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ABSTRACT

To relieve the user of NASTRAN—the National Aero-
nautics and Space Administration's general purpose,
finite element, structural analysis computer program—
from the necessity of becoming involved with internal
aspects of NASTRAN when he adds a new element, a new
element definition capability has been developed.

This capability takes the form of a preprocessor which
will generate, according to user specifications, the
FORTRAN routines and tables required by NASTRAN for a
new element.

This manual contains details and instructions on
the use of the’preprocessor, and provides numerous

examples.

ADMINISTRATIVE INFORMATION

The new element definition capability for NASTRAN was
developed under the In-House Independent Research Program, Task
Area ZR1040201 and informally reported in a Computation and
Mathematics Department technical note. The work of preparing

this report was carried out under Work Unit 1-1844-009.




I. INTRODUCTION

NEED FOR THE PREPROCESSOR

NASTRAN—the National Aeronautics and Space Administration's
general purpose, finite element, structural analysis computer
programl 23——is widely used in the structural engineering field
for a variety of calculations including those for static analysis,
piece-wise linear analysis for nonlinear material properties,
natural frequencies, transient analysis; and frequency and
random response. The dynamic calculations may be carried out
either directly or by the modal method.

The system design of NASTRAN is excellent. Occasionally,
however, a user may wish to include some structural elements of
his own in the program. This he may do if he will first update
the appropriate NASTRAN tables, write the additional subroutines
which will be needed for the extra elements, and incorporate
these updates and additions into NASTRAN. Since such procedures
take time, and require a great deal of familiarity with various
internal aspects of NASTRAN—the variables, tables, routines,
structure, restrictions, and even the philosophy of the program
itself—a new element definition capability has been developed
to perform a major portion of the above tasks. This new element
definition capability, which is described within the pages of
this report, is very helpful to the user in defining the elements

he wishes to add to NASTRAN.

1 nvThe NASTRAN Theoretical Manual, (Level 15.0)" Edited by R.H.
MacNeal, NASA SP-221(01) (Dec 1972).

2 WThe NASTRAN User's Manual (Level 15.0)" Edited by C.W.
McCormick, NASA SP-222(01) (May 1973).

3 The NASTRAN Programmer's Manual (Level 15.0)" NASA SP-223(01)
(Sep 1973).



This element definition capability takes the form of a
preprocessor. The user supplies it with symbolic instructions
submitted as "packets" of information, and the preprocessor
then generates all the FORTRAN language tables and routines
required for the element to be added. The functions performed
by the preprocessor and the packets of information it uses are
explained in detail later in the report.

The preprocessor was planned for use with the Level 12.0
version of NASTRAN, and so is subject to all the restrictions
imposed by that version. Two changes were made to Version 12.0

to adapt it for use with the preprocessor:

(1) Twelve dummy elements were set up. For each of the
twelve, table entries were initialized, skeleton subroutines
were set up (to be eventually replaced with the FORTRAN sub-
routines generated for the new element), and appropriate linkage

for the subroutines was established;

(2) Additional coding was incorporated within the NASTRAN
routines as appropriate to enable NASTRAN to retrieve the user-
defined table data from the preprocessor-generated BLOCK DATA

subprograms.

After the preprocessor had been written,’based on the
Level 12.0 version of NASTRAN, another version of NASTRAN was
developed—FNASTRAN Version 15.1. This version 15.1, which has
dummy elements already built in, may be used instead of Version
12.0; in fact, in many cases its use may be preferable, since it
provides a considerable savings in.computer time over that used
by Version 12.0
The separate steps required to insert the routines generated
by this element definition capability are outlined in a later
. section of this report.
The preprocessor and the updated Version 12.0 NASTRAN
executable file required for use with the preprocessor are
available for CDC 6000-series computers. The preprocessor is

written in the SNOBOL computer language, Version 3.



NASTRAN MODULES AFFECTED BY ADDED ELEMENTS

A little background on the NASTRAN functional modules affected
by the addition of a new structural element may be helpful to
the reader. The NASTRAN functional modules affected by the
addition of a new module are:

Input File Processor (IFP)

Executive Control Section Analysis (XCSA)
Geometry Processor (GP1l, GP2, GP3)

Table Assembler (TAl)

Plot Set Definition Processor (PLTSET)
Structural Matrix Assembler -~ Phase 1 (SMAl)
Structural Matrix Assembler ~ Phase 2 (SMA2)
Static Solution Generator - Phase 1 (SSG1l)
Stress Data Recovery - Phase 2 (SDR2)

Output File Processor (OFP)

Differential Stiffness Matrix Generator -~ Phase 1 (DSMG1)

The following paragraphs describe the relationships between

the new structural elements and the various modules:

©O 0 00O 00 OO0 O O

o

Input File Processor (IFP)

The NASTRAN Input File Processor determines whether the
form of each input bulk data card is correct. It checks the
name of the bulk data card and each data field for appropriate
type, i.e., integer, real, and so on. The IFP module contains

seven tables from which information is obtained. Most of this
information has already been supplied for the dummy elements
available. The remaining information must be supplied to the
tables by the preprocessor.

The user provides this table information to the preprocessor.
For each new element he must design a connection card, and

perhaps a property card.

Executive Control Section Analysis (XCSA)
One of the functions of the XCSA module is to transmit to

the remainder of the program the restart tables associated
with4each rigid format. One table and one subroutine must
be updated for each rigid format. However, this information
has already been supplied for the dummy elements which have
been made available. Therefore, no further updates to XCSA

by the preprocessor user are necessary.
' 4



Geometry Processor (GPl, GP2, GP3) and Table Assembler (TAl)
The Geometry Processor modules produce tables which contain

information concerning grid points, element connection, loads,
and coordinate system transformations. The Table Assembler
module combines much of the information produced by the
Geometry Processor into other tables for’use later

in the program. '

In order to produce these tables, modules GP1, GP2, GP3
and TAl depend, in part, on another table. Most of the
information in this table has already been supplied for the
dummy elements. The remainder of the information is obtained
from the preprocessor which, in turn, finds the data in the

Preliminary Data Packet.

Plot Set Definition Processor (PLTSET)
The PLTSET module prepares information so that structural

plots may be made. Again, most of the information has been
given for the dummy elements, and the remainder is obtained
through the preprocessor via the Preliminary Data Packet.

(This means that the new element may be plotted.)

Structural Matrix Assembler - Phase 1 (SMA1l)
The SMAl module calculates the stiffness matrix for each

element in the problem and inserts it into the structure
stiffness matrix. It is in this module that the stiffness
matrix routine for the new element must be placed. The linkage
between the new routine and the remainder of the program has
already been established. The preprocessbr will generate the
new routine from the information provided in the Stiffness
Matrix Packet. Later, we will describe how this or any new

routine may be inserted into NASTRAN.

Structural Matrix Assembler - Phase 2 (SMA2)

The SMA2 module does for the mass matrix and viscous damping

matrix what SMAl does for the stiffness matrix. The preprocessor

generdtes the new mass matrix according to the Mass Matrix




Packet. The viscous damping matrix routine is generated

according to the Viscous Damping Matrix Packet.

Static Solution Generator - Phase 1 (SSG1l)

The SSG1 module calculates the load vector for a status
problem. If the new element has applied thermal loads due to
temperatures at the grid points, the method for calculating
the thermal loads for the element must be given in the Thermal
Loading Vector Packet from which the preprocessor will generate
the appropriate routine. Again, the linkage for the new routine

has already been set up. Only the new routine and its

insertion into NASTRAN are required.

Stress Data Recovery - Phase 2 (SDR2)
For all elements the SDR2 module calculates final stresses

and forces. These calculations are performed in two stages.

The first stage consists of forming the element stress matrix
and passing it, along with other element properties, to the
second stage. The second stage computes the final stresses

and forces. Therefore, two new routines are required for each
new element, one for each stage. The preprocessor will generate
these two routines from the information given in the Stress
Matrix and Stress and Force Calculation Packets. Once again,
the linkage for the new routines has been established.

Output File Processor (OFP)

The OFP module prints element stresses, forces, and
displacements. This module is almost totally table-dependent,
and if stresses and/or forces are to be output for a new element,
the correct tables must be updated. The preprocessor will
update the necessary tables with information supplied by the

Output Packet.




_Differential Stiffness Matrix Generator - Phase 1 (DSMGl)

The DSMG1l module does for the differential stiffness
matrix what the SMAl module does for the elastic stiffness
matrix. The preprocessor generates the new differential
stiffness matrix according to the Differential Stiffness Matrix
Packet.

MATRIX~PARTITION PHILOSOPHY

Since matrix partitions are basic to the matrix calculations
made by NASTRAN and therefore the preprocessor, the reader will
need to understand the NASTRAN philosophy which underlies the
preprocessor design. Note the distinction between the term
"word" and the term "variable" as used in the following
discussion: a variable is considered to be an array of words,
each word being one element of the array. An array may be
either a matrix, a vector, or a scalar.

In general, a grid point in NASTRAN is considered to have
six degrees of freedom. Therefore, if an element has N grid
points, the element stiffness matrix is of the order 6NXG6N.

In most programs, this 6NX6N matrix will be computed for an
element and then inserted into the structure stiffness matrix.
However, this procedure is not used in NASTRAN. Instead,

during any one entry into the stiffness matrix routine for an
element, each row of 6X6 partitions, is calculated, one partition
at a time, and inserted into the structure stiffness matrix.

For example, consider the BNX6N matrix to be composed of N26X6
matrix partitions. Each partition KIJ has associated with it two
grid points I and J (I and J will be identical on the diagonal).
If an element has three grid points, its stiffness matrix will

be partitioned as follows:



1 K11 K12 K13

2 K21 K22 K23

3 K31 K32 K33

Therefore, in our example, the element subroutine will be
entered three times, once for each row of partitions. This
method of insertion is used for stiffness, mass, differential
stiffness, and viscous damping matrices.

During one entry into the thermal load vector routine for
an element, the load corresponding to each grid point is
calculated and inserted individually into the overall load
vector. Therefore, only one entry into the thermal load
vector routine, for a particular element, is necessary.

This method of matrix and vector insertions made it
desirable to design the preprocessor to accept input which
describes both matrix and vector partitions, although a full
6NX6N matrix may be specified by the user. Since we are
attempting to make the preprocessor as general as possiblel
within the limitations of NASTRAN, i.e., to allow a wide

variety of elements to be specified, several combinations of

options have been provided for specifying matrices or matrix
partitions. The options may be divided into two groups.

The first group of options concerns the dimensioning of
the matrix partitions to be specified. The choices are 1X1,
3X3, 6X6, 6NX6N. Although the usual matrix partition size is
6X6, a 3X3 matrix partition will suffice if the degrees-of-
freedom of the element are 1, 2, and/or 3 (i.e., only
translations); or 4, 5, and/or 6 (i.e., only rotations). In
such cases, the generated routine will insert the 3X3 partition
into the particular 6X6 partition required by NASTRAN for
insertion into the structure stiffnesg matrix. An example is
the triangular membrane element now in NASTRAN. If an element
is so structured that an individual matrix partition cannot be

described, then the full 6NX6N matrix may be specified instead.

8



In this case, the full 6NX6N matrix is calcuiated, after which
the appropriate 6X6 partitions are extracted as needed. However,
this method is more costly than the one describing each partition,
since the full matrix must be calculated N times, once for each
entry into the element routine. The 1X1 partition allows the
user to incorporate scalar elements with NASTRAN.

The second group of options concerns the way in which
partitions are defined. There are three possibilities. One

2 partitions separately. Since the full

describes each of the N
6NX6N matrix is symmetric, only N(N+1)/2 partitions need be
specified, i.e., the symmetric and diagonal partitions; the
preprocessor will generate the remaining partitions for the

user. A second way describes all N? partitions with one equation
in which variables that end with the letters I or J take on
various values. For example, in this second method, the

variable CI might represent the variables Cl, C2, C3,..., CN,
where N is the number of grid points. Thus, all the partitions
could be described with just one equation. A third way to

define the partitions specifies an equation which represents

the full 6NX6N matrix and enables partitions to be extracted

as described previously.

DUMMY ELEMENTS

To facilitate the insertion of new elements into NASTRAN by
means of the new.element definition capability, NASTRAN (Version
12.0) has been modified to include twelve dummy elements. The
general release Version 12.0 of NASTRAN contains 38 elements,
with a reasonable limit on the total number of elements (a limit
partially imposed by NASTRAN) of 50. The new elements are
therefore named ELEM39, ELEM4O0,..., ELEM50. These elements

need not be used in any particular order.




NASTRAN was further modified by inserting within the NASTRAN
tables the names of the dummy elements, some internal codes, and
some default values, most of which may be overridden by the user.
The new element subroutines are already named so that they may
‘be linked with the remainder of NASTRAN by supplying the
appropriate FORTRAN CALL statements. For ELEM39, the corresponding
subroutine names (which follow present NASTRAN naming conventions)

are as follows:

Stiffness Matrix KLEM39
Mass Matrix MLEM39
Viscous Damping Matrix VLEM39
Thermal Loading Matrix M39

Stress Matrix SEL391
Stress and Force Calculation SEL3932

Differential Stiffness Matrix DLEM39
The names of the routines for the other dummy elements follow

a similar pattern.

10




II. INPUT TO THE PREPROCESSOR

USE OF DATA PACKETS

The input to the preprocessor describes methods to NASTRAN
for performing calculations (a stiffness matrix, a mass matrix,
and so on), so that the analyst, using his element, may take
advantage of the existing NASTRAN analyses and system design.
Although the preprocessor relieves the analyst of the chore
of learning NASTRAN's requirements and idiosyncrasies related
to writing element subroutines and updating tables, the analyst
retains responsibility for specifying his requirements to the
preprocessor. To simplify this task, which itself could be an
arduous one, depending upon the complekity of the element
involved, the input has been categorized into different "packets"
of information, all but two made up of subpackets. There are
ten packets at the present time:

Preliminary Data Packet

Global Variable Packet

Stiffness Matrix Packet

Mass Matrix Packet

Viscous Damping Matrix Packet
Thermal Loading Vector Packet

Stress Matrix Packet

Stress and Force Calculation Packet
Output Packet

Differential Stiffness Matrix Packet

One of these—the Preliminary Data Packet—must be submitted
each time a run is to be made. This packet contains such
information as the element name (chosen from a list of dummy
names provided), the number of grid points, the degrees of
freedom that the element is allowed, etc. All other packets
are optional and may be supplied at the user's discretion. If
the optional Output Packet is supplied, tables related to the
NASTRAN output format of user stress and force calculations will
be updated. Each of the others, with the exception of the
Global Variable Packet, supplies information in symbolic form

11



that is necessary for the generation of a particular FORTRAN
subroutine. Thus, for example, the Stiffness Matrix Packet
would supply symbolic definitions of variables which the
preprocessor would need to use in interpreting the information
and generating a FORTRAN subroutine which would be used later
'in calculating element stiffness matrices.

The Global Variable Packet is provided for the user in
keeping with NASTRAN's policy of recalculating rather than
saving and retrieving information that is needed in more than
one situation. The Global Variable Packet makes it possible
for the user to specify his multipacket variables the one time
instead of each time they are used.

Detailed descriptions of the ten packets are provided in
Section III. The subpackets which compose the packets are

described in another segment of this section.

CARD FORMAT ’ .

All input to the preprocessor is in free-field format.
Data fields within a data card are separated by commas, with
two successive commas indicating that a default value for the
field is to be taken. A dollar sign punched in any column
of the card indicates that a continuation data card follows. If
there is no $ punch on the card, it is either the last card or

the only card in the sequence.

VARIABLE NAMES

The variable names that may be used in the preprocessor
expressions are not completely arbitrary, although very nearly
so. There are two categories of so-called "illegal" variable
names: Those that may never be used (Table 2), and those that
may be used under certain limitations (Tables 1, 3, 4). 1In
the first category are the names already being used as SNOBOL .
variables in the preprocessor. If the analyst were to use

these names, the preprocessor could become confused and the .

12



results would be unpredictable. In the second category are
those reserved names which have already been defined by NASTRAN '
COMMON statements or by the preprocessor and may be used only
according to these preagsigned definitions. Table 3 lists the
COMMON names, the variables in each COMMON, and the preprocessor
definition of each variable. Table 4 lists the variables made
available to the user by the preprocessor. Individual packet
descriptions specify which COMMON names are used in a particular
subroutine. Tables5 and 6 provide a more detailed description
of portions of Tables 3 and 4 respectively, while Table 7
combines the Tables 1 through 6 into a comprehensive alphabetical

listing for the user's convenience. These tables follow:

TABLE 1 - FORTRAN LIBRARY FUNCTIONS
RECOGNIZED BY THE PREPROCESSOR

Function Name Function Name

DSIN SIN ..
DCOS COS
DSQRT SQRT
DEXP EXP
DLOG ALOG
DATN ' ATAN

. TAN
DABS ABS

13




TABLE 2 - SNOBOL VARIABLE NAMES DENIED THE USER

Note:

These variable names may neither be referenced nor
redefined

CKFLAG DTEST
ABORT COL DUMDAT
ALPH COMMA DUMVAR
ANGLE COMMO D11
ARB COMM1 D12
ATEST COMM2 D2
Al COMM3 D21
A3 COMMY D22
Al COMMON D3
B COMPLEX DYy
BAL CONTINUE ELMDEF
BDATA CPVAR EL1
BDO DATA EL?2
BEG DEFEND EL3
BLANK DEFER EN
lBLANKlS DEFFLAG ENDG
BLANKS DELFLAG EQFLAG
BLANK?20 DELIMITER1 EQI
BLANK6 DELIMITER?2 EQJ
BLANKS DIM EQK
BLANK9 DIMSAVD EQT
BLANK72 DISFLAG EQUA
Bl DISFLAG1 ERMS
CARCTRL DISFLAG?2 ERRCNT
CARD DISPAT F
CARDPRINT DMP FAIL
cC DO FENCE
CHARACTERS DOLLAR FILE
CHECKER DS FINFLAG

14




TABLE 2 - SNOBOL VARIABLE NAMES DENIED THE USER—Continued

FORCE
FORMAT
FORT
FORTFLAG
FORTFUNCT
FORSAVE
FPASS
FUNCTIONS
FUNCT11
FUNCT12
FUNCT21
FUNCT22
FUNCT31
FUNCT32
FXV1
FXV2
FXV3
FXVy
FXV5
FXV6
FXV10

Fl

F2

F3

Fu
GENCHECK
GENSAVE
GETCARD
GMPA
GMV1
GMV2

GMV3
GMVY
GMV5
GNCHECK
GNCHECK1
GOTO
GVGLAG
GVl
GV?2

HA

HB
HIER
HOWDEF
I

ID
IDATA
IDD
IDSAV
IE

IF2
IND
INDC
INDSAV
INFLAG
INPUT
INSCHK
INST
INTEGER
INTVAR
IOFP1
IPARAM

IS1

1S2

I1

12

I3

T4

15

J

JE
JPASS
JPOINTER
JPROGFLAG
KFLAG
KI

LENG
LENGER
LENGER1
LIMIT
LINER
LINE1
LINE21
LINE22
LINE3

LINEY

LIST
LIST1
LIST?
LL
LoC-
LOC1

- LP

15




TABLE 2 - SNOBOL VARIABLE NAMES DENIED THE USER—Continued

LR
MAGPH
MAINVAR
MATCH
MATCH1
MATCH?
MATCH3
MATEQ
MAX1
MAX 2

| MAX3
MAXY
MAXS
MEQP
MESS

N

NC
NEWFUN
NG

NMN

NMS

NMU

NN
NOCARDS
NOGONE
NOPIECES
NOREAD
NORES
NOVAR
NULL
NUMB

NUMBER
NUMBERS
NUMBERS
NUMBEROS
NV

N1

N2

N3

Ny

N5

N6

N7

N8

OPER
OPTION
OPTION1
OPT1
OPT?2
OUTFLG
OUTFLGS8
OUT?LGQ

OUTFL2Y
OUTPUT
PACKED
PACKET
PACKID
PACKNO
PACKPAT
PARTITION
PASS

PAT
PATOU1l

PATOUL1
PATA

PATZ
PATF1

PATF6
PAT1
PAT?2

PA&lOO
pPCC
PERIOD
PHCOM
PHCOM1
PHSTR
PIECE
PIECES
POINTER
POLSAV
PRE
PREI
PRFL
PROGFLAG
PUNCH
Pl

P2

P3
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TABLE 2 - SNOBOL VARIABLE NAMES DENIED THE USER—Concluded

QCOM
QD

QD1
QDIM
QELNAMQ
QEQ
QEQU
QoP
QQEQ
QTIME
QTIML
QTIM2
QUE

QX

QXYZ

Q1

Q2

Q3

REAL
REM
REPL
RESDEF
RESDIM
RESEQ
RESVAR
RIMAG
ROW
RSV1
RSV?2
RUNNO

S

SAVE
SAVED
SAVTAB
SAVVAR
SLASH
SOR1
SOR2
STARS
STNO
STR
STRESS
STRING
SUCCEED
Svi
Sv2

S1

%2

37
TA
TABLE
TDIML
TDIM?

"TEMPOR

TESTPAT
THRU
THRUU
TIMER
TRANFLAGL
TRANFLAG?2

TRB
TRB1
TRB2
TRPAT

TRI ™\
TR2 X\

UL
UNARY
UR

v

VAR
VAREQ
VARFLAG
VARGENR
VARN
VARNAM
VARTYP
V2

v

V5

V6

WORDS

WRITTFLAG
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TABLE 3 - NASTRAN-DEFINED VARTABLE NAMES

Note 1: These variables are available to the user as already
defined by NASTRAN, but may not be redefined by the

user.

Note 2: The asterisk indicates the variable names most commonly
used.
Common Name Variable Definition
MATIN MATID Material ID
INFLAG Input variable as described
on Page 66,
ELTEMP Element temperature.
STRESS Used in piecewise linear
analysis.
SINTH SIN of the anisotropic
material angle.
COSTH COS of the anisotropic
material angle.
MATOUT Depends on See Table 5
INFLAG value
SMA1ET ECPT Reference variable for

real numbers.

NECPT Reference variable for
integer numbers.

NGRID A dimensional variable such
that NGRID(I) is the Ith
grid point of the element.

MATID1 Material ID

ID1,ID2,...,IDN Coordinate system number
for the 1lst, 2nd,...,Nth
grid points of the element.

*X14X24.0..4,XN X-coordinates of the 1st,
2nd,...,Nth grid points of
the element in basic
coordinates.

*Y1,Y2,...,YN Y-coordinates of the 1lst,
2nd,...,Nth grid points of
the element in basic
coordinates.
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TABLE 3 - NASTRAN-DEFINED VARIABLE NAMES—Continued

Common Name

Variable

Definition

SMA11I0

SMA1CL

SMA1DP

SMA2ET
SMA2IO

SMA2CL
SMA2DP

*Zl’ZZ’. LI ,ZN

DUMV

All variable
names given on
the Preliminary-
Data Packet
connection and
property cards.

DUM1

DUM2

DUM3

IFKGG

IFLGG

IOPTY

K4GGSW

NPVT

I

J

IS

IP

I1,I2

QI, I=1,...,9
*PI

Same as SMA1ET
IFMGG

IGMGG

IFBGG

BGGIND

Same as SMAI1DP

Z-coordinates of the 1lst,
2nd,...,Nth grid points

of the element in basic
coordinates. .

Internal dummy variables.

All user-defined connection
card and property variables
as given in the Preliminary
Data Packet. »

Internal
Internal

Internal

dummy variable.

dummy variable.

dummy variable.

Internal file number.
Internal file number
Internal variable.
Internal variable.
Internal variable.
Dummy variable.

Dummy variable.

Dummy variable.

Dummy variable.

Dummy variable.

Dummy variables.

T to 9 significant digits

Internal file number.
Internal variable.
Internal file number.

Internal variable.
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TABLE 3 - NASTRAN-DEFINED VARIABLE NAMES—(Concluded

Common Name

Variable

Definition

EDTSP
TRIMEX
SDR2X5

SDR2X6
SDR2XX
SDR2X4
SDR2Xu4

SDR2X7

SDR2X8
DS1ADP
DS1AAA
DS1ET

Same as SMAIET
Same as SMAL1ET
Same as SMAlET
PH10UT

FORVEC

Same as SMA1DP
Z

DUM

IVEC

IVECN
*TEMP

DEFORM

PH10UT

FORVEC

Same as SMAI1DP
Same as SMA1DP
NPVT

Same as SMALET

Internal variable.

Internal variable.

Internal variable
Dummy variable.

Internal variable.
Internal variable.

Element temperature
(average of the grid

point temperatures for the
element).

Element deformation (not
used with preprocessor).

Internal variable.

Internal variable.

Internal variable.
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‘ TABLE 4 - PREPROCESSOR-DEFINED VARIABLE NAMES

- Note: These variables are available to the user as already
defined by the Preprocessor; they may not be redefined.

Variable e e Packets in which
Name Definition Available
PI 3. 14159265 All
T1 Transformation matrices for the All
T2 first, second,...,Nth grid point
. for an element from the basic
Tﬁ coordinate system to the global
coordinate system ID1,ID2,...IDN
G Material properties matrix (Tables| All
5 and 6)
TTI(J) Temperature at the Jth grid point Thermal Loading
for an element '
DISP1 Displacement vector for the first,| Stress and
- DISP2 second,...,Nth grid point for an Force Calculation
: element. The vector is 3X1 if
DIéPN the degrees of greedom are 1, 2,
. .and/or 33 or 4, 5, and/or 6. The
vector is otherwise 6X1.
XYZ1
XY72
XYZN Alternate method of referencing All
X1, Y1, Z1; X2, Y2, X2; ...XN,
YN, ZN defined in COMMON block
SMAlET. They are 3X1 vectors
predefined by the preprocessor.
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TABLE 5 - EXPANDED DEFINITION OF COMMON MATOUT (TABLE 3)

Note: TFor INFLAG values 1 and 4, the Material ID must be
supplied on a MAT1 card; for INFLAG values 2 and 3,
the material ID may be provided on either a MAT1 or

MAT?2 card.

Form of MATOUT

Definition

INFLAG=1
E
GG
XNU
RHO
ALPHA
TSUBO
GBUBE
SIGTEN
SIGCOM
SIGSHE

INFLAG=2
Gl1

Gl2
G13
G22
G23
G33
RHO
ALPHA1
ALPHA?
ALP12
“TSUBO
GSUBE
SIGTEN

Young's modulus.

Shear Modulus.

Poisson's ratio.

Density.

Thermal expansion coefficient.

Thermal expansion reference temperature.
Structural element damping coefficient.
Stress limit for tension.

Stress 1limit for compression.

Stress 1limit for shear.

The 3X3 symmetric material property
matrix.

{

Density
Thermal expansion coefficient vector.

Thermal expansion reference temperature.
Structural element damping coefficient.

Stress limit for tension.
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TABLE 5 - EXPANDED DEFINITION OF COMMON MATOUT (TABLE 3)—Concluded

Form of MATOUT Definition

SIGCOM Stress limit for compression.

SIGSHE Stress limit for shear.

INFLAG=3

Gll The 3X3 symmetric material property

matrix.

G12

G1l3

G22

G23

G33

RHO Density.

ALPHAl Thermal expansion coefficient vector.
ALPHA?

ALP12

TSUBO Thermal expansion reference temperature.
GSUBE Structural element damping coefficient.
SIGTEN ' Stress limit for tension.

SIGCOM Stress limit for compression.

SIGSHE Stress limit for shear.

XJ1ll The 2X2 transverse shear inverse matrix.
XJ12 (

XJ22

INFLAG=Y4

RHO Density.
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TABLE 6 - EXPANDED DEFINITION OF RESERVED VARIABLE G

Note: These variables are available to the user as already
defined by NASTRAN. They may not be redefined.

Definition of G

INFLAG=1 . 1 XNU 0
5 XNU 1 0
1 - (XNU) 0 0 GG
[
INFLAG=2 G11 Gl2 613
Gl2 G622 G23
613 623 €33

INFLAG=3 Same as for INFLAG=2.
INFLAG=U G is undefined.
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TABLE 7 - COMPREHENSIVE ALPHABETICAL LIST OF VARIABLE NAMES

EITHER RESTRICTED OR FORBIDDEN THE USER

Note: The symbol + denotes those variable names which may
be referenced (but not redefined) by the user; all
others are forbidden the user.

A Bl DELIMITER1 +DUM3
ABORT CARCTRL DELIMITER? D11
+ABS CARD +DER D12
+ALOG CARDPRINT +DEXP D2
ALPH cc DIM D21
+ALPHA CHARACTERS DIMSAVD D22
+ALPHAl CHECKER DISFLAG D3
+ALPHA? CKFLAG DISFLAG1 D4
+ALP12 COL DISFLAG2 +E
ANGLE COMMA DISPAT +ECPT
ARB COMMO +DISP1 ELMDEF
+ATAN COMM1 +DISP2 +ELTEMP
ATEST COMM2 : EL1

Al COMM3 +DLOG EL2

A3 COMMu DMP EL3

Al COMMON DO EN

B COMPLEX DOLLAR ENDG
BAL CONTINUE DS EQFLAG
BDATA +COS +DSIN EQI
BDO +COSTH +DSQRT EQJ
BEG CPVAR DS1AAA EQK
+BGGIND DATA DS1ADP EQT
BLANK +DABS DS1ET EQUA
BLANK15 +DATN DTEST ERMS
BLANK?20 +DCOS +DUM ERRCNT
BLANKS DEFEND DUMDAT +EXP
BLANKS6 DEFER +DUMV F
BLANKS DEFFLAG DUMVAR FATL
BLANKS +DEFORM +DUM1 FENCE
BLANK72 DELFLAG +DUM?2 FILE
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TABLE 7 - COMPREHENSIVE ALPHABETICAL LISTING OF VARIABLE NAMES

EITHER RESTRICTED OR FORBIDDEN THE USER—<Continued

FINFLAG
FORCE
FORMAT
FORT
FORTSAVE
+FORVEC
FPASS
FUNCTIONS
FUNCT11
FUNCT12
FUNCT21
FUNCT22
FUNCT31
FUNCT32
FXV1
FXV2

FXVE
FXV10
F1
F2
F3
Fiy
+Q
GENCHECK
GENSAVE
GETCARD
+QG
GMPA
GMV1

GMV5

GNCHECK

GNCHECK1

GOTO
+GSUBE

GVFLAG

GVl

GV?2
1611
612
+G13
1G22
+G23
+G33
HA

HB

HIER

HOWDEF
+1

ID

IDATA

IDD

IDSAV
+1ID1
+1D2

IE

+ TFBGG

+ TFKGG

+ IFMGG
TF?

+ TFLGE

+ TGMGG

26

IND
INDC
INDSAV
+INFLAG
INPUT
INSCHK
INST
+INT
INTEGER
INTVAR
+INV
I0FL1
+TOPTY
+IP
IPARM
+1S

151
1S2
+IVEC
+IVECN
11

12

I3

Iy

I5
tJ

JE

- JPASS
JPOINTER

JPROGTLAG

KFLAG
K1

tKUGGSW
LENG
LENGER
LENGER1
LIMIT
LINER
LINE1l
LINE?21
LINE22
LINE3
LINEW
LIST
LIST1
LIST?2
LL
LOC
LOC1
LP
LR
MAGPH
MAINVAR
MATCH
MATCH1
MATCH?2
MATCH3
MATEQ
MAXl

MAXS

tMADID
tMATID1

MATIN




TABLE 7 - COMPREHENSIVE ALPHABETICAL LISTING OF VARIABLE NAMES
EITHER RESTRICTED OR FORBIDDEN THE USER—Continued

MATOUT

MEQP

MESS

N

NC
+NECPT

NEWFUN

NG
tNGRID

NMN

NMS

NMU

NN

NOCARDS

NOGONE

NOPIECES

NOREAD

NORES

NOVAR
TNPVT

NULL

NUMB

NUMBER

NUMBERS

NUMBERO5

NUMBERS

NV

NV1

NV?2

N1

N8

OPER
OPTION
OPTION1
OPT1
OPT2
OUTFLAG
OUTFLS
OU?FLQ

OUffLZR
OUTPUT
PACKED
PACKET
PACKID
PACKNO
PACKPAT

PARTITION

PASS
PAT
PATOUL1

PATOUl11
PATA
PATB

PATZ
PATF1

PATF®6
PAT1

PAT?
PAT100
PCC
PERIOD
PHCOM
PHCOM1
PHSTR
+PH10UT
+PI
PTECE
PIECES
POINTER
POLSAV
PRE
PREI
PRFL

PROGFLAG

PUNCH

P1

P2

P3

QCOM
QD

QDIM

QD1

QELNAMQ

QEQU

QOP

QQEQ

QTIME

QTIML

QTIM?
QUE
QX
QXYZ
Q1
Q2
REAL
REM
REPL
RESDEF
RESDIM
RESEQ
RESVAR

+RHO
RIMAG
ROW
RSV1
RSV?2
RUNNO
S
SAVE
SAVED
SAVTAB
SAVVAR
SDR2XX
SDR2XU
SDR2X5
SDR2X6
SDR2X7
SDR2X8

+SIGCOM




TABLE 7 - COMPREHENSIVE ALPHABETICAL LISTING OF VARIABLE NAMES
EITHER RESTRICTED OR FORBIDDEN THE USER—Concluded

+STGSHE TEMPOR VARTYP
+STGTEN TESTDAT V2
+STIN THRU v
+SINTH THRUU Vs
SLASH TIMER V6
SM1CL TRANFLAG1 WORDS
SMALET TRANFLAG? WRITFLAG
SM1T0 TR +XJ11
SMA2ET TRB +XJ12
SMA2T0 TRB1 +XJ22
SOR1 TRB?2 FXNU
SOR? TRIMEX X1
+SQRT TRPAT %2
STNO TR1 :
STR TR2 +Y1
+STRESS +TSUBO +Y2
STRING +TTT :
SUCCEED +T1 +7
SV1 +T2 +71
SV2 | : +22
s1 UL :

Y. UNARY

: UR

s7 v

TA VAR

TABLE VAREQ
+TAN VARGENR

TDIML VARFLAG

TDIM? VARN
+TEMP VARNAM
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SYMBOLIC EQUATION EXPRESSION

Much of the input will consist of symbolic expressions.
These expressions must be written in FORTRAN and must adhere
to all FORTRAN rules, including those for the naming of real
and integer variables, balanced parentheses, hierarchy of
arithmetic operations, etc. There is one very important
relaxation of the FORTRAN rules. Input to the preprocessor is
matrix-oriented, that is, all variables are considered to be
matrices. Scalars are 1X1 matrices. Therefore, if A and B are
matrices, the preprocessor will (1) recognize the expression
A*B as a matrix multiplication, (2) make sure that it is a
well~defined matrix multiplication (although a 1X1 matrix may
multiply a matrix of any order), and (3) generate the code
necessary to perform the multiplication. This preprocessor-
defined symbolic definition of matrix operations is an important
extension to the available FORTRAN capability.

The functions listed in Table 1 and the four new functions
TR, INV, DER, and INT may never be used as variable names. Of
these four new symbolic functions, only the following two are
operational at the present time:

TR matrix transpose function
INV matrix inversion function

The TR function may be used in the preprocessor input to
indicate the transpose of a matrix or a matrix expression, but
should not be used in such a way that the transpose of an entire
right-hand side of an expression is taken, since this would prove
extremely wasteful. The following three examples will indicate
some uses of the transpose function. Each example should be
considered as the right-hand side of an equation. All the
variables refer to matrices.

Example 1: TR(A)*B

Example 2: TR(A)

Example 3: TR(C1*TR(E1)*T1)*G(C1*TR(E1)*T1)
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All three examples illustrate acceptable uses of the
transpose function, although the second example will generate
unnecessary coding. The preprocessor will take ah expression
such as that in the first example and generate a call to a
NASTRAN matrix multiply routine, and will at the same time set
a flag which will indicate that B is to be multiplied by the
transpose of A. However, the actual transpose of A will never
be computed; the transpose operation will be performed by
referencing the elements of A in a different manner.

The purpose of the INV function is to numerically invert a
nonsingular matrix. The preprocessor will generate the coding
necessary to check for a singular matrix; however, every use
of the INV function will produce this same error processing
coding. The user may thus wish to hand-optimize his generated
subroutine to remove all but one sequence of this error-checking
coding.

Through a special preprocessor variable called DETERM, the
user can obtain the determinant of his matrix for subsequent
‘calculations. One possible source of error exists, as follows:
Should the user employ the INV function more than once in a
particular packet and wish to use several of the determinants,
he should save the wanted determinants immediately after their
generation. In the generation of the FORTRAN coding produced by
interpretation of the INV function the same variable DETERM is
used to store the determinant no matter how may times INV is
used. Consult Sample Program 2 as to the method of avoiding the
error. '

Variables forbidden the user and those which may only be
used under certain limitations are listed alphabetically in one
comprehensive listing in Table 7, which is a compilation of all
of the variable names from Tables 1 through 6, and includes the
preprocessor-allowed functions, TR, INV, DER, and INT. If an
allowed FORTRAN function (Table 1) is used in the definitions of
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variables in the Stiffness Matrix Differential or Mass Stiffness
Matrix Packets, the functions must be in double-precision form.

