLD-VERNIER

(! (ISDLATED-MANIFOLD SWITCH CLOSED SMANF-1D) ~
(1SOLATED-MANIFOLD COMPUTER CLOSED SMANF-ID)))

(=3 ((CLOSED-MANIFOLD SMANF-ID} ~
{~ (OPENED-MANIFOLD SMANF-1D))))

Figure 10: Processes For Closing A Manifold

26

(LIGHT RCS-JET)

(ALARM BACKUP-CW)

(FAULT rcs.1 RCS thr.1.1 JET)
(JETFAIL-INDICATOR ON miv.1.1.1)

This tells the system that there is an actual malfunction in a specific RCS subsystem, jet,
and manifold. The system will then react and apply the JET-FAIL-ON process.

Starting at its START node, JET-FAIL-ON will proceed and try to traverse its first edge,
labeled with the goal expression (! (CLOSED-MANIFOLD $manf-id)}). In other words, the
system must find some way to close the given manifold. This corresponds to the first step of
the malfunction procedure in Figure 8, which reads: “Affected MANF ISOL - CL (tb-CL),
then GPC if MANF 5.” Notice how we have abstracted the overall goa! or intent of this
step (to close the manifold) from a particular instruction in the malfunction book which
only states how to achieve the goal.

In this case, there are actually two different ways of achieving a closed manifold: for
all manifolds, a talk-back switch is set to the closed position, but for vernier manifolds
(type 5 manifolds), a setting must also be made on the computer console. These two ways
of achieving a behavior of form (! (CLOSED-MANIFOLD $manf-id)) are reflected in the
two procedures shown in Figure 10, CLOSED-MANIFOLD and CLOSED-MANIFOLD-VERNIER.
Each responds to a goal of the form (! (CLOSED-MANIFOLD $manf-id)). However, their
preconditions constrain their applicability further — CLOSED-MANIFOLD will only be truly
applicable if the manifold in question is not of type 5, and CLOSED-MANIFOLD-VERNIER
will only be applicable if the manifold s of type 5. In situations in which more than one
processes is truly applicable to a given goal, metalevel processes are used to resolve which
is most useful.

Of course, given the semantics of process assertions, there is yet another way to achieve
(! (CLDSED-MANIFOLD $manf-id)). In particular, a goal of the form (! P) will auto-
matically be achieved if the system already believes that P is true. For this case, if the system
already has in its data base a fact of the form (CLOSED-MANIFOLD miv.1.1.1), a goal of
the form (! (CLOSED-MANIFOLD miv.1.1.1)) will automatically succeed — no executions
of the processes CLOSED-MANIFOLD and CLOSED-MANIFOLD-VERNIER need be undertaken.

It is precisely the lack of this kind of goal semantics and reasoning ability that caused
a recent space shuttle flight to abort. Although the shuttle system knew that a particular
manifold was closed, it found itself unable to proceed when an instruction of the form
“close the manifold” was given to it. This is because all of the manifold-closing procedures
available presumed an open manifold — they could not close a manifold that was already
closed! If the procedures had been written in terms of the goals to be accomplished, rather
than as fixed hard-wired procedure calls, the shuttle system could have realized that its
goal to close the manifold had already been achieved.

We continue now with one more step in the execution of the JET-FAIL-0N process. If the
goal to close the manifold actually succeeds, the system will then move on to the next node
and choose a new outgoing arc to traverse. One possible choice might be the arc labeled
(? (- (HIGH-USAGE $rcs-id))) —i.e., our goal is to determine whether there is not high
usage in the affected RCS. To handle a goal of this form the system will first check to see

27

if there are any data-base facts or processes that match this goal precisely. Because we can
have negated facts in the system data base, it is possible that afact of form (= (HIGH-USAGE
rcs. 1)) ispresent in the data base (for the sake of argument we have assumed that $rcs~id
is bound to res.1). Similarly, there may be a process with an invocation part that indicates
it is useful for precisely a goal of the form (? (= (HIGH-USAGE $rcs-id))). i a matching
data-base fact or a successful matching process is found, then the system will attempt to
satisfy the goal in these ways. However, if no such fact or matching process is present, the
system will try to achieve the goal using any other means at its disposal.

For goals composed of certain negated predicates, a metalevel process is available which
tries to achieve the goal using the “negation as failure” rule [15]. In other words, for a goal
of form (! (~ P)) or (7 (- P)), the metalevel process will try to achieve (! P) (or
{7 P)), and if it fails to do so, will assume that the original negated goal has succeeded.
In our current system, this is precisely how the goal (? (- (HIGH-USAGE $rcs-id))) is
handled. Other metaleve] processes also exist for achieving a conjunct of goals or a disjunct
of goals.