In all other packets, the functions must be in single-precision

form. Tables 1 through 7 may be found on pageé 13 through 28.

RESTRICTIONS ON USE OF PACKETS

In adding a new element to NASTRAN, only one packet other
than the Preliminary Data Packet is needed—the Stiffness Matrix
Packet. If other packets are included, and errors are discovered
in these other packets during the preprocessor run (although
none are found in the Stiffness Matrix Packet), only the
packets with errors will have to be submitted again on a
subsequent run. At the user's option, the user's parameter cards,
described in subsequent paragraphs, specify (among othef items)

a preprocessor run number for this dummy element being generated
which enables the user to keep track of the number of restarts

»

attempted.

GLOBAL PARAMETER CARDS

These cards provide information which remains pertinent
throughout the data deck and guides the preprocessor in the
execution of the data. They are, therefore, global parameter
cards in the sense that they provide a basic framework for all the
user data that follow .

Mandatory Cards

The first set of cards in the user's input data deck is
supplied to specify certain program optidns to the pféprocessor.
The following four option parameters must be specified by the
user either by permitting default values or by prov1d1ng the

appropriate card in the input deck:



e Output parameter
¢ Run number parameter
e Maximum number of SNOBOL statements to

be executed
e Dump parameter
Note that these four mandatory parameters and the other optional
parameters described in the subsequent paragraphs may be submitted

in any order.

e The Output Parameter
This card specifies how the FORTRAN coding that has been
generated is to be printed and/or punched. Punching of the
output allows the user to hand-change minor details in the

generated coding without rerunning the preprocessor. The format

for the card is as follows:

PARAM=I where I is an integer with a value of
1l or 2,

=1 Print, but do not punch the output
subroutines and BLOCK DATA sub-
programs
=2 Print and punch as for a 1 value
A value of 2 should be used only when the user is reasonably

certain that the input ‘deck is error-free. The default value

is 1.

e The Run-Number Parameter
This card indicates to the preprocessor whether the current

run of the program is the initial execution or an update to

correct previous errors. This format for the card is as follows:
RUN NUMBER=I, where I is a non-negative integer

indicating the run number.

An initial run is indicated by a parameter value of zero. If

the data is for an initial run, the preprocessor produces a

message stating that fact. An informative message is produced

for all nonzero values of the parameter; the parameter itself

forms parts of the message. The default value is 0.
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Y ?he Maximum--Number of SNOBOL-Statements to be Executed

This card indicates to the preprocessor how many statements
may be executed before a SNOBOL system error occurs. The format
for this card is as follows:

LIMIT=I, where I is a positive integer which,
if given, should be greater than
400,000, since 400,000 is the default
value.
This parameter is used to increase the number of statements

allowed when the input data deck is unusually long.

e The Dump Parameter

This card specifies how SNOBOL variables are to be treated
upon completion of execution. The format for this card follows:
DUMP=A where A is either the word YES or the
' word NO.
The default value, NO, indicates that no SNOBOL variables are
to have their final values printed when execution ends. The
word YES indicates that the SNOBOL variables termination values
are to form a part of the output from the preprocessor. This
parameter aids in the debugging of data decks when the errors

are not readily apparent.

Optional Cards

Six optional parameter cards are available: the PUNCH
PRELIMINARY parameter card, the READ PRELIMINARY parameter
card, the TIME YES parameter card, the GLOBAL VARIABLES=I card,
the PACKET VARIABLES=J card and the DECK SIZE=I card. If the
PUNCH PRELIMINARY parameter card is included, the results of

the interpretation of the Preliminary Data Packet are punched

for submission in all subsequent runs in lieu of the Preliminary
Data Packet. Processing of this punched data will marginally

decrease total preprocessor execution time.



The READ PRELIMINARY parameter card is used only if the run

under consideration is not an initial run, and if the PUNCH
PRELIMINARY card was used to punch the interpreted Preliminary
Data Packed. Use of the READ PRELIMINARY parameter card indicates
that the already-punched Preliminary Data Packet information is
to be read rather than the user's original Preliminary Data
Packet. Failure to include the READ PRELIMINARY card when the
user has substituted the punched Preliminary Data Packet for
his original Preliminary Data Packet will result in the
preprocessor generating error messages and halting execution during
the interpretation of the Preliminary Data Packet.

The user may obtain timing information for the various
data packets composing his particular data deck by coding a
TIME YES card into his parameter card packet. The maximum
number of allowable global and local packet variables may be

increased by coding the two cards

I
J

GLOBAL VARIABLES
PACKET VARIABLES

where I and J are integer values designating the maximum number
of global and leocal packet variables, respectively. The default

value in either case is 75.
The maximum number of cards allowable in the user input data

deck may be increased by using the card
DECK STIZE = I

where I is a positive value. The absence of this card limits
the user to a maximum of 500 input cards.

All of the cards just described permit free format, in
the sense that blanks may be used wherever desired except within
the words themselves. Consider the following examples of a

parameter card packet

PARAMbb = bbl
DUMPbbbbbb = bYES
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where the small letter b designates a blank character. In this
example, the PUNCH PRELIMINARY CARD has been omitted, so the
interpreted Preliminary Data Packet will not be punched; the
input data deck size is limited to 500 cards; and the maximum
number of variables for the global and other packets is 75.
Preprocessor output will be printed but not punched, and all
SNOBOL variable termination values are printed.

PREPROCESSOR CONTROL CARDS

The various control cards for the preprocessor are indicated
here, together with their functions. Some of the cards must be
used at least once per input data packet, while others may. be

used or not as desired.

1. COMMENT X where X is any alphanumeric information which
the user may want to code.

This card is useful in the listing of the input deck. It serves
t0 make the data more readable as the user may code comments as
he would in a FORTRAN program.

2. BEGIN X where X may be any one of the following character
strings (the lower-case letter b representing one
or more blanks):

GLOBAL

STIFFNESS

VISCOUS b DAMPING

MASS :
THERMAL b LOADING

STRESS

STRESS b AND b FORCE
OUTPUT

DIFFERENTIAL b STIFFNESS

This card indicates to the preprocessor a new packet in the
input data; it also serves as a delimiter between the user packets.

If the user has a packet containing an error, the next occurrence
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of a BEGIN card for a subsequent data packet would end processing
of the incorrect packet and begin processing of the next packet.
It must be the first card of each packet with the'exception of

the Preliminary Data Packet, which is assumed to begin immediately

following the parameter cards.

3. END X where X is any desired string of alphanumeric
characters. The function of this card is the same as the "COMMENT"
control card. It may be used as the last card of a particular
packet to indicate the end of a packet. Tor example, the

card "ENDbGLOBALD PACKET" would appear in the listing of the

input deck before the next "BEGIN" card to indicate the end of

the Global Variable Packet.

4. DEFINITIONS b FINISHED
This card serves as a delimiter between Subpackets B and C

within the packets (see page 39); and should be the last card
of Subpacket B. It also indicates the end of a FORTRAN insertion

subpacket (see page 51).

5. INPUT b FINISHED
This card serves as the delimiter to the entire input deck.

It should therefore be the last card of the data deck. It
indicates to the preprocessor that all input data has been read

and processed.

PACKET SETUP

As already noted, all input information with the exception
of the parameter option information is assembled into packets.
Each of these packets but two—the Preliminary Data Packet and
the Output Packet—is itself composed of three mandatory separate
subpackets (Subpacket A, Subpacket B, and Subpacket C) which
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are described in the following paragraphs. If the user finds

it necessary, he may submit a fourth optional subpacket, the
user-supplied FORTRAN insertion subpacket. This subpacket will
be defined by the user in Subpackets B and C. The user may
supply as many insertion subpackets as he finds necessary.

Subpacket A

Since the form of Subpacket A varies in the different
packets, no generalizations can be made other than that it
usually consists of only two or three cards. Each Subpacket
A will be described in detail in the individual packet

descriptions.

Subpacket B

Subpacket B sets the overall specification of all user-
defined variables for a particular packet. It consists of a
set of cards, each—with the exception of the last—having the
following four fields of information on the data card in the

order shown, separated by commas:

Field 1 The variable name

Field 2 The first dimension of the variable (number
of rows)

Field 3 The second dimension of the variable
(number of columns)

Field 4 The manner of definition for the variable.

The first field, the variable name, has several restrictions.
First, the name itself is limited to no more than six characters.
Secondly, the name must conform to all FORTRAN specifications for
variable names. The variable name may not be one of the
preprocessor{s reserved words (Table 7). There is no default
that the user may assume; the existence of a null field in

this location produces a preprocessor error message.

37



The second and third fields define the dimensions of the
variable given in the first field. All user-defined variables
therefore assume the form of a two-dimensional matrix. To
define a column vector, row, or a scalar variable, a user must
define the variable as an 1XN, NX1, or a 1X1 array, respectively.
These two fields may be null, the default value being 1. Cards
such as

w,,,COMM
and X,,2,TERM

| define the variable W as a 1X1 scalar, and the variable X with
dimensions 1X2. The cards

Y, ,,EQUA

7,10,5,TERM

define Y as a 1X1 scalar and Z as a 10X5 matrix.

The ‘final field, the manner of definition for the variable,
will contain one of the four keywords TERM, EQUA, COMM, or
DEFER. TERM indicates that a term-by-term manner of definition
will be employed, i.e., each member of the array will be defined
separately and each term will be defined with a scalar symbolic
equation. In the discussion of the dimensioning of variables
Z and X above, each would be defined separately by scalar
equations in a subsequent subpacket.

The keyword EQUA is specified when the user wishes to
define a given variable by a matrix equation. Here, the user
does not define each element of the vector or matrix but defines
the entire vector or matrix through a FORTRAN-like matrix
equation. Addition, subtraction, multiplication, and exponentiation
are pefmissible,'and the variables upon which the operations
are performed may be matrices, vectors, scalars, and constants.
Other special operators such as the transpose function TR
described earlier are also available for use in the equation. A
more detailed description of these equations appears in the

definition of the next subpacket.
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The keyword COMMON declares the associated variable name
to be a TORTRAN COMMON variable, the COMMON statement being
coded in a user-defined INSERT packet (see page 51). The
user therefore does not have to define the variable explicitly
in Subpacket C although he may use the variable as he would
any other NASTRAN COMMON variable.

The keyword DEFER declares that the user will not define the
variable explicitly in Subpacket C as usual but will define it
through one or more user—éupplied INSERT packets. It is used to
define variables which cannot be defined by any other preprocessor
method.

The default specification of this fourth field is TERM.

The TERM manner of definition is preferred, since the preprocessor
will execute far fewer SNOBOL statements to generate the

necessary FORTRAN coding than if the EQUA mode of definition

were chosen. ’

The last card of Subpacket B contains the preprocessor
control card "DEFINITIONS b FINISHED" as described earlier. It
indicates that the subpacket is complete and that no further
input data for the subpacket follows. A very simple example
of a Subpacket B, which relates to other examples already used,
follows:

, , COMMON
,2,TERM |
, ,EQUA

10,5, TERM

13

W
X
Y
A
DEFINITIONS b FINISHED

b
b
b4
b
E
A more complex example of a Subpacket B is provided in Figure 1.
Variables XLV12, XLV13, XX2, YY3, and A are scalars to be
defined by the term-by-term method. XX3 is a scalar defined
through a matrix equation. Variables V12, V13, XII, XKK1l, XKK,
and XJJ are 3X1 vectors defined by a term-by-term method; and
variables E1, Cl, C2, and C3 are 3¥X2 matrices defined again

through the term-by-term method.
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v12,3,1,TERM
XLV12,,,
v13,3,,TERM
XII,3,,
XKK1,3,1,TERM
XLV13,,,
XKK, 3, , TERM
XJJ,3,1,TERM
£1,3,2,

XX2, 5,
XX3,,,EQUA
YY3,,,

A,y

c1,3,2,
C2,3,2,
€3,3,2,TERM
DEFINITIONS FINISHED

Figure 1 - Example of Subpacket B

Subpacket B has two restrictions, the first being that
each variable name must be a legal one as to FORTRAN conventions
(illegal variables are listed in Table 7), and the second
pertaining to the order of the variables. The FORTRAN coding

will be generated according to the order of the variables as

they are given in this subpacket. Therefore, if Variable A is

to be defined in terms of Variable B, Variable B must precede
Variable A in this subpacket. This requirement is irrespective

of whether the variable is to be defined term-by-term or by a
matrix equation. Therefore, the correct ordering of the variables

in this subpacket is vital to the correct execution of the

generated routine.
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Subpacket C

This subpacket defines variables set up in Subpacket B.
The elements of the variable array may be defined in either
of two ways:
(1) term-by-term, oOT

(2) matrix equation

The data in Subpacket C is given on a series of card sets, one

set for each variable to be defined. The appearance of the

data sets will vary according to the form of definition used.
Term-by-Term. If the user has specified that the variable

is to be defined by the term-by-term method, the card set is

as follows. The first card of the set gives the name of the
variable to be defined, the name starting in Column 1 for the
best optimization of the preprocessor coding. The following

set of cards is coded by the user to define all nonzero elements
of this array. (All variables are considered to be arrays.)

FEach card has three fields:

Field 1 TFirst subscript (Default is 1)
Field 2 Second subscript (Default is 1)
Field 3 Definition of the element of the array
with these subscripts
The three fields are separated by commas, and the user should
left-adjust the fields and compress out all blanks in order to
optimize execution. If the element definition extends beyond
the first card, the user enters a dollar sign ('$ ) in the
Field 3 of each card with the exception of the last. An
example of a card set using the sample definition for X from the
description of Subpacket B is: |
X
1,1,A*B+C
,2,X1-X2 §
*X3+Y3

where X1,1=A“B+C and Xl,2=X1-X2“X3+Y3
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Note the use of the continuation sign and the assumption of
the first subscript for X1,2' The expressions used in a term-
by-term definition may have subscripted variables; indeed,
the user is urged to supply both subscripts for all user-defined
variables, as the preprocessor will execute faster. The expression
is assumed to be a scalar, rather than a matrix expression.
The only non-integer subscript allowed is the variable name IP.
Its value has meaning only in the Stiffness, Mass, Thermal
Loading, and Differential Stiffness Packets. For these packets,
IP contains the current NASTRAN pivot point being calculated.
For an element with N grid points, the variable employing IP as
a subscript must have a dimension of N if the generated
subroutines are to execute correctly.

Matrix Equations. If the user wishes to define the

variable through a matrix equation, the card set is made up as
follows. The first card is punched with the variable name to

be defined, starting in Column 1 for fastest execution. The
user then codes the matrix expression on the next and succeeding
cards, using the same manner of indicating continuation if |
necessary. The matrix expression may be scalar if the user so

desires.
Using the same specifications for Y described in the first

sample, Subpacket B, the user might define Y in the following
manner:

Y

T1%X3+$

X1+Y3

Another example of Subpacket C is given in Figure 2, pages
G4y, us5. This example defines the elements of the variables
specified in Subpacket B in Figure 1. Note that there is no
delimiter to indicate the end of Subpacket C; the preprocessor
will contain to process the input data deck until the next packet
is encountered. Every variable used in the definitions of
Subpacket C must be defined as to dimension, etc., through the
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preceding Subpacket B, unless (1) the variable used is a -
NASTRAN COMMON variable, and the definition is thus already
known to the preprocessor, (2) the variable is global and
already defined in the Global Variable Packet, (3) the variable
is a preprocessor-defined variable, or (4) the variable is a
FORTRAN function.

A special type of matrix equation may be used to generate
certain types of variables. A variable may be generated by
rows or columns instead of by either a matrix equation or a
term-by-term definition. The user declares the variable's
definition to be by matrix equation in Subpacket B (keyword
EQUA).

I



V12
COMMENT

COMMENT X1,...,Yl,...,21,... ARE COMMON VARTABLES AVAILABLE FOR USE
COMMENT

1,,X2-x1

2,1,Y2-Y1

3,,22-71

V13

1,,X3-X1

2,1,Y3-Y1

3,1,23-21

XLV12
,»DSQRT(V12(1,1)**24V12(2,1)**24V12(3,1)**2)
XII

,,V12(1,1)/XLV12(1,1)
2,1,V12(2,1)/XLV12(1,1)
3,1,V12(3,1)/XLV12(1,1)

XKK1

1,1,X11(2,1)*V13(3,1)-XII(3,1)*V13(2,1)
2,1,XII(3,1)*V13(1,1)-XII(1,1)*V13(3,1)
3,1,XIT(1,1)*V13(2,1)-XI1(2,1)*V13(1,1)
XLV13

1,1,DSQRT(XKKL (1, 1)**2+XKK1 (3,1)**2)

XKK

1,1,XKK1(1,1)/XLv13(1,1)
2,1,XKK1(2,1)/XLV13(1,1)
3,1,XKK1(3,1)/XLV13(1,1)

XJJ

1,1,XKK(2,1)*XIT(3,1)-XII(2,1)*XKK(3,1)
2,1,XKK(3,1)*XI1(1,1)-XII(3,1)*Xkk(1,1)
3,1,XKK(1,1)*XII(2,1)=-XIT(L,1)**XKK(2,1)

El

1,1,XII(1,1)

2,1,XI1(2,1)

3,1,XII(3,1)

1,2,XJJ(1,1)

2,2,XJ7(2,1)

3,2,X3J(3,1)

XX2

,»XLV12(1,1)

XX3

COMMENT

COMMENT V13 IS A 3 X 1 VECTOR---TR(V13) IS A 1 X 3 VECTOR
COMMENT XII IS A 3 X 1 VECTOR---SO XX3 IS A 1 X 1 VECTOR,
COMMENT IE, A SCALAR

COMMENT

TR(V13)*XII

FIGURE 2 - Example of Subpacket C
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YY3
1,1, XLV13(1,1)
A

1,1, .5%XX2(1,1)*YY3(1,1)

cl

1,1,-1./XX2(1,1)

2,2,C1(3,1)

COMMENT NOTE THAT ELEMENT (2,2) OF THE ARRAY IS DEFINED IN TERMS
COMMENT OF ELEMENT (3,1)---THE REVERSE WOULD HAVE CAUSED PROBLEMS
3,1,1./YY3(1,1)*(XX3(1,1)/XX2(1,1)-1.)

3,2,C1(1,1)

c2

1,1,-C1(1,1)

2,2,€2(3,1)

3,1,-XX3(1,1)/(xX2(1,1)*YY3(1,1))

3,2,1./XX2(1,1)

c3

2,2,C3(3,1)

3,1,1./YY3(1,1)

FIGURE 2 - Example of Subpacket C - Continued
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The first card in Subpacket C for this type of definition
will contain the variable name to be defined. On succeeding
cards, the user codes the keyword ROW or COLUMN followed by an
integer defining the appropriate row or column. After the
integer, the user punches a comma followed by the row or column
matrix equation definition. This definition will consist of
only a variable name, the variable having been defined earlier
as a row or column vector. The variable being defined must be
defined by either all row definition or all column definitions.

These cards that form the definitions of the variable on
Card 1 may be in any order; the user does not have to define all
of the rows or all of the columns in either ascending or
descending order. The cards are free format. The variable
defining each row or column must be g previously-defined
packet variable. Full matrix equations are not allowable. An

example of this special type of matrix equation follows.

Consider the following example: Let A be the 2X2 matrix to be
defined

where B, C, D, and E are previously defined scalar variables.
The user may define A in terms of B, C, D, and E. If we define

the two vectors F and G to be
F = [B,D] , 6 = [C,E]
then A can be defined in Subpacket C as follows:

A
ROW 1, F
ROW 2, G

If F and G have definitions

F =([B,c1 , G = [D,E]

46



we could have defined A as follows:

A
COLUMN 1, F
COLUMN 2, G

Another special type of matrix equation definition is by
partitions. If a variable to be defined is a square matrix,
the user may define it by partitions.
On the first data card, the user codes the variable name

to be defined. On the second and subsequent cards up to a
maximum of four, the user codes one of the following four
keywords: ‘

(1) UL (define upper left partition)

(2) UR (define upper right partition)

(3) LL (define lower left partition)

() LR (define lower right partition)

After the keyword, a comma appears followed by the partition
definition in the form of a previously-defined variable name.
Let A be a four-by-four matrix as follows:

. a b c d
f g h
A =
i 3 k 1
| m n o) o)

If B, C, D, and E can be defined as follows,

a b] c = [C d]
B = le £ ’ ] h)] °’
i 37 [k 17
D = 3 E =
m n K P
then
L7



using the above example, A could be defined by the set of cards:

A
UL,
UR,
LL,
LR,

O 0O w

The existence of an upper left partition implies the
existence of a lower right partition in the subpacket} an
upper right partition being coded means that a lower left
partition must exist in the subpacket. If only one of each
pair is defined, the missing partition assumes the definition

of the supplied partition. TFor example, to create

-

r a o d
e f g h
c d a b

L g h f

with B and C defined as above, the user codes in the appropriate

Subpacket C:

A
UL, B
UR, C

The lower left and right partitions will be defined by the

preprocessor. The data cards forming the definition are free

format and may be in any order.

General Remarks Concerning Subpacket C.
If a variable is to be defined by a term-by-term definition,

the value of any element of the variable not given in Subpacket
C is defaulted to 0. If a variable is to be defined by a
matrix equation, all members of the variable are defaulted to

0 unless the matrix equation definition of the variable appears

in Subpacket C.
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- If the user wishes to define an element of an array in
terms of another element of the same array, the following two

. rules must be observed:

e If the two elements have different column numbers (second
subscripts), the element with the larger column number
may be defined in terms of the element with the smaller

column number, but not vice versa. TFor example,

A(2,2) = A(3,1)
is acceptable, but
A(3,1) = A(2,2)

is not.

e If the two elements have the same column number, the
element with the larger row number (first subscript)
may be defined in terms of the element with the smaller

row number, but not vice versa. For example,
A(5,4) = A(2,4)
- is acceptable, but

A(2,4) = A(5,u)

is not.

In other words, the preprocessor takes the user's term-by-term
definitions and arranges them so that a column-wise definition
appears.

The following restriction in the use of matrix equations
must be observed. Stated briefly it is this: No more than nine
subexpressions may be coded in any one matrix equation definition.
The following example containing ten subexpressions illustrates

what happens when this restriction is ignored.

Example:
Let the user-variable A have the following definition:
A = (B+0)*(D+E)*(F+G) * (H+W)*(Z+X)*(0+P)* (Q+R)*(S+T)* (U+V)*(B+C)
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where B, C, D, E, F, G, H, O, P, Q, R, 5, T, U, V, and W are
previously defined variables. Further, assume that these
variables are properly dimensioned so that the equation is
legal.

Each of the expressions (B+C), (D+C), etc., is called a
subexpression. Through the Polish notation convertor built into
the preprocessor, the definition of A becomes

A = B, 04D, E+F, G+H, W+Z, X+0O, P+Q, R+S, T+U, V+B

C 4+ fefhddddddd

Through the preprocessor logic, all the subexpressions in this
particular equation must be resolved before the series of
multiplications can be performed. Nine intermediate variables
not available to the user—Q1l, Q2,..., Q9—are used to store
these subexpressions. In the preceding equation, the variables

Ql, Q2,..., Q9 are defined as follows:

Ql = B+0 Q5 = Z+X

Q2 = D+E Q6 = O+P

Q3 = F+G Q7 = Q+R

Q4 = H+W Q8 = S+T
Q9 = U+V

During interpretation, the above equation temporarily becomes
Ql, Q2, Q3, Q4, Q5, Q6, Q7, Q8, QO9, B, CHiwdtdikiis

The resolution of the subexpression B+C transforms the equation to
Ql, Q2, Q3, Q4, Q5, Q6, Q7, A8, Q9, Qli#iwikiss

Now the variable Q1 appears twice in the equation. Furthermore,
it has the new definition Q1 = B+C. But the user desired Q1 to
be the expression B+0 at the beginning of the original equation.

His equation has been transformed into

(B+C)*(D+E)*(F+G) * (H+W)* (Z2+X)
(A *(0+P)%(Q+R)*(S+T)*(U+V)*(B+C))

A
A
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which was not his intent. Unless the user consciously looks
for it, he could easily overlook an error of this type. Nor
will FORTRAN compilation of the generated coding detect the
error. '

To operate within this restriction, the user should break
up large equations having more than nine subexpressions into
smaller equations. In the above example, resolution could take
the following form. '

Al (B+O)*(D+E)* (F+G)* (H+W)*(Z+X)
A Al*(0+P)*(Q+R)*(S+T)*(U+V)#*(B+C)

which would produce proper coding.

FORTRAN USER-SUPPLIED INSERTION SUBPACKET

Some FORTRAN coding situations are not amenable to the
techniques described earlier. For example, there is no way to
code the FORTRAN IF statements which may be used to test for
0-value denominators or to call a user-supplied subroutine.
FORTRAN statements may be incorporated within the generated
coding in one of two ways: either directly, through manual
insertion by the user; or indirectly, by having the preprocessor
code it along with the rest of the routine still remaining to
be coded.

Since the order of specification of the variables in
Subpacket B of a packet defines the order in which the coding
is generated (see page uQ), the inclusion in Subpacket B of the
string

INSERT X

where X is a character string unique to this packet, will cause
the preprocessor to code the FORTRAN statements which appear in
Subpacket C following an INSERT X string in that subpacket.

The preprocessor will consider all cards following the INSERT
card to be part of the insertion subpacket until a DEFINITIONS

FINISHED preprocessor control card is encountered. The
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DEFINITIONS FINISHED control card in this circumstance acts as
a terminator to the INSERT subpacket. For example, suppose in

Subpacket B we have the instructions

A, 1, 1, TERM
B, 1, 1, TERM
INSERT Q
c, 1, 1, TERM
INSERT V

and in Subpacket C we have

INSERT Q
IF(A.EQ.B) GO TO 9105
DEFINITIONS FINISHED
INSERT V

GO TO 9110

9105 C = 0

9110 CONTINUE
DEFINITIONS FINISHED

After the definitions of the variables A and B have been

generated, the coding will be

IF(A.EQ.B) TO TO 9105
C = (normal definition for C)
GO TO 9110

9105 CcC = 0.

9110 CONTINUE

Note the following important points:

1. The preprocessor handles INSERT X as though it were a
variable. Therefore, if several different insertions are desired,

unique X strings will be required.

2. In the Stress Matrix and the Stress and Force Calculation
Packets, variables appear on an options card in subpacket A as
well as in Subpacket B. The variables in Subpacket A are always
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generated after the secondary variables which appear in
Subpacket B. Therefore, if coding is to be inserted after the
definition of a variable which appears in Subpacket A for these
two packets, then the INSERT X string must appear in Subpacket
A immediately following the variable. However, this INSERT X
string should not be counted as a variable in the count that
must also be given in Subpacket A. For example, in Figure 9, the
variable THETA will be computed using the arcténgent’funcfion.,
Since THETA is a function of the elements of the SIG array
and since we wish to test elements of the SIG array, the INSERT X
strings must appear in Subpacket A. But note that the INSERT X
strings are not included in the count on the preceding card.

If coding is to be inserted during generation of the
secondary variables in Subpacket B, the INSERT X string should
appear in the appropriate'place in subpacket B.

3. The user-supplied FORTRAN statements will be coded
exactly as they are punched. Therefore, all FORTRAN rules, such
as starting the coding in.column 7, must be observed. The
preprocessor will not check for FORTRAN syntax errors. ‘

4. Since the subscripts of an array are normally switched
by the preprocessor due to NASTRAN restrictions, it would be
wise for the user to set up a dummy variable if he desires to

add coding containing a subscripted variable.

5.. Care should be exercised by the user in supplying
FORTRAN statement numbers. Statements numbers should be greater
than or equal to ((2(N+1)4l)100), where N is the number of grid
points of the element under consideration. The user should
automatically check the generated routine for such obvious
errors as duplicate statement numbers, since such errors can

easily be directly corrected.
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The user may also insert FORTRAN DIMENSION, COMMON, and
EQUIVALENCE statements into his generated subroutines. He
inserts FORTRAN statements after the preprocessor-generated
DIMENSION statements by coding an INSERT DIMENSION X packet with
the same restrictions as for the INSERT X packet. Statements
may be added after the preprocessor-generated COMMON and
EQUIVALENCE statements by coding INSERT COMMON X and INSERT
EQUIVALENCE X packets, respectively. See Sample Problem 2 in

the Appendix B for an example of this procedure.
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ITII. DATA PACKET DESCRIPTIONS

Descriptions of each of the ten packets follow. Examples
of each packet are included, unless the packet is identical to
another. Tables of variable names which may only be used as
already defined are provided on pages 13-28. Names denied the

user are also listed.

PRELIMINARY DATA PACKET

Logical Cards

The information specified in this packet is used to update
NASTRAN tables and to create FORTRAN COMMON statements that will
be of use to the user in his element subroutines. This packet
must contain three logical cards, each of which may consist of
several physical cards. The following items of information must

be supplied:

Card 1
Field 1 Element name
Field 2 Number of grid points for the element

Field 3 Sequence of digits specifying the degrees of
freedom for the element

Field 4 Indicator as to whether the element is a scalar
element or a structural element

Field 5 Number of permanent elements already residing in
the NASTRAN element library

Field 6 Approach acceptability flag for the element

Field 7 Number of data items for the element listed on
.the connection card

Field 8 Number of data items for the element listed on the
property card

Field 9 Sequence of digits for the logical connection card
(Card 2)

Field 10 Sequence of digits for the logical property card
(Card 3)
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Card 2
The user-defined connection-card variables

Card 3
The user-defined property card variables.
The user enters all of the fields 1 through 10 on the first

logical data card in the packet. If the total length of these
fields is longer than one physical card (80 columns), the user
must continue on a subsequent card(s), entering a dollar sign ($)
anywhere in the last field of the card which is to be continued.
All of the cards but the last must contain the dollar sign. To
avoid overlooking this requirement, the user might do well to
form a habit of coding a $ in a particular column of a card—say
column 72, for example. Examples of the use of the dollar sign

convention are provided in the packet descriptions.

Description of Logical-Card Data Fields

Card 1
Field 1, the element name, must be entered in the form

ELEMx, where x signifies any integer less than 51 and greater
than the number of permanent elements already residing in
NASTRAN. (See the description of Field 5). After NASTRAN has
been successfully updated, the NASTRAN bulk data connection card
and property card mnemonics will be CELEMx and PELEMx, respectively.
The integer quantity x will be a subscripting parameter in the
later generation of BLOCK DATA subprograms. The default value
of x in ELEMx is (Field 5) + 1.

Field 2 must contain an integer which specifies the number
of grid points for the element. There is no default value for

this parameter. The largest value allowed is 100.
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Field 3 specifies the degrees of freedom that the element

may take. This field consists of a string of as many as six
integers, which may be any combination of the integers 1, 2, 3,

4, 5, 6. These integers refer to NASTRAN's presént degrees-of-
freedom. Integer 1, 2 and 3 refer to the x, y, and z translations,
respectively; integers 4, 5, and 6 refer to the rotations about
the %, y, and z axes, respectively. An integer may not appear
more than once in the field. Thus, a wvalue of 123456 indicates
that the element has all six degrees of freedom; the string 12
indicates that only translations in the x and y direptions are
possible. There is no default value for this field.

Field 4 contains the scalar indicator, which is an integer
with three permissible values: -1, 0, or 1. The default value
is 0, which implies that the element is a structural, rather
than scalar, element. A value of 1 indicates that the element
is a scalar element with grid point and component code. A
value of -1 indicates that the element is a scalar element with
scalar points only. At the present time only the structural
element may be added via the preprocessor, so the value in this
field must be 0.

Field 5 indicates the number of permanent elements already
residing in NASTRAN. The default value is 38 (the number of
elements in the Level 12.0 general release version). The
number of elements in Level 15 is 61. This field prevents the
user from generating FORTRAN coding which will then overlay
parameter values of existing NASTRAN elements.

Field 6 contains the approach acceptability flag for the
new element. This variable must be an integer ranging between
the values -2 and +2. The default value of 0 indicates that
any approach is allowable for the element. The values -2 and
+2 indicate that the force and displacement approaches, respectively,
are illegal for the element. The values -1 and +1 indicate that
the element is not used by the force or displacement approaches
respectively. Since NASTRAN does not contain the Force approach
at the present time, the parameter in this field should be 0.
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Fields 7-10 refer to the connection card variables
(CVl, CV2,...) and the property card variables (PV1, PB2,...)
described on page 100. The integer in Field 7 specifies
how many user-defined data items are contained on the connection
card for the new element. (The variable names themselves are
submitted on Card 2 of this packet.) The integer supplied must
be greater than 0 even though there is no default value, since
the anisotropic material angle must be specified in any case
(page 102). The user may use these variables in the definitions
of variables in other packets. He supplies the various
connection variables values to NASTRAN through the NASTRAN
bulk data connection card CELEMx.

Field 8 contains an integer which specifies how many
user-defined data items are contained on the property card for
the new element. This parameter may have a 0 value, indicating
that the element does not make use of a property card—in
which case Card 3 would be omitted from the Preliminary Data
Packet. If so, the element material property ID must then be
specified on the connection card (page 1000. The property
variables themselves are defined on the NASTRAN bulk data
property card PELEMx. The sum of the integers in Fields 7 and
8 must not exceed 97-5N, where N is the number of grid points
for the element.

Field 9 must contain a sequence of n integers, with n the
number specified in Field 7. Each integer indicates the type
of the user-defined variable which is located in the corresponding
position on the connection card. Thus the first integer
supplies the type of the first variable located on Card 2, the
second integer supplies the type of this second integer on Card 2,
and so on. Commas must not be used to separate the integers. The
type of integers and the variable types they stand for in NASTRAN

are as follows:

Integer

Real

BCD

Double precision

Anything not covered by 1, 2, 3 or 4

gaEFwnN
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At the present time only the integer, real, and BCD representations

will be recognized, although future expansion of the preprocessor
will enable any of the various variable types listed to be used.
At this time the user's sequence will be made up of a combination
of 1's, 2's, and 3's. The default value for this field is n
number of 2's.

Field 10 is similar to Field 9 except that it concerns the
user-defined property card variables listed on Card 3 rather
than the connection card variables given on Card 2. The number
of integers must be m, with m the number indicated in Field 8.
Field 10 must be empty if Field 8 contains a 0 value.

Card 2
Card 2 contains the list of user-defined connection card
variables for the new element. The user is presently restricted
to using only real, integer, and BCD variables. Variables
beginning with the letters I, J, K, L, M, or N will become
real variables. The variables must be separated by commas.

Continuation onto other cards is allowed if the $ punch is used.

Card 3
If Field 8 has a non-zero value, the user then supplies
Card 3 which lists the user-defined property card variables
PVl, PV2,... . The format is the same as that for Card 2.
The variables used on this card may not be listed on Card 2,
and vice versa. If the value in Field 8 is 0, this card must be

omitted.

Preliminary-Data-Packet Example and Discussion

In the example of Figure 3, Fields 4, 5, and 6 of Card 1
assume the default values 0, 38, and 0, respectively. The
sample element is to have the name ELEM4O with three grid
points; translation in the x and y directions is allowable.
Fields 7 and 8 indicate one connection card variable and two
property card variables. Fields 9 and 10 indicate that these

variables are to be real variables.
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Card 2 specifies that the user-defined connection card
variable is to be named TH. Card 3 specifies that the user-

defined property card variables are to be named T and FMU.

COMMENT
COMMENT BEGIN PRELIMINARY DATA
COMMENT

ELEM4O, 3, 12,,,, 1, 2, 2, 22
COMMENT CONNECTION CARD VARIABLE
TH

COMMENT PROPERTY CARD VARIABLES
T, MU

END PRELIMINARY DATA PACKET

Figure 3 - Example of a Preliminary Data Packet

GLOBAL VARIABLE PACKET

This packet sets up "global" variables—variables which may
be used in several different packets without being redefined in
gach packet. The Global Variable Packet has the following four

parts:

Preprocessor control cards
Subpacket A
Subpacket B
Subpacket C

Preprocessor Control Cards

The first card of the packet may only contain the string

BEGINGLOBAL. This control card indicates to the preprocessor
that processing of the Global Variable Packet is to begin. Blanks

may be embedded anywhere on this card, even within the string
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itself, as in the example BEGINDGbLbObBbAbLL -in which the letter
b represents a blank. This feature, which applies to all the
packets, facilitates the reading of the input data. The
preprocessor control card COMMENTx, where x is any phase
desired by the user, can appear anywhere within the packet.

Subpacket A

Subpacket A consists of one logicél card (which may
encompass one or more physical cards) which lists all of the
variables that are to be defined as global variables. Subpacket
A may consist of a blank card. If any variables are listed,
they must be separated by commas. The list may overflow onto
successive data cards if the dollar-sign convention is observed.
For example, the following notation

X12, V13, XII, §

VARL, VAR?
specifies that five variables are to be defined in the Global
Variable Packet. Use of the second card is allowable, since a
dollar sign has been punched on the first card. There is one
restfiction to this initial specification of variables, however.
The user must list variables in the order in which they are to
be used in the definitions. Suppose V13 and VARl are to be used
for the definition of VAR2. Then V13 and VARl must be punched
prior to VAR2 on the card. The vafiable;names must conform to
all FORTRAN rules for variable name construction.

If Subpacket A contains only a blank dard, the order of the
variables in Subpacket B (discussed on'pagé 40) is critical,

which is true in all of the packets.

All of the variables listed in Subpaéket B are considered
global variables, whether or not Subpacket A lists any variables.

Consequently, if any of the Subpacket B variables are used in the
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packets that follow without first being redefined, the preprocessor
will use the Global Variable Packet definition. Consider the
example of a global variable A which is redefined in the

Stress Matrix Packet. Each time the variable A is used in the

" packets preceding the Stress Matrix Packet—the Stiffness Matrix,
the Mass Matrix, the Viscous Damping, and the Thermal Loading
Packets—the preprocessor will resort to the Global Variable

Packet for the definition of A. Note that once a global

variable has been redefined, the new definition remains for

any packets that follow.

Subpacket B

In Subpacket B, the user specifies the dimensions and
manner of definition for each of the variables to be defined.
Variables listed in Subpacket B which did not appear in
Subpacket A must also be defined. Thus, if Subpacket A consisted
of only a blank card, the user would have to define all the new

variables in Subpacket B, using the proper order described earlier.

Subpacket C

In Subpacket C, the user actually defines all the variables
symbolically, either term-by-term or with a matrix equation. All
Subpacket B variables not defined in Subpacket C assume the
default value of 0. If a matrix equation definition is supplied,
it overrides the default value. However, a term-by-term
definition will override only those particular array elements
which the user has specified. An example of the use of the zero
default in a term-by-term definition is for the case in which A
is to be a 2X2 diagonal matrix. The user need only code
A(1,1) and A(2,2) since all of the other elements left undefined

will assume the default value of 0.
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Global Variable Packet Example and Discussion

- A complete example of a Global Variable Packet is provided
in Figure 4. In this example the variables V12, V13, XII,
XKK1, XKK, and XJJ are all 3X1l vectors to be defined term-by-
term. XLV12, XX2, YY3, XLV13, and A are scalars to be defined
term-by-term; XX3 is a scalar to be defined through a matrix
equation. Finally, El1, Cl, C2, and C3 are 3X2 matrices to be
defined term-by-term. Note the use of the zero default in
Subpacket C for a term-by-term definition to set C1(1,2),
c1¢(2,1), c2(1,2), Cc2(2,1), C3(1,1), C3(1,2), C3(2,1) and
C3(3,2) to zero. All term-by-term definitions are actual
FORTRAN expressions involving scalars, while the matrix equation
definition for XX3 involves operations upon matrices (a
transpose and multiplication of two previously defined matrices).
The variables listed in Tables 1 through 6 are available to
the user, subject to the restrictions noted earlier. Thus,
COMMON variables X1, X2, X3, Y1, Y2, Y3, Z1, Z2, and Z3 are
defined in Table 3.
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BEGIN GLOBAL
COMMENT GLO3AL VARIABLE LIST
V12, XLV12,V13 3 XITI yXKKLyXLVIZ 3y X KKy XJJpEL1yXX29XX3,YY3,A,C1,C2,C
V12,341, TERM

XLV12,y 4,

V13535, TERM

XII,3,y,

XKK1’3’1,T;RM

XLV13,,,

XKKy3y,TERM

XJJ’3,1’TCRM

E1,3,2,

XX299y

XX3yycQUA

YY3y9,

Ayyy

C1,3,2,

ce2 ’3’2,

C3y9392,TERM

DEFINITIONS FINISHcD

vie

COMMENT

COMMENT  XljyeeosYlyesesZlyesese AR COMMON VARIABL=S AVAILABLZ FOR USE

COMMENT

1,,x2-X1

291,Y2-Y1

39922-171

vi3

1,9X3-X1

291,Y3-Y1

39 1, 23-71

xLviz

9 9 USART(V12(1,1) **24V12(2,1) **2+V12(3,1)%**2)
XI1I

99 V1201, 1) /XLV12(1,1)
291,V12(2,1)/7XiV12(1,1)
391,V12(341)/7XLV12(1,1)

XKK1

1,1, X1I1(2,1)%V13(35,1)~XII(3,1)*V13(2,1)
291y XII(3,1)*¥V13(1,1)-X1II(1,1)*V13(3,1)
391, XII(1,1)*¥V13(2,1)-XII(2,1) *V13(1,1)
XLV13
1,1,DSQARTIXKKL (151) **2¢XKK1 (24 1) **2¢XKK1(3,1)**2)
XKK

191y XKK1(1,21)/XLV13(1,1)

291y XKKL(2491)/7XLV13(1,1)

3919 XKKL1(3,1)/XLV13(1,1)

Figure 4 - Example of a Global Variable Packet
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XJJ

151y XKK(2,1)*XII(3,1)=XII(2,1) *XKK(3,41)

2919 XKK(3,21)*XII(1,1)=XII(3,1) *XKK(1,1)

391, XKK(191)%XII(2,1)=-XII(1,1) *XKK(2,51)

El

191, XII(1,41)

2519XII(2,41)

3,1,XII(3,1)

192,XJJ(1,1)

2929XJJ(2,1)

3,2,XJJ(3,1)

XX2

»a XLV12(1,1)

XX3

COMMENT

COMMENT V13 IS A 3 X 1 VECTOR=---TR(V13) IS A 1 X 3 VECTOR
COMMENT XII IS A 3 X 1 VECTOR=---SO XX3 IS A 1 X 1 VECTOR,
COMMENT IE, A SCALAR

COMMENT

TR(V13)*XII

YY3

1,1, XLV13(1,1)

A

1915e5%XX2(1,1)*YY3(1,y1)

c1

1’1”10/XX2(1,1)

2,2,C1(3,1) .

COMMENT NOT: THAT ELEMENT (2,2) OF THE ARRAY IS DEFINED IN TERMS
COMMENT OF ELEMENT (3,1)=---THE REVERSE WOULD HAVE CAUSED PROBLEMS
39191./7YY3(1y1)*(XX3(Ly1)/XX2(1y1)=104)

352,C1(1,1)

c2

1,1,=C1(1,1)

2,2,C2(3,1)

391y=XX3(1,1) 7 (XX2(1,1)*YY3(1,1))

3,2,14/XX2(1,1) ©

c3

2529C3(3,1)

35151.7YY3(1,1)

END GLOBAL PACKET

Figure 4 - Example of a Global Variable Packet—Concluded
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STIFFNESS MATRIX PACKET

This packet sets up the variables necessary to generate
an element stiffness matrix. The user has available to him
the variables contained in common blocks MATIN, MATOUT, SMAlET,
SMA1I0O, SMA1CL and SMA1DP. The packet has four parts:

Preprocessor control cards
Subpacket A

Subpacket B
Subpacket C

Preprocessor Control Cards

The preprocessor control cards are similar to those in the
Global Variable Packet, except that the first card must be the
string BEGINSTIFFNESS instead of the string BEGINGLOBAL.

Subpacket A

Subpacket A consists of two cards. The first is the
Stiffness Matrix Packet option card which contains two fields:
Field 1 An INFLAG value

Field 2 An indication as to the method used for
the stiffness matrix definition

Card 1
The value of INFLAG in Field 1 governs access to certain

NASTRAN COMMON variables which can be of help to the user in
building his definitions. These variables are related to the
material properties for the element. The INFLAG value must be
one of the integers 1, 2, 3, or 4. There is no default value.
The variables which may be used for a particular value of INFLAG
are indicated in Table 5. If the element uses only isotropic
materials, a value of 1 should be used. However, if the element
may use either isotropic or anisotropic materials, the integer

2 should be specified. Table 6 lists the definitions for the

reserved variable G for INFLAG values of 1, 2, 3, and 4.
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Field 2 must contain one of the two keywofds K or KIJ.
The variable K indicates to the preprocessor that all diagonal
and symmetric 6X6 partitions of the element stiffness matrix are
to be defined separately. For instance, if the number of grid
points specified in the Preliminary Data Packet is 2, the user
must defined K11, K12, K21, and K22 separately in Subpackets B
and C. The only exception is for that case in which a partition
is to be identically zero. If the keyword KIJ is used, the
user specifies the partitions by defining KIJ, the general (I,J)
stiffnesskmatrix partition. The keyword KIJ implies that the
user will be defining the stiffness matrix in Subpacket C by
means of a matrix equation. The equation used will be different
from all other matrix equations in one important respect: All
variables ending with either I or J will represent a series of
variables. I and J assume.different values 1,2,.., N, where
N is the number of grid points. To illustrate, assume the
following form for the general matrix partition KIJ in Subpacket
C:

KIJ = TR(C1*TR(EL)*TI)*G*(CJIJ*TR(E1)*TJ)

If the value of N were 2, the following four equations would

actually be set up:

K11 = (C1*E1T#T1)T G(C1#E17#T1)
k12 = (c1*E1T*T1)T Gc(c2*E1T*T2)
K21 = (c2*E1T*72)T Gg(c1i*E1T*T1)
k22 = (c2*E1T#12)T G(c2*E1T*T2)

Note that the variables Cl, C2, and El must have been defined
in Subpackets B and C as to dimension, manner of definition,
and actual definition. The variables G, Tl, and T2 were
predefined in the preprocessor for the user's convenience via
Tables 1 to 6.
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Card 2
The user codes the right-hand side of a stiffness matrix

equation (hereafter to be known as a stiffness matrix expression)

on the second card of Subpacket A, continuing onto additional

cards as needed by using the dollar-sign convention. The

following several paragraphs are devoted to a discussion of the
stiffness matrix expression, its restrictions, and its implications.
Aﬁy reference to a 6X6 partition will also apply to an alternate
1X1 or 3X3 partition.

The stiffness matrix expression must contain the variable K
or the variable KIJ. KIJ represents a 6X6 matrix partition; K
represents a 6NX6N stiffness matrix with N the number of grid
points of the element. Whichever one is used, it must be
defined in Subpackets B and C. The KIJ or K used within the
stiffness matrix expression indicates what is being computed—
either a 6X6 partition or a 6NX6N matrix, respectively. The
variable used must relate to the value supplied in the second
field of the options card as follows: If K is used in the
stiffness matrix expression, the user has no choice but to
punch K in the options card. If KIJ is chosen for the stiffness
matrix expression, the user may choose to punch either K or KIJ
in the second field of the options cdrd, depending upon whether
he wishes to define the matrix partitions Kil, K12,...,
individually (in which case he will choose K), or whether he
wishes to define the matrix partitions by means of a master
equation (in which case he will choose KIJ). 1In any case, he
has a choice as to the way his matrix partitions will be
dimensioned—as 1X1's, as 3X3's or as 6X6's, according to the
options he supplies.

As previously mentioned, the punching of KIJ on the
stiffness matrix expression and in the second field of the
options card implies that the matrix partitions K11, K12, etc.,
will be defined by a master definition of the variable KIJ in

which I and J will be integers within the closed interval [1.N]
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with N the number of grid points of the element. Therefore,

the user must define KIJ as a 1X1, 3X3, or 6X6 matrix defined
by a stiffness matrix equation (keyword EQUA) in Subpacket B.

In Subpacket C, the user provides the master equation definition
of KIJ. All variables ending with I or J stand for a series of
variables.

If the user has the option of placing variables in either
the stiffness matrix expression or in the definition of variable
KIJ in Subpacket C, he should choose to place them in the
definition of KIJ. This placement will result in fewer FORTRAN
statements in the preprocessor-generated stiffness matrix
subroutine. Therefore, the stiffness matrix expression could
become just K or KIJ, if the entire definition of the stiffness
matrix or the stiffness matrix partitions could be specified in
Subpacket C.

Subpacket B and C

After punching the stiffness matrix expression in Subpacket
A of his Stiffness Matrix Packet, the user punches Subpackets B
and C to completely define all variables used to build the

stiffness matrix or its partitions.

Stiffness Matrix Packet Example and Discussion

In the example of Figure 5, all undefined variables are
either global or reserved. The global variables were listed in
Figure 4. INFLAG has a value of 2. The user has selected KIJ
as his option, thus implying that KIJ will be used in the stiffness
matrix expression, and that variables ending in I or J will
represent N number of variables. The stiffness matrix expression
is A*T#*KIJ, with KIJ defined as a 3X3 matrix in Subpacket B.
As already explained on page 7, each matrix partition will
subsequently be inserted into a 6X6 partition. Finally, the
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definition of the general (I,J)th stiffness matrix partition

KIJ is given in Subpacket C. Since this new element will have

three grid points, as indicated in the Preliminary Data

Packet example (Figure 3), the definition given will generate nine
separate equations—equations in which I and J in the variables

CI, ¢J, TI, and TJ take on different values 1, 2, 3. 1In

Figure 4, the variable E1, Cl, C2, and C3 are defined. Table !
4 indicates that the reserved variables Tl, T2, and T3 are

available for use.

BEGIN STIFFNLSS

2yKIJ
COMMENT STIFFNoSS MATRIX EXPRESSIUN FOR THE (I,J)TH PARTITION

A¥T*KIJ /
COMMENT BEGin LISTING OF STIFFNcSS MATRIX PACKET VARIABLES
KIJy3y3,cQUA

DEFINITIONS FINISHzD

KIJ
TRCI*TR(_1)*TI)*G*(CU*TR(EL)I*TY)
ENU STIFFNIs> PACKET

Figure 5 - Example of a Stiffness Matrix Packet

MASS MATRIX PACKET

The format and restrictions for this packet are identical
to those set out for the Stiffness Matrix Packet just described,
except that the first card will now contain the string BEGINMASS,
and the variables MIJ and M will be used instead of the variables
KIJ, and K, respectively. The COMMON's used by the routine
generated from this packet will be MATIN, MATOUT, SMA2ET,
SMA2I0, SMA2CL, and SMA2DP (Table 3). Table 4 1lists the other

reserved variables available for use with this packet.
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Mass Matrix Packet Example and Discussion

In the example of Figure 6, the mass matrix expression
is MIJ. This fact, together with the M option supplied on
the first card of Subpacket A indicates that the user will
supply specifications for M11, M12,..., MNN separately for
each non-zero MIJ in Subpackets B and C. In Subpacket B, one
scalar variable XMASS is supplied, in addition to the mass matrix
partitions. Note that several partitions are unspecified and
consequently will be assumed to be identically zero. Subpacket
C indicates that the matrix partitions M11, M22, and M33 are
diagonal 3X3 matrices with XMASS on the diagonals. The
definition of A is supplied from the Global Variable Packet
(Figure 4). The COMMON variable RHO's definition is found in
Table 5. Finally, FMU and T are user-defined property card
variables already made available in the Preliminary Data Packet,

Figure 3.

BEGIN MASS
COMMENT SUBPACKEZT A
29 M
COMMENT MASS MATRIX MATRIX cQUATION
MIJ :
COMMENT SUBPACKET B
COMMENT BEGIN LISTING OF MASS MATRIX PACKEZT VARIABLES
XMASSy 9y
M11,343,TERM
M22,3,3,
M339353,TRM
DEFINITIONS FINISHZD
COMMENT SUBPACKET C
COMMcNT PARTITIONS M12,M13,M21,M23,M31,AND M32 ARt IDcNTICALLY ZERO
XMASS
1,1,A¥(RHO*T+FMU) 73,
Mi1
1,1,XMASS(1,1)
292y XMASS (1,1)
393y XMASS (1,1)
M22
1,1, XMASS{1,1)"
2929 XMASS (1,1)
393y XMASS(1,1)
M33 '
1914, XMASS (1,1)
- 2929XMASS(1,1)
3939 XMASS(1,1)
END MASS PACKET

Figure 6 - Example of a Mass Matrix Packet
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VISCOUS DAMPING MATRIX PACKET

This packet is identical to the Mass Matrix Packet as to
format and restrictions, except that the first card of the
packet will contain the string BEGIN VISCOUS DAMPING (with
blanks embedded as needed), and the variables VIJ and V will
be used instead of the variables MIJ and M. The COMMON's
and the reserved variables available are the same for both
packets. Because of the similarity of this packet to others

already described, an example has not been included.

THERMAL LOADING VECTOR PACKET

The format for the Thermal Loading Vector Packet is
similar but not identical to that for the Stiffness Matrix
Packet. The first card will contain the string
BEGINDTHERMALbLOADING. The INFLAG variable on the Subpacket
A options card operates in the usual way. The second option
will be either PPI or PP, with PPI having the same function as
KIJ (except that variables ending on J will no longer carry
any special significance) and PP will function in the same way
as K, '

The second card of Subpacket A will contain an expression
for the thermal loading vector using either the variable PPI
or PP, Just as KIJ must be a 1X1, a 3X3, or a 6X6 matrix, and
K must be a 6NX6N matrix in the stiffness matrix expression,
so must PPI be a 1X1l, a 3X1l, or a 6X1 vector. PP must be a
BNX1 vector with N the number of grid points. The thermal
expansion coefficient vector will likely be used in the
definition of PP to obtain the final thermal loading (as is true
in the example in Figure 7 in which ALPHV is the thermal expansion
coefficient). Remember that when PPI is present on both cards
of Subpacket A, variables ending in J represent only themselves,

and not several other variables.
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If PPI is used in the thermal loading expression, the
user can choose between P or PPI for his options card. How-
ever, if PP is used in the expression, PP must be chosen for
the options card. Whichever variable is chosen for the thermal
loading expression must then be defined in Subpackets B and C.

The user has access to the variable TTI, a vector which
contains temperatures at the different grid points of the
element. For example, the variable TTI(I) would indicate
the temperature at the Ith grid point of the element. Note
that in the example of Figure 7, the variable TBAR in Subpacket
C is the average of the temperaturés at the various grid points
minus some reference temperature TSUBO which enters through the
named COMMON block MATOUT (Table 5).

The COMMONs used by the routine generated from this packet
are MATIN, MATOUT, EDTSP, and TRIMEX (Table 3). Other reserved
variables available for use in this packet are those listed in
Table 4.

Thermal Loading Packet Example and Discussion

On the first card of Subpacket A in this example of
Figure 7, the value of INFLAG is 2. The presence of PPI implies
that the general definition of the Ith vector partition will be

specified. The thermal loading vector expression is
A*T*PPI*TBAR
which implies the following three equations:
A*T#*PP1#TBAR
A*T#*PP2%*TBAR
A*T*PP3*TBAR
The variable A has already been defined in the Global Variable
Packet (Figure 4). T is a property card variable which was
listed in the Preliminary Data Packet, Figure 3. PPl, PP2, PP3,
and TBAR are to be defined through Subpackets B and C (although

according to existing options, only PPI need be specified)f
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In Subpacket B, ALPHV is defined in terms of the COMMON

variables ALPHAl, ALPHA2, and ALP12. (See Table 5.) TBAR's
definition is formed from TSUBO and TTI. TSUBO comes from

the COMMON variable TSUBO (Table 5). The temperature vector

TTI (Table 4) is predefined by the preprocessor. PPI, the

general thermal loading vector, has the definition

TR(TI)*E1*TR(C1)*G*ALPHV. Since PPI is used on both cards of

Subpacket A, it in turn defines the equations

PP1 = TR(T1)*E1®*TR(C1l)*G*ALPHV
PP2 = TR(T2)*E1*TR(C2)*G*ALPHV
PP3 = TR(T3)*E1*TR(C3)*G*ALPHV

The variables El, Cl, C2, and C3 are defined through the Global
Variable Packet (Figure 4). The variables Tl, T2, T3 are the

preprocessor-defined transformation vectors (Table u).

BEGIN THEKMAL LOADING
2,PPI

COMMENT THRMAL LOADING EQUATION
A*T*PPI*T3AR

ALPHY, 3,1, TERM

TBARy s

PPI,y34,cQUA

DEFINITIONS FLINISHED

ALPHV

191,ALPHAL

2491,ALPHA?

3,1,ALP12

TBAR

191, (TTI(LI+TTI(2)+4TTI(3))/734=TSUED

COMMENT ALPHAL1,ALPHA2,ALP12,TSU30 COMZ FROM COMMON MATOUT

COMMZNT  TTI IS THe VECTOR OF GRID POINT TEMPZRATURES

PPI
TR(TI) *E1*TR(CI) *G*ALPHV
END THERMAL LJADING

Figure 7 - Example of a Thermal Loading Packet
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STRESS MATRIX PACKET

This packet generates a FORTRAN subroutine that is used to
pass necessary variables to a routine that will compute element
stresses and forces. These variables are passed as elements
of the NASTRAN array PH10UT. The preprocessor generates a
series of FORTRAN EQUIVALENCE statements to perform this
function.

The first card in the data pack must contain the string
BEGINSTRESS with blanks wherever convenient.

Subpacket A

Card 1

The next card in the data packet, the first of Subpacket A,
will be the options card. The INFLAG option values are the
same as for the Stiffness Matrix Packet already described.
The second option will contain an integer quantity that specifies
the number of words to be loaded into the PH1O0UT array, calculated
as follows. Suppose that there are a total of nine elements in
the variable arrays on the stress matrix card (discussed next).
To this number add N+1, in which N represents the number of
grid points. The sum will be the value to be supplied for the
second option. This number must be less than or equal to 100,
or the NASTRAN table will overflow.

Card 2

The second card of Subpacket A-is the stress matrix card
which must contain a list, in proper order, of all the variables
the user wishes to pass to the stress and force calculation
routine via the PH1OUT array. Since the variables in COMMON
MATOUT are not made available to the Stress and Force Calculation
Packet which follows this packet, MATOUT variables desired for
use in that later packet must be passed through PH10UT, and
therefore must also be listed on the stress matrix card of this

Packet (second card of Subpacket A).
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An example of a stress matrix card follows:
TSUBO, SBl, SB2, SB3, ST

where TSUBO, SBl, SB2, SB3, and ST are Stress Matrix Packet
generated variables. One restriction applies in general to
all stress matrix cards: subscripted variables may not be
listed. If the second word of an array SIG is the only one
being passed, a suitable variable (SIG2, for example) can be
listed on the stress matrix card. SIG2 will then have to be
set to SIG(2) in Subpacket C.

Subpackets B and C

Subpackets B and C are similar to those in other packets.
The user may employ secondary variables to build these stress
matrix card variables. He has access to the global variables
and to the COMMON's MATIN, MATOUT, SDR2X5 (Table 3) and to the

other reserved variables made available in Table U4,

Special Subpacket A

There are certain circumstances which require that Special
Subpacket A be used (Section V discusses these circumstances).
This special subpacket consists only of an options card and a
card containing the string BLOCK DATA ONLY. None of the other
data cards in the Stress Matrix Packet, with the exception of
the BEGIN card and the optional END card, need be supplied
if the Special Subpacket A is used. If the Stress Matrix
Packet with Special Subpacket A is to be used, the example
Stress Matrix Packet of Figure 8 will be replaced by the

following four-card packet:

(1) BEGIN STRESS

(2) 2,35

(3) BLOCK DATA ONLY

(4) END STRESS (optional)

Cards (2) and (3) compose the Special Subpacket A.
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Stress-Matrix Packet Example and Discussion

In the example of Figure 8, the INFLAG option value is 2.
The second option value of 35 was derived as follows: First,
remember that the number of grid points has already been
established as 3 in Figure 3. The preprocessor sets
PH10UT(2) = NGRID(1l), PH1O0UT(3) = NGRID(2), and PH1OUT(4) =
NGRID(3), where NGRID(I) is the Ith grid point of the element
(Table 3). Secondly, add to this value of 3 the sum of the
dimensions of TSUBO, SB1l, SB2, SB3, and ST (these dimensions
being 1X1, 3X3, 3X3, 3X3, and 3X1) for a total of 34. Add
one more and the sum is 35. This final addition is due to the
fact that the processor places the element ID number in PH10UT(1).

The stress matrix card indicates that TSUBO, SBl, SB2, SB3,
and ST are to be inserted into PH10UT(5) through PH1O0UT(35).

Note that the secondary variable ALPHV has not been loaded into
PH10UT. All variables assume their definitions as supplied in
Subpackets B and C, as predefined by the preprocessor or as
supplied in the Global Variable Packet (for Cl, C2, and C3,
and for El1 in Figure 4). Scalar definitions for ALPHAl,
ALPHA?2, and ALPHV are taken from COMMON MATOUT, since the
INFLAG value is 2.

After the Stress Matrix Packet has executed, the variables
on the stress matrix card are made available for use in the
Stress and Force Calculation routine generated. (PH1OUT is
passed: from COMMON SDR2X5, which is available in the Stress
Matrix routine, to COMMON SDR2X7, which is available in the
Stress and Force Calculation routine (Table 3)).
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BEGIN STRLSS ‘ .
2435

COMMENT 35 WOROS WILL 3E PASSED INTO THE STRESS AND FORCE
COMMENT CALCULATION PACKET--THE 35 WORDS ARE

COMMENT tLeMaNT IDC(1) yGRID POINTS(3),TSUBO(L) ,SB1(3 X 3 =9),
COMMENT  S32(3 X 3 =9) 4SB3(3 X 3 =9),AND ST(3 X 1 =3)
TSUBD,S31,Su82,S83,ST

SB1,3,3,EQUA

$8243y3,EQUA

SB83,3453,2QUA

ALPHV’3,1’TLRM

ST,3,1,cQUA

DEFINITIONS FINISHED

SB1

G*C1*TR(c1) *T1

SB2

G*C2*TR(z 1) *T2

SB3

G¥C3*TR(£1)*T3

ALPHYV

1,1,ALPHA1

291,)ALPHA?

3914ALF12

ST

~G*ALPHV

END STRcSS5S .

Figure 8 - Example of a Stress Matrix Packet

STRESS AND FORCE CALCULATION PACKET

This packet generates a FORTRAN subroutine for computing
element stresses and forces. The first card will contain the
string BEGINSTRESS AND FORCE, with blanks wherever convenient.

Subpacket A

Card 1
The first card in Subpacket A (the next data card) is the

options card which contains four fields. All four options will

be integer values. The first, the number of stress words to

be produced by the subroutine, must be less than or equal to 100.

The second, the number of force words to be passed by the .
subroutine, must be less than or equal to 200. Neither of these
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two options has a default value. The third and fourth parameters
supplied will serve as pointers. The third points to the first
word of the complex stress output string, and the fourth points
to the first word of the complex force output string in the
NASTRAN variable COMPLX. Both have a 0 default value. At
the present time, only the 0 value may be specified for these
two variables, which means that the stress and force output for
the new elements must be expressed as real single-precision
numbers, and not as complex representations. The values for
the first two options are derived by adding 1 to the n number of
stress words output by the routine or force words output by the
routine. The addition of 1 is necessary to allow for the element
ID which is passed automatically. If no words are to be produced,
a 0 value will be inserted. The stress and force words will be
passed to NASTRAN according to user specifications supplied to
the Output Packet. The discussion of card 2 which follows will
explain what is meant by stress and force words.

The words output from the routine generated by this
packet will be printed according to specifications given by the
user in the Output Packet. The relationship between the Stress
Matrix, Stress and Force Calculation and Output Packets is

discussed following the Output Packet section.

Card 2

The second card of Subpacket A lists all user variables
(separated by commas) to be passed from the Stress and Force
Calculation subroutine. They will be produced ip the order
in which they are listed on the card, except that the element ID
will automatically be inserted before the list of stress words
and again before the list of force words. However, the user must
not himself punch the element ID on the card. Thus the order
of the output will be: Element ID, stress words; Element ID,
force words. Any secondary variable used to build these variables
need not be listed on this card. No subscripted variables may
be included on the list. ‘
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The variables on this card are interpreted as stress or
force variables according to the first and second options
described in the preceding page. If the first option is a
non-zero integer N and the second option is a non-zero integer
M, then the first N-1 words contained on the second card of
Subpacket A are assumed to be stress words and are placed in
one NASTRAN array; The last M-1 words are assumed to be force
words which are placed in another NASTRAN array. The first
word of each of the above NASTRAN arrays is reserved for the
element ID. If either option is 0, all the variables on the
card will be assumed to be either stress variables or force
variables, as indicated by the non-zero option. Of course,
if both options are zero, there is no need for this packet at

all.

Subpackets B and C

Subpackets B and C are punched as in the other packets to
define the variables listed on the second card of Subpacket A.
The variables listed on the stress matrix card (second
Subpacket~A card) of the Stress Matrix Packet as well as the
reserved variables (Table 4) are available to the user. The
COMMON's used by the routine generated from this packet are
SDR2XX, SDR2Xu4, and SDR2X8 (Table 3).

Stress and Force Calculation Packet Example and Discussion

In the example of Figure 9, the first option value 8

implies that seven stress words are to be passed. The eighth
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BEGIN STRESS AND FORCE
8,0,0,0 :
COMMENT 8 STRESS WORDS WILL BE OUTPUT =-=-- THESE ARE
COMMENT ELEMENT ID (1),SIG(3 X 1 =3),THETA(1) ,SIGP1(1),
COMMENT SIGP2 (1) ,AND TAU(1)
SIGyINSERT A,TH:TA,INSLRT BySIGP1,SIGP2,TAU
SIGy1,3,EQUA
SAVy1,41,0DEFcR
TAU, 939 TERM
SIGP1,,,TERM
SIGP2y 4y, TERM
THETAy1,1,TERM
DEFINITIONS FINISHED
SIG ' :
COMMENT HcERt DISPJ IS THE 3 X 1 TRANSLATION VECTOR FOR GRID POINT J
COMMENT TEMP IS ELEMENT TEMPERATURE
SB1*DISP14582*DISP2+SB3I*DISP3+ST* (TEMP~-TSUBD)
TAU
99 SQRT((SAV(1,1)/2.,) **2+ 3
SIG(1,3) **2)
SIGP1
191, (SIG(1,1)+SIG(1,2))/72.¢TAU(1,1)
SIGP2
19y1,(51I6(1,1)+SI6G(1,2))/72,-TAU(1,1)
INSERT A
SAV(1,1)=5IG6G(1,1)-SIG(2,1)
IF(ABS(SAV(151)) oLTo1.E~15,ANDeABS(24*SIG(3,1)) LTe1.E=15)G0 TO 90
100
IFCABS(5AV(1,41))¢LTe1.5-15)GO TO 9100

DEFINITIONS FINISHED
THETA
1,1,ATAN(2.%SIG(1,3)/SAV(1,1)) *28.64789
INSERT B8

‘ GO TO 9200

9000 THETA(1,1)=0.

GO TO 9200

9100 THETA(1,1)=45,

9200 CONTINUE
DEFINITIONS FINISHED
END STRESS AND FORCE

Figure 9 - Examples of a Stress and Force Calculation Packet
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word (the first to be passed) is the element ID. The 0 value
for the second option indicates that no force words are to be
passed, and all of the variables listed on the next card are
stress variables. There is a 0 value for both the third and
fourth options, as is presently required. The next non-COMMENT data
card indicates the seven stress words to be output which are
S1G(1), SIG(2), SIG(3), THETA, SIGPl, SIGP2, and TAU. These,
together with the element ID, account for the eight words
indicated. Notice the INSERT variable names after SIG and THETA
which indicate that user-supplied FORTRAN coding is to be

added after SIG and THETA are generated. These INSERT variable
names are not to be included in the count as force or stress
variables.

Subpackets B and C in this example are specified in the
usual manner. Note that the variables TSUBO, SB1, SB2, SB3, and
ST are available for use even though they are not redefined here,
since they have been passed from the Stress Matrix Packet
example discussed in the previous packet description (Figure 8).
Note also the use of the reserved variables DISP1, DISP2, and
DISP3 (Table 4), the displacement vectors for the first, second,
and third grid points of the element, respectively. Each of
the vectors DISP1l, DISP2, and DISP3 may have the following
interpretation: If the degrees of freedom (supplied in the
Preliminary Data Packet) are some combination of 1, 2, and 3,
the numbers supplied are three translations. If some combination
of 4, 5, and 6, the numbers supplied are three notations. If
some combination of both of these sets of integers, the numbers
supplied imply all six displacements, three translations plus
three rotations. The variable TEMP is a COMMON variable in
COMMON SDR2X4 (Table 3). A third point to be noted is that the
arguments of the ATAN function are tested using user-supplied,

not preprocessor generated coding.
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Special Subpacket A

Just as in the Stress Matrix Packet, use of the Special

Subpacket A may sometimes be indicated. If so, the example in
Figure 9 would become:

(1) BEGIN STRESS AND FORCE

(2 8,0, 0,0

(3) BLOCK DATA ONLY

(4) END STRESS AND FORCE (Optional)

For discussion of the precise circumstances which prompt the
use of this special subpacket, see Section V.

OUTPUT PACKET

The Output Packet generatés a BLOCK DATA FORTRAN subprogram
which produces updates to various NASTRAN tables containing
NASTRAN FORTRAN format statements. Its use complements the
Stress Matrix Packet and the Stress and Force Calculation
Packet in that it contains the headings and formats needed to
label and print the results of the stresses and forces calculated
by NASTRAN. Therefore, if stresses and/or forces are to be
calculated and printed, all three of these packets-—the Stress
Matrix, the Stress and Force Calculation, and the Output
Packet——ﬁust be submitted. If stresses and forces are not to be
calculated for a new element, these three packets are unnecessary.

The NASTRAN Output File Processor functional module—and
therefdre the Preprocessor Output Packet—is rather complicated.
The logical cards needed by this packet are listed below, with
numbers assigned to facilitate discussion of the various cards
in the pages that follow.

(1) BEGIN OUTPUT
(2) STRESS or FORCE card
(3) Options card

(4) Card containing six integers, five of which are
heading formats
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(5) Sequence of integers ending with a 0, all but
the last are format pieces

(6) A format number Card (u4)

Repeated for
each new heading

(7) TFORTRAN format for a new heading }
format

on Card (5) that represents

(8) Integer from Card (5)} Repeated for each integer
a new format piece

(9) New format piece

Optional Logical Cards:

(10) STRESS or FORCE card (whichever was not
submitted in Card (2))

(17) Repeat of type of information contained in
Cards (3) through (9) above if Card (10)
is punched

(18) DEFINITIONS FINISHED

Discussion of the Cards

Card 2
The information in Card (2), which follows the BEGIN OUTPUT

card, will be either the word STRESS or the word FORCE. This
information will indicate which type of specification output is
to be printed by NASTRAN; stresses or forces. There is no

default value for (2).

Card 3
The options card (3) contains three parameters: the first,

may be either the keyword SORT1l or SORT2; the second, the key-
word REAL or COMPLEX; the third (to be used only if COMPLEX has
been specified as the second parameter), the keyword MAGNITUDE/
PHASE or REAL/IMAG. The user indicates use of the defaults by
coding two consecutive commas on the card or by inserting a

blank card. For example, a card with

SORT1, COMPLEX,
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will have a default value for the third parameter of REAL/IMAG.
However, since the preprocessor does not allow complex stress
or force output at the present time, default Qalues for the
second and third parameters on this card should be used.

- The difference between SORT1 and SORT2 output is noted
here. SORT2 output is available only for Transient-Response
and Frequency-Response NASTRAN problems. In the SORT2 mode,
the output is arranged so that results are printed according to
point ID; the results are printed at every selected time
step (TSTEP bulk data card) for a point ID. 1In the SORT1 mode,
the reverse is true; for each time step, the results are
printed for every point ID. As an example of SORT1 and SORT?2
use, refer to the NASTRAN Programmer's Manual? p.-4 62-1. The
'permanent elements already existing in NASTRAN are presently set
up for both SORT1 and SORT2 Output; formats exist for printing
results from all rigid formats. However, the preprocessor
prevents its new elements from containing SORT1 and SORT2
formats simultaneously. This means that if the SORT1 formats are
to be introduced into NASTRAN for the new elements via the
preprocessor, some change will have to be made before running
a Transient-Analysis or a Frequency-Response problem which
selects SORT2 formats. Actually, under the present rigid
NASTRAN formats, only SORT2 output is available for the
Transient-Response problem.

Two relatively simple solutions to this dilemma are possible.
One solution is to perform a preprocessor run with one set of
formats, e.g., SORT1l, and to then submit a subéequent preprocessor
run to provide optional SORT2 formats. The data for this second
preprocessor ‘run would consist only of the Preliminary Data
Packet and the Output Packet, the input being made up of the set
of SORT2 formats. If SORT2 formats later prove desirable, the
formats could then be linked into NASTRAN. |
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The second solution is to provide SORT1 formats only.
If these formats have been linked into NASTRAN and a Transient
Response analysis is desired, the user places the following
DMAP alter statements in the NASTRAN Level 12.0 or Level 15.0

Executive Control deck:

ALTER 128, 130
CHKPNT OPP1, OQP1l, OUPV1, OES1l, OEF1l$

OFP OPP1, 0OQP1, OUPV1, OEF1l, OES1l, //V, N
CARDNOS

ALTER 136

SDR3, OPP1, OQPl, OUPV1, OES1, OEFl, /OPP2,
0QP2, OUPV2, OES2, OEF2, $

CHKPNT OPP2, OQP2, OUPV2, OES2, OEF2S$
ENDALTER

These DMAP changes will cause NASTRAN to print results
(stresses and forces) in SORT1 format, but will make the changes

required to perform any X-Y plotting.