8.2 Autonomous Robot

A second interesting application of PRS is in the control of autonomous robots. Cur exper-
imentation in this domain is being done using SRI International’s new robot, Flakey. To
effectively tackle this problem, we had to use multiple, concurrently active PRS modules,
each consisting of its own data base, goal stack, and processes that monitor and control
different aspects of the robot’s activity. :

As our objective, we envisaged the robot in a space station acting as an astronaut’s
assistant. When asked to get a wrench, for example, the robot works out where the wrench
is kept, plans a route to get it, and goes there. If the wrench is not there the robot reasons
further about how to obtain information on its whereabouts, and finally returns to the
astronaut with the wrench or explains why it could not be retrieved. In another scenario,
the robot may be in the process of retrieving the wrench when it notices a malfunction
light for one of the jets in a RCS module of the space station. It reasons that this is of
higher priority than retrieving a wrench and sets about diagnosing the fault and correcting
it. After having done this, it continues with its original task, finally telling the astronaut
what has happened.

To accomplish these tasks the robot must not only be able to create and execute plans,
but must be willing to interrupt or abandon a plan when circumstances demand it. Since
other agents can move obstacles and issue demands even as the robot is planning, and since
its view of the world can change as fast as the robot itself is moving, performance of the
task requires a robot which is perceptive and highly reactive as well as goal directed.

The way we have structured the processes for this domain has actually conformed some-
what to Brooks’ notion [3] of a vertical decomposition of robot functions (in contrast to the
traditional horizontal decomposition into functional modules). The top level robot module
is used to perform higher level cognitive functions: overall route planning and high-level
guidance. The lower the level of a module, the more primitive its function. Below the high-
est level are modules which put together sonar sensory data and figure out where “walls”

28

and “doors” are. Even lower level modules reactively monitor the more rudimentary aspects
of the navigation process — reacting to obstacles, maintaining a parallel bearing to the wall,
getting back on course when veering takes place, etc.

Our present version of the robot application system is more fully described elsewhere
[10). Currently, the robot’s model of the external world is particularly simple: apart from
toplogical knowledge about hallways and rooms, the beliefs of the robot consist solely of
its most recent sonar readings, various velocities and accelerations, and some indicators
regarding the status of simulated external systems (such as the RCS module). Of course,
any realistic application of the system would require that the robot be capable of building
and storing much more complex models of the world around it.

9 Conclusions

We have presented a model for action and a means for representing knowledge about pro-
cedures. The importance of reasoning about processes rather than simple histories or state
sequences was stressed. In particular, we have indicated the role that process failure plays
in practical reasoning.

A declarative semantics for the representation was provided that allows a user to specify
facts about processes and their behaviors. This semantics is important for providing a
model-theoretic basis to the knowledge representation. We have also given an operational
semantics that shows how these facts can be used by an agent to achieve (or form intentions
to achieve) its goals. A critical feature of the interpreter, and one that distinguishes it in
kind from most existing Al planners, is that it is situated in an environment with which it
interacts during the reasoning process. We consider the partial hierarchical planning that
results to be an essential component of effective practical reasoning.

The knowledge representation we have described can also be used for symbolic planning
in the traditional sense, although we would need to provide additional axioms stating under
what conditions primitive processes would be successful. Indeed, the operators of many
standard planning systems (such as NOAH [22], DEVISER [26), and SIPE [27]) can be
viewed as restricted forms of process assertions.

Our formalism can also be viewed as an erecutable specificalion language — that is,
as a programming language that allows a user to directly describe the behaviors desired
of the system being constructed. The fact that the language has a declarative semantics
allows facts about the behavior of the system to be stated and verified independently. The
operational semantics provides a means for directly erecuting these specifications to obtain
the desired behavior. In this sense, the language has much in common with Prolog, except
that it applies to dynamic domains instead of static domains.

We have described a practical implementation of a system based on this model, and have
shown how it can be applied for fault diagnosis and in the control of autonomous robots in
highly dynamic situations. Although we have used parallel instances of PRSs within our
implementation, we have yet to extend our formal model to deal with it. Some work in this
direction is described by Georgeff [8], and work on synchronizing the activities of multiple
agents has been done by Lansky [14] and Stuart [24].

29

Acknowledgements

There have been a number of people involved in the design, implementation, and testing of
PRS, including Pierre Bessiere, Marcel Schoppers, Joshua Singer, and Mabry Tyson. We
are most grateful for their contributions.