Card Y4
This card will contain six integers, each separated from

the other by a comma. The first is a pointer to the NASTRAN
FORTRAN array OFP1BD, its value ranging from 1141 to 1400, with
a default of 1141. It determines where the five headings will
be stored in NASTRAN's storage scheme. There is one restriction
to this integer which is noted a little later in the discussion
of (5). The next five integers affect NASTRAN print procedures.
A value of 0, -1, or an integer in the range 217 and 336 may

be used. TFive values must be supplied. If fewer than five
format headings are to be supplied, the user must fill the
remaining integer spaces with -1's. The -1 value is merely a
filler value, used to comply with the five-integer requirement
and does not affect the NASTRAN output. A 0 value produces a
blank line of output during a NASTRAN run. The integers 217
through 336 indicate output-heading FORTRAN format statement
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numbers. The order in which the numbers are listed on the data
card is the order in which NASTRAN will print the lines defined
for those statement numbers. Consider, for example, a card
containing the string 1141, 218, 0, -1, 240, 220. The card
will be interpreted in the following way. The pointer has a
value of 1141. The user will specify in subsequent cards of
the Output Packet complete FORTRAN formats for FORMAT statements
218, 240, and 220. NASTRAN will print the contents of FORMAT
statement 218, follow with a blank line (as a consequence of
the 0), and then print the contents of FORMAT statements 240
and 220, in just that order. The -1 value will not have any
affect, and merely fulfills the requirement that five integers

be supplied on the card.

Card 5

Card (5) contains a sequence of integers which direct the
selection of NASTRAN format pieces. Each "piece" defines a
segment of a line of computer output. Table 8 lists the format
pieces defined by NASTRAN which are available to the user. These
format pieces, when strung together, produce the computer-listing
FORTRAN format for printing stresses or forces. The first
integer is a four-digit packed number (for example, 0101,
which is the same as 101) in which the two right-hand digits
control the number of output lines to be produced by the data
record (a data record being defined as the force or stress daté
for one. element), and the two left-hand digits control the number
of data records contained per line of output. Therefore, at
the user's option, NASTRAN will print stresses and forces for
more than one element on the same line of NASTRAN output. If
the two left-hand digits are both 0's, each line of the NASTRAN
output will contain at most one data record. As an example of
how this first integer will be interpreted, assume that the
integer is either 101 or 1. The data for a single element will
then be printed one data record per line. If data for the
elements are to be processed two data records per line, the
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number would be 201. If one data record were to produce two
lines of output, the integer would be 2 or 102. There is no
default value for this integer.

The sequence of integers which follows this packed four-
digit integer may be continued onto subsequent cards by using the
preprocessor's dollar-sign convention. The last integer of the
sequence must be a 0, which acts as a terminator. When added
to the first integer of (5), the number of coded integers
(including the 0 value), must be less than 140l1. This sum is
the restriction mentioned earlier in the description of Card
(4). Also, the number of integers specified must be less than
or equal to Uu5.

The interpretation of these integers is as follows. None
but the last integer of the sequence may have a 0 value. All
the others must lie within one of the following two closed
intervals: (-40, ~1]1 or [1, 100]. NASTRAN's COMMON block
OFP5BD contains two arrays, ESINGL and E. If I, the integer,
has a value less than 0, NASTRAN will reference ESINGL(-I); a
positive I value will cause NASTRAN to reference E(5*I-4)
through E(5*I).

Since a format piece for I in the closed interval [-40, -32]
is not defined in Table 8, a new format for the entry in
ESINGL must be defined for that value of I. Most existing
ESINGL formats are either FORTRAN X or H formats. 1In any case,
an ESINGL format piece should contain no more than four
characters. I in the interval [29, 39] implies that E(5%I-4),
E(5%I-3), E(5%-2), E(5%I-1), and E(5*I) must be defined. These
five words can be divided into two groups: the first to be made
up of E(5%I-u4) and E(5%I-3); and the second to be made up of
E(5%I-2), E(5%I-1), and E(5*I). The first group is termed
the standard format; the second group is called the alternate
format. The standard format comprises a single E or F format
piece which NASTRAN uses to print non-zero terms. NASTRAN uses

the alternate format if the value to be printed is exactly zero.
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If I is the interval [74, 1001, then E(5%I-4) and
E(5*%I-3) may contain the X, I, or A FORTRAN format specifications.

Cards 6 through 9
The user next defines on Cards (6) through (9) all the
full formats and format pieces left undefined by the preprocessor.
Each of the five integers following the pointer on (4) must have
a full FORTRAN format associated with it. The user must
supply a format for those integers greater than 217 and less

than 336. An integer value of 0 produces a blank line. A value
of -1 defaults to no format. Each format supplied must be
less than 134 characters, or one line of computer output. The
five integers mean that five output lines at most, are available
for each new NASTRAN output heading. The output headings for
the 12 new preprocessor elements—as many as ten per element
format, five for stress and five for forces—equals 120 new
formats in all. These 120 new formats may not exceed 2000
characters. ‘

The preprocessor ensures that any of the five integers
which is greater than zero will find a format match. It does
so in the following manner. First, the user codes a format
number on (6). It must match one of the five integers on (4)
or an error will appear in the preprocessor output, and all
further FORTRAN code generation for the Output Packet will halt.
The actual format is punched on (7) and may spill over onto
additional cards as needed by using the dollar-sign convention.
A left parenthesis must be the first character of the format,
and a right parenthesis must be the last. If either parenthesis
is missing, the preprocessor generates an error; and subsequent
coding stops. This algorithm retains control until all five
integers are defined. Each format should produce one line of
NASTRAN output. '
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The user now defines the format pieces indicated by the
sequence of integers (5). If the integer I is in one of the
closed intervals [-u40, -32]1, [29, 39], or [74, 100], then
specification for the format piece is necessary. Otherwise,
the format piece will be assumed in accordance with the listing
in Table 8.

The I value is punched on (8). This integer must match
one of the integers of the sequence of integers on (5). The
preprocessor generates an error message if no match occurs.
For I in the interval [-40, -32], the user codes on the
subsequent card (9) a four-character format. For I in the
interval [74, 100}, he punches a string of characters, eight
at most. The contents of (9) are the format. The last
character specified must be a part of the format and not a
trailing comma, since NASTRAN automatically places a comma
after the eight-character string specified.

If I is the interval [29, 39], the form of the format
piece will be slightly different. The user first specifies
one E or F FORTRAN format of at most eight characters as the
standard format. He then codes a comma and follows it with a
character string of up to 12 characters which will be the
alternate format. The last character of the string may not be
a comma, since NASTRAN automatically inserts a comma after two
twelveth character.

The user must code the paired cards (8) and (9) until
each previously undefined integer I on (5) has been assigned
an associated format piece. Moreover, the order in which the
format pieces are defined must correspond to that in which the

I values were previously specified on (5).

Cards 10 through 18
If the second card of the Output Data Packet contains the
word STRESS, the user may now code the word FORCE on the

Card (10) and follow it with a succession of cards such as
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those just described for the headings and formats of the stress
output. Thus, the Output Packet may consist of two subpackets,
each of an identical form: one subpacket, with the word

STRESS on the first card, to update NASTRAN formats with respect

to the printout of stress values. The other, with the word
FORCE on the first card, updates NASTRAN formats with respect

to the printout of force values.

OQutput-Packet Example and Discussion

3EGIN OUTPUT

STRESS
COMMENT Wz ARt DZFINING FORMATS FOR SORT1,RzAL OUTPUT
COMMENT NZW HcADING FORMATS AR: 240,220,AND 225

1150,240,404220 41,225

COMMENT

THE FOLLOWING ARE THE I VALUES FOR THE FORMAT PIECES

19y749=44309-339399=49309~339309~4,39,-33,39, $

’33,30,0

COMMENT
240

WS WILL NOW SPcCIFY THE NcW FORMAT HEADINGS

(40X951HE L c MENT STRESSeS FOR ¢l EZM4LDO)

220

(1Xy 7HELEMEINT)

- 225

(3X93HID ¢ 99Xy 6HIIG(1) 910X 46HSIG(2) y10X46HSIG(3) 11X y5HTHETA,, S
11X, 5HSIGP1,11X,5HSIGP2,12X,3HTAU)

COMMENT
74
1X,17
30

WE WILL NOW SPECIFY THc NEW FORMAT PIcCeS

1P51104’0PF801,3X

-33
5X
39

1PE110“’0PF801,3X
DEFINITIONS FINISHED

COMMENT ACCORDING TO THc STRESS ANDO FORCE CALCULATION PACKET

COMMENT 8 VALUES WILL BE OUTPUT, THE FIRST BEING THt tLEMNT ID =--
COMMENT COMBINING THE SPCZCIFIcO FORMAT PIECES,ADUING IN THE APPROPRIATE
COMMENT COMMAS,AND THEZ BEGINNING AND ENDING PARENTHESES(WHICH NAST=AN
COMMENT DOLS) WE GET .

COMMENT  (1XyI795Xy1PEL11e495Xy1PE1daby5X,1Pcl1etyS5Xy1PELL.4y5X,y1PEL1d.u,
COMMENT 5X,1PEL11.495Xy1PEL11.4)

END OUTPUT

Figure 10 - Example of an Output Packet
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Since the word STRESS is coded on the second card of the
example packet, the following data is interpreted with respect‘
to stress values. The third data card, the options card, is
blank, so SORT1 and REAL are the parameters selected by the
preprocessor. The fourth data card indicates that the pointer
into the NASTRAN COMMON block OFPIBD is to be 1150; the new
format headings 240, 220, and 225 are to be defined. During
NASTRAN execution, Format 240 will be printed first, followed
by a blank line. The formats 220 and 225 will be printed next.
The -1 value is included on the card only to fulfill the five-
integer requirement and does not indicate any action to be taken.

The sequence of integers ending with a value of 0 is
supplied on (5). Note the use of the dollar-sign convention to
indicate continuation onto a subsequent card. Through inter-
pretation of the first integer—the packed value—the preprocessor
knows that one line of output is to be produced per data record.

The integer format heading numbers other than 0 or -1 are
defined on (6) through (12). Formats 240, 220, and 225 are
therefore coded in paired cards. Note that in each case, the
first character is a left parenthesis and the last character
is a right parenthesis.

All undefined integers in the sequence on (5) are now
defined. As Table 8 indicates, the -4 value produces a format
piece of 5X. The integers 74, 30, -33, and 39 produce the
following four pieces respectively: 1X, I7; 1PEl1ll.4, OPF8.1,
3X; 5X; and 1PEl1l.4, OPF8.1, 3X. Stress output is printed
following Format 225 in the following format:

1%, I7, 5X, 1PE1l.4, 5X, 1PE1l.4, S5X, 1PE1ll.Wh,
5X, 1PE11l.4, 5X, 1PE1l.4, 5X, 1PEll.4, 5X, 1PEll..4

Therefore, seven element stresses will be printed on each NASTRAN
output line. Note that the format pieces are specified in an
order that corresponds to that in which the I values were
specified on (5). Since there is no card containing the word
FORCE supplied in the packet following the format piece
definitions, no output subpacket for force values is included.
Coding of the packet is ended, and the card containing the
string DEFINITIONS FINISHED verifies that fact.
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TABLE 8 - NASTRAN FORMAT PIECES AVAILABLE

Value of I Format
Standard Alternate

-1 / None
-2 15X |
-3 10X

-4 5X

-5 1X

-5 /10X

-7 16X

-8 2H1

-9 2H?2

-10 2H3

-11 2HY

-12 2H5

-13 7X

-14 /16X

-15 /13X

-16 ¢

=17 /14X

-18 11X

~-19 /2uX

-20 1HO

-21 - . 2H/

-22 2HEN

-23 2HDA

-24 2HDB

-25 /1HO
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TABLE 8 - NASTRAN FORMAT PIECES AVAILABLE—<Continued

Value of I Format
Standard Alternate
-26 23X None
-27 /26X
-28 /9X
-29 /12X
-30 /1H
-31 /20X
1 1PE15.6 OPF6.1, 09X
2 1PE16.6 OPF7.1, 9¥
3 1PE17.6 OPF8.1, 9X
4 1PE18.6 OPF9.1, 9X
5 1PE19.6 OPF10.1, 9X
6 1PE20.6 OPF11.1, 9X
7 1PE21.6 OPF12.1, 9X
8 1PE30.6 OPF21.1, 9X
9 1PE26.0 OPF17.1, 9X
10 1PE24.6 OPF15.1, 9X
11 OPF11.u opPrs.l, 3X
12 | OPF14 .U OPF11.1, 3X
13 1PE28.6 OPF19.1, 9X
1y 1PE37.6 OPF28.1, 9X
15 1PE22.6 OPF13.1, 9X
16 1PE14.6 OPF5.1, 9X
17 OPF15.4 ) OPF21.1, 3X
18 _ OPF9. U4 OPF6.1, 3X
19 OPF15.4 OPF12.1, 3X
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TABLE 8 - NASTRAN FORMAT PIECES AVAILABLE—Continued:

"Value of I Format
Standard Alternate
20 1PE23.6 OPF1u4.1, 9X
21 1PE35.6 OPF26.1, 9X
22 1PE25.6 OPF16.1, 09X
23 1PE50.6 OPFL41.1, 9X
24 OPFu6.u4 OPFu43.1, 3X
25 OPF15.4 OPF12.1, 3X
26 OPF20.4 OPF17.1, 3X
27 OPF1l6.4 OPF13.1, 3X
28 OPF22.4 OPF19.1, 3X
40 1PE9.1 Al, 38X
41 6X,A1,3X I7, 3X
u?2 115 None
; 43 I9, 1X
Ly IHO, I8
45 1X, I13
46 1X, I8
47 1HO, I7
48 6X, I8
49 1X, I15
50 1X, T12
51 110
52 . 17, 1X
53 3X, A4
54 1HO, I13
55 1X, I20
56 5¥X,A1,3X
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TABLE 8 - NASTRAN FORMAT PIECES AVAILABLE—Concluded

Value of T Format
Standard Alternate

57 1X,122 None
58 I12
59 1X, I19
60 Blank
61 I8 Ay,  4X
62 I9 AL, 5¥X
63 I11 Ay, 7X
6U 120 A4, 16X
65 I19 Ay, 15X
66 - 1X, I23 None
67 123
68 I28
69 /1H, I18
70 1HO, I15
71 1HO, Ilu
72 OPF22.u4 19, 13X
73 OPF16.4 I5, 11X
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Discussion of the Interrelationships Among Stress Matrix, and
Force Calculation, and Output Packets

These next remarks apply in general to the examples
provided in Figures 8,9, and 10. Figure 10 is the packet
that will ultimately print the results of inpﬁt packets of
Figures 8 and 9. They show how the Stress Matrix, the Stress
and Force Calculation, and the Output Packets are interrelated.

Eight is the number of stress words to be produced, as
indicated on the options card of the Stress and Force Calculation
Packet. The sequence of integers on (5) in the Output Packet
must specify a format which will correctly present these stress
words to the user via NASTRAN output. For example, in Figure 9
a total of eight stress words are indicated to be produced, the
first being the element ID and the other seven being the stress
values. As we have already noted, these values will be printed

according to the format specified in (5) as follows:

1X, I8, 5X, 1PE1l.4, 5X, 1PE1l.4, 5X, 1PE11.4, 5X,
1PE1l.4, 5X, 1PE1l.4, 5X, 1PE1l.4, 5X, 1PE11.4

We can see the element ID will be printed in the I7 format, and
that the other seven stress words will be printed in the 1PEl1l.4
format. Note that in this example, the value indicating the
number of force words to be produced is 0; consequently a
FORCE card and others to specify FORCE formats are not included.

Using the generated subroutines and BLOCK DATA subprograms
generated by Figures 8, 9, and 10, if SORT1 is to be specified
in the NASTRAN case control deck and if Transient Response or
Frequenéy Response analyses are not to be run, stress output
will consist only of the element ID followed by the specified
seven stress words. If a Transient Response analysis is to
be run, the output will consist of the time, the element ID,
and the seven stress words indicated. In this case, time is
an output word. However, since the time is automatically noted
by NASTRAN, the user may specify his input (in both the Stress
and Force Calculation Packet and the Output Packet) as though time
were not an output word. NASTRAN sets up the format for
printing the time.
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If SORT2 is to be specified in the NASTRAN case control
deck, the output will be the element ID, the time, and the
stress words indicated. In this case again the user specified
his input in the Stress and Force Calculation Packet as though
time were not an output word. However, provision must be made
in the Output Packet for noting the time as has been done in
Figure 10, for example, in which the fourth input card specifies
six integers. The second integer (240) is the first output
heading format. If SORT2 is to be specified, then the first
output heading format integer should be 108, which will cause
the element ID to be labeled and printed. The heading TIME
should be specified next, instead of specifying a heading for
the element ID, as in Figure 10. TFinally, the actual format
piece corresponding to the time should be an E or F format,
rather than the integer format (I7) for the element ID supplied
in Figure 10. The DEFINITIONS FINISHED card indicates the end
of the Output Packet.

The complexity of the Output Packet reflects the complexity
of NASTRAN's Output File Processor. If the user prefers, he may,
through a user-supplied insertion subpacket in the Stress and
Force Calculation Packet, generate a printout of his results
directly via FORTRAN statements in lieu of using the Output Packet.
Although unorthodox, this approach saves the user's time. In any
case, the number of output words must always be included on the

options card of the Stress and Force Calculation Packet.

DIFFERENTIAL STIFFNESS PACKET

The setup of the Differential Packet is identical to that
of the Stiffness Matrix Packet. The user should change all
references to K and KIJ to D and DIJ, respectively. The
variables K11, K12, ..., become D11, D12, ... . The COMMON's
used by the routine generated by this packet are MATIN, MATOUT,
DS1ET, DS1AAA, and DS1ADP, which are listed in Table 3. Table U4

lists the other reserved variables available.
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IV. OPERATING INFORMATION

COMPUTER SYSTEM CONTROL CARDS

For the CDC-6000 series computers, cards similar to the
following are needed to control the execution of the preprocessor:

"ATTACH(PREP, PREPROCESSOR)
RFL, 250000.
NOREDUCE.
SNOBOL(PREP, ,PUN, INPUT)
7/8/9

input data 6/7/8/9

where PREP is the logical file name for the preprocessor
source coding

PREPROCESSOR 1is thée permanent file name under which the
preprocessor is catalogued

PUN is the file containing preprocessor-
generated subroutines and BLOCK Data
subprograms

SNOBOL invokes the system SNOBOL interpreter

INPUT is the file containing the user input data

On the SNOBOL card, the preprocessor name PREP indicates the
SNOBOL program to be compiled by the SNOBOL compiler, and INPUT
is the name of the standard input file containing the input
data. The preprocessor. is written in the SNOBOL computer
language, Version 3. At present, the preprocessor requires an
approximaten@nimum of 2500004 words of central memory, although
less core can be provided at the user's discretion at a cost of
longer running times. Output will be printed and/or punched

as the user options specify.
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NASTRAN CARD FORMAT FOR PREPROCESSOR~GENERATED STRUCTURAL
ELEMENTS

(The reader is assumed to be familiar with NASTRAN Bulk Data
cards in general and with element connection and property cards
in particular.)

The connection card, and,if necessary, the property card, for
a new element will have to be designed by the analyst before
the preprocessor may be used. The new bulk data cards may be
used in a NASTRAN run as soon as the preprocessor-generated
routines and tables have been inserted within NASTRAN.

Names designated for the new connection and property cards
must correspond to the name of the element to be generated.
Thus, for ELEM39, the connection card name would have to be
CELEM39, and the property card name would have to be PELEM39.
For the other elements ELEMj, the connection and property
card names would be CELEMj and PELEM]j, respectively, with j = 40,
41,..., 50. These names are referred to as connection card and
property card mnemonics.

When both a connection card and a property card will be

needed, the following format must be used:

1 2 3 4 5 6 7 8 9 10
CELEM38S EID PID Gl G2 -—- GN CVl etc. etc.
PELEM39 PID MID PV1 PV?2 -——— -— etc.

If only a connection card is needed, a different format must be

followed:

CELEM39 EID Gl G2 - GN CvVl etc.| MID

100




In these format descriptions, the integers 1 through 10 refer
to the different data fields of the bulk data card. The symbols

have the following meanings:

EID Element identification number
PID Identification number of a PELEM39 property
card

Gl1,62,--~GN Grid point numbers to which this element
connects. N is the number of grid points
for this element.

Cvl,...,etc. Connection card variable&‘as épecified in
the Preliminary Data Packet.

MID Identification number of a material property
card. ‘

PVl,...,etc. Property card variables as specified in the

Preliminary Data Packet.

Note the following:

¢ As with element identification numbers for present
NASTRAN elements; EID is arbitrary, but must be unique with

respect to all other elements in the problem.

e¢ The PID on the CELEM39 connection card refers to the

PID on the corresponding property card.

® The MID on the connection or property card refers to a

NASTRAN material bulk data card identification number.
[
e A logical connection or property card may be made up

of a number of 10-field cards. However, at the present time this
number must be fixed; no open-ended cards are allowed. This
number is determined by data supplied to the Preliminary Data
Packet. Also, the total number of data items on the connection
and property cards combined must not be greater than 97-5N, with

N being the number of grid points for the new dummy element.

e If no property card exists, the material identification

number must be the last variable on the logical connection card.

e The connection card variables CVl,..., etc., and the
property card variables must, for now, be real, single-precision
numbers,

101




e The preprocessor requires that a variable corresponding
to an anisotropic material angle be given on the connection

card, even though the value of this variable may be zero for
every use of the element. The preprocessor will assume that this
angle (in degrees) will be the last connection card variable if

a property card exists, or the next~to-the-last connection card
variable (immediately preceding MID) if no property card exists.
This variable must be given and must be included as one of

the connection card data items given in the Preliminary Data

Packet as specified on page 58.

LINKAGE

NASTRAN consists of 15 separate programs or links, one of
which may be termed the super-link. One of the duties of this
superlink is to supervise the movements of the other 14 links
into and out of central memory. At least four links need to be
updated when a new element is to be added. If the analyst makes
full use of the preprocessor, six links will require updating.
Those individuals wanting to use CDC equipment will want to
obtain the Naval Ship Research and Development Center report
which describes a linkage-editor that is an extension of the

standard NASTRAN CDC linkage editor.

Before a new element may be used, the preprocessor-
generated routines and tables must be inserted into NASTRAN. At
present, the updating (re-link-editing) of the appropriate
NASTRAN links must be performed by the user in a separate
computer run after the new routines and tables needed have been
generated by the preprocessor. At some future time, this step
may be incorporated as an automatic function of the preprocessor.
After this link-editing run is complete, the analyst may use
his new element with NASTRAN. In all, three computer runs must
M

Martin, Roger, "A General Purpose Overlay Loader for CDC-6000

Series Cgmputers; Modification of the NASTRAN Linkage Editor,"
Naval Ship Research & Development Center Report 4062 (Apr 73).
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be made before the results with a new element may be obtained:
a preprocessor run, a link-editing run, and a NASTRAN run.

The following paragraphs discuss the re-link-editing of
the NASTRAN links on the CDC 6000-series computers, and explain
just what must be link-edited. Six files are required in the
re-link-editing process:

1. A file of the object decks of the preprocessor-
generated routines and tables.

2. A file containing the NSRDC-modified CDC linkage
editor.

3. A file containing all the object decks in the links
being updated.

4., A file of the overlay structure of the links being
updated.

A file containing NASTRAN in executable form.
A file named LINKLIB which contains the CDC system
library routines.

The Level 12 NASTRAN file (5) indicated is not the standard
release version, but one that contains updates to handle the
new elements. Those wishing to use the preprocessor under
Level 15's dummy element facilities may use the standard
release issued by NASA. Files (1) through (5) for Level 12
may be obtained from the Navy NASTRAN Systems Office (NNSO,
Code 1844) of the Computation and Mathematics Department, NSRDC.

A Sample Link-Edit Run Deck:

The cards in the following example have been numbered to

facilitate discussion.

(1) ATTACH (NEW, SOURCEDECKS)
(2) RUN (S,,,NEW,,NEWOBJ,,,1)
(3) REWIND(NEWOBJ)

(4) ATTACH(LINKEDT, LINKAGE)

(5) ATTACH(LINKLIB, LIBRARY)

(6) ATTACH(NASTRAN, UPDATED)

(7) ATTACH(NASTOBJ, DECKS)
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(8) NOREDUCE.
(9) LINKEDT.
(10) EXTEND,NASTRAN.
(11) 7/8/9
(12) LINKEDIT INFILE=NASTRAN(C), OUTFILE=NASTRAN(C)
(13) LIBRARY NEWOBJ, NASTOBJ
overlay cards for all links to be updated

6/7/8/9

Card (1) attaches to the job the file containing the output
of the preprocessor—the source decks of the new routines and
tables. Card (1) may be omitted if the new source decks are
in card form, in which case the string NEW in Card (2) would be
changed to INPUT. Card (2) invokes the FORTRAN RUN compiler.
(NASTRAN is written in RUN FORTRAN. However, the RUN compiler
needed is a special one. The necessary updates to the standard
RUN compiler are received from COSMIC from which the CDC
version of NASTRAN is ordered.) The user may also obtain
NASTRAN Level 15 compiled under the FORTRAN EXTENDED compiler
from NNSO of the Computation and Mathematics Department. The
extended linkage-editor mentioned as Reference 4 may be used.

The input to the compiler consists of the new source decks.
The new object decks are written on file NEWOBJ. Card (3)
rewinds this object file. The file containing the CDC linkage
editor is attached by Card (4). Cards (5) and (6) attach the
LINKLIB library and NASTRAN, respectively. Card (7) attaches
all the NASTRAN object decks. Although only the file containing
the object decks for the links being re-link-edited is required,
there is no penalty for attaching all the object decks. Card
(8) specifies that the central memory size is not to be reduced
after the linkage editor is loaded. Card (9) loads and executes
the linkage editor. Card (10) signifies that the changes to
NASTRAN are to be permanent. Card (11) indicates the end of the
control card record. Cards (12), (13), etc., are the input to
the linkage editor. Other options are available on the LINKEDIT
card. These options are discussed in the NASTRAN Programmer's
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Manual, Section 5.5. Card (9) could be replaced by

\

LINKEDT(OVERL)

in which OVERL is a file of the source cards (12), (13), etc.
The original NASTRAN file, attached with Card (6), and
the overlay cards for the links that pertain to the preprocessor
must be obtained from NNSO (Level 12).
When this link-edit run has been successfully completed,
the new element will have been fully implemented into NASTRAN.
The new structural element may now be used in é NASTRAN analysis

run.

NASTRAN OVERLAY

This section will discuss which new routines and tables fit
into which link, when a link must be updated, and how to update
NASTRAN when previous updates have already been made.

The NASTRAN 1links 1, 2, 3, 5, 13, and 14 may be updated.
Table 9 lists the variouslroutines and tables and the links in
which each belongs. The functions of the various routines have

already been discussed in Section III.

TABLE 9 - LINKS CONTAINING THE GENERATED ROUTINES AND TABLES

Name of Routine or Link to Recelve Routine or NAS-
NASTRAN COMMON Block TRAN COMMON Block Replacement
IFPCOM, IFSCOM 1

GPTCOM 2

EDSCOM 2

SM1COM 3

SM2COM 3

KLEMi 3

MLEM1 3

VLEM1 3

EDTCOM 5

Mi 5

SDRCOM 13

SELil 13

SELi?2 13

DLEMi 13

DSAl 13

OFPCOM, HEDCOM 4,5,6,12,14
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Since a subroutine is generated only if the appropriate data

packet is used, no confusion exists as to whether or not a
subroutine need by linked into NASTRAN. With the exception

of OFPCOM, HEDCOM, and DSAl, all tables are updated each time

the preprocessor is executed. Table 10 indicates the circumstances

in which the NASTRAN COMMON Blocks must be link-edited into
NASTRAN.

TABLE 10 - LINK-EDITING THE NASTRAN COMMON BLOCKS

Block Name When Re-Link-Editing is Required

IFPCOM, IFSCOM Each time the preprocessor is run

GPTCOM Each time the preprocessor is run
EDSCOM If a new element is to be plotted
SM1COM After each preprocessor run, since a new

stiffness matrix routine is required.

SM2COM If a mass matrix and/or a viscous-damping
matrix routine for the new element to be

link-edited.

EDTCOM If a thermal-loading-vector routine for the
new element is to be link-edited, or if the
new element i1s to be used with other elements
which will have temperature loading.

SDRCOM After each preprocessor run, since output
of displacements, forces, and stresses
make use of this table.

OTPCOM, HEDCOM If the Output Packet has been used as
input to the preprocessor (which is only

true if stress and/or force output is
desired.

DSAl If the Differential Stiffness Packet has
been used as input to the preprocessor.

From Tables 9 and 10 it may seem that Links 1, 2, 3, and
13 must be updated for every new element. When a new element
is to be added to NASTRAN via the preprocessor and a previously
added element is to remain, some manipulation of the table

updates becomes necessary.
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Almost every preprocessor-generated FORTRAN variable in
every generated table is initialized to 0, unless the user
specifies otherwise—the only exceptions being the two variables
IFRMTS and IFMT in table HEDCOM which are initialized to four
blanks per computer word (4Hbbbb) by the preprocessor execution.
This initialization includes those variables which pertain to
the 11 elements not defined in a preprocessor run.

For example, suppose that a version of NASTRAN contains
38 permanent elements, that Element 39 was added via the
preprocessor in an earlier run, and that Element 40 is to be
added without affecting Element 39. The tables for Element 39
and Element 40 must be hand-merged if these two elements are
to reside simultaneously in NASTRAN. When the routines for
Element 40 are link-edited into NASTRAN, the tables to be
link-edited should be the union of the tables for Element 39
and those for Element 40. The union of a zero and a non-zero
number is defined to be the non-zero number. This union must

be performed for every variable in every DATA statement in every
table and must include all new elements that the user wishes to

remain operable. For example, if Element 39, 40, and u43 are
all to be operable in the program, the following original
DATA statements for the variable NWDEST for the three elements

DATA NWDEST/19,11%0/
DATA NWDEST/0,22,10%0/
DATA NWDEST/4*0,21,7%0/

must be merged. The variable NWDEST is a dimensioned variable
with dimension 12. If Element 39 had already been added to
NASTRAN, the addition of ELEMENT 40 would require the DATA

statement

DATA NWDEST/19,22,10%0/

When Element 43 is to be link-edited, this DATA statement must

become

DATA NWDEST/19,22,0,0,21,7%0/
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This merging of tables for every variable in every DATA
statement for every table is not the formidable task it might
seem, since the number of variables is not large, and the same
DATA statement appears in several different tables.

The two exceptions in table HEDCOM mentioned earlier are
the variables IFRMTS and IFMT. Each element of both arrays is
initialized to four BCD blanks, i.e., 4Hbbbb, with b representing
the blank. The user need never alter IFMT, since it is not set
to other than its initial values by these tables and will thus
always appear to the user to be initialized. However, the
variable IFRMTS will change. This variable contains the -
output headings as specified in the Output Packet. Since there
are a maximum of ten output headings per element (five for
stresses and five for forces), and since each output heading
is limited to 133 characters by computer hardware characteristics,
each element is allotted 333 words of IFRMTS (four characters
per word). Element 39 is allotted words 1-333; Element 40,
words 334-666; and so on. Therefore, after the preprocessor
run is made for Element 40 in this example, words 334-666 of
variable IFRMTS will, in general, be filled; words 1-333 and
words 667-3996 will be initialized to uUHbbDD.

If the user wishes to add Element 40 to NASTRAN without
disturbing the previously added Element 39, he will have to
-merge the DATA statements for variable IFRMTS (assuming of
course that Output Packets were specified for both elements).
This merger is affected by placing the DATA statements for
IFRMTS which were generated for Element 40, into the BLOCK DATA
subprogram for Element 39.

The foregoing discussion should enable a user to add a
new element into NASTRAN via the preprocessor without disturbing

any of the elements already added.
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V. OUTPUT CONSIDERATIONS

The output received from a preprocessor run will be a
series of FORTRAN subroutines and BLOCK DATA subprograms. The
output will be printed, punched, or written on an external
storage device, as the user options specify. The subroutines
and the output they produce are listed in the following table.

TABLE 11 - PREPROCESSOR-GENERATED SUBROUTINES

»

Subroutine Quantity Computed

KLEMi Element stiffness matrix

MLEMi Element mass matrix

VLEMi Element viscous damping matrix

Mi Element thermal 1loading vector

SELil Element stress matrix

SELi2 Element stresses and forces

DLEMi Element differential stiffness

' matrix

Note: i = 39, 40,..., 50. KLEM39 is the

stiffness matrix routine for ELEM39.

As many as ten BLOCK DATA subprograms may be produced.
These subprograms contain the table updates which NASTRAN will
use to correctly compute results for the new elements. The
subprograms and the functional modules which contain them are

listed in the table that follows.
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TABLE 12 - PREPROCESSOR-GENERATED BLOCK DATA SUBPROGRAMS

Named Functional Module Which

COMMON Employs the Named COMMON

IGPCOM, IFSCOM Input File Processor

GPTCOM Geometry Processor

EDSCOM Plot Set Definition Processor

SM1COM Structural Matrix Assembler,
Phase 1

SM2COM Structural Matrix Assembler,
Phase 2

EDTCOM Static Solution Generator,
Phase 2

OFPCOM, HEDCOM Output File Processor

DSAl Differential Stiffness Matrix
Generator, Phase 1

ERROR-HANDLING

If a preprocessor run produces no error messages, the
user should make an attempt to compile the new subroutines and
BLOCK DATA subprograms to make sure that he has not coded
"illegal" FORTRAN. If the output compiles correctly, the decks:
are ready to be linked into NASTRAN.

When a user looks at his generated routines he may find
that the dimensions of variables have been reversed, or that
calls have been made to unknown subroutines, or that there are
some inefficiencies or other seeming peculiarities in the coding.
Since the preprocessor only partially checks the FORTRAN coding
in term-by-term definitions, it is conceivable, although not
likely, that the preprocessor might code incorrect FORTRAN.

Some of these situations may be caused by NASTRAN-imposed
restrictions; others may be caused by intentional preprocessor
shortcuts designed to save computing time. The obvious
inefficiencies may be corrected manually by the user, exercising
extreme caution. By changing the punched card output directly,

the user may correct a simple FORTRAN error in the specification
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of a term-by-term definition or make a slight change in the
coding. However, changes to correct coding peculiarities
resulting from NASTRAN-imposed restrictions should be made only
by the experienced NASTRAN programmer.

Error messages returned by the preprocessor are explained
in Appendix A. After the user has identified and corrected
the error, he resubmits his data for another run. He may not
need to resubmit his entire data deck, since some of his packets
may have been successfully processed. An error in a particular
packet causes the preprocessor to discontinue the processing
of that packét and to start the processing of the next logical
packet.

RESUBMITTING DATA

When errors are to be corrected or changes are to be made
in the various data packets, the appropriate packets must be
submitted. For an initial run, the Preliminary Data Packet and
the Stiffness Matrix Packet must both be included, among with
other optional packets to data to be processed. In successive
runs, only the Preliminary Data Packet must be included with
those packets to be changed or corrected. The first card in
the input data will indicate whether or not the run is an
initial one. Table 13 notes the packets needed in changing the
variods quantities of the Preliminary Data Deck. Note that this
table applies only to the Prelimiﬁary Data Packet; changes to
quantities in other packets might likely involve additional
packets. Obviously, if a packet was not needed for an original
run, it will not be needed for a repeat run. The same would
hold true for the use of the special Subpackets A of the Stress

Matrix Packet and the Stress and Force Packet.
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If the preprocessor finds an error in the Preliminary
Data Packet itself, the entire data deck must be resubmitted
when the corrected Preliminary Data Packet is resubmitted,
since the preprocessor will make no attempt to process other
packets if it finds an error in the Preliminary Data Packet.
When a coding error is detected in a data packet, the user
should discard all FORTRAN coding generated by the preprocessor.
A complete routine will be generated when the corrected data

packet is submitted.
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TABLE 13 - INPUT PACKETS NEEDED FOR PRELIMINARY-
DATA-DECK CHANGES

Quantity to be
Changed

Packets Needed

Element name

Number of grid
points

Degrees of freedom

Scalar indicator

Number of permanent
elements

Approach acceptability
flag

Sequence of digits for
connection card;

Sequence of digits for
property card

Number of data items
on connection card

User-defined
connection card
variables

Number of data items
on property card

User-defined property
card variables

Preliminary Data

Stress Matrix (Special Subpacket A,
only)

Stress and Force (Special Subpacket
A, only)

Output

(Note: All subroutine names must be

changed manually.)

All, except for Output

All

None. At the present time, new ,
elements may not be scalar elements

Preliminary Data

Stress Matrix (Special Subpacket A)

Stress and Force (Special Subpacket
A)

Output

Preliminary Data

Stress Matrix (Special Subpacket A)

Stress and Force (Special Subpacket
A)

All, except for Output. (Only the
Special Subpacket A of Stress and
Force is required.)
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APPENDIX A
ERROR MESSAGES

There are 101 situations which will cause an error message
to be printed. Following is a listing of these error messages
and the corresponding numbers which appear in the output,

together with an explanation of each error.