30

References

[1] 1. F. Allen. A General Model of Action and Time. Technical Report 97, University of
Rochester, Rochester, New York, 1981,

[2] J. F. Allen. Maintaining knowledge about temporal intervals. Communications of the
ACM, 26:832-843, 1982.

[3] R. A. Brooks. A Robust Layered Control System for a Mobile Robot. Technical Re-
port 864, Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, Massachusetts, 1985.

[4] K. M. Chandy and J. Misra. How processes learn. In Proceedings of the Fourth ACM
Symposium on Principles of Distributed Computing, 1985.

[5] W. F. Clocksin and C. §. Mellish. Programming in prolog. Springer-Verlag, Berlin,
1984.

[6] D. Davidson. Actions and Events. Clarendon Press, Oxford, England, 1980.

[7] R. E. Fikes and N. J. Nilsson. STRIPS: a new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2:189-208, 1971.

[8] A. L. Lansky Georgeff, M. P. and M. Schoppers. Reasoning and Planning in Dy-
namic Domains: An Ezperiment with a Mobile Robot. Technical Note 380, Artificial
Intellipence Center, SRI International, Menlo Park, California, 1987.

{9] M. P. Georgeff. A theory of action for multiagent planning. In Proceedings of the
Fourth National Conference on Artificial Intelligence, Austin, Texas, 1984.

[10] M. P. Georgeff and U. Bonollo. Procedural expert systems. In Proceedings of the
Eighth International Joint Conference on Artificial Intelligence, Karlsruhe, Germany,
1983.

[11] M. P. Georgeff and A. L. Lansky. 4 System for Reasoning in Dynamic Domains: Fault
Diagnosis on the Space Shuttle, Technical Note 375, Artificial Intelligence Center, SRI
International, Menlo Park, California, 1986.

[12] G. G. Hendrix. Modeling simultaneous actions and continuous processes. Artificial
Intelligence, 4:145-180, 1973.

[13] C. A. R. Hoare. Communicating Sequential Processes. Series in Computer Science,
Prentice Hall, Englewood Cliffs, New Jersey, 1985.

[14] A. L. Lansky. Localized Representation and Planning Methods for Parallel Domains.
Technical Note 401, Artificial Intelligence Center, SRI International, Menlo Park, Cal-
ifornia, 1986.

[15] J. W. Lloyd. Foundations of Logic Programming. Symbolic Computation Series,
Springer-Verlag, Berlin, 1984.

31

[16] J. McCarthy. Programs with common sense. In M. Minsky, editor, Semantic Informa-
tion Processing, MIT Press, Cambridge, Massachusetts, 1968.

[17] D. McDermott. A Temporal Logic for Reasoning about Plans and Processes. Computer
Science Research Report 196, Yale University, New Haven, Connecticut, 1981.

[18] R. C. Moore. Reasoning about Knowledge and Action. Technical Note 191, Artificial
Intelligence Center, SRI International, Menlo Park, California, 1980.

" [19] V. Nguyes and K. J. Perry. Do We Really Know Knowledge Is. Technical Note, IBM
T. J. Watson Research Center, Yorktown Heights, New York, 1986.

[20] S. J. Rosenschein, Formal Theories of Knowledge in AI and Robotics. Technical Re-
port, Artificial Intelligence Center, SRI International, Menlo Park, California, 1985.

[21] S. J. Rosenschein. Plan synthesis: a logical perspective. In Proceedings of the Seventh
International Joint Conference on Artificial Intelligence, pages 331-337, Vancouver,
British Columbia, 1981.

[22] E. D. Sacerdoti. A Structure for Plans and Behaviour. Elsevier, North Holland, New
York, 1977.

[23] M. Stefik. Planning with constraints (MOLGEN: Part 1). Artificial Intelligence,
16(2):111-140, 1981.

[24] C. J. Stuart. Synchronization of Multiagent Plans Using A Temporal Logic Theorem
Prover. Technical Note 350, Artificial Intelligence Center, SRI International, Menlo
Park, California, 1985.

[25] A. Tate. Goalstructure — capturing the intent of plans. In Proceedings of the Sirth
Furopean Conference on Artificial Intelligence, pages 273-276, Pisa, Italy, 1984.

[26] S. Vere. Planning in time: windows and durations for activities and goals. IEEFE
Transactions on Patltern Analysis and Machine Intelligence, 5(3):246-267, May 1983.

[27] D. E. Wilkins, Domain independent planning: representation and plan generation.
Artificial Intelligence, 22:269-301, 1984.

[28] W. A. Woods. Transition network grammars for natural language analysis. Commu-
nications of the ACM, 13, 1970.

32