1 BAD ELEMENT NAME: X

The user has not coded the new element name in the correct
manner which is ELEMy, where y is an integer less than 51 and
greater than 38. The Preliminary Data Packet generates this
error. X is the erroneous element name defined through the

input.

2 NUMBER OF GRID POINTS IN ERROR: X

The number of grid points for the new element, the second
data item in the preliminary data, is in error. This number
must be an integer greater than zero and less than 101. X is

the erroneous value obtained through the input data.

3 SEQUENCE OF DIGITS IN ERROR: X

The sequence of integers specifying the degrees of freedom
for the new element is in error. This value is the third
data item in the preliminary data, and it must be a string of
integers each of which is greater than zero and less than seven.

No integer may appear twice. X is the erroneous value.

4 SCALAR ELEMENT INDICATOR IN ERROR: X

The integer designating whether the new element is a
scalar element or a structural element is in error. As scalar
element implementation for the preprocessor does not yet
exist, this value must be zero. This error comes from the
interpretation of the preliminary data; x is the erroneous

value.
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5 NUMBER OF PERMANENT ELEMENTS IN NASTRAN ERROR: X

The integer in the preliminary data designating the
number of permanent NASTRAN elements is in error. It must be
an integer greater than 37 and less than 50. X is the value

in error,.

6 APPROACH ACCEPTABILITY FLAG IN ERROR: X
The approach acceptability flag, found in the preliminary
data, is in error. It must be an integer y < [3]; X is the

erroneous value.

7 NUMBER OF DATA ITEMS ON CONNECTION CARD IN ERROR: X
The integer in the preliminary data designating the number

of variable names on the connection card is in error. It must

be an integer greater than zero and less than 97-5N, where N

is the number of element grid points. X is the erroneous value.

Trying to assume a default also produces this error.

8 NUMBER OF DATA ITEMS ON PROPERTY CARD IN ERROR: X

The integer in the preliminary data designating the number
of variable names on the property card is in error. It must
be an integer greater than -1 and less than 97-5N, where N is
the number of element grid points. An attempt by the user to
obtain a default value will also produce this error message.

X is the erroneous value.

9 ‘ SEQUENCE OF INTEGERS FOR CONNECTION CARD IN ERROR: X

The sequence of integers designating FORTRAN variable type
for all connection card variables is in error. Each integer
must range between zero and five; there must be an integer for
each connection card variable. However, since the preprocessor
can presently handle only user-defined integer and real variables,
the integers must all presently be 1 or 2. This value is the

default value. X is the erroneous value found through

interpretation of the preliminary data.
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- 10 SEQUENCE OF INTEGERS FQR PROPERTY CARD IN ERROR: X
The sequence of integers designating FORTRAN variable
. type for all property card variables is in error. Each
integer must range between zero and five, and there must be an
integer for each property card variable. However, since the
preprocessor can presently handle only user-defined integer
and real variables, these integers must all presently be 1 or

2. This value is the default value. ¥X is the erroneous value.

11 LIST OF VARIABLES ON CONNECTION CARD IN ERROR: X

One of the variables found on the connection card does not
conform to FORTRAN rules for the construction of variable
names, or the name is a NASTRAN common variable. X is the

variable name in error.

12 LIST OF VARIABLES ON PROPERTY CARD IN ERROR: X

One of the variables found on the property card does not
conform to NASTRAN rules for the construction of variable
names, or the name is a NASTRAN common variable. X is the

erroneous variable name.

13 THE NUMBER OF CONNECTION AND PROPERTY CARD VARIABLES
IS GREATER THAN X.

The total of connection and property card variables is
greater than X, the maximum number allowed, which is 97-5N,

where N is the number of element grid points.

14 NUMBER OF ITEMS FOR PROPERTY CARDS DOES NOT MATCH
ACTUAL NUMBER FOUND.

The preprocessor generates this error message if the number
of FORTRAN variable names specified as existing on the property

card does not equal the number of names specified earlier as

- the eighth parameter in the preliminary data.




15 PRELIMINARY ERRORS EXIST, ERROR CHECKING WILL CONTINUE
This error message appears if the user has coded an

erroneous Preliminary Data Packet. Error checking for the

remainder of the preliminary data will occur, whereupon the

program will halt execution.

16 ~NO DATA AT ALL EXISTS - EXECUTION ABANDONED
The preprocessor prints this error message if execution

is attempted with no input data set.

17 INPUT EXHAUSTED WHILE READING PRELIMINARY DATA
The input data deck did not contain enough cards to permit
full processing of the preliminary data. The entire set of

input data has been read.

18 NUMBER OF DATA ITEMS FOR CONNECTION CARD DOES NOT MATCH
ACTUAL NUMBER FOUND

The number of FORTRAN variable names specified as existing
on the connection card does not equal the integer specified as

the seventh preliminary data parameter.

19 INFLAG/OPTION CARD IN ERROR: X
The user has coded the inflag/option card for a particular

packet in an erroneous manner. X is the representation of the

bad card.

20 INFLAG/OPTION CARD DOES NOT EXIST

The preprocessor generates this error message if the
input data deck has been completely read prior to an attempt
to read an INFLAG/OPTION card.
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21 ERRORS IN PRELIMINARY DATA PREVENT FURTHER PROCESSING
If any error exists in the Preliminary'Data Packet, this
error message appears in the output. The preprocessor halts

execution and all subsequent input data is ignored.

22 NUMBER OF STRESS WORDS ERROR: X

The first value on the options card for the Stress and
Force Calculation Packet is in error. This value must be
greater than or equal to zero or less than or equal to 100.

X is the erroneous value.

23 NUMBER OF FORCE WORDS ERROR: X

The second value on the options card for the Stress and
Force Calculation Packet is in error. This value must be
greater than or equal to zero and less than or equal to 100.

X is the erroneous value.

24 OPTION ERROR FOR PACKET: X
The second value on the inflag/option card for the
Stiffness Matrix, Mass Matrix, Viscous Damping Matrix,

Differential Stiffness Matrix, or Thermal Loading Vector Packet
is in error. X 1is the incorrect value.

25 TERMINATION OF EXECUTION REQUESTED
An earlier error could not be rectified. As further

processing is futile, the preprocessor halts execution.

26 INPUT EXHAUSTED WHILE READING MAIN EQUATION

All data had been read prior to an attempt to read the
main expression (e.g., Stiffness expression). For the Global
Variable Packet, this card is the list of global variables.
For the Stress Matrix and Stress and Force Calculation Packets,
this card should be a list of variables to be loaded into the
NASTRAN array PH1OUT.



27 ERROR IN GETVAR

This error message indicates that a terminal error has
occurred in the definition of user variables (Subpacket B),
and all variables cannot be defined. The usual cause for
this error is an absence of input data; preprocessor execution

stops at once. Earlier messages should point to the reason

for the error.

28 ERROR IN DEFELEM

The input data was exhausted while processing Subpacket C.
The error message is fatal;‘preprocessor execution halts
immediately. Earlier error messages should point to the reason

for the error.

29 NO OPERATOR IN HIERARCHY-INPUT IS: X

The user has coded an erroneous equation. This error
message comes from the infix notation to Polish notation
convertor. Error message 30 should appear as a pointer to the
bad equation. The error comes from the interpretation of a
main expression (e.g., stiffness expression) or an equation in
a particular Subpacket C. X serves as a relative pointer to
the position of the error in the equation. Typical sources
of errors are unbalanced parentheses, unrecognizable operators,
and failure to code an operator between variable names

(e.g., AbB to mean A+B, where b is a blank character).

30 USER HAS CODED AN ERRONEOUS EQUATION: X
The bad equation is given by X. Something in the equation

confuses the Polish convertor.

31 VARIABLE NAME IS TOO LONG: X
The user-defined variable name X, which appears in a

Subpacket B, is longer than six characters. X is the bad name.
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32 DEFINITIONS FINISHED CARD IS MISSING

The preprocessor attempted to read the next data packet to
resolve all undefined variable names. The uéer should look
for the absence of a "DEFINITIONS FINISHED" card at the end of

a particular Subpacket B.

33 PREPROCESSOR HAS TRIED TO READ NEXT PACKET TO DEFINE
ALL VARIABLES

An undefined variable(s) exists in a particular packet.
Look at the table of variables at the end of the packet output

prior to the code generation for the undefined variable(s).

34 USER HAS TRIED TO DEFINE THE NULL STRING AS A VARIABLE
Subpacket B contains a mispunched card. A typical error
would be trying to assume a default and misplacing the necessary

comma. In any case, the first field on the card is incorrect.

35 ILLEGAL ATTEMPT BY USER TO REDEFINE THE RESERVED NAME: X
The user has attempted to redefine a NASTRAN common

variable or preprocessor-defined variable. The use of the name

appears in Subpacket B for the current packet under consideration.

X is the variable name in error.

36 . NOT ALL VARTABLES CAN BE DEFINED -~ INPUT EXHAUSTED
Subpacket B is in error for the current packets. Typical

sources of errors are mispunched variable names, undefined

variables, and the absence of a "DEFINITIONS FINISHED" card.

In any case, -all input has been read and processed; this

error message forms part of a terminal error message. Error

message 27 should also appear.
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37 THE FOLLOWING VARIABLES ARE UNDEFINED: X

In the interpretation of the main expression (e.g.,
stiffness expression) and Subpacket C for the current packet,
the user has not defined some packet variables. X is the list

of unresolved variable names.

38 THE FOLLOWING VARIABLE MUST APPEAR AND DOES NOT: X
In the Stiffness Matrix, Mass Matrix, Thermal Loading

Vector Viscous Damping Matrix, and Differential Stiffness
Packets, the main variable (i.e., stiffness matrix, mass
matrix, etc.) does not appear. It must appear for the packet
to have a meaning. The forms X may assume are as follows:

(1) KIJ - stiffness matrix

(2) MIJ - mass matrix

(3) VIJ - viscous damping matrix

(4) PPI - thermal loading vector

(5) DIJ - differential stiffness matrix

39 DIMENSIONS ARE WRONG FOR VARIABLE X

In the Stiffness Matrix, Mass Matrix, Viscous Damping
Matrix, Thermal Loading Vector and Differential Stiffness
Packets, the dimensions of the main variable (mass matrix,
stiffness matrix, etc.) are in error. For an interpretation of
X, see error message 38 above. KIJ, MIJ, VIJ, and DIJ may
have the dimensions 3X3, 6X6, or 6NX6N, where N is the number
of grid points for the new element. PPI may have the dimensions
3X1, 6X1, or 6NX1. All of the above variables may be defined as.a
1X1 scalar.

40 THE VARIABLE UNDEFINED IN THE VARIABLE VECTOR IS: X
In Subpacket C for a particular packet, the user defined
a variable which was never used in an equation. X is the

variable name in question.
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41 THE NUMBER OF UNDEFINED VARIABLES IS: X
In Subpacket C for a particular packet, X variables are

undefined either through the NASTRAN COMMON area or through
Subpacket B.

42 THIS PACKET IS ALREADY DEFINED: X

The user has defined two packets with the same name, or
a card exists in the‘input data with the string "BEGIN X",
where X is a packet name. In the former case, remove one of
the packets. For the latter, remove the indicated string.
A typical error would be a "COMMENT" control card containing
the word "BEGIN".

43 PACKET NAME IN ERROR: X
This header card for a packet has a mispunched packet
name. X is the mispunched name. It appears on a "BEGIN"

card.

Ly PACKET ORDERING IS IN ERROR
The ordering of the various packets within the input data
is in error. The correct ordering is:
(1) Preliminary Data Packet
(2) Global Variable Packet
(3) Stiffness Matrix Packet
(4) Mass Matrix Packet
(5) Viscous Damping Matrix Packet
(6) Thermal Loading Vector Packet
(7) Stress Matrix Packet
(8) Stress and Force Calculation Packet
(9) Output Packet
(10) Differential Stiffness Packet
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45 DATA EXHAUSTED IN THE GLOBAL PACKET
The preprocessor ran out of data while processing the
Global Variable Packet. ’

46 UNDEFINED VARIABLE FOUND: X

An unresolved variable occurred in an abnormal part of
the preprocessor coding. The printout of this error message
indicates an error in the preprocessor logic, and the printout
should be sent to the authors to determine the cause for the

error. X is the erroneous variable name.

47 SUBSCRIPT OF VARIABLE IS IN ERROR - EQUATION OF: X
In the term-by-term definition of variable X, one of the

variables used has an illegal subscript. For example, if A

had dimensions of 3X1 and was referenced as A(1,3), this

error message would occur.

48 NEITHER STRESS NOR FORCE WAS SPECIFIED FOR THE OUTPUT
PACKET: X

In the output packet data, the card indicating whether
the headings to be produced are for stresses or forces is in

error. X is the value in error. A typical error would be:

BEGIN OUTPUT
STRESbBSES

X must be either the word "STRESSY" or the word "FORCE". In
this case, X is the bad value "STRESSES".
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43 OUTPUT PACKET INDICATORS IN ERROR: X
In the portion of the Output Packet devoted to either

stresses or forces, the indicators used to compute variable
subscripts are in error. The three fields have the following
permissible values:

(1) Field 1: SORT1 OR SORT2

(2) Field 2: REAL or COMPLEX _

(3) TField 3: REAL/IMAG or MAGNITUDE/PHASE (if necessary)
Error message 49 will appear if any of these three fields
is mispunched. X is the list of the three user-supplied

indicators.

50 INPUT EXHAUSTED WHILE READING OUTPUT PACKET
The preprocessor ran out of input data during the processing
of the Output Packet.

51 HEADING FORMAT STATEMENT NUMBER IS ERROR: X

| In the Output Packet, the user attempted to insert a new
format heading which had an erroneous value X. X must fall
in the closed interval [217,336] or be either zeroc or minus
one. Sources of this error are mispunched data cards or
attempting to define a statement number whose value is not

allowed. X appears on the card containing the six integers.

52 FORMAT NUMBER FOR NEW FORMAT IN ERROR: X

While attempting to define one of the new format ﬁeadings
coded on the card containing the six integers, the user coded
a format number which did not match one of the six integers.
The user has therefore mispunched his heading format number.

X is the erroneous value.

125




53 NEW FORMAT LENGTH IS GREATER THAN 34 WORDS: X
In the specification for a new format heading, the user has

coded a format whose length is greater than 34 words (133

characters). X is the number of words used by the erroneous

format.

54 "~ FORMAT MISSING LEFT PARENTHESIS AND/OR RIGHT
PARENTHESIS: X

The user has left off either the starting left parenthesis
or the terminal right parenthesis or both for the specification
of a new format heading. All new format headings must begin
with a left parenthesis and end with a right parenthesis. X

is the erroneous format.

55 . FORMAT NUMBER TO BE LOADED IS IN ERROR: X

The user has attempted to append more than five new format
heading numbers; only five are allowed. X is the sixth new
format number which is not allowed. Note that there may be

more than 6 erroneous format header numbers.

56 NEW FORMATS CONSUME MORE THAN 20000 CHARACTERS: X
The total number of characters used by the five new
format headings is greater than 20000. X is the erroneous

total number of characters.

57 MORE THAN 45 FORMAT PIECES ARE SPECIFIED
The user has attempted to insert more than the maximum

number (45) of format pieces.

58 ERROR IN WRFORT

The preprocessor encountered a user-error in the portion
of the coding devoted to the generation of FORTRAN coding.
Other error messages should point to the actual reasons for

the program failure.
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59 NUMBER OF PIECES SPECIFIED DO NOT MATCH ACTUAL NUMBER
FOUND

The user has defined more format pieceé than he coded on

the card containing the format pieces to be defined. An
example would be 1, 74, -4, 30, 0 on the format piece definition
card followed by

T4

1X, I7

30

1PE11l.4, OPF8.1, 3X

31

1PE10.3, OPF7.0, 3X.

Format piece 31 was not coded on the above card; therefore;

error message 59 appears in the output.

60 I VALUE FOR FORMAT PIECE IS NOT IN THE PROPER RANGE: X
If a format piece defined by the user has a value I such
that
(1) I < -u40 or
(2) I > 100 or
(3) =32 <1I < 29 or
(4) 39 < I < 74,

then error message 60 appears in the output. I may range in
the two closed intervals [-u40, -1] and [1, 100], but the user
may define I 6nly for I in [-u0, =321, [29, 39] or [74, 100].
Therefore, this error has several meanings. First, an
erroneous I value may have been punched by the user, i.e., an
I value not in the allowable ranges. Secondly, he may be
trying to define an I value which may not be defined. X is

the erroneous I value.
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61 ERROR FLAG SET - NO CODING WILL BE GENERATED

The preprocessor found a user data error prior to FORTRAN
code generation in one of the following packets: Stiffness,
Mass, Thermal, Loading, Stress Matrix, Differential Stiffness,

or Stress and Force Calculation. No FORTRAN code will appear in
the output for this packet until its errors are corrected.

62 USER HAS TRIED TO TRANSPOSE AN ENTIRE MATRIX EQUATION
The user currently may not transpose a matrix equation.
An example would be
A
TR (B*C)

in Subpacket C of a particular packet where A, B, and C are
pfeviously defined matrices., This restriction will not exist
in later versions of the preprocessor. This condition is
detectable only during FORTRAN code generation. Upon finding
the error, code generation stops immediately.

63 ILLEGAL USE OF BINARY OPERATOR IN A UNARY FASHION: X
The user has coded an erroneous equation in a particular
Subpacket C. Binary operators such as * and / expect two
operands, e.g.,: A*B where A and B are operands. Use of such
an operand in a unary fashion (e.g.,: C = #A) will produce this
error message. X will contain the operator in error as well
as the variable definition under which this error occurs. This
error appears during FORTRAN code generation; its appearance

halts the code generation at once.

B4 USER SPECIFIED WRONG DIMENSIONS FOR: X

In Subpacket B for a particular packet, the user defined
a variable with dimensions D1 and D2. However, the preprocessor
has determined during FORTRAN code generation that the variable
should have dimensions D3 and D4 such that D1 # D3 and/or
D2 # D4, Code generation is therefore halted. ¥ contains
the variable in error as well as a printout of D1, D2, D3,

and Dy.
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65 AN UNDEFINED VARIABLE HAS ONLY NOW BEEN FOUND: X

The preprocessor discovered an undefined variable
during FORTRAN generation. As all variables should be resolved
during the interpretation of Subpacket B, this error indicates
an error in the preprocessor logic. The user should return
the output to the authors to determine the reason for the error.

X is the undefined variable.

66 MULTIPLICATION CANNOT TAKE PLACE AS MATRIX DIMENSIONS
DO NOT MATCH: X

During the interprétation of a user-defined matrix equation,
the preprocessor attempted to multiply two matrices whose
dimensions would result in improper multiplication. An example
would be trying to multiply two 3x1 matrices. X contains

both matrices and their preprocessor-determined dimensions.

67 ADDITION CANNOT TAKE PLACE AS MATRIX DIMENSIONS DO
NOT MATCH: X

During the interpretation of a user-defined matrix equation,
the preprocessor attempted to add two matrices whose dimensions
would result in improper multiplication. An example would
be trying to add a 1x3 matrix to a 3xl matrice. X contains

both matrices and their preprocessor-determined dimensions.

68 EXPONENTIATION CANNOT TAKE PLACE AS MATRIX IS NOT
'SQUARE: X

The user has attempted to raise a matrix to a power.
However, the matrix is not square. X contains the matrix name

and its preprocessor-determined dimensions.

69 NEGATIVE OR ZERO EXPONENTIATION CANNOT TAKE PLACE: X
The user has attempted to raise a matrix to the zero or
a negative power. X contains the matrix name and its preprocessor-

determined dimensions.
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70 USER MAY NOT USE G MATRIX WITH AN INFLAG VALUE OF X
The user may use the predefined materials matrix G only
with INELAG values of one, two or three. All other INFLAG

values will produce errors.

71 NUMBER OF VALUES TO BE LOADED INTO PH1O0UT FROM OPTIONS
CARD DOES NOT MATCH ACTUAL NUMBER COMPUTED: X

On the INFLAG/OPTION card in either the Stress Matrix
or the Stress and Force Calculation Packet, the user coded an
integer specifying how many values were to be loaded into
PH10UT. However, the preprocessor has determined that more
variables than this earlier specification will be used. As
an example, let the options card for the Stress Matrix Packet
show 2, 35 indicating that 35 words are to be inserted into
PH10UT. Now let the card containing the variables to be
inserted into PH10UT be TSUBO, SB1, SB2?, SB3, ST, G where

(1) TSUBO is a scalar
(2) SBl is a 3X3 matrix

(3) SB2 is a 3X3 matrix
(4) SB3 is a 3X3 matrix
(5) ST 1is a 3X1 vector
(6) G is a 3X3 matrix

Therefore, 40 variables are to be inserted from this card.
Since these two values are not equal, the preprocessor generates
error message 71. X is the number of words to be inserted

into PH1OUT computed from the card containing the variable names.

72 THERE ARE MORE VALUES TO BE LOADED INTO PH10UT THAN
THERE ARE LOCATIONS AVAILABLE: X

The user may not insert more than 100 variables into
PH10UT from the Stress Matrix Packet and 100 each for stresses
and forces from the Stress and Force Calculation Packet. X is
the erroneous number of variables which the user is attempting

to insert.
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73 ILLEGAL USE OF A FORTRAN FUNCTION IN THE MATRIX
DEFINITION OF X

The user may not use FORTRAN functions in any matrix
equation definition in any Subpacket C. X is the variable

being defined in which the error exists.

74 THERE EXIST UNRESOLVED DEFINITIONS IN THE OUTPUT PACKET
The user has coded an undefined format heading or format
piece number in the Output Packet. One of the following two

cards contains the error,

(1) Card containing the six integers

(2) Card containing sequence of N+1 integers

75 A FORMAT PIECE WITHIN THE RANGE FROM 29 TO 39 IS
GREATER THAN 20 CHARACTERS: X

Let X be a format piece under consideration whose value
falls into the closed interval [29, 39]. Now the format to be
inserted for piece X contains two fields, a standard format
plus an alternate format. The preprocessor separates these
two fields and adds enough blanks in front of the first to
form an eight-character field. If the sum total of characters
found from the modified field one and the original field two

is greater than twenty, this error message appears in the output.

76 A VARIABLE WAS FLAGGED EARLIER AS GLOBAL BUT DID NOT
APPEAR IN THE LIST OF GLOBAL VARIABLES: X

The preprocessor determined that a user-defined variable
was global; however, the variable was found not to be a global
variable. X is the erroneous variable name. This error indicates
an error in preprocessor logic, and the output should be

returned to the authors to determine the reason for the error.
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77 MATRIX IS NOT SQUARE: X

The user has attempted to define a non-square matrix
partition. Depending upon which data packet is under
consideration (Stiffness Matrix, Mass Matrix, Viscous Damping
Matrix, or Differential Stiffness); the user should check his
intermediate equations which produce the partition as to proper
dimensions. X is the illegal partition, and the illegal

dimensions follow X in parenthesis.

78 FORTRAN INSERTION SUBPACKET NAME NOT FOUND IN THE LIST
OF PACKET VARIABLES: X

During the interpretation of the current subpacket, the
preprocessor found a user-defined FORTRAN insertion subpacket
name which was not defined in the previous Subpacket B. The
preprocessor therefore could not determine the ranking of the
insertion subpacket relative to the other packet variables.

X is the undefined subpacket name.

79 THE SOFTWARE FOR THIS PACKET IS NOT YET AVAILABLE
The user has attempted to use the Piecewise Linear
Analysis - Stiffness Matrix Packet or the Piecewise Linear
Analysis - Stress Matrix Packet. The use of either of these

packets by the analyst is illegal.

80 INPUT EXHAUSTED WHILE READING UPDATE PRELIMINARY DATA
PACKET

The input data deck has been exhausted during the reading
of the interpreted Preliminary Data Packet punched by the
preprocessor from an earlier compﬁter run. The user should
check for an extraneous end-of-file or end-of-record terminator

in the middle of his data deck.
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81 ILLEGAL ATTEMPT TO INVERT A NONSQUARE MATRIX - X
. During interpretation of a user-supplied matrix equation,
the preprocessor has found an attempt to compute the numerical
. inverse of a matrix which is not square. X is the illegal
matrix in question, and it is followed by the name of the
variable being defined whose definition calls for the illegal

inversion.

82 ILLEGAL ATTEMPT TO INVERT A SCALAR - X
The user may not try to use the INV function to compute

reciprocals. X is the variable name in question.

83 A TERM-BY-TERM DEFINED VARIABLE HAS ALL ZERO ELEMENTS: X
In any Subpacket C supplied by the user, he may not define
a variable whose elements are all zero. At least one of the
elements of a vector or matrix must be non-zero. All scalars
must be non-zero. If the user desires a variable (scalar,
vector, or matrix) to be ideally zero, he must use a FORTRAN
insertion packet to perform the function. X is the all-zero

variable name.

84 A VARIABLE NAME WAS NOT FOUND WHERE EXPECTED

In a typical Subpacket C, the user codes his variable |
definitions in the following manner. His first card contains
the variable name to be defined. His second and subsequent
cards (if needed) contain the actual definition. For this error
message to be produced, the user must be employing a term-by-
term definition. The preprocessor has read the card containing
the variable name and a number of subsequent cards to define all
elements of that variable. The program then loops to obtain
another variable name. However, such a card was not found, and
the error message indicates this condition. The typical source
of this error is in defining a particular element of a variable
more than once or in mispunching the variable name card such

that the name is not entirely alphanumeric.
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85 ILLEGAL SUBSCRIPT ENCOUNTERED; DATA CARD IGNORED

A term-by-term definition card has three fields: the
first subscript, the second subscript, and the definition for
the element of the current variable being defined having these
subscripts. The first and second fields must each be purely
numerical; they may not have alphabetic information. The
illegal card number will be included in the error message.

86 ILLEGAL DIMENSION ENCOUNTEREDj; PACKET PROCESSING STOPPED
In the current Subpacket B under consideration, the user

has coded a variable's first or second dimension which is not

entirely numeric. As the packet FORTRAN coding produced

depends exactly upon these dimensions of the variables, all

processing of the current data packet is suspended. The error

message will contain the card number of this card containing

the illegal dimension.

87 ILLEGAL MANNER OF DEFINITION IN SUBPACKET B: PACKET
PROCESSING STOPPED

In Subpacket B, the user has employed an illegal mannern-
of-definition field. Therefore, the field contains data which
is not EQUA, TERM, COMM, or DEFER. All subsequent data in
the packet is ignored, and the preprocessor proceeds if

possible to the subsequent data packet submitted by the user.

88 PREVIQUS MATRIX EQUATION DIMENSION MISMATCH: X

In a matrix equation definition for a Subpacket B variable,
the dimensions defined for that variable in Subpacket B do not
match those dimensions dynamically computed by the preprocessor's
interpretation of the matrix equation. As an example, let
variable X have dimension 2X3 defined in Subpacket B. Let the
definition of X be Y#Z in Subpacket C, where Y and Z are 1X3
and 3X1 vectors respectively. The resolution of the equation
Y#Z gives X dimensions of 1X1, or a scalar. But X was defined

as a 2X3 matrix in Subpacket B. Therefore, the error message
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is generated, and generation of the current FORTRAN subroutine
is halted. 1In the generation of a stiffness matrix partition,
a mass matrix partition, a thermal loading vector, a viscous
damping matrix partition, and a differential stiffness matrix
partition, the dynamic dimensions may be less than or equal

to those dimensions defined in Subpacket B. X is the i11-

defined variable followed by the two pairs of dimensions.

89 TOO MANY PACKET VARIABLES: INCREASE DIMENSION SIZE

In the current packet under consideration, the user has
defined more than 75 distinct variable names. The user should
employ the PACKET VARIABLES parameter card to increase the
number of allowable user-defined variable names. If such a
card is already in use, he should increase the integer field
of the card, '

90 ILLEGAL SPECIFIER FOR MATRIX GENERATION BY
PARTITIONS: X

In the matrix equation definition of a matrix by partitions,
the data card defining a particular partition does not contain
one of the keywords UL, UR, LL, or LR. As an example, let
variables A, B, C, and D be previously-defined 2X2 user matrices

and E be a 4XY4 matrix defined as follows:

A B ’
E =
C D
In Subpacket B, the user would define E to be a u4X4 variable

defined through a matrix equation. The user might then code

in Subpacket C to define E:

E
UL, A
UR, B
LL, C
LR, D
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Suppose, however, he punches the following:

E

UL, A
UR, B
LQ, C
LR, D

The card containing LQ, C is in error as LQ does not describe
any partition of the matrix E. X is the variable being defined

that contains the illegal partition definition.

91 MORE THAN FOUR PARTITIONS SPECIFIED: X
The user has provided more than four partition definitions

in the matrix equation definition of X.

92 MATRIX MUST BE SQUARE AND NONSCALAR FOR PARTITION
DEFINITION: X

For the user to be able to define the matrix X by the
partition method, X must have dimensions NXN where N is a

positive even integer.

93 ONLY VARIABLE NAMES AND TRANSPOSES MAY BE USED IN
GENERATING PARTITIONS: X

On the cards defining the partitions for user variable X,
the matrix equations defining the particular partition must be
of the forms A, or TR(A), where A is a previously defined
user variable, To reiterate, full matrix equations may not be
used to define partitions of a variable. The user should '
define an intermediate variable with his full matrix equation
for a particular partition definition. He would then use

that intermediate variable name in the partition definition.:
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gy DIMENSION MISMATCH DOES NOT ALLOW PARTITION GENERATION: X
Let variable X have dimensions NXN, where N is a positive,
even integer. The four partition definitions which make up

the definition of X must have resultant dimensions of % X % .

Refer to the example described in error message 90 for the
following. To define the 4X4 matrix E, the variables A, B, C,
and D must be 2X2 matrices. Any other dimensioning for any

of the four definition matrices would produce an error condition.

95 USER MAY NOT REDEFINE A COMMON VARIABLE: X

The user is not allowed to define any variable which
is declared to be a NASTRAN defined COMMON variable. In addition,
any variable described by the user to be COMMON by way of the
COMMON keyword in Subpacket B may not be defined in the current

Subpacket C or in any subsequént packet definitions. Once a

variable name is declared to be a COMMON variable, it retains
that status throughout the remainder of the job. However,
prior to the variable's declaration as a COMMON variable, it
may be redefined and otherwise treated as any other local

packet variable.

96 ERRONEOUS ROW/COLUMN SPECIFIED: X

Let variable X have dimensions MXN, where M and N are
positive integers. The user may not define a row number
greater than M or.a column number greater than N. Negative
row and column numbers also produce the error message. If X
has dimensions 2X3, he may define X by defining rows one and/or
two or by defining columns one, two, and/or three. He may
not combine row and column definitions to define a particular

variable.
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97 ROW AND COLUMN DEFINITIONS CANNOT BOTH BE USED: X
The user may not define variable X by using both row
and column definitions. He must define X by using only row
definitions or by using only column definitions. He would
otherwise redefine one or more elements of matrix X, thus

producing an error condition.

98 ONLY VARIABLE NAMES AND TRANSPOSES MAY BE USED IN
GENERATING BY ROWS OR COLUMNS: X

In the row or column definitions of user variable X, the
matrix equations defining the particular rows or columns must
be of the form A, or TR(A), where A is a previously defined
user variable. Full matrix equations are not allowable. If
a particular row or column is defined by a full matrix equation,
the user should define an intermediate variable to be the matrix
equation and use the intermediate variable name in his row

or column definition.

99 DIMENSION MISMATCH DOES NOT ALLOW GENERATION BY ROWS
OR COLUMNS: X

Let the user variable X have dimension MXN, where M and
N are positive integers. Furthermore, let X be defined by a
series of variables A(1l), A(2),..., A(M) defined through the
row definition manner of matrix equation definition. For the
definition of ¥X by A(1), A(2),..., A(M) to be legal;
A(l), A(2),.., A(M) must each have one of the two following

dimensions:
1XN, or
NX1.
The same argument is true for definition by columns. If the
N columns of X are defined by B(1l), B(2),..., B(N), each of the

B(1), B(2),..., B(N) must have dimension 1XM or MX1l. Of course,
the user may leave one or more rows or columns undefined, thus

defaulting their definitions to zero.
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100 ERRONEQUS MAIN EXPRESSION: NO X OR Y

On the main expression card for the Stiffness Matrix,
the Mass Matrix, the Viscous Damping, the Thermal Loading, or
the Differential Stiffness Matrix Packet, the user has failed
to code the main variable name or the general main variable
partition. For example, in the Stiffness Matrix Packet he
has coded neither K or KIJ on the main expression card. X and
Y are the two vélues from which the user may choose (K and KIJ

in the example).

101 ILLEGAL SUBSCRIPTED VARIABLE: X

In the definition of user variable X, the user has
referred to a variable Y with subscripts I and J. One or both
of the two subscripts, I or J do not conform to the dimensions
of Y described in the preceding Subpacket B. For example, let
Y have dimensions 2X2; the user may not refer to Y(3,3), as

no such element of Y exists.
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APPENDIX B
SAMPLE PROBLEMS

Two separate examples follow. In the first sample problem,
all of the data packets supplied in this report as examples in
the discussions of the various data packets have been combined
to form a complete set of input that will produce the FORTRAN
routines and tables that are necessary for adding the triangular
membrane (TRMEM) element into NASTRAN. Such an element has
actually been incorporated within NASTRAN, using the cards
shown in the examples. The input packets provided and the
generated routines or tables associated with each are included as
Figures 11 through 25. For interpretation, the reader should
refer to the descriptions of the packets provided in Section
IIT.

The second sample problem is concerned with the production
of the FORTRAN routines and tables necessary to generate a
three-dimensional isoparametric thermal element. Figure 26
contains input -data needed for the three-dimensional isoparametric
thermal element. Figure 27 contains the subroutines and tables
generated from the data.

The time used in producing the output of the first sample
problem was approximately six minutes, using.a CDC 6400

computer and 250000, words of central memory. The CPU time

8
used in the second sample problem was eight minutes, even

though only two packets of input were used.
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PARAM = 1

COMMENT
COMMENT THE FOLLOWING INPUT DATA WILL ADD ELEMENT ELEM4d TO NASTRAN

COMMENT  LSLEM42 IS JUST THE TRIANGULAR MEMBRANE ELEMENT(TRMEM) NOW IN
COMMENT NAST=2AN

COMMENT

COMMENT BEGIN PRELIMINARY DATA

COMMENT

FLEMLD 329129990 19242,22

COMMENT CONNECTICON CARD VARIARPLE

TH

COMMENT PROPERTY CARD VARIABLES

TyFMUY
END PRELIMINARY NATA PACKZT

Figure 11 - Preliminary Data Packet, Sample Problem 1
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PRELIMINARY PACKET FORTRAN CODING

BLOCK DATA

COMMON/IFPCOH/NOELEH.IAPFLG(Z“)gIRﬂNOS(“B).IFX7PT(2“"IFX7SQ(3BH)/
1 IFSCOM/NLEM, IFSN{24)

DATA NOELEM, JIAPFLGyNLEM/38,2%i40,0,20%C, 38/

DATA IRANOS/4%0,8,1244yB8y40*3/ '

DATA IFXTPT/2%(0,4241,20%0/

DATA IFSN/2*0,6,4,20%C/

END

BLOCK DATA

COMMON /GPTCOM/NOELEM, NDATCN(lZ)'NDATPR(IZJ.NGRDPT(lZ’.INOSCA(iZ).
LNRDEST(12),IFSTPT(12)

DATA NOCLEM/38/

DATA NDATCN/D+6,10%07

DATA NOATPR/0y,i4,1C%1/

DATA NGRDPT/0,3410%37/

DATA INDSCA/04G,10%0/ '

DATA NWDEST/0,21+10%3/

DATA IFSTPT/0,3,20%3/

END :

BLOCK DATA

COMMON /EDSCOW/NOELtM,NDATCV(i’)9NGRDPT(12)

DATA NOELEM/ 38/

DATA NDATCN/O,b,10*3/

DATA NGRDPT/043410%0/ -

END
- BLOCK DATA

COMMON/EDTCOM/NNELEM, NHDEST(iZ’oNGQDPT(iZ’

DATA NOELEM/ 38/

DATA NWDEST/0,4,21,13%3/

DATA NGRDPT/J.3,30%6G/

END

BLOCK DATA

COMMON /SMICOH/MOELFN NNOE§T(12)

DATA NOELEM/38/

DATA NWDEST/0,21413%07/

END '

BLOCK DATA ‘

COMMON /SM2COM/NOELEMNWDEST (12)

DATA NOELEM/ 38/

DATA NWDEST/0421,13*02/

END

BLOCK DATA

COMMON /SDRCOM/NOELEM,NWNE ST(iZ)'NGQDPT(iz)9NHDSTM(12) NWOSTR(12),
1 NWDOFOP(12) 4NPTSTR(12) 4NPTFORI(12)

DATA NOELEM/38/

DATA NWDEST/0,21410%0/

DATA NGROPT/0s3,12%)/

DATA MWDSTM/G435410%2/

DATA NWDSTR/0484s10%0/

DATA NWDFOR/0suy19%3/

DATA NPTSTR/04,3040%07

NDATA NPTFORP/0,(C,10%3/

END

Figure 12 - BLOCK Data Subprograms, Sample Problem 1
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BEGIN GLOBAL

COMMENT GLOBAL VARIABLE LIST

V124 XL V129 VI3 g XTIT o XKKIyXLVI3 g XKKyXJJ9EL9yXX29XX343YY3,AyC14C2,4C3

V124341, TERM
XLV12y 9,
V1343, 4TERM
XII43,,
XKK1y341 s TERM
XLV13y 4y
XKKy3y s TERM
NJJ9341,TERM
19342,
XX299
XX3y9yEQUA
YY3s9

Ay

Cls342,
Tda1dyly
C39242+TERM

DEFINITIONS FINISHED

V12
COMMENT

COMMENT X1,0009Y1'0009211000

COAMENT
1.,X2-X1
2,1,Y2‘Y1
39922-71
Vi3
149X3-X1
291’Y3”Y1
39192321
ALvie

ARE COMMON VARIABLES AVAILABLE FOR USE

s 9 DSAPTIVL2(1,1)¥*¥24V12(2,1)%*¥24V12(3,1)%*%2)

XII

1o V12 (1,1)/7XLVLI2(1,41)
2,1,V1202,1)/7%XLV1L2(1,1)
391,V12(3,1)/7%XLY12(1,1)

XKK1

Ly lyXIT(2,41)*VL2(3,1)-XIT(3,41)%*V13(2,1)
29LeXTI1Z,1)%V17(141)-XIT(1,1)%*VL13(3,1)
Tel o XTI(1,1)*Y172(2,1)=-XTI(2,1)*V13(1,1)

XLV13

l,l,DSQQT(XKKL(1,1)*¥2+XKK1(2.1)**2+XKK1(3,1)**2)

X KK

1y 1eXKKL(1,421)/XLV13(1,1)
29 lyXKKL(2,1)/XLV1I3(1,1)
3elgXKKLT3,1)/7XLVEZL;1)

XJJ

Figure 13 -~ Global Variable Packet, Sample Problem 1
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$91 9 XKK(2,y1)¥XIT(341)=XII(241)*XKK(3,1)

291y XKK{39y1)¥XIT(191)-XIT(341) ¥XKK(1,1)
TalgXKK{191)¥XITI(241)=-XII(1,41)*XKK(2y1)

‘Bl

191, XII(1,1)

2914XI1(2,1)

391,XTIC(3,1)

1,2yXJdJt1,1)

2929XJdJd(2,1)

3929 XJJ13y 1)

XX2

XX3

COMMENT v
COMMENT V13 IS A 3 X 1 VECTOR---TR(V13) IS A 1 X 3 VECTOR
COMMENT XII IS A& 3 X 1 VECTOR---SO XX3 IS A 1 X 1 VECTOR,
COMMENT - IE, A& SCALAR

‘COMMENT

TR(V13)*XII

YY3

151, XLV13(1,1)

)

191,e5¥XX2(1,1)%YY3(1,1)

Cc1

1919‘10/)()(2(1'1)

2429C1(3,1)

COMMENT NOTE THAT ELEMENT (2,2) OF THE ARRAY IS DEFINED IN TERMS
COMMENT OF ELEMENT (3,1)---THE REVERSE WOULD HAVE CAUSED PROBLEMS
B9l9le/YY3 (1,1 % (XX3(1,1)/XX2(141)~1,)

342+C11(1,1)

ce

1’1'-C1(19 1)

2929021(3,41)

Tl 9=XX3(L,1)/7(XX2(1,1)*YY3(1,1))

392914/7%XX2(1,1)

c3

2924C3€3,51)

39141./7YY3(1,1)

END GLORAL PACKET

Figure 13 - Global Variable Packet, Sample Problem l——Contipued
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BEGIN STIFFN=SS

2y KIJ

COMMENT STIFFNES R

PPl S MATRIX EXPRESSION FOR THE (I,J)TH PARTITION
COMMENT S3EGIN LISTING OF STIFFNE

1ot e ESS MATRIX PACKET VARIABLES
DEFINITIONS FINISHED

KIJ

TQ(CI‘TR(EI)*TI)*G‘(CJ*TR(El)*TJ)

END STIFFNESS PACKET

Figure -14 - Stiffness Matrix Packet, Sample Problem 1
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STIFFNESS PACKET FORTRAN CNONING

SUBROUTINE KLEM4C

DOUBLE PRECISION Q1,024Q34Q4+054Q6+Q7sQ8479yPIyDETERMyTEMPOR,TMPOR
114Gy T1yT29T34V124XLYL29 VI3 yXIToXKKLyXLVIIgXKKyXJIJ9EL 4XX24XX3,YY3,A
14C10C29C3yKILyKI2yKIZ¢yK11yK219yK314KL12,K22,K32,K13,K23,K33

DIMENSTION ECPTI1)

DIMENSION TMPOR1 (36)

DIMENSION XYZL1(143)9XYZ2(143)4XYZ3(1+3)

DIMENSION K111(343)4K12(343)4yK13(343) 4K21(3,3)4K22(343),K23(3,3),4K3
11(343)4K321343)4K33(3,3)

COMMON /MATIN/MATIDZWINFLAGYELTEMPySTRESSySINTHyCOSTH/SMALTIO/DUML(1
10),IFKGG,0DUM2{1) yIF4GG,NUM3(23) /SMALCL/IOPTY4 yK4GGSHW,NPVT/SMALET /NE
1CPT{1) NGRIDI(2) 4 THyMATIN1,T,FMU,ID 1, X19Y14Z214I024X24Y2+92251I034X3,Y
13,23,0UMV(8C)/SMALDO/ T4JsISeIP4T11,12,PTI(1,41),TEMPORI(Q),DETERM,Q1(9
1),0Q2(9)Y,Q03(9),Q4(93),Q5(9),35(9),N719),18(3),4G63(9),6(343),T1(3,3),7T
12(393)9T3(343)gV12(193) 3 XLVI2(Ly1) 4y VI3(143) ¢y XIT(1,3)4XKK1(1,y3),4XLV
113010 41) ¢ XKK(193) 3XJJ0193)47510243)4XX20142)3XX2(141),YY3(1,1),A01,1
1)yC1(293)9C020293)9C30243) 4INDX(y3)yKIL(343)4yKI2(343)4KI2(3,3)/MAT
10UT/G11,61246134G2246234G334RHO,ALPHAL1, AL PHA,ALP12,TSUB0,GSU3E,ST
L1GTEN,SIGCOM, STGSHE

EQUIVALEZNCE (ECPTHZNENPT)

EQUIVALENCE (X1 9 XYZ10141))3(X24XYZ2(141))4(X34XYZ2(1,1))

EQUIVALINCE (K11(141) oKTL1(141)) 9 (KL2{141)4KI2(141))4(KL13{141)4KI3(
1141) )4 (K240 91 ) KTIL(1L41)) 5 (K22(141)9KI2(141)),4(K23(141),KI3(1,41)),
1 (K31 {141),KT10L,1)) 3 (K32(141)3KI2(141)) 4 (K3I3({141)4KI3(1,41))

DATA TMPOR1/36¥3.500/

PI{1,2)=3.14159265

INFLAG=2

DO L IP=1,3

IFI(NGRID{IP) JEQ.NPVT)GO TO 2

CONT INUZ

CALL MESAGE (=30, 34,FCPT (1))

CONT INUE

MLTID=MATID1

ELTEMP=DUMV (1)

SINTH=NSIN(PI(1,1)/7187,%TH)

COSTH=NCOS(PI(1,1)/1870.,%TH)

CALL MAT(NECPTt1))

G(1,1)=611

G(1,2)=G12

G{2,y1)=0G12

Gl1,3)=G13

G(2,y1)=G13

G(242)=G22

G(243)=6(23

G(3,2)=6G22

G(3,3)=G323

CALL TRANSD(INi,T1)

CALL TRANSDI(IDZ2,T2)

CALL TRANSD(IDI,T3)

Vi2(1,1)=X2-X1

viz2(i1,2)=Y2-Y1

vi2(1,3)=72-71

Figure 15 - Stiffness Matrix Subroutine, Sample Problem 1
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XLV12({1,1)=DSQRT (V12014 1)**2+V12(1,2)%*2+V1i2(1,3)**%2)
Vi3(1,1)=X3-X1
V1i3(1,2)=Y3-Y1
Vi3(1,3)=23-271
XII{1,1)=V12(1,1)/XLV12(1,1)
XII(1,2)Y=V12(1,2)/XLV12(1,1)
XIT(1,3)=V12(1,3)/XLV121(1,1)
XKKi(171)=XII(192)‘V13(193)‘XII(1’3)*V13(192)
XKK1(1,2)=XTT{Ly3)*V13(141)-XTIT(141)%*V13(1,3)
XKKL (193)=XTIT{L,1)¥V123(142)-XIT(1,2)%V13(1,1)
XLVI3(L41)=DSART (XKKL (Ly L) *¥*¥24+XKKL1(142)*%*¥2+4XKK1(1,3)%*2)
XKK{1y1)=XKK1{1,1)/7YLVLI3(1,1)
XKK(1,2)=XKK1{1,2)/XLVv1i3(1,1)
XKK(1,3)=XKK101,3)/7XLVL3(1,1)
XJJ (141 =XKK (L9 2)*XIT(143)-XTI(1,2)*XKK(1,43)
XJJ(1e2)=XKK (1 43)¥XIT(L41)=-XIT(1,3)*XKK(141)
XJJ Ly 3) =XKK (13 1) *XTIT(1,2)=XIT(1,1)*XKK{1,2)
E1(1,1)=XII{(1,1"}
EL1(L1,2)=XIT{1,2)
E1(1,23)=XII(1,3)
E1(24,1)=XJJ(1,1)
E1(2,4,2)=XJJ(1,2)
E1(2y3)=XJJ(1y3)
XX2(1,1)=XLVi2(1,1)
CALL GMMATDIVLIZ33431,19XIT9351,0yX%XX3)
YY3(1,1)=XLVi3(1,1)
A(Ly1)=,5%XX201,L)*YY3(1,1)
Cilis1)=—1./XX201,1)
Cil(1+2)=C.90
Cl(143)=1+/7YY3 UL 1) ¥ (XX3(1,51)/XX2(141)=1,)
CL(2,1)=5.0
Ci(2,2)=C11{1,3)
Ci(2,2)=C11(1,1)
C2(1,41)=-C1(1,1)
GC2(142)=L.0
C21143)==XX3(141)/(XX2(1,1)%YY3(1,1))
C2(2y1)=C.0
C2(2,2)=C2(1,3)
C2l2,4,3)=1./XX21{(1,1)
C31141)=2.0
C3(1,2)=(.0
CZ(1,3)=14/YY3(1,1)
C3(241)=(,.0
C3(24+2)=C31(1,3)
C3(243)=C.Wy
GO TO(L0G,2:0,355)41IP

C GCNERPATS THE MAIN VARIAAJLE

Figure 15 - Stiffness Matrix Subroutine, Sample Problem l—Continued
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100 CONTINUE

CALL
CaLL
CALL
CALL
CALL
CcaLL
CALL
CALL
CALL
CALL
CALL
CALL

GMMATD(C143,2,0+E1,3,2,1,Q1)
GMMATD(QL 93 +340,71,3,3,3,Q2)
GMMATD(Q2931391+G33+34y0,TEMPOR)
GMMATD(C1¢439290,E1434241,Q1).
GMMATD(Q1+9393404T1+3+3,0,Q2)
GMMATDU(TEMPOR3434040243,3,0,K11)
GMMATD(C24342¢0+E1+34251,Q1)
GMMATD(Q193+3+0472,34,3,0,Q2)
GMMATD(TEMPOR39340+Q0293,3,3,K12)
GMMATD(C34342409€193,2,1,Q1)
GMMATD (Q1+343509T3434340,Q2)
GMMATD (TEMPOR93+4340+9Q0293,3,0,K13)

GO TO 40¢C
200 CONTINUE

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
cact

GMMATD(C29392909E143,241,Q1)
GMMATD(Q193+3934T724343,0,Q2)
GMHATD(Q20393919Gy3v3900TEMPQR)_
GMMATD(C14342404F1,3,2,1,Q1)
GMMATOD(01+3,3509T1434340,Q2)
GMMATD (TEMPORy343409024343,0,K21)
GMMATD(C2434240¢F1,3,2,1,Q1)
GMMATD (1 93+340,724343,0,Q2)
GMMATD(TEMPOR393464024343,0,K22)
GMMATD (C39342929E1,34241,Q1)
GMMATD (Q19343959T34934,3,3,Q2)
GMMATOD (TEMPOR,3,2,0,Q2,3,3,3,K23)

GO TO 4Cy{
300 CONTINUE

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

GMMATD(C343492,09E1534291,21)
G:"’MATD(OI,3,3,‘J' T393’3909Q2)
GMMATD (0249343919693 4343yTEMPOR)
GMMATD(C1934293+51934241,Q1)
GMMATDUQ193493429T153533,3,Q2)
GMMATD (TEMPOR,3,3,0,Q0243,3,0,K31)
GMMATDI(C24342339F1939251,21)
GMMATD(QLle343405T72,3,3,0,Q42)
GMMATD(TEMPOR,3,2,0,02,3,3,0,K32)

GMMATD(C34342904F1,3,2,1,Q1)

GMMATD(QL 9343309 T739343,0,032)
GMMATD(TEMPOQ13939ﬁ102’31390’K33)

LU0 GO TO(SUL6I0s700)41IP
C GENCRATE THE MAIN EXPRESSION
5C0 CONTINUE
TEMPOR(1)=A{1,1)*T
DO 551 I=1,3
N0 531 J=1,3

Figure 15 - Stiffness Matrix Subroutine, Sample Problem 1l—Continued
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501 K11(I,J)=TEMPOR(1)*K11(I,J)
DO 502 I=1,3
DO 502 J=1,3

502 K12(I,J)=TEMPORI(1)*K12(1I,J)
DO 503 I=1,3
DO 573 J=1,3

503 K13(I,J)=TEMPOR(1)*K13(I,d)
GO TO 83¢C

600 CONTINUE
TEMPORUL1)=A{1,1)*T

* DO 601 I=1,3

D0 601 J=1,3
601 K21(TI,J)=TEMPOR(1)*K21(I,J)
DO 6C2 I=1,3
D0 6u2 J=1,3
6C2 K22 (I,J)=TFMPOR(1)*K22(I,J)
DO 533 I=1,3
DO 633 J=1,3
6C3 K23 (I4J)=TEMPOR(1)*K23(I,J)
GO TO 30(
700 CONTINUE
TEMPORI(1)=A(1,1)*T
O 701 I=1,3
DO 751 J=1,3
7C1 K31(I,J)=TEMPOR(1)*K31(I,J)
00 72 I=1,3
DO 7uZ J=1,3
702 K32 (T4J)=TEMPOR(1)*¥K32(I,J)
DO 703 I=1,43
DO 733 J=143
703 K33(I,J)=TEMPOR(1)*K32(I,J)
800 CONTINUZ :

c INSERT STIFFNES3 PARTITION
DO 801 I=1,3
TMPORL(I)=KI1(I,s1)

TMPQORY ([+6)=KI1(1,2)

801 TMPORL1(I+12)=KI1(I,3)
CALL SMA1G(TMPOR1,NGRID(1)4y~14IFKGG,9.03)
IF(IOFT4.EQeGoeOReGSUBELENLI)IGO TO 832
TEMPQP (1)=GSURE
CALL SMA1B(TMPORL,NGRID(1) y=14IF4GG, TEMPOR)
KuGGSW=1

802 CONTINUET
DO 803 I=1,3
TMPOPL(I)=KI2(I,1)
TMPORL(I+6)=KI2{1,2)

Figure 15 - Stiffness Matrix Subroutine, Sample Problem l—Continued
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803

804

805

806

TMPORL(I+12) =KI2(I,3)

CALL SMALB(TMPOR1,4NGRIN(2),-1,IFKGG,0.00)
IF(IOPT4.EQe0+sORGSUREL.EN.0.)G0 TO 804
TEMPOR{1)=GSUBE

CALL SMALB(TMPOR14NGRID(2)4y~14IF4GG,y TEMPOR)
KUGGSW=1

CONT INUE

DO 805 I=1,3

TMPORL1(I)=KI3(I,1)

TMPORL1 (I+6)=KI3(I,2)

TMPOR1 (I+12)=KI3(I,3)

CALL SMAiB(TMPORinGRID(3)9'1oIFKGG 7.00)
IF(IOPT4.EQe0+ORGSUBE.EN.J.)GO TO 806
TEMPOR(1)=GSUBE

CALL SMAL1B(TMPOR14NGRID(3)4-1,yIF4GG, TEMPOR)
K4GGSH=1

CONT INUE

RETURN

END

Figure 15 - Stiffness Matrix Subroutine, Sample Problem 1—Continued
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BEGIN MASS

COMMENT SURPACKET A

24 M

‘COMMENT MASS MATRIX MATRIX EQUATION
MIJ

‘COMMENT SURPACKET R

‘COMMENT BEGIN LISTING OF MASS MATRIX PACKET VARIABLES
"XMASS,y ¢y

"M114393,TERM

M22’39 3y

"M334343,TERM

DEFINITIONS FINISHZD

‘COMMENT SUBPACKET C

"COMMENT  PARTITIONS M124M13,M21,M23,M31,AND M3I2 ARE IDENTICALLY ZERO
‘XMASS

1l A¥ (RHOXT+EMUY /3

'M11

Lyl 4 XMASS(1,1)

2929 XMASS(1,1)

J93¢XMASS(1,1)

M22

1414XMASS(1,1)

2929 XMASS (141)

3939XMASS(1,1)

M33

141 4XMASS(1,1)

2929XMASS(1,1)

3939XMASS(1,1)

END MASS PACKET

Figure 16 - Mass Matrix Packet, Sample Problem 1
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MASS PACKET FORTRAN CODING

SUBROUTINE MLEM4D

DOUBLE PRECISION Q1,Q2,Q03+Q4+Q5+Q69Q7,28,Q3,PI,DETERMyTEMPOR, TMPOR
114 XMASSy V129 XLV129 VL3 ¢ XITyXKKL9XLVLI3¢XX2,9YY34AyMI1 MI2,MI3,M11,M21
1,M314M12,M224M32,M13,M23,M33

DIMENSION ECPT (1)

DIMENSION TMPOR1 (36)

DIMENSION XYZ111,3)4XYZ2(1,3),XYZ3(1,3)

DIMENSION M11(343)9M12{343)9M13(343) 4M21(3,43)94M22(343)4M23(343),M3
11(3,3),M32(3,3)4M33(3,3) :

COMMON /MATIN/MATIDyINFLAGyELTEMP,STRESS,SINTH,COSTH/SMA2I0/DUM1 (1
10)4IFMGG,IGMGG, IFBGG,0UM2(23) /SMA2CL/IOPTL,BGGINDyNPVT,0UM3(157)/S
1MA2ET/NECPT (1) yNGRID(3) 3 THyMATID14T43FMU,I019X1yY14321,I029X2,Y2,22,
11034 X39Y3423,DUMV(80)/SMA20P/T4JyISyIP,I1,12,PI(41,41),TEMPOR(9),DET
1ERM,Q1(9),Q2(9),Q3(9),Q4 (9),Q35(9),06(9),Q7(9),Q8(9),Q9(9),XMASS(1,
11),V120153) 9 XLV12(1431) s V1I3(193) s XIT(L93) 4 XKKL1{1y3)3XLVL3 (141} ,4XX2(
11+1),YY3(141),A(1,41),INDX(443)yMIL(3,3)4MI2(3,3),4MI3(3,3)/MATOUT/G
111,612461394622+46234633+4RHOyALPHAL,ALPHA2,ALP12,TSUBO+GSUBE,SIGTEN,
1 SIGCOM, SIGSHE

EQUIVALENCE (ECPT,NECPT)

EQUIVALENCE (X14XYZ1(141))4IX29XYZ2(1,1)),3(X34XYZ3(1,1))-

EQUIVALENCE (M11(14124MI10141))4,(ML12(1,1),MI2(151)) 5 (ML3(1,41),MI3(
1151))9(M21(141) 4y MILTUL 1)), IM22(141)9MI2(141)),(M23(1,1),MI3(1,1)),
1(M31(141) 9y MTL1lL141))4(M32(1,1),MI2(141)),4(M33(1,1)4MI3(1,1))

DATA TMPOR1/36*(.uD/

PI(1,1)=3.14159265

INFLAG=2

DO 1 IP=1,23

IF(NGRID(IP) JEQ.NPVTIGO TO 2

1 CONT INUE
CALL MESAGE(=33,24,ECPT(1))
2 CONTINUE

CALL VLEMA4Q

MATID=MATID1

ELTEMP=0UMV (1)

SINTH=0SIN(PI(1,1)/18C.*TH)

COSTH=DCOS(PI(1,1)/180.,%TH)

CALL MAT(NECPT(1)) ’

Viz{1,1)=X2-X1

Vi2(1,2)=Y2-Y1

V1i2(1,3)=72-171

XLV12(1,1)=DSART(V12(1,1)**2+V12(1,2)%*¥2+V12(1,3)%*%2)

V1i3(01,1)=X3-X1

Vi3(1,2)=Y3-Y1

V13(1,3)=23-71

XIT(1,1)=V12(1,1)/XLV12(1,1)

XIT(1,2)=V12(1,2)/XLV12(1,1)

XIT(143)=V12(L,3)/XLVLI2(1,1)

XKKL (191)=XII{1,2)%¥V13(1,3)~-XIT{1,3)%V13(1,2)

XKK1(192)=XTI(1,3)%V1301,1)=-XII{1,4)*V13(1,3)
XKK1(1453)=XII(141)*V1301,2)-XTII(1,2)*V1i3(1,1)

Figure 17 - Mass Matrix Subroutine, Sample Problem 1
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XLVL3(151)=DSQRT (XKKL (1, 1) *¥2+4XKK1{142) **24XKK1(1,3) **2)
XX2(1y1)=XLV12(L,1)
YY3(1,1)=XLV13C(1,1)
AlL,y1)=05%XX2(1,1)%YY3(1,1)
XMASS(1,1)=A{1,1)*(RHO*T+FMU} /3.
GO TO(100,200,300),IP
c GENERATE THE MAIN VARTAALE
100 CONTINUE
M11(1,1)=XMASS(141)
M11(1,2)=(.3
M11(143) =040
MI1(2,1)=0.9
M11(2,2)=XMASS (1,1)
MI1(2,3)=(40
M11(341) =040
M11(3,2)=0,0
M11(343)=XMASS (1,1)
00 1¢1 I=1,3
DC 101 J=1,3
161 M12(I,J) =0
DO 132 I=1
D0 182 J=1
102 M13(I,J)=¢
GO TO 4if
200 CONTINUE
D0 261 I=1,3
DO 2351 J=1,3
201 M21(I,d)=3.0
MZ2(1y1)=XMASS(1,1)
M2211,2)=0,)
M22(1,3)=0.0
M22(241) =542
MZ22(2,2)=XMASS (1,1)
MZ212+3)=3,2
M22(391) =543
M22(3,2) =45
M22(343)=XMASS (1 ,1)
DO 2(2 I=1,3
DO 212 J=1,3
202 M23(IyJ) =049

GO TO &g
300 CONTINUE

DO 331 I=1,3

DO 3ul J=1,3
301 M31(11J):L'J

DO 332 I=1,3

DO 3:2 J=1,3

Figure 17 - Mass Matrix Subroutine, Sample Problem 1—Continued
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302 M32(I,J)=0.0
M33(1,1)=XMASS(1,1)
M33(192)=000
M33(1,3)=0.0
M33(291)=000
M33(2,2)=XMASS(1,1)
M33(2’3)=0-0
M33(341)=0.0
M33(3,2)=0.3
M33(3,3)=XMASS(1,1)

C NO EXPRESSION-MAIN VARIABLE IS MAIN FXPRESSION
400 CONTINUE
C INSERT MASS PARTITION

DO 401 I=1,3
TMPORL(I)=MI1(I, 1)
TMPORL(I#+6)=MI1(I,2)
431 TMPORL(I+12)=MI1(I,3)
CALL SMA2B(TMPOR1,NGRID(1),-1,IFMGG,0.00)
DO 402 I=1,3
TMPORL(I)=MI2(I,1)
TMPORL(I+6)=MI2(I,2)
402 TMPORL(I+12)=MI2(I,3)
CALL SMA2B(TMPOR1,NGRID(2),=1,IFMGGy2.9L)
DO 433 I=1,3
TMPOR1(I)=MI3(I,1)
TMPORL(I+6)=MI3(I,2)
463 TMPORL(I412)=MI3(I,3)
CALL SMA2B(TMPOR1,NGRID(3)4-14IFMGG+3.00)
RETURN
END

Figure 17 - Mass Matrix Subroutine, Sample Problem 1—Continued
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FEGIN THERMAL LOADING

2,PPI

COMMENT THERMAL LOADING EQUATION

A*T*PPI*TRAR

ALPHV, 3,1, TENM

TRAR, 4y

PPIs3,,4F£QUA

DEFINITIONS FINISHED

ALPHY

1914ALPHAYL

291 4ALPHAZ

3414,ALP12

T3AR

Lol (TTICL)+TTI(2Y4TTI(3))/3.-TSUBD

COMMENT ALPHA1 ,ALPHAZ,ALP12,TSU30 COME FROM COMMON MATOUT
COMMENT TTI I35 THZ VECTOR OF GRID POINT TEMPERATURES
PPI

TR(TI)*¥C1*¥TR(CIVM*GYALPHY

END THERMAL LOADING

Figure 18 - Thermal Loading Packet, Sample Problem 1
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THERMALLOADING PACKET FORTRAN CODING

SUBROUTINE M4LOITTI,LPG) )

REAL GyT19T24T3,V12,TBARJALPHVyXLVLI29 Vi3 yXIToXKKL9XLVLIIZXKKyXIIWEL
1 9XX2¢XX34YY34A,C1,C2,C34PPL1,PP2,PP3

DIMENSION EGCPT(1),PG(1),TTI(1)

DIMENSION TMPORY (35)

DIMENSION XYZ1(143)4XYZ2(153)4XYZ3(1,3)

COMMON /MATIN/MATIDSINFLAGYELTEMP,STRESSySINTH,COSTH/TRIMEX/NECPT(
11)yNGRID{3) y THyMATIDL 4Ty FMU,IDLyX1sY1,21, IDZ’XZ’Y20229103,X3’Y3’Z3
1,DUMVI(8C)/EDTSP/TI9JsISsIPyI1,12,PI{1+1),TEMPOR{(9),DETERM,Q1(3),02(
19),33(9),04(939),Q35(9),Qh(3),Q7(9) yQ8(9),Q9(9) yG(39y3)sT1(3,3),T2(3,3
1)3T30343)9V120133)9TBAR(L91) JALPHVIL¢3) g XLV12(191)4V1301,3),XII(1,
13) g XKKL1{193) ¢XLVIZ{1y1) 3y XKK{L193) g XJJ{L143)4E1(293)9XX2(141) 4XX30(1,1
1)sYY301,1),A0141)4C102+3)43C2(293)4C3(2,3)INDX(4,43)4PPL1{1,3),PP2(1
143)4PP3(1,3)/MATOUT/G11+6129613462246234G33,RHO,ALPHAL1,ALPHA2,ALPL
12+TSUBU4GSUBEYSIGTENsSIGCOM,SIGSHE

EQUIVALENCE (ECPT,NECPT)

EQUIVALENCE (X1,XYZ1(1,1)),(X2, XYZZ(i,i),9(X3vXYZ3(191))

DATA TMPOR1/36*0.0/

PI{1,1)=3.14159265

INFLAG=2

MATIO=MATID1

ELTEMP=DUMV (1)

SINTH=SIN(PI(1,1)/180.,*TH)

COSTH=COS(PI(141)/718D0.*TH)

CALL MAT (NECPT(1))

G(1,1)=G11

G(1,2)=6G12

G(2,1)=G12

G(1,3)=6G13

G(3,1)=613

G(2,42)=6G22

G{2,3)=G23

6(3,2)=623

G(3,43)=G33

CALL TRAN{ID1,T1)

CALL TRAN(ID2,T2)

CALL TRANI(ID3,T3)

Viz({i,1)=X2-X1

viz{i,2)=Y2-Y1

Vi2(1,3)=22-71

C FOLLOWING CARD CHANGED TO REFLECT PACKET PRECISION

XLV12(141)=SQRT(V12(1,1)¥*¥2+4V12(1,2)%*24V12(1,3)**2)

Vi3(1,1)=X3-X1

V1i3(1,2)=Y3-Y1

Vi3(1,3)=23-71

XIT(1,1)=V12(1,1)/XLV12(1,1)

XIT(1,2)=V1201,2)/XLV12{1,1) /
XIT(1,3)=V12(1,3)/XLV12{1,1)

Figure 19 - Thermal Loading Subroutine, Sample Problem 1
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XKK1(1,1)=XTTI(142)%V13(1,3)-XII(1,3)*V13(1,2)
XKKL(192)=XIT(143)%VL3(1,1)-XIT(1,32%V13(1,3)
XKKL €193)=XTII(144)7*V13(1,2)-XII(1,2)%V13(1,1)
c FOLLOWING CARD CHANGEN TO REFLECT PACKET PRECISION
XLV13(191)~SQPT(XKK1(111)*'2+XKK1(192)*‘2*XKK1(1’3)"2)
XKK{1y1)=XKK101,1)/XLVL13(1,1)
XKK{1,2)=XKK1(1,2)/XLV13(1,1)
XKK (143)=XKK1(1,3)/%XLVLi3(1,1)
XJJ 0191 ) =XKK (L 2)*XTIT (1,3)-XITI(1,2)*XKK(1,3)
XJJU1,2)=XKKUL 33) XTI (1440 -XTITI(1,3)%XKK(1,1)
XJJ(143)=XKK {191 )¥XTT(142)=-XTI(1y1)%XKKI(1,2)
F1(1,1)=XIT(1,1)
F1(1,2)=XIT(1,2)
E111,43)=XITI[1,3)
E1l2,1)y=XJJd(1,1)
E1(242)=XJdJ(1,2)
E1(243)=XJJ(1,3)
XX2{1e1)=XLV1i2(1,1)
CALL GMMATSIVL3+3s1414XTT4391904XX3)
YY3(1,1)=XLV13(1,1)
A{1sy1)=o5¥XX2(1,412%YY3(1,1)
Ci({ils1)==1s/7XX2{(1,1)
C1(14+2)=Ced
Ci0L 43231/ YY3 L 1) IXX3{1yL)/XX2{1,1)~1
Ci1(2,4,1)=0,.9
C1(242)=C01(1,3)
C1(2,3)=C1(1,1)
Celi,1)Y=~CL (1,1)
C2(14+2)=(.0
C2l193)==XX3{141)/(XX2{1,1)*YY3(1,1))
C2(241)=0.10
C2(2,21=C211,3)
C2(243)=1./XX2{(1,1)
C3(141)=C.0
C3(Ly2)=Cad
C3(143)=1./YY3(1,1)
C3(2,1)=0L.0
C2(2+2)=C311,3)
C3(243)=0Cwi
TRAR (L )= (TTT(LI4TTI(2)+TTI(3))/3.-TSUBL
ALOHV(1,1)=ALPHAL
ALPHV(1,2)=ALPHAZ
ALPHV(1L,3)=ALP12
C GENZRATE THE MAIN VARIABLE
CALL GMMATSI(T1,39391sE193929u401)
CALL GMMATS (019342904014 392+1,G2)
CALL GMMATS(N24393903653434d,4,03)
CALL GMMATS(Q343935 359 ALPHV,,3,134PP1)
CALL GMMATS(T2y3+93914F1+392+3,0Q1)

Figure 19 - Thermal Loading Subroutine, Sample Problem 1—Continued
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CALL GMMATS(G1+342+0+C2434291+Q2)
CALL GMMATS(Q2¢439340+6G93,3,0,Q3)
CALL GMMATS(Q3,4343,0,ALPHV,3,1,0,PP2)
CALL GMMATS(T39393919E19342+0,0Q1)
CALL GMMATS(Q14342509C393+424,1,Q2)
CALL GMMATS(Q243+4340¢G»343,0,Q3)
CALL GMMATS(Q34343409ALPHV,34,1,0,PP3)
C GENERATE THE MAIN EXPRESSION
TEMPOR(1)=A(1,1)*T
00 1L I=1,3
1 Q1(I)=TEMPOR(1)*PP1(1,1)
DO 2 I=1,3
2 PP1(1,I)=TBAR(1,1)*21(I)
D0 3 I=1,3
3 QL(I)=TEMPOR(1)*PP2(1,1)
DO & I=1,3
4 PP2(1,1)Y=TBAR(1,1)*Q1 (1)
DO 5 I=1,3
S QI(I)=TEMPORI(1)*PP3(1,1I)
DO & I=1,3
6 PP3({1,I)=TBARI1,1)*Q1i(I)
c INSERT THERMALLOADING PARTITION
DO 7 I=1,3
7 TMPOR1(I)=PP1(1,1I)
DO 8 I=1,46
L=NGRID(1)+I-1
8 PG(L)=PG(L)+TMPORL1(I)
DO 9 I=1,3
9 TMPORI{I)=PP211,1I)
DO 16 I=1,6
L=NGRIN(2)+I-1
18 PG(L)=PG (L) +TMPORI(I)
DO 11 I=1,3
11 TMPOR1(IY=PP3(1,1)
DO 12 I=1,46
L=NGRID(3)+I~-1
12 PGIL)=PG(L) +TMPORI(I)
RETURN
END

Figure 19 - Thermal Loading Subroutine, Sample Problem l-—Continued
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BEGIN STRZSS
2,35

COMMENT 35 WNRDS WILL BE PASSED INTO THE STRESS AND FORCE
COMMENT CALCULATION PACKET=~THE 35 WORDS ARE

COMMENT  ELEYSNT ID(1),GRID POINTS(3),TSUBO(1),SB1(3 X 3 =9),
‘COMMENT  S82(3 X 3 =9),333(3 X 2 =9),AND ST(3 X 1 =3)

‘TSURD 4 SB14yS32,SR3,ST

SR14343,EQUA

SB24s343,FRUA

SB3,342,03UA

ALPHV 4341, TEPM

STe2y1,ENUA"

NEFINITIONS FINTISHOD

SR1

G¥CL*TR(SL)*TY

382

G¥C2¥TR(EL)*T2

$Sn3

G¥C3¥TR(EL)I*TR

ALPHY

191y ALPHAL

291, ALPHAL ' ’
2,1,ALPLE

5T

~GXALPHY

ING STRESS

Figure 20 - Stress Matrix Packet, Sample Problem 1
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STRESS PACKET FORTRAN CODING

SUBROUTINE SEL401%

REAL GyT1yT24T739SB14SB2ySB3yST,ALPHV,V12,XLV12,V13,XIT,XKK1,XLV13,
I XKKy XJJ9yEL19gXX29XX39YY3,C1,C2,C3

DIMENSION ECPT(1),GRID(1)

DIMENSION XYZL1(193)¢XV¥Z2(143)4XY2Z341,3),SB81(3,3),5B2(3,3),5S83(3,3)
1,ST(1,3)

COMMON /MATIN/MATIDyINFLAGHELTEMP,STRESSySINTH,COSTH/SDR2X5/NECPT (
11)yNGRIDU(3) 9y THyMATIDL ¢ ToyFMUsID19X19Y157Z14I02¢X29Y292Z2+9ID39X34Y3,23
1,0UMV(80)4PHLIOUT (300) /SDR2X6/I19J9yISsIPyI11,12,PI(141),+TEMPOR(S),0DET
1ERM,Q1(9),Q2(3),Q3(9),Q4(9),Q5(9),Q6(3),Q7(9),Q8(9),Q9(9),G(3,3),T
11(343),T2(343)3T3(343)9ALPHV(143)4V12(1,3)4XLV12(141),V13(1,3),XII
1(143)9XKKL101+3) o XLVIZ(L91) ¢y XKKIL93)9XJJI(L193)4EL(293)9XX2(L91),yXX3(
11,1) ,YY3(1,1),C1(293)4C2(2+3)4C3(243)+INDX(443)/MATOUT/G11,612,4613
1,622,6234633,RHO,ALPHAL,ALPHA2,ALP12,TSUBO,GSUBE»SIGTEN,SIGCOM,SIG
1 SHE :

EQUIVALENCE (ECPT4NECPT)

EQUIVALENCE (GRID,NGRID)

EQUIVALENCE (X1 4XYZL1(141))4(X2yXYZ2(141))4{X34XYZ3(141))

EQUIVALENCE (PH10UT(A)ySR1(1,1)),(PHI0UT(15) 4SB2(1,1)),{PH10UT(24)
1,583(1,1)),(PHI0UT{33),ST{1,1))

PH1OUT (1) =ECPTI(1)

00 1 I=1,3

1 PHLIOUT(I+1)=GRID(I)

- PIl{1,1)=3.14159265
INFLAG=2
MATID=MATID1L
ELTEMP=DUMV (1)
SINTH=SIN(PI(1,1)/187.*TH)
COSTH=COS(PI(141)/7130.%TH)
CALL MAT(NECPTI(1})
G(1,1)=611
6G(1,2)=612
G(2y1)=612
6G(1,3)=0613
G(3,1)=613
G(242)=6G22
G(2,3)=0G23
G(3,2)=623
G(3,3)=633
PH10UT(5)=TSUBY]
CALL TRANSS(ID1,T1)
CALL TRANSSI(IDZ2,T2)
CALL TRANSS(ID3,T3)
Vi2(i,1)=X2-X1
vi2(1,2)=Y2-Y1
viz211,3)=22-71

Figure 21 - Stress Matrix Subroutine, Sample Problem 1
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C FOLLOWING CARD CHANGED TO REFLECT PACKET PRECISION
XLVL2(141)=SQRT(VL12{141)%*24V12(1,2)**¥2+V12(1,3) **2)
Vi3(1,1)=X3-X1
Vi3(1,2)=Y3-Y1
V13(1,2)=23-21
XIT01,1)=V12101,1)/XLV12(1,1)
XIT(1,2)=V121(1,2)/XLVi2(L41)
XIT(1,3)=V12{1,3)/XLV12(1,41)
XKKL1(1y1)=XIT(1,2)%¥V1301,3)-XIT(1,3)*V13(1,2)
XKK1 (142)=XII(L,3)%V13(1,1)=-XTI(1,1)%*Vi3(1,3)
XKKL(143)=XTI{L,1)*V13(1,2)-XII(1,2)*V13(1,1)

c FOLLOWING CARD CHANGED T2 REFLEGCT PACKET PRECISION
XLVL3(1s1)=SORTIXKKL(L1, 1) #X24XKKL( 42) **24XKK1(1,3)%%2)
XKK(1y1)=XKK1t4, 1) /XLVL3(1,1)

XKK(1,2) =XKKL0142)/XLVL3(1,1)

XKK(1,3)2%KK1(1, 3)/XLVL3(1,1)

XJJU1577 =XKK 192 )*XTI (L 43)=XII{1,2)%XKK(1,3)

XJI2L92)=XKK (1930 ¥XTIT(151)-XIT(1,3)*XKK(1,1)

Xd301y3)=XKK Ly 1)*XTT (142)=XTIT(1y1)*¥XKK(1,42)
ELlL i) =XII(1,1)

E101,2)=XIT1(1,2)

E1(143)=XITI(1,3)

E1(2,1)=XJJ(1,1)

E1(2,2)=XJJ(1,2)

E1(243)=XJJ (1,3}

XXCU1,1)=XLV12(1,41)

CALL GMMATS (V13439141 9yXIIy391904XX3)

YY3(1y1)=XLV13(1,1)

Cill,1)=-1.,/XX2(1,1)

Cil1,2)=C40

C1(1,3)=14/YY3 (1 41)*(XX3(141)/%XX2(1,1)=14)

C1(241)=0.3

C1(2,23=011(1,3)

C1(2,3r=C11(1,1)

C2l141)==-C1(1,1)

Col142)V=042

C20143)==XX3(Le1)/IXX2{141)%*YY3(1,1))

C2(2+1)=040

C212,42)=C21(1,3)

C2(243)=14/XX2(141)

C3{141)=4uel

C3(1492)=040

C3(L43)=14/YY311,1)

C2(2,1)=040

C3(242)=C3(4,3)

C312,3)=%.0

ALPHV (1,1)=ALPHAL

ALPHV(1,2)=ALPHAL

ALPHV(1,3)=ALP12

Figure 21 - Stress Matrix Subroutine, Sample Problem 1—Continued
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CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
DO 2

GMMATS(G9y343,04C193,2,0,0Q1)
GMMATS QL 4342409E19342,1,Q2)
GHMATS(QZ’3,39097193y3,O,SBI)
GMHATS(G,393,090293,2909Q1)
GMMATS(Q1+3,2909E1,3,2,1,Q2)
GMMATS (Q24343,04T2,3,3,0,582)
GMMATS (G4 34340,C3,3,2,0,Q1)
GMMATS(Q1’3,29005193,201’02)
GMMATS(Q2’39309;T393’3109383) .
GMMATS(G'393907ALPHV'301’00Q1)
I=1,3

2 STi1,1)=~Q11 1)
RETURN

END

Figure 21 -~ Stress Matrix Subroutine, Sample Problem l1l—<Continued
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BEGIN STRESS AND FORCE
8ylygly
COMMENT 8 STRESS WORDS WILL BE OUTPUT =--- THESE ARE
COMMENT ELEMENT ID (1),SIG(3 X 1 =3),THETA(1),SIGP11(1),
COMMENT SIGP2(1),AND TAU(1)
SIGyINSERT AyTHETALINSERT BySIGP1,SIGP2,TAU
SIGy1,35EQUA
SAV,1,1,0ZFER
SIGP1 44y, TERM
SIGP2,4 49 TERM
THETA 31,12 TERM
DEFINITIONS FINISHED
SIG
COMMENT HERE DISPJ IS THE 3 X 1 TRANSLATION VECTOR FOR GRID POINT J
CO4MENT TEMP IS ELEMENT TEMPERATURE
SRI¥DISP1+4S32%¥DISP2+S33*¥DISP3+ST*(TEMP-TSUB()
TAU
2y 9SORT{ISAVI(141)/24)%%2+ %
SIG({1,2)%%2)
SIGPL
Tl s (SIG(L,1)4SIG(1,2))/72.4TA(1,1)
SIGP2
1,14(SIGUL,1)+4STG(14,2))/2.-TRAU(1,41)
ITNSERT A
SAV(14,1)1=ST5(1,1)=-SIG(2,1)
IFCABS(SAV(L91)) olTe1eE-15.ANDGABS(24*SIG(341))4LTe1.E~15)G60 TO 9¢
10
IF(ANS(SAV(L+1)) LTe1.E-15)G0 TO 9130
DZFINTITIONS FINISHED
THETA
1,1, ATANC2 . *STIG(1,3)/54V{1,1)) *28,64L789
INSERT 43
GO TO0 325
G0 THETA(L,1)=0,
50 TO 327
91i¢ THETA(L,2)=45,
Q2LC CONT INUE
DEFINITIONS FINISHEID
ZND STRESS AND FORPCE

Figure 22 - Stress and Force Calculation Packet, Sample Problem 1
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/

STRESSANDFORCE PACKET FORTRAN CODING

SUBROUTINE SEL4O02

REAL SIG,THETA,SIGPL,SIGP2,TAU,SAV

DIMENSION NGRID(3),STRESS(8)

DIMENSION XYZ1(1+3)9XYZ2(1943)sXYZ3(1,3),SB1(3,3),S82(3,3),5B3(3,3)
1,ST(1,3)

DIMENSION SIG(341), THETA(1,1),SIGP1(141),SIGP2{1,1),TAU(1,1)

COMMON/SDR2XX/Z(1)/SOR2X4/DUM(35) y IVECy IVECN,TEMP4DEFORM/SDR2X7 /PH
110UT (200) yFORVEC (100) /SDR2X8/14J9ISyIPyI14124,PI(141),TEMPOR(9),DET
1ERM,Q1(9),Q2(9),Q3(9) ,Q4(9),Q5(3),Q6(9),0Q7(3),Q8(9),Q9(9),DISP1(1,
13),DISP2(1+3),DISP3(Li4+3)+SAVIL141),INDX(4,43)

EQUIVALENCE (NPH10U.PHL10UT) 4 INGRID(1),PH10UT(2)) 4 (STRESS(1),PH10UT
1(101))

EQUIVALENCE (X1 9XYZ10151)) 3 (X2sXYZ2(191))4{X3,XYZ3(1,1))

EQUIVALENCE (PH10UT(6),SB1(1,1)),(PHLOUT(15),SB2(1,1)), (PH10UT(24)
1,S83(141)), (PH1OUT{33),ST(1,1))

EQUIVALENCE (PHlOUT(lOZ)QSIr(lol))9(PH10UT(105),THETA(1;1)).(PHiOU
17T(106)4,SIGP1(141)),(PHI0UT(107),SIGP2(141)),(PH10UT(108),TAU{1,1))

EQUIVALENCE (PHL10OUT(S),TSUBJ)

PH1i0UT(101)=PH10UT (1)

PH10UT{201)Y=PH10UT(1)

IP=IVEC+NGRID{1) -1

J=IP+2

DO 1 T=IP,J

IS=I-IP+14
1 DISP1(1,IS)=Z2(D)

IP=IVEC+NGRID(2) -1

J=IP+2

DO 2 I=IP,J

IS=I~-IP+1
2 DISP2(1,IS)Y=Z2(1)

IP=IVEC+NGRID(Z) -}

J=IP+2

DO 3 I=1IP,J

IS=1-1P+1
3 DISP3(1,IS)=Z(I)

PI{14+1)=3.14159265

CALL GMMATS(SB14+3434040ISP1+341,0,Q1)

CALL GMMATS(SB243434(40ISP24341,0,Q2)

DO & I=193
4 Q3(IN=QL(I)+Q2(I)

CALL GMMATS(SB3439340+0ISP34341,0,Q4)

DO 5 I=1,3
5 Q5(I)=Q3(I)+Q41{(I)

Q6(1)=TEMP-TSUBD

DO 6 I=1,3
6 Q7(I)=Q6(1)*ST(1,1I)

DO 7 I=1,3

Figure 23 - Stress and Force Calculation Subroutine, Sample Problem 1
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7 SIG(I,1)=Q5(I1+Q7(D)
SAV(1,1)=SIG{1,1)-SIG(2,1)
IF(ABS (SAV(L+1)) oLTeleE-15,AND.ABS(2.*SIG(3,4))sLTe1.E=15)GO TO 90
100
IF(ABS(SAVI1,1)) +LTe1.E-15)G0 TO 9100
THETA(1,1)=ATAN(2.*SIG(3,1)/SAV(1,4))%28,64789
GO TO 9200
9000 THETA(1,1)=0,
GO TO 9200
9400 THETA(i,1)=uL5,

9200 CONTINUE
SIGP1(1,1)=(SIG(1,1)+SIG(2,1))/2.,+TAU(L,1)

SIGP211,1)={SIG(1,1)+SIG(241))/2.-TAU(1,1)
TAU(1,1)=SQRTU(SAV(1,1)/2.)%*2+SIG(341)**%2)
RETURN '

END

Figure 23 - Stress and Force Calculation Subroutine, Sample
Problem 1—Continued
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BEGIN OUTPUT
STRESS

COMMENT MWE ARE DEFINING FORMATS FOR SORT1i,REAL OUTPUT
COMMENT NEW HEADING FORMATS ARE 240,220,AND 225
115C92‘001392209‘1’225

COMMENT THE FOLLOWING ARE THE I VALUES FOR THE FORMAT PIECES
1’7“9‘“93;‘"33’39"“’30,‘339339“0'39,"339399 S ’

‘33’30 ’0

COMMENT WE WILL NOW SPECIFY THE NEW FORMAT HEADINGS

24¢C

(4EXyS1HE L EMENT STRESSES FOR ELEMGGDO)
220

(1X,7HELEMENT)

225 ,

(3X93HID. 9y IX94HHSIG (1) 410Xy HHSIG(2) 413X ,6HSIG(3) 911Xy 5HTHETA,2
11XySHSIGP1,11X4SHSIGP2,12X43HTAU)

COMMENT WE WILL NOW SPECIFY THE NEW FORMAT PIECES

74

1X,17

35

1PE11.44,0PF841,3X

-33 :

5%

39

i1PE11.44,0PF3.1,3X

JEFINITIONS FINISHZD

COMMENT ACCORIING TO THE STRESS AND FORCE CALCULATION PACKET

COMMENT 8 VALJES WILL BE OUTPUT, THE FIRST BEING THE ELEMNT ID =---
COMMENT  COMBINING THE SPECIFIED FORMAT PIECES,ADDING IN THE APPROPRIATE
COMMENT COMMAS,AND THE 3EGINNING AND ENDING PARENTHESES(WHICH NASTRAN

TOMMENT  N0OES) WE GET

COMMENT (41X, I7 45X y1PE11¢495X91PELL by SXy1PELL el oSNy 1PELL1 o495 Xy1PEL11aty

SOMMENT  5X,31PZ11.4,5X,1PEL11,.4)
END OUTPUT
INPUT FINISHED

Figure 24 - Output Packet, Sample Problem 1
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OUTPUT PACKET

BLOCK DATA

COMHMON/QFPCOM/NOELEM, IPOINT (24) ,IOFP2(144) ,IOFP1(250),I0FP5(300),1
1PTFP1(24)/HEDCOM/ISTNO(34120)IFRMTS(5000),IFMT(180)

DATA NOELEM/38/

DATA IPOINT,IOFP2,I0FP1,IOFP5,IPTFP1,ISTNO,IFRMTS,IFMT/1102%0,5180
1*10H /

- DATA IOFP2(19),I0FP2120),I0FP2(21),I0FP2(22),I0FP2(23),I0FP2(24)/1
1150,240,042204-1,2257

DATA IPOINT(W/571/

DATA ISTNO(1416) yISTNO(2,16)+ISTNO(3,16)/240,6,334/

DATA TFRMTS(334) /10HCLIX,51HE /4 IFRMTS(335)/10HL E M E N /,IFRMTS(
1336) /10HT S T R E/,ZIFRMTS({337)/410H S S E S /,IFRMTS(338)/10HF O
1R & L/, IFRMTS(339)/1CH E M &4 0 )/

DATA TISTNO(1,17)/0/

DATA ISTNO(1,18),ISTNO(2,18),ISTNO(3,18)/220+24340/

DATA IFRMTS{34C)/10HULX, 7HELEM/,IF IMTS(341)/1GHENT) /

DATA ISTNO{(1,19)/-1/

DATA ISTNO(1,23) 4ISTNO(2,203),ISTNO(3,20)/2254104342/

DATA IFRMTS(342)/10H(3Xy3HID«y/,IFRMTS(343)/10HIX,6HSIG(1/ 4IFRMTSI(
1344) /710H) 910Xy SHSI/LIFRMTS(345)/710HG(2) 910X 46/, IFRMTS(346) /10HHSIG
1(3) 411/ IFRMTSU347)/1CHX sSHTHETA,, /4 IFRMTS(348)/10H11X45HSIGP/,IFRM
17S(349)/10H1,11X,5HST/, IFRMTS(350)/10HGP2,412X43H/IFRMTS(351)/10HT
1 AU) /

DATA IPTFP1(4)/ 1/

DATA IOFP1l1)/1/

DATA IOFP1(2),I0FP5(1),I0FP5(2),I0FP5(3),I0FP5(4),I0FP5(5),I0FP5(6
1)/72%74410HIX,,I7 s 10H s10H »10H »10H
1 /

DATA IOFPL(3)/-4/

NDATA TIC0FP1(L),INFP5(7),I0FP5(8),10FP5(9),I0FP5(10),I0FP5(11) ,I0FP5

1(12)/72*30,10H v 10H 1PE11.4410HOPFB8.143X 410H ’
11CH /

DATA IOFP1(5),I0FP5(13),I0FP5(14),I0FP5(15),I0FP5(16),I0FP5(17),10
1FPS5{18)/2%-33,1JH5X +1CH v10H 9»10H
1 v 1CH /

DATA IOFP1(6)yI0FP5(19), IOFP5(22),I0FP5(21),I0FP5(22),I0FP5(23),I0
1FP5(24) /2%39,413H »10H 1PE11.44,10HOPFB.1,3X ,10H
1 s1CH /

DATA IOFP1(7)/=4/
DATA I0FP1{8)/30/
DATA IOFP1(9)/-33/
DATA IOFPL{1G)/30/
DATA TOFP1(11)/-4/
DATA IOFP1(12)/39/
DATA IOFP1(13)/-33/
DATA IOFP1(14)/39/
DATA IOFP1(15)/-33/
DATA IOFP1(16)/30/
DATA IOFP1(17)/3/
END

Figure 25 - Output Packet BLOCK DATA Subprogram,
Sample Problem 1
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'PARAM = 1
PACKET VARIABLES = 99
ELEM50'8f110938”390y121
JD1,ANGLE,JD?2
BEGIN STIFFNES
2yK1J )
KIJ

INSERT COMMON A
INSERT EQUIVALENCE A
INSERT A
XX48934,EQUA
INSERT B
PTe2+1,TERM
DKXe1 491, TERM
DKYs1s1,TERM
DKZy1491,TERM
DNy1,s3,TERM
DNA43,8,TERM
DNBy3,8yTERM
DNCy3,8,TERM
ONDy3,8,TERM
DNE 3484 TERM
ONF 43,8, TERM
DNG,3,8,TERM
ONH,3,8,TERM
KX91914C0OMM
KYs1y14COMM
KZy141,C0OMM
ONLAy348,2QUA
DETA,4+49EQUA
DNLB,3,8,5QUA
DETBys9EQUA
ONLC,»3,8,EQUA
DETCyyEQUA
ONLD,3,4,8,EQUA
DETDy 9 4EQUA
DONLE+348,EQUA
DETE,94EQUA
ONLF+3,8,EQUA
DETF44,EQUA
ONLG,3,+8,EQUA
DETG,,,EQUA '
DNLH,3,8,E£QUA
DETH, 4 yEQUA
BTAy1434TERM
BTBy193yTERM
BTCy143,TERPM
BTDy1y3yTERM
BTEs143,TERM
BTFy1y3,TERM
BTGyly 3, TERM
BTHy1, 3, TERM
SAVEA,1,8,EQUA

Figure 26 - Preliminary Data Packet and Stiffness
Matrix Packet, Sample Problem 2
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SAVEB,1,8, EQUA
SAVEC,»1,8,EQUA
SAVEI,1,8,EQUA
SAVEE, 148, EQUA
SAVEF,1,8,EQUA
SAVEG,y1,3,EQUA
SAVEH,1,8, EQUA
SUM1,444TERM
SUM2,4 44, TERM
SUM3,4 s TERM
SUMGLy 4 TERM
SUMS,4 44 TERM
SUMB 4y o TERM
SUM7,44,TERM
SUMB, 4 4 TERM
KIJsysEQUA
DEFINITIONS FINISHED
INSERT COMMON A
DIMINSION TIZ (1)
DIMENSION TA{9),TOFF(3)
DIMENSTON XX1(3) ¢XX213) 4 XX3(3)9XXL(3) 4 XX5(3) 4XX6(3)
DIMENSTION XX7(3)4XX81(3)
COMMON /SYSTEM/DOUMM(386),ISOP
COMMON /SMAIX/Z (1)
COMMON /SMA13K/ICSTMy¢NCSTM
JEFINITIONS FINISHED
INSERT EQUIVALENCE A
EQUIVALENCE (Z,1I27)
DEFINITIONS FINISHED
INSERT A
IF(ISOP.EQ.-1)CALL MESAGE(-30,154,ECPT (1))
IF(JD1.EQ.3)H0 TO 10065
IFINCSTM,EQ.J)G0 TO 1019
DO 1023 I=14NCSTM,14
I1=ICSTM+1I
IF(JDL.NELIZ(IL))GO TO 13080
IF(IZ(I+1).ENLL)GO TO 1030
GO TO 132¢
1008 CONTINUE
1010 CALL MESAGE(-30,25,1ID1)
1020 CALL MESAGE(-33,155,101)
1636 DC 10490 J=1,9
I1=T+4+y
106458 TA(U)=Z(11)
00 1053 J=1,73
I1=I+1+J
14650 TOFF (N =7(I1)
DO 160 I=1,3
XX1(I)=XYZ1 (1, 1) -TOFF{T)
XX2(I)=XYZ2(1L,1)~-TOFFA(I)
XX3(I)=XYZ3(1,I1)-TOFF (1)
XXG{IY=XYZ4 (L, I)=-TOFF(I)

Figure 26 - Preliminary Data Packet and Stiffness
Matrix Packet, Sample Problem 2—-Continued
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XXS5(I)=XYZ25(4,I)-TOFF (1)
XX6(I)=XYZo (1, I)-TOFFLII)
XX7U(I)=XYZ7 (1, 1) =TOFF (D)

1060 XX8(I)=XYZB8(1,I)-TOFF(I)
CALL GMMATO(TA3393919XX19391,0,XX{1,41))
CALL GMMATD(TA 33,3519 XX2939140yXX(1,2))
CALL GMMATDU{TA 3,391 9XX39391909XX(1,3))
CALL OMMATO(TA.39391yXXty3y1,0,XX{144))
CALL GMMATD(TA33,43,14XX593431,04XX(4145))
CALL GMMATDUITA393414XX69391409XX{146))
CALL GMMATD(TA, 34341 eXX7939140,XX(1,7))
CALL GMMATO(TA,3 4341 9XXBy391,04XX11,8))
GO TO 137¢

1065 CONTINUE

DEFINITIONS FINISHED

XX

ROW 1,XYZ1

ROW 24XYZ2

ROW 3,4XYZ3

ROW Ly XYZ4

ROW 5,4XYZ5

ROW 64XYZ6

ROW 74XYZ27

ROW 84XYZ38

INSERT B

1670 CONTINUE

DEFINITIONS FINISHED

PT

1414=3.5773532700

2,11'pT(1’1)

DKX

i,1,1.0

DKY

1,1,1.0

DKZ

1,1,1.8

ON

14190412500%(1.00+PT(1,1))%*2

1,2,0.125D0%(1.D00-2T(1,1))**2

19353612500 %(LeDI+PT{L,10)*¥(1.00=-PT(1,1))

DNA

14,1,-0ONtL,2)

291,-0ON(1,2)

3514y=DN(1,2)

1,2440N(1,42)

2929‘0N(193)

3929y~0N(2,23)

153++0N{1,3)

2939~DN{1,1)

3934+DN(1,3)

194y=DNI(1,3)

2yby=0ON(1,3)

39by+DIN(1,2)

Figure 26 - Preliminary Data Packet and Stiffness
Matrix Packet, Sample Problem 2—Continued
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1,59,-DNIl1,3)
2+59+DN(1,2)
3+5+,=0N(1,3)
1964+0N11,3)
2:64+DN(1,3)
3969=0N11,1)
1,7,+DN(1,1)
2979+DN{1,1)
T+7+4+DN(1,1)
1,8,‘DN(1'1)
2984+DN(1,3)
398,+DN{1,3)
DONB

1915=-DN{1,43)
2+19=-DNl1,3)
3'19'DN(1'2)
1,2,+0N(1,3)
2921‘0"“191)
3929-DNl1,3)
1,3,+DN(1,2)
293"DN(1'3)
343++0N(1,3)
1,4y=DN{1,2)
Z'Q,-DNU.,Z)
3.L44,+0N(1,2)
195"DN(191)
29y59+DN(1,43)
3’5"0N(193)
1,644#DN(1,1)
2+69+DN(1,1)
396"DN(191)
1974+NN(1,3)
29794+0NI(1, 3)
243 749+DNT1,1)
1+89=0NI{1,3)
298y+DN(1,2)
348+3+DN(1,3)
ONC

1y14-DNI{1,3)
Rplv'DN(i‘)Z)
3919‘DN(19 3)
1,2440N1{1, 3)
2929=DNI{1,2)
3:2y=0N11,1)
193,+#0N(1,1)
2'31-DN'(191)
3939+DN(1,1)
1+4y=DN(1,1)
29‘-4"DN(10 3)
JyLyatONL1,3)

Figure 26 - Preliminary Data Packet and Stiffness
Matrix Packet, Sample Problem 2—Continued
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1,59=-0N(1,2)
2+5,+0N(1,2)
) 345y=0N{1,2)
1,64+0N(1,2)
_ 2969+0N1,3)
- 3’6[‘DN(193)
14794DN(1,3)
2979 +DN(1,1)
3974+0N(1,3)
1,8,-DN(1,3)
29849+0N(1,3)
3+484+DN(1,2)
OND
1+1,-DNCL, 1)
2919'DN(113)
3’19‘DN(193)
1,2,40N{1,1)
2+24+~DN(1,1)
3,29"0N(1y1)
143,+DN{1, 3)
2939’DN(193)
3439+DNl1,1)
19“9‘0N(113)
2oeby=-DNI(1,2)
3ebe+DNI(1,3)
1545,=DN(1,3)
- 2954+DN(1, 3)
3959‘DN(192)
1,6440N11, 3)
2969+DN{1,1)
23464y=-DNI1,3)
1,7,40N(1, 2)
" 2974+0N{L1,3)
39 744#0N{1,3)
1,8,-0N(1,2)
298y+0DN(1,2)
3,8,+0N(1,2)
ONE
1+1,-0N11,2)
2+914-DNI(1,3)
3,14-DN(1, 3)
1,2++0N(1,2)
2929-0N(1’2)
3,2,‘DN(1' 2)
1+3,40N(1,3)
2939=DN{(1,3)
343440N{1,2)
Lyb4y=DNI(1,3)
29‘0"DN(11 1)
Syby4DN{1,3)

Figure 26 - Preliminary Data Packet and Stiffness
. Matrix Packet, Sample Problem 2——Continued
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|

1959'0Nl1’3)
23594DN{1,3)
3954=DNI1,1)
1,64+DN(1,3)
2464+DNCL,2)
3969-0NC1,3)
1y79+0N(1,1)
29 794DN11,3)
39744DNl1,3)
1.8,'0N(1v1)
298y +0N(1,1)
398y+DN(1,1)
ONF

191'°DN(1'3)
291,-DNI(1,1)
3'1,'DN(1’3)
1y2,+DN11, D)
2’29‘0N(1'3)
392,‘DN(192)
1,344+0N(1,2)
2939‘DN(192)
343,+0N(1,2)
19QQ-DN(192)
29~9‘DN(1'3)
'3;“,*DN(1'3)
195,-0N(1,1)
2955 +0N(1,1)
3959—DN(191)
‘LyBy+0ON(1,1)
‘2969+DN{1,3)
"346y-DN(1,3)
‘197440N(1,3)
‘29 74+0N(1,2)
‘3497440NI(1, 3)
Lin"DN(193)
2984+0ON(1,3)
‘3989+0N(1,1)
‘DNG

'1’19‘DN(193)
2914=-DN(1, 3)
3,19‘DN(191,
1,25+#0N(1,3)
2,29‘0”(192)
3929‘DN(193)
1,3,#DN{1,1)
2,3,'0”(1)3)
3934+DN(1, 3)
1)“9‘DN(111)
2y49-0ONI(1,1)
3949+ 0N(1,1)
145,-DN(1,2)
2951*0N(193)
3,59=-DN(1,3)

Figure 26 - Preliminary Data Packet and Stiffness
Matrix Packet, Sample Problem 2—Continued
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1+64+DN(1,2)
2+69+4DNI(1,2)
3+64~0N(1,2)
1,7,#0N(1,3)
29744DNI(1, 3
3979+DN(1,2)
1,85s=-DNI1,3)
2984,40N(1,1)
348y+DN11,3)
ONH
191"DN(1'1)
2914-DN(1,1)
351y=-DNC1,1)
1,2,+0N(1,1)
292"0N(1,3)
3’2"DN(103)
1+3,+0NC1, 3)
2934y=0N(1,2)
343,+DN(1, 3)
1944=-0N{1,3)
2,49‘0N(103)
Sylky+tDNI(1,1)
1,59‘0N(1y3)
2+54+0NC(1,1)
3,54y=0DN(1, 3)
1,64+#0N(1,3)
2969+0N(1,3)
3¢64=DN{1,2)
1,7440N{1,2)
2974+DNI(1,2)
39744+0N(1,2)
148,=-DN(1,2)
298434#0DNI(1,3)
3,8,+DN1{1,3)
ONLA
INV{DNA¥XX)*¥JNA
DETA

DETERM

ONLB
INVIDNB*XX) *DNB
pDETB

DETERM

DNLC
INV(DNC*XX) *DNG
DETC

DETERM

ONLD
INV(DND*XX ) *¥IND
DETD

DETERM

DNLE

Figure 26 - Preliminary Data Packet and Stiffness
Matrix Packet, Sample Problem 2—Continued
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INV(DNE*XX)*ONE

DETE

DETERM

ONLF

INV(ONF*XX) *DNF

DETF

DETERM

DNLG

INV(DNG*XX ) *DNG

DETG

DETERM

ONLH

INV(DNH*XX)*DNH

DETH

DETERM

BTA
1,1,0KXU1,1)*ONLATL,IP)
142,0KY(1,1)*DNLA(2,1IP)
1,3,0KZC01,1)*DNLA(3,IP)
BTB
141,0KX(1,1)*0ONLB{L1,IP)
142+0KY(1,1)*0ONLB(2,1IP)
1,3,0KZC1,1)*DNLB(3,IP)
BTC
141,0KX{1,1)*DNLC(1,1IP)
1,24D0KY{1,1)*DNLC(2,IP)
1434DKZU14,1)*DNLC(3,1IP)
RTD
141,DKX11,1)*DNLD(41,IP)
1+240KY{1,1)*DNLD{2,1IP)
1¢43,0KZC1,1)*DNLD(3,IP)
RTE
141sDKX{1,1)*ONLE(L,IP)
192+0KY{1,1)*DNLE(2,1IP)
1434DKZU1,1)*0ONLE(3L4IP)
BTF
11190KX(1’1)*DNLF‘19IP)
142,0KY(1431)*DNLF(2,1IP)
143,0KZUL41)*DONLF(34,IP)
376
1914DKX01,1)*ONLGIL1,IP)
1492,0KY(1,1)*ONLG{2,1IP)
193,0KZ(1,1)*ONLGI(3,4IP)
BTH
141+08XC1,1)*DNLHI1,1IP)
14240KY(141)*0ONLHI2,1IP)
1434yDKZ1141)¥DNLHI3,IP)
SAVEA

BTA*DNLA*DETA

SAVEB

BTB¥DNLB*DETS

SAVEC

Figure 26 - Preliminary Data Packet and Stiffness
Matrix Packet, Sample Problem 2-—Continued
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BTC*DNLC*DETC

SAVEI

BTD*ONLD*DETD

SAVEE

BTE*DNLE*DETE

SAVEF

BTF¥DNLF*DETF

SAVEG

3TG*ONLG*DETG

SAVEH

BTH*DNLH*DETH

SUM1

141,83
SAVEA(141)+5AVER(L 1) +SAVEC(1,1)+SAVET(1,1)+SAVEE(1,1)+SAVEF(1,1)+3
SAVEG(1,1) +SAVEH(1,1)
SUM2

141,9

- SAVEA(1,2) #SAVEB(1,2)+SAVEC(1,2)+SAVET (1,2) +SAVEE(1,2) +SAVEF(1,2)+3

SAVEG(1,2) +SAVEH(1,2)

SUM3

19148

SAVEA(1,3) +SAVEB(1, 3)+SAVEC(1.3)+SAVEI(1,3)+SAVEE(1,3)+SAVEF(1 3)+3
SAVEG(1,3)+SAVCH(1,

SUMG N

1,1,¢8 AN
TAVEA(1,4) +SAVEB(1,4) +SAVEG (1, 4) +SAVET (1,4) +SAVEE (1, 4) +SAVEF(L,4) +3
SAVEG(1,4) +SAVEH(L,4) \\

SUME \\
1,1,%

SAVEA(1, 5,+DAVER(1’5)+SAVEC(1 S)+SAVEI(1,5)+SAVEE(1,5) +SAVEF(1, 5)+$'

AN

SAVEG(1,5) #3AVEH(1,

SUMB

191,43

SAVEA(1,6) +SAVEDR(1,6)+SAVEC (1, 6)+SAVEI(1,6)+SAVEE(1q6)*SAVEF(1 6) +$
SAVEG(146) +SAVEH(1,46)

S5UM7

151,83

SAVEA(147) #SAVER(1,7)+SAVEC(1,7) +SAVETI (1,47) +SAVEE(1,7) +SAVEF(1,7)+3
SAVEG{1,7) +SAVEH(1,7)

SUMe

Lyly#
SAVEA(1,8)+SAVER(14,8)+SAVEC(1,48)+SAVET (1,8)+SAVEE(1,8) +SAVEF(1,3)+%
\,(\\[»-f_'f‘i"l\*-cl\\” H(i'g)

<IdJ

SUMJ

END STIFFNESS

INPUT FINISHED

Figure 26 - Preliminary Data Packet and Stiffness
Matrix Packet, Sample Problem 2—-Continued
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STIFFNESS PACKET FORTRAN CODING

SUBROUTINE KLEMSO0

DOUBLE PRECISION Q1+Q24,Q3,Q4+Q5y069Q079Q8yQ94PIJDETERM,TEMPOR,TMPOR
11 XX yPToyDKXyDKY 4DKZ4yDON,ONA,ONB,ONCsOND4yONE,DONF¢yDONGyONHyDNLAyDETA,D
1 NLB,DETB,DNLC,DETC,DNLD,DETD,ONLEsDETE4DNLF,DETF,DNLGyOETG yONLH,DE
1TH,BTA,BTB4yBTC,+8TD483TE,BTF4yBTG4sB8THySAVEA,SAVEB,SAVEC SAVEI ,SAVEE,S
1 AVEF ySAVEG,SAVEH ,SUM14SUM2,SUM34SUML 4 SUMS ,SUMBE,SUM7,SUMB yKI1yKI2yK
113, KIUyKISyKIB gy KI7 o KIByK119K219KI1yKU14K51,KB19K714KB814K12,K22,K32
1y KLU29yK529KB24K72 9KB2y K13 yK234K3T3KLUT 4 K5I 4KOI $K73 yKBI 3y KLU ¢K244K34,K
1L ,KSU KB yKT74 KBULyKLG,K25,K35, K45 94K554KB54K754KB59K169K26¢K369KL5
L sKSH W KOD ¢ K76 9yKBH g KL 7y K27 9yK3I7 9 K79 KS7 4KE7 $¢K77 4KB7 yK184K28,K38,K48,K
158,K68,K78,K88

DIMENSION ECPT (1)

DIMENSION TMPOR1 (35)

DIMENSION Q4 (64) 4Q5(64L) 406(64)4,Q7(64),28(64L),Q3(6L),XYZ1(1,43)4XYZ2
10193 oXYZ3{193) o XYZU(1y33) g XYZ5(1433) o XYZ6(143)4XYZT7(143)4XYZB8(1,3),
IXX(348),PT(1,42),0KX(141),DKY(1,41),0KZ(1,1),DON(341)DNA(B,3),DNB(8,
13),DONC{B43)sDNDU{Bs3)4DONE(B43)4yDONFU(By3),0NGIB,3)3DONH(893)4DNLA(8,3)
1+DETA(L141)4yDONLB(3,3),0ETB{1,1)+s0ONLC(84+3)DETC(1+1),0NLO(8,3),0ETD
1141) ONLE(B43),DETE(L14+1),ONLF{(843),DETF(141) +DNLG(843)40ETG(141),D
INLH(843) 4DETH(1,41)48TA(3,1)48BTB(341)4BTC(341)4,8TD(341)48BTE(341),4BT
1F(341),BTG(341),BTH{341),SAVEA(B841),SAVEB(841)+SAVEC(8,1),SAVEI (8,
11),SAVEE(8,1),SAVEF (8,+1) SAVEG(8,1),SAVEM(8,1),SUM1(1,1),SUM2(1,1)
1oSUM3(141)ySUML(141)4SUMS(1,41)4sSUMB(1491) ¢SUM7(141),SUMB(1,1) 4INDXI
1843) fKI1(14531)4KT2(191)4KTI3(141),KIG{1,41)4sKIS(141)4KIB(141),KI7(1,1
1),KI8(1,1)

DIMENSION TZ 1)

DIMENSION TA(9),TOFF(3)

DIMENSTION XX1 3) ¢XX2{3) ¢ XXTU3) 3 XXL(3) 4 XX5(3) ¢ XX6(3I)

DIMENSION XX7(3) 4XX8(3)

COMMON /SYSTEM/DUMMI(36) ,ISOP

COMMON /SMALIX/Z (1)

COMMON /SMA18BK/ICSTM,NCSTM

DIMENSTION K11(1,41) 4K12(141)4sK13(141),K14(1,1),K15(1,1)yK16(1,41),4K1
1701,1),K18(141),K21(1,41),K22(1,1),K23(1,41),K24(1,1),K25(1,1)K26(1
1,1)4K27(141)4K28(141)4K31(1,41),K32(1,1),K3I3(1,41) ,K34{141)4K35(1,1)
14K36(191) gK37(141)4K38(141)yKL1(141)KU2(191)¢Ku3(191)4KLL(141) Kk
15(1451),K46(141) 3 KU7(141) 4K48(1,41)9K51(1,1)4K52(1,1),K53(1,1),4K54(1
191) 3 K55 (141) oKS6{141) 9K57(141),K5811,41)4sK61(1,1) 4K62(141),KE63(1,1)"
1KLL (191)9KHES501,41) 4KEB(1,41)4KBE7(141) 4KEB(141)4K71(1,1),K72(1,41),4K7
130L,1),K740141)4K750141) 4K760(141)4K77(1,1),K78{141)4K8111,1),KB2(1
1+1),K83(01,1) K84 (1,1),K85(1,1),KB86(1,1),K87(1,1),K88(1,1)

COMMON /MATIN/MATIDGINFLAG,SLTEMP,STRESS,SINTH,COSTH/SMAL1I0O/0UM1(
10),IFKGG,DUM2(1) yIF4GG,DUM3(23)/SMALCL/IOPTL yK4GGSWyNPYT/SMALET/NE
ACPTU1)4yNGRID(8) s JDLyANGLE ¢ JN24MATIDL «TI014X14Y147Z1,I024X24Y2422,1ID3

Figure 27 - Stiffness Matrix Subroutine and BLOCK
DATA Subprograms, Sample Problem 2
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1 9X39Y39Z303I0Uy Xt yYlyZUlyIDS 4 X5,Y5,25,1I069X6,Y6926,ID74X74Y7,27,108,
1X8,Y8,28,0UMV(55)/SMALIDP/I4JsIS,IPyI14I2,PI(141),TEMPOR(H4L),DETERM
1,01(64),Q2(H4)4Q3(H4)/MATOUT/G11,612,613,622+623,G33,RHO,ALPHAL,AL
1PHA2 yALP12,TSUBG yGSUBE4SIGTEN,SIGCOM,SIGSHE

EQUIVALENCE (ECPT,NECPT)

EQUIVALENCE (X149 XYZ1(191))y(X2oXYZ20191)) 9 UX3eXYZ3(191)) o(XlbtyXYZlL(
1191) )9 (XSyXYZ5 (1 91)) g AXO G XYZOE L 91) )y (XToXYZ7(141))4(XB4XYZ8(141))
FQUIVALENCE (K11 (141) oKI1(191)) 9 (K12(141)oKI2(191))y(KL3(L1y1),KI3I
1191)) 9 (K14{141) o KIG(141)),4(K15(191)3KIS(1,1)),(K16(1y1),4KIB(1,41)),
1(KL7 (191) 3 KI7(144)) 3 K18 (191)4KIBI1y1)) 4 (K21 (141),KIL(L,1)),(K22(1
191)4KI2(141) )3 (K23(141) ¢KI3(191)) 9o tK24(191)9KTIG(191))4(K25(141),4KI
15(141)) 3 (K26 (191 ) 4KIB(L91)) (K27 (191)4KI7(1,1))y(K28(1,1),KIB(1,1)
1) 9 (K31 (1 41) o KIL{141)) o IK32(141) yKI2(191)) 4 (K32lL141)yKI3Z(141)), (K34
1 (Ly1) yKTIG(141))y (K35(141)yKI5(141))9(K36(1,1),KIB(141))4(K37(1,y1),
IKI7Z0191)) 9 (K330141)4KIB{191)) g (KG1 L 41)4KIL1(141)),4(KL2(1,y1),KI2(1,
11)) 3 (KG3(191)yKTI3(141)) 4 (Ktte(191) KIG(191)), (KuS(1,1),KI5(1,1)),(K
14601 31) yKIB(191) )y (KG7(191)yKI7(192)) 3 (KUB(141)yKIB({191))y (K51(1,y1
1) 9KI1(141)) 3 (KS2(191) 3KI2(141)) 4 (KS3(191) eKI3(L191))y (K54 I(1,41),KIbLY
11,51))96KS51141) oKIS{L41)) g (KSH(191)9KIB{191)) (K57 (141)4KI7(1,41)),
1(KS8(141),KIBL1,1)),(KEL(1,1),KT10151))4(KBE21141),KTI2(141)),(KE3(1
191) 3 KIZ(151)) 9 KOELI(141) yKIL(141))3(KE5(191) yKIS(1,1))43(KBE(1y1),4KI
16(191)) 3 (KE7(1491)4KI7(141)) 9 (KEB(191)9KIB(141)) 9 (K71(141)4KI1(1,1)
1) 3 (K720191) 9KI2(141)) g (K731 1) 3KI3(1451)) 4 (K7L(141),KI4(1,1)),(K?75
102,1) 3 KIS{141)) 9 (K76 0191)4KIB(141)) 9 (K77 {151)4KI7(141)),(K78(1,1),
1KIA(141))4(K81(191),KI1(191))4(KB2(141)4KI2(141)),(K83(1,1),KI3(1,
11)) 3 (KBLI(141)yKIL(151)) 4 (K85(141) 9KIS(141)),(KB6(141)4KIE(1,1)),4(K
187(141)4,KI7(141)),(K88(1,1),KI3(1,1))

DATA TMPOR1/3A*( 43N0/

EQUIVALENCE (Z4,12)

PI(L,1)=3.141532k5

INFLAG=?2

D0 1 IP=1,8

IF(NGRID(IP)LEQ.NPVT)GO TO 2

CONT INUE '

CALL MESAGE (=334934,yZCPT (1))

CONT INUE

MATIDN=MATID1

ELTEMP=DUMY (1)

SINTH=DSIN(PI(1,1)/18C.*ANGLE)

COSTH=DCOS(PI(1,1)/193.%ANGLE)

CALL MAT(NECPT (1))

IF(ISOP.EQe~-1)CALL MESAGE(=3U4154,ECPT(1))

IF(JDL.EQ.GIGO TO 1255

IFINCSTMLEQ.G)GO T0O 10110

DO 125 I=1,NCSTM,14

I1=TCSTM+I

IF({JD1.NELIZ(T1))GO TO 13L9

IF{IZ(I+1).EQ.24)G0 TO 153¢

0 TO 132t

Figure 27 - Stiffness Matrix Subroutine and BLOCK
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1000 CONTINUE
1010 CALL MESAGE (-30,425,1ID1)
1020 CALL MESAGE(-30,155,101)
1030 DO 1g4d Jy=1,9
I1=T+4+y
1040 TAMY)=Z(I1)
DO 1050 U=1,3
I1=1+1+4J
1050 TOFF (U =2(11)
DO 1060 I=1,3
XXL(I)=XYZ1(1,I)~-TOFF(I)
XX2(I)=XYZ2(1,I)-TOFF(I)
XX3CIV=XYZ3(1,I)~-TOFF(I)
XXGU{I)=XYZL{1,I)-TOFF(I)
XX5(I)=XYZ5(1,41)-TOFF(I)
XXB(I)=XYZ6(1,1I)~-TOFF(I)
XX74I)=XYZ7(1,1) -TOFF (I)
1060 XXB{I)=XYZ8(4,I)~TOFFI(I)
CALL GMMATD(TA,3,391'XX1,3v1939XX(1,1))
CALL GMMATD(TA,393$1$XX2$3)lsU’XX(lvz))
CALL CMMATD(TA93,3;1'XX3,3y1’J,XX(1g3))
. CALL GMMATD(TA,3v3,1|XXQ,3,1,U,XX(19Q))
CALL GMMATD(TA,3,3o19XXS,3,1$5$XX(1,5))
CALL GMMATD(TA,3,3,1,XX6,3,1969XX(1,6))
CALL GMMATD(T5,3,3o1.XX7,391,0,XX(1,7))
CALL GMMATD(TQ93v3v11XX8v39110,XX(198))
GO TO 1073
1065 CONT INUE
DO 3 I=1,3
I XX{I41)=XYZ1{1,1)
0O 4 I=1,3
4 XX(I,2)=XYZ21({1,1)
DO 5 I=1,3
XX{I43)=XYZ3(1,1)
00 5 1=1,3
XXCI g4)=XYZ4(1,1)
DO 7 I=1,3
7 XX(I45)=XYZ5(1,1I)
B0 8 I=1,3
8 XX(I46)=XYZH(1,1)
D0 3 I=1,3
9 XX{I,7)=XYZ27(1,1)
DO 10 I=1,3
10 X¥(I4B8)=XYZB(1,1)
1070 CONTINUE
PT(1v1)=‘0.57735027DD
PT(142)=-PT(1,1)

U

o)l

Figure 27 - Stiffness Matrix Subroutine and BLOCK
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DKX(1,1)=1.0
DKY(1,1)=1.0
DKZ({1,1)=1.0 _
DN(1,1)=0.125D00% (1.004PT (1,1))%*2
DN(2,1)=0.125D0* (1., 00-PT (1,1))**2
DN(3,1)=0.125DD*(1.00+PT(I,i))‘(loD3-pT(1.1))
DNA(1,1)==-DN(2,1)
DNA{142)==-DN(2,41)
DNA(1,3)=-0ON{(2,1)
DNA(241)=40NI(2,41)
DNA(2,2)==-DN{3,1)
DNA(213)='DN‘391)
DNA(2,1)=4DN(3,1)
DNA(342)==-DN11,1)
DNA(3,3)=4DN{3,1)
DNA(451)==DN(3,1)
DNA(L442)==-DN(3,1)
DNA(L,3)=4+0N{2,41)
DNA(S5,1) ==-DN(3,41)
DNA(5,2)=+DN(2,1)
ONA(543)==-DN(3,1)
DNA(6s1)=4DN(3,41)
DNA{6y2)=+DN(3,41)
DMNA(643)==DN({1,1)
DNA(741)=40N(1,1)
DNA{7,2)=+DN(1,41)
DNA(713)=+DN(1,1)
DNA(8y1)=-DN{i,1)
DNA(8,2)=+DN(3,1)
DNA{B,3)=+DN{3,41)
DNB(1,1)=-DN(3,1)
NN3(1,2)=-DN{341)
DN3(1,3)==-DN{241)
DNB(241) =+DN{3,41)
DON3(2,2)==0ON{1,1)
DNB(2,3)=-DN(3,41)
DNB(3,1)=+DN(291)
DNB(3,2) ==0ONI(Z,41)
DNS(3,3)=4DN(3,41)
DNB(4,1)=-DN(2,1)
ONB(4,2)==DN(241)
DNB(Ly3)=4+DNI{2,41)
DNB(591)="DN(1v1)
DNB(5,2) =+DN(3,1)
DNB(543)==-DN(3,1)
DN3{6,41)=+#DN(1,41)
DNB(642) =40N(1,41)
DNB(6,3)==DN{1,1)

Figure 27 - Stiffness Matrix Subroutine and BLOCK
DATA Subprograms, Sample Problem 2—-Continued
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ONB(7,1)=+DN(3,1)
DNB(742)=+0N{2,41)
DNB(74+3)=4DN{1,1)
DNB(B,1)=-DN(3,1)
DNB(8,2)=+DN(2,1)
DNB(8,3)Y=+4+0N(3,1)
ODNC(141)==-DN(3,1)
DNC(1,2)=-DNI(2,1)
DNC(1,3)=-DN(3,1)
DNC{241)=4+DN(3,1)
DNC(242)=-DN(3,1)
DNC(2,3)=-DNI(1,1)
DNC(341)=+DN(1,1)
DNC(342)==0ON(1,1)
DNC(3,3)=4DNI(1,1)
DNC(441)==-DN(1,1)
DNC(442)=-0ON(3,1)
DNC (L ,3)=+DN(3,1)
ONC(541)==0N(2,1)
DNC (542)=+DN(2,41)
DNC (543)=-0N1(2,1)
DNC(641)=4DN(2,1)
DNC{642)=+DNI(3,41)
DNC(643)=-DN(3,1)
DNC(7,1)=+DN(3,1)
DNC(742)=4DN{1,1)
DNC(74+3)=4DNI(3,1)
DNC(841)=-DON(3,1)
DNC(8,2)=+0N(3,1)
DNC{843)=4#0N(2,1)
DND(1,1)=-DN(1,1)
DNO(1,2)=-DNI(3,1)
DND(1,43)==-0ON(3,1)
DND(241)=4DN(1,41)
DND(242)==-DNI(1,1)
DND(243)==DN(1,1)
DND (341)=+#DN(3,41)
DNO(342)==-0ONI(3,41)
DND{2,3)=+DN(1,1)
OND (4411 ==DN(3,1)
DND (4,2) ==-DN1(2,1)
DND(443)=+#DNI(3,1)
DND{5,1)=-0ON(3,1)
DNO(5,2)=4DN(3,1)
DND (5,43)==-DN{2,1)
DND{(64+1)=+DN(3,1)
DND (6,2)=4DN(1,1)
DND(B43)==DN(3,1)
DND (741)=4DN{2,1)
DND{7,42)=+DN(3,1)
DNO{7,3)=¢DN(3,1)
DND(841)==DN{(2,1)
DND (8,2)=+DN{2,1)
OND(8,3)=+DN(2,1)

Figure 27 - Stiffness Matrix Subroutine and BLOCK
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ONE(1,1)==DN(2,1)
DNE(1,2)==DN{3,1)
DNE(1,3)==-DON(3,1)
DNE(2,1)=4DN(2,1)
DNE{242)==DN{2,1)
DNE(243)=-DN(2,1)
ONE(341)=+DN(3,1)
DNE(3,2)==-DN{3,1)
ONE(3,3)=+DN(2,1)
DNE(4y1)=-DN(3,1)
DNE(4,2)=-DN(1,1)
DNEC(L,3)=+0NI(3,1)
DNE(541)==0N{3,41)
DNE(5,2)=4DN(3,1)
DNE(5,43)==-DN(1,1)
DNE{641)=#DN(3,1)
DNE (642)=+DN(2,41)
DNE(643)==DN(3,1)
DNE(741)=+DN(1,1)
DNE(74+2)=+DN(3,41)
DNE(743)=¢DN(3,1)
DNE(841)==DN(1,1)
DNE(R,2)=+0N(1,41)
DNE(843)=4DN{1,1)
DNF{141)==DN(3,1)
DNF(1,2)==0ON{(1,1)
DNF (1,3)=-DN(3,1)
DNF{241)=4#DN(3,1)
DNF (242)==ON(3,1)
DNF (293)=-DN(2,1)
ONF (341)=4+0N(2,1)
DNF{342)=-DON(241)
DNF (343)=+DN(2,1)
DNF(Ly1)=-ON{(2,41)
DNF (4 42)==DN(3,1)
DNF(Ls3)=+DN(3,1)
DNF {541)==-DN(1,1)
DNF(5,2)=+DN(1,1)
DNF {543)==-DN(1,1)
DNF(B6491)=+DN(1,1)
DNF {642)=+DN(3,1)
ONF{693)==DN(3,1)
DNF({741)=4DN(3,1)
DNF {742)=4DN(2,41)
DNF (7+43)=4DN(3,1)
DNF(8,1)==0ON{(3,1)
DNF {B84,2)=+DN(3,1)
ONF {843)=+DN{1,1)
DNG(141)=-DN(3,1)
DNG(1,42)==-DN(3,1)
ONG(1,3)==-DON(1,1)
DNG(241)=4DN(3,1)
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DNG(2,2)==-DN{2,1)
DNG(243)==-DN(3,1)
DNG(3,1)=+DN(1,1)
DNGI(342)==DN{3,1)
DNG(3,3)=4DN(3,1)
DNG{4,1)==-DN(1,1)
DNG(442)==-DN(1,1)
DNG(Lys3)=4DNI(1,1)
DNG(S541)=~DN(2,41)
DNG(5,2)=4DN(3,1)
DNG(5,3)==0N(3,41)
DNG{641)=4¢DN{2,1)
DNG(642)=4DN(2,1)
DNG(643)==-0N(2,41)
DNG(7,1)=40ON(3,1)
DNG(742)=+0N(3,41)
DNG(7,3)=+DN(2,1)
DNG(B8,1)=-DON(3,1)
ONG(B842)=+DN{1,1)
DNG(B84,3)=+DN(3,1)
DNH(1,1)=-0ON{1,41)
DNH(1,2)==-0ON{1,41)
DNH(1,3)=-DN{1,1)
DNH{241)=+DN(1,1)
DNHI{242)=-0ON(3,1)
DNH(2,2)==DN(3,1)
DNH(341)=4DN(3,1)
DNHI[342)==0ON(2,1)
DNH{343)=+#0N(3,1)
DNH(4,1)=-ON(3,1)
ONH(L,42)==DON{3,1)
DNH{443)=+DN(1,1)
DNH(5,1)=-DN(3,1)
DNH{5,2)=+DN(1,1)
ONHI(5,3)==0N(3,1)
DNH(B641)=4DM{(3,1)
DNH(64,2)=4¢DN(3,1)
DNH{643)==-0ON(2,1)
DNH(7,1)=4DN(2,1)
DNH{742)=40DN (2’1)
DNHI{7,3)=4DN(2,41)
DNH{8,1)=-DN(2,1)
DNH(842)=+DN{3,41)
ONH({8,3)=+DN{3,1)
CALL GMMATD(DNA 1 3,84)4XX48,3,0,Q1)
I1S=]

DO 11 I=1,3

DO 11 J=1,3
IS=1IS+1
IJ=3%(J-1)+]

Figure 27 - Stiffness Matrix Subroutine and BLOCK
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11

12

13

14

15

16

17

18

Q2(Is)I=Qi Iy

CALL INVERD(3,Q2+34Q24040ETERMyIS,INDX)
IF{IS.EQ.1)G0 TO 12 .

CALL MESAGE(-30,1564,ECPT (1))

CALL ODOuMP

STOP

IS=0

DO 13 I=1,3

DO 13 U=1,3

IS=IS+1

IJ=3%(J-1)+1

Q3(I1S)=Q2(1J)

CALL GMMATD(Q343+34040ONAs348,0,0NLA)
DETA(141)=DETERM

CALL GMMATD(DNBy 34840 4XX4843,u0,Q1)
IS=0

DO 14 I=1,3

DO 14 J=1,3

IS=IS+1

IJ=3*%(J-1)+1

Q2(IS)=Q1(1IJ)

CALL INVERD(3:Q293+Q24+42+DETERM,IS,INDX)
IF(IS.EQ.1)GO TO 15

CALL MESAGE(=30,156,4,ECPT (1))

CALL DOUMP

STOP

IS=0

DO 16 I=1,3

DO 16 J=1,3

IS=IS+1

IJ=3%(J-1)+1

Q3(IS)=Q2(1J)

CALL GMMATD(Q3,3,3,0+s0NBy39y840,0NLB)
DETB(1,1)=DETERMNM

CALL GMMATDIDNC,+3,8,34XX48,3,0,Q1)
IS5=3

DO 17 I=1,3

DO 17 J=1,3

IS=IS+1

IJ=3*(J-1)+1

Q2(IS)=Q1(I N

CALL INVERD(3yQ2+34Q2404JDETERM,IS,INDOX)
IF(IS.,EQ.1)GO0 TO 18

CALL MESAGE(=30,4156,ECPT (1))

CALL DUMP

SToOP

IS=0

DO 19 I=1,3

DO 19 U=1,3

IS=IS+1

IU=3*%(J-1)+1

Figure 27 - Stiffness Matrix Subroutine and BLOCK
DATA Subprograms, Sample Problem 2—Continued
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i9

20

21

22

23

24

25

Figure 27 - Stiffness Matrix Subroutine and BLOCK

Q3(IS)=Q2(1J)

CALL GMMATD(Q39343,04DONC+y3,8,0,0NLC)
DETC(1,1)=DETERM

CALL GMMATD(DN09378900XX,893’09Q1)
IS=0

DO 20 I=1,3

DO 20 U=1,3

IS=IS+1

IJ=3%¥{JU-1)+1

Q2(IS)Y=Q1(1J)

caLL INVERD(3,Q2+39yQ2934DETERMy IS, INOX)
IF(IS.EQ.1)G0 TO 21

CALL MESAGE(=30,156,ECPT (1))

CALL DuUMP

STQP

IS=90

DO 22 I=1,3

DO 22 J=1,3

IS=IS+1

IJ=3%(J-1)+1]

Q3(IS)=Q2(1y)

CALL GMMATD(Q393939]vDND,3oSoQ;UNLD)
DETD (141)=DETERM

CALL GMMATD(DONE 1348450 4XX48453,0,Q1)
IS=0

D0 23 I=1,3

DO 23 J=1,3

IS=IS+1

I1J=3*(J-1)+1

Q2(IS)=Q1(1J)

CALL INVERD(34Q2,43402,24DETERM, IS, INDX)
IF(IS.EQ.1)G0 TO 24

CALL MESAGE(=30,4156,FECPT (1))

CALL DuMP

STOP

IS=1

DO 25 I=1,3

DO 25 J=1,3

IS=IS+1

TJ=3%(J-1)+1

Q{IS)I=Q2(1IN) ,

CALL GMMATD(G343434309y0NE+34845,0NLE)
DETE (1,1)=DETERM

CALL GMMATOUDNF 4348,04XX,8493,0,Q1)
IS=0

00 26 I=1,3

DO 26 J=1,2

IS=1S+4

IJ=3*(J~1)+1

DATA Subprograms, Sample Problem 2—Continued

186



26 Q2(I1S)=Q1(1J)
CALL INVERD(3,0243+0240sDETERMyIS,INDX)
IF(IS.EN.1)GO0 TO 27
CALL MESAGE(-304,156,cCPT (1))
CALL DuUMP
STOP
27 IS=9)
DO 28 I=1,3
DO 28 J=1,3
IS=IS+1
IJ=3¥(J-1)+1
28 Q3(IS)=Q2(IY)
CALL GMMATD(Q3 334340y OMF33438,G4INLF)
DETF (1,1)=0DETERM
CALL GMMATD{DNG+348+29XX9B84342,Q1)
IS=)
no 29 I=1,3
DO 29 J=1,3
IS=IS+1
IJ=3*(J~-1)+1
29 N2(IS)1=n1(14y)
CALL INVERD(34Q02434Q24i9DETERM,IS,INOX)
IF(IS.EQ.1)G0 TN 3]
CALL MESAGE(=30,155,EC°PT (1))
CALL 1JUMP
STOP
34 IS=3
DO 31 I=1,3
no 31 J=1,3
IS=IS+1
IJ=3*{J-1)+1
31 Q3(IS)=Q2(1dN
CALL GMMATD (N3 43,433,043 1ING3533,430,45INLG)
DETG(1,1)=DETERM
CALL GMMATDIDNH3 39333 4XX9B93y74Q1)
IS=1
N0 32 I=1,3
DC 32 J=1,3
IS=IS+1
IJ=3%(J=-11+1
32 Q2(IS)=Q1(1IN
CALL INVERD(3,2243922,,l+DETERM,IS,IMNDX)
IF(IS.,EQ.1)G0 TO 33
CALL MESAGE(-3341%556,50PT (1))
CALL DUMP
STOP
33 IS=1)
DO 34 I=1,3
DO 34 J=1,3
IS=IS+1
IJ=3%(J-1)+I

Figure 27 - Stiffness Matrix Subroutine and BLOCK
DATA Subprograms, Sample Problem 2—Continued

187




34 Q3(IS)=Q2(1J)
CALL GMMATD(Q34343,y04DNH43,8,0,40NLH)
DETH(1,1)=DETERM
BTA(141)=DKX(141)*¥DONLA(IP,1)
BTA(2,1)=DKY{1,1)*ONLA(IP,2)
BTA(341)=DKZ(14,1)*0ONLA(IP,3)
BTB(1,1)=DKX{1,1)*ONLB(IP,1)
BTB(2,1)=0KY(1,1)*DNLBI{IP,2)
BTB(3,1)=DKZ(1,1)*DONLB{IP,3)
BTC(1,1)=DKX(1,1)*0ONLC(IP,1)
BTC(241)=DKY(1,1)*DNLC(IP,2)
BTC(3,1)=DKZ{1,1)*¥DNLC(IP,3)
BTD(1,1)=DKX{1,1)*INLO(IP»1)
BTD(2,1)=DKY{1,1)*DNLD(IP,2)
BTD13,1)=DKZ(141)*DNLD(IP,3)
BTE(1,1)=0KX(1,1)*¥DNLE(IP,1)
BTE(241)=DKY (141)*ONLE(IP,2)
BTE(341)=DKZ(1,1)*ONLE(IP,+3)
BTF(141)=DKX{1,1)*DNLF{IP,1)
BTF(24,1)=0KY{1,1)*DNLF{IP,2)
BTF(3,1)=DKZ(1,1)*0ONLF(IP,3)
BTG(141)=DKX{1,1)¥DNLG(IP,1)
BTG(241)=DKY (1,1)*DNLG(IP,2)
BTG(3,1)=DKZ{1,1)*¥DNLG{IP,3)
BTH{1,1)=0DKX{1,1)*ONLH{IP,1)
BTH(2,1)=DKY{1,14)*DNLH{IP,42)
BTH{3,1)=DKZ (1,1 )*DNLH{IP,3)
CALL GMMATD(BTA,1,3,3+,0NLA,3,8,0,4Q1)
DO 35 I=1,8

35 SAVEA(IL1)=DETA(L1,1)*Q1( 1)
CALL GMMATDI(BTB,y143,09DNLBs3+8,92+Q1)
DO 36 I=1,8

36 SAVER(I,1)=DETB(1,1)%¥Q1(1)
CALL GMMATD(RBTC+1,340+0NLC+y348,0,Q1)
DO 37 I=1,8

37 SAVEC(I41)=DETC(1,1)%Q1(1I)
CALL GMMATD(BTD+1,3+040NLDy3,843,40Q1)
DO 38 I=1,8

38 SAVEI(IL1)=DETD(1,1)*01(1I)
CALL GMMATD(BTE 414330 4sDNLE+348,0,4Q1)
DO 39 I=1,8 ‘

39 SAVEE(I,1)=DETE(1,1)%Q1(1I)
CALL GMMATD(BTF,1,3,J,0NLF,3,8,3,01)
DO &4C I=1,8

40 SAVEF(I,1)=DETF(1,10*¥Q1( 1)
CALL GMMATD(BTGy1493404DNLGy348,U,Q1)
DC 41 I=1,8

41 SAVEG(I,1)=DETG(1,1)*CQ1(1)
CALL GMMATD(BTH,14340+s0NLH,3,8,0,G1)
DO 42 I=1,8

Figure 27 - Stiffness Matrix Subroutine and BLOCK
DATA Subprograms, Sample Problem 2——Continued
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42

100

300

SAVEH(I,1)=DETH(1,1)%*Q1 (1)

SUM1 (1,1)=SAVEA(141)+SAVEB(141)+SAVEC(144) +SAVELI(1,1) +SAVEE(1,4)+S
L AVEF (1,1)+SAVEG(1,1) +SAVEH(1,1)

SUM2 (141)=SAVEA(2,1) +SAVEB(2,1) +SAVEC (2, L) +SAVEL (2,1) 4SAVEE (2,1)+S
L AVEF (241)+SAVEG(2,1)+SAVEH(2,1)

SUM3 (1,1)= SAVEA(3,1)+SAVEB(3.1)*SAVEC(3.1)+SAVEI(3.1)*SAVEE(3,1)+S
{1 AVEF (341) +SAVEG(341) +SAVEH(3,1)

SUM4 (141)=SAVEA (4,1 ) +SAVEB(441) +SAVEC(41) +SAVEL (4,1) +SAVEE(4,1)4S
1 AVEF (s 1) +SAVEG(ty1) +SAVEH(4,1)

SUMS5 (141)=SAVEA (5,1)+SAVEB(5,1) +SAVEC(5,1) +SAVEI (5,1) +SAVEE(5,1)+S
1 AVEF (5,1) +SAVEG(5,1) +SAVEH(5,1)

SUM6 (1,1)=SAVEA(641) +SAVEB(6,1) +SAVEC(6,1) +SAVEI (6,1) #SAVEE (6,1)+S
L AVEF (641 )+SAVEG (641) +SAVEH{6,1)

SUM7 (141)=SAVEA(741) +SAVEB(7,1) +SAVEC(741) +SAVET (7,1) +SAVEE(7,1)+S
1 AVEF (74 1) 4+SAVEG{7,1) +SAVEH(741)

SUMB (141)=SAVEA{B41) +SAVEB{8,1) +SAVEC(8,1)+SAVET (8,1) +SAVEE(8,4) +S
L AVEF (841) +SAVEG(8,1) +SAVEH(8,1)

GO TO(1009200,30ds400,5004600,700,800),IP

GENERATE THE MAIN VARIABLE

CONT INUE

Ki1(i,1)=SUM1(1,1)

K12 (1,1) =SUM2(1,1)

K13(1+1)=SUM3(1,1)

K14 (1+1) =SUM&T1,1)

Ki5(1,1)=SUM5(1,1)

K16 (141) =SUMB(1,1)

K17 (1,1) =SUM7(1,1)

Ki8(1,1)=SuM8(i, 1)

GO TO 90

CONT INUE

K21(1,1) =SUM1(1,1)

K22{1,1)=SUM2(1i,1)

K23 (141)=SUM3(1,1)

K264 (191)=SUML(1,1)

K251{141)=SUMS5(1,1)

K25(1,1)=SUMB(1,1)

K27 (141)=SUM7(1,1)

K28(141)=SUM8(1,1)

GO TO 9ué

CONT INUE

K31(1,1)=SUML1{1,1)

K32 (1,1)=SUM2(1,1)

K33({1,1)=SUM3(1,1)

K34 {141)=SUM4(1,1)

K35(1,1)=SUM5({1,1)

K36 (191) =SUMB(1,1)

K37(141)=SUM7(1,1)

K38(1,1)=SUM8B(1,1)

GO TO 93¢

Figure 27 - Stiffness Matrix Subroutine and BLOCK
DATA Subprograms, Sample Problem 2—Continued

189



400 CONTINUE
K41 (1,1) =SUML(1,1)
Ka2{141)=SUM2(1,41)
K43 (1,1)=SUM3(1,1)
Kbt (1,1)=SUMLIL, 1)
K4S (1,1) =SUM5StL,1)
Kub {(1+1)=SUMBIl1,1)
K47 (1,1)=SUM7(1,1)
Kt (1,1)=SUM8(1,1)
GO TO 900

500 CONTINUE
KS111,1)=SUM1(4,1)
K52 (1,1)=SUM2(1,1)
K53{1,1)=SUM3(1,1)
K54 (141)=SUMGIL, 1)
K55(1,1)=SUM5(4,1)
K56(1,1)=SUMbB(1,1)
KS5711,1)=SUM7(1,1)
K58(1,1)=SUM811,1)
GO TO 93¢0

660 CONTINUE
K61(1,1)=SUM1(1,1)
K62(1,1)=5SUM2(1,1)
K63 (141)=SUM3(1,1)
Kb (1,1)=SUML(1,1)
Ke5(1,1)=SUMS{1,1)
K6 (1,1)=SUMB(1,1)
K67 {141)=SUM7¢1,1)
K68 (1491)=SUMB(L1,1)
GO TO 9@

700 CONT INUE
K71101,1)=SuUM1(1,1)
K72(141)=SuUM2(1,1)
K73(1,1)=SUM3(1,1)
K74 (1,1)=SUML{1,1)
K75(1,1)=SUM5(L,1)
K76{(1,1)=SUMBI(1,1)
K77 (141)=SUM7(1,1)
K78 (1,1)=SUM8(1,1)
GO TO 94¢

800 CCNTINUE
K81(1,1)=SUM1({1,1)
K82 (1,1)=SUM2(41,1)
K83(1,1)=SUM3(1,1)
K8L{(14s1)=SUML(1, 1)
K85{1,1)=SUM5(1,1)
K86(1,1)=SUMBT11,1)
K87 (1,1)=3UM7(1,1)
K88(1,1)=5UM8(1,1)
NO EXPRESSION-MAIN VARIABLE IS MAIN EXPRESSION

Figure 27 ~ Stiffness Matrix Subroutine and BLOCK
DATA Subprograms, Sample Problem 2—Continued
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900

901

902

903

904

905

9C6

CONT INUE

INSERT STIFFNESS PARTITION

TMPOR1 (1)=KI1(1,1)

CALL SMA1B(TMPOR14NGRID(1),4~14IFKGGy0.D0)
IF(IOPT4,EQs0+OR.GSUBE.EQe0.)GO TO 901
TEMPOR(1)=GSUBE

CALL SMA1B(TMPOR1,NGRID(1) y=1,IF4GG, TEMPOR)
KuGGSW=1

CONT INUE

TMPORL(1)=KI2{1,1)

CALL SMA1B(TMPOR1,NGRID(2),-1,IFKGG,0.00)
IF(IOPT4.EQ.0,0R.GSUBELEQ.J.)GO TO 902
TEMPOR(1)=GSUBE

CALL SMA1B(TMPOR1,NGRID(2),=1,IF4GG, TEMPOR)
KuGGSW=1

CONT INUE

TMPOR1(1)=KI3{1,1)

CALL SMA1B(TMPOR1,NGRID(3),~1,IFKGG,0.00)
IF(IOPTL.EQ.3.0R(L3UBELEQT.)IGO TO 903
TEMPOR(1)=GSUBE

CALL SMA1B(TMPOR1,NGRIDI(3),-1,IF4GG, TEMPOR)
KuGGSW=1

CONT INUE

TMPOR1(1)=KIull,1)

CALL SMAL1BI(TMPOR1,NGRID(4),~-1,IFKGG,CDQ)
IF(IOPT4.EN.0.0RGSUBE.EQ.J)GO TO 904
TEMPOR(1)=GSU3E

CALL SMA1B(TMPOR1,NGRID(4)s=-1,IF4GG, TEMPOR)
K4GGSH=1

CONT INUE

TMPORL(1)=KI5(1,1)

CALL SMA1B(TMPOR14NGRID(5),4=14IFKGG,0.00)
IF(IOPTL.EQeG+s0ORGSU3EL.EN.J)IGO TO 9GS
TEMPOR(1)=GSUSE

CALL SMA1B(TMPOR1,NGRID(5),-1,IF4GG, TEMPOR)
KLGGSW=1

CONT INUE

TMPOR1(1)=KI6{1,1)

CALL SMA1R(TMPOR14NGRID(A)4-1,IFKGG,C.00)
IF(IOPT4.EQsCeORGSUBELEQ.J.)GO TO 906
TEMPOR(1)=GSUBE

CALL SMA1B(TMPOR1,NGRID(6),~1,IF4GG,y TEMPOR)
K4GGSW=1

CONT INUE

TMPOR1(1)=KI7{1,1)

CALL SMA1B(TMPOR1,NGRID(7),~14IFKGG,C.DD)
IF(IOPTL.EQe0sORGSURELENL.)GO TO 9C7
TEMPOR(1)=GSUBE

CALL SMA1B(TMPORL,NGRID(7)y~1,IF4GG, TEMPOR)
K4GGSW=1

Figure 27 - Stiffness Matrix Subroutine and BLOCK
DATA Subprograms, Sample Problem 2——Continued
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307 CONTINUE
TMPOR1(1)=KI8(1,1)
CALL SMAiB(THPORl,NGRID(B)9‘191FKGGQO.DO)
IFCIOPT4«EQe0.0RGSUBELEN.0.)GO TO 908
TEMPOR(1)=GSUBE
CALL SMA1B(TMPOR1,NGRID!8) -1,IF4GG
KLCESHo 1 ’ ’ ’ + TEMPOR)
908 CONTINUE
RETURN
END

PRELIMINARY PACKET FORTRAN CODING

BLOCK DATA
COMMON/IFPCOM/NOELEM, TAPFLG(24) y IRANOS(48),, IFX7PT (24) 4IFX7SQ(384)/
1 IFSCOM/NLEM, IFSN (24)

DATA NOELEM, IAPFLGyNLEM/38,22%04+0,0438/

DATA IRANOS/4LL*0416,20,0 4/

DATA IFX7PT/22%0481247/

DATA IFX7SQ/1y1s191919141+1414142,141,374%0/
DATA IFSN/22%0+13,3/

END

BLOCK DATA

COMMON /GPTCOM/NOELEM,NDATCN(12),NDATPR(12),NGRDPT(12),INDSCA(12),
INWDEST(12),IFSTPT(12)

DATA NOELEM/38/

DATA NDATCN/11*y,13/ ,
DATA NDATPR/11%0,90/

DATA NGRDPT/11%*1,8/

DATA INDSCA/11%G,G6/

DATA NWDEST/11*0,Lb6/

DATA IFSTPT/11*3,2/

END

BLOCK DATA

COMMON /EDSCOM/NOELZMsNDATCN(12) yNGROPT (12)
DATA NOELEM/38/

DATA NDATCN/11%0,13/

DATA NGRDPT/11%*73,8/

END

BLOCK DATA

COMMON/EDTCOM/NOELEM, NWDEST(12)4NGRDPT(12)
DATA NOELEM/38/

DATA NWDEST/11*0,46/

DATA NGRDPT/11%),8/

END

Figure 27 - Stiffness Matrix Subroutine and BLOCK
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BLOCK DATA
COMMON /SM1COM/NOELEM JNWDEST (12)

DATA NOELEM/38/

DATA NWDEST/11%*0,46/

END

BLOCK DATA

COMMON /SM2COM/NOELEMyNWDEST (12)

DATA NOELEM/38/

DATA NWDEST/11%0,46/

END

BLOCK DATA |
COMMON /SDRCOM/NOELEM,NWDEST (12) 4NGRDPT (12) , NWDSTM(12) ,NHDSTR(12),
1 NWDFOR (12) ,NPTSTR(12) yNPTFOR (12)

DATA NOELEM/38/

DATA NWDEST/11%3,46/

DATA NGROPT/11%0,8/

DATA NWOSTM/11%*0,0/

DATA NWDSTR/11%0,0/

DATA NWOFOR/11%0,0/

DATA NPTSTR/11%y,0/

DATA NPTFOR/11%G,0/

END

Figure 27 - Stiffness Matrix Subroutine and BLOCK
DATA Subprograms, Sample Problem 2—Continued
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