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ABSTRACT

To relieve the user of NASTRAN-the National Aero-

nautics and Space Administration's general purpose,

finite element, structural analysis computer program-

from the necessity of becoming involved with internal

aspects of NASTRAN when he adds a new element, a new

element definition capability has been developed.

This capability takes the form of a preprocessor which

will generate, according to user specifications, the

FORTRAN routines and tables required by NASTRAN for a

new element.

This manual contains details and instructions on

the use of the preprocessor, and provides numerous

examples.

ADMINISTRATIVE INFORMATION

The new element definition capability for NASTRAN was

developed under the In-House Independent Research Program, Task

Area ZR1040201 and informally reported in a Computation and

Mathematics Department technical note. The work of preparing

this report was carried out under Work Unit 1-1844-009.
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I. INTRODUCTION

NEED FOR THE PREPROCESSOR

NASTRAN-the National Aeronautics and Space Administration's

general purpose, finite element, structural analysis computer
1 23

program 1 -is widely used in the structural engineering field
for a variety of calculations including those for static analysis,

piece-wise linear analysis for nonlinear material properties,

natural frequencies, transient analysis; and frequency and

random response. The dynamic calculations may be carried out

either directly or by the modal method.

The system design of NASTRAN is excellent. Occasionally,

however, a user may wish to include some structural elements of

his own in the program. This he may do if he will first update

the appropriate NASTRAN tables, write the additional subroutines

which will be needed for the extra elements, and incorporate

these updates and additions into NASTRAN. Since such procedures

take time, and require a great deal of familiarity with various

internal aspects of NASTRAN-the variables, tables, routines,

structure, restrictions, and even the philosophy of the program

itself-a new element definition capability has been developed

to perform a major portion of the above tasks. This new element

definition capability, which is described within the pages of

this report, is very helpful to the user in defining the elements

he wishes to add to NASTRAN.

1 "The NASTRAN Theoretical Manual, (Level 15.0)" Edited by R.H.

MacNeal, NASA SP-221(01) (Dec 1972).

"2 "The NASTRAN User's Manual (Level 15.0)" Edited by C.W.

McCormick, NASA SP-222(01) (May 1973).

"The NASTRAN Programmer's Manual (Level 15.0)" NASA SP-223(01)
(Sep 1973).
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This element definition capability takes the form of a

preprocessor. The user supplies it with symbolic instructions

submitted as "packets" of information, and the preprocessor

then generates all the FORTRAN language tables and routines

required for the element to be added. The functions performed

by the preprocessor and the packets of information it uses are

explained in detail later in the report.

The preprocessor was planned for use with the Level 12.0

version of NASTRAN, and so is subject to all the restrictions

imposed by that version. Two changes were made to Version 12.0

to adapt it for use with the preprocessor:

(1) Twelve dummy elements were set up. For each of the

twelve, table entries were initialized, skeleton subroutines

were set up (to be eventually replaced with the FORTRAN sub-

routines generated for the new element), and appropriate linkage

for the subroutines was established;

(2) Additional coding was incorporated within the NASTRAN

routines as appropriate to enable NASTRAN to retrieve the user-

defined table data from the preprocessor-generated BLOCK DATA

subprograms.

After the preprocessor had been written, based on the

Level 12.0 version of NASTRAN, another version of NASTRAN was

developed-NASTRAN Version 15.1. This version 15.1, which has

dummy elements already built in, may be used instead of Version

12.0; in fact, in many cases its use may be preferable, since it

provides a considerable savings in computer time over that used

by Version 12.0

The separate steps required to insert the routines generated

by this element definition capability are outlined in a later

.section of this report.

The preprocessor and the updated Version 12.0 NASTRAN

executable file required for use with the preprocessor are

available for CDC 6000-series computers. The preprocessor is

written in the SNOBOL computer language, Version 3.

3



NASTRAN MODULES AFFECTED BY ADDED ELEMENTS

A little background on the NASTRAN functional modules affected

by the addition of a new structural element may be helpful to

the reader. The NASTRAN functional modules affected by the

addition of a new module are:

"o Input File Processor (IFP)
"o Executive Control Section Analysis (XCSA)
"o Geometry Processor (GPl, GP2, GP3)
"o Table Assembler (TAl)
"o Plot Set Definition Processor (PLTSET)
"o Structural Matrix Assembler - Phase 1 (SMAl)
"o Structural Matrix Assembler - Phase 2 (SMA2)
"o Static Solution Generator - Phase 1 (SSGl)
"o Stress Data Recovery - Phase 2 (SDR2)
"o Output File Processor (OFP)
"o Differential Stiffness Matrix Generator - Phase 1 (DSMGl)

The following paragraphs describe the relationships between

the new structural elements and the various modules:

Input File Processor (IFP)

The NASTRAN Input File Processor determines whether the

form of each input bulk data card is correct. It checks the

name of the bulk data card and each data field for appropriate

type, i.e., integer, real, and so on. The IFP module contains

seven tables from which information is obtained. Most of this

information has already been supplied for the dummy elements

available. The remaining information must be supplied to the

tables by the preprocessor.

The user provides this table information to the preprocessor.

For each new element he must design a connection card, and

perhaps a property card.

Executive Control Section Analysis (XCSA)

One of the functions of the XCSA module is to transmit to

the remainder of the program the restart tables associated

with each rigid format. One table and one subroutine must

be updated for each rigid format. However, this information

has already been supplied for the dummy elements which have

been made available. Therefore, no further updates to XCSA

by the preprocessor user are necessary.

4



Geometry Processor (GPl, GP2, GP3) and Table Assembler (TAl)

The Geometry Processor modules produce tables which contain

information concerning grid points, element connection, loads,

and coordinate system transformations. The Table Assembler

module combines much of the information produced by the

Geometry Processor into other tables for use later

in the program.

In order to produce these tables, modules GPI, GP2, GP3

and TAl depend, in part, on another table. Most of the

information in this table has already been supplied for the

dummy elements. The remainder of the information is obtained
from the preprocessor which, in turn, finds the data in the

Preliminary Data Packet.

Plot Set Definition Processor (PLTSET)

The PLTSET module prepares information so that structural

plots may be made. Again, most of the information has been

given for the dummy elements, and the remainder is obtained

through the preprocessor via the Preliminary Data Packet.

(This means that the new element may be plotted.)

Structural Matrix Assembler - Phase 1 (SMAl)

The SMAl module calculates the stiffness matrix for each

element in the problem and inserts it into the structure

stiffness matrix. It is in this module that the stiffness
matrix routine for the new element must be placed. The linkage

between the new routine and the remainder of the program has
already been established. The preprocessor will generate the

new routine from the information provided in the Stiffness

Matrix Packet. Later, we will describe how this or any new

routine may be inserted into NASTRAN.

Structural Matrix Assembler - Phase 2 (SMA2)

The SMA2 module does for the mass matrix and viscous damping

matrix what SMAl does for the stiffness matrix. The preprocessor

generates the new mass matrix according to the Mass Matrix

5



Packet. The viscous damping matrix routine is generated

according to the Viscous Damping Matrix Packet.

Static Solution Generator - Phase 1 (SSGl)

The SSGI module calculates the load vector for a status
problem. If the new element has applied thermal loads due to

temperatures at the grid points, the method for calculating

the thermal loads for the element must be given in the Thermal

Loading Vector Packet from which the preprocessor will generate

the appropriate routine. Again, the linkage for the new routine

has already been set up. Only the new routine and its

insertion into NASTRAN are required.

Stress Data Recovery - Phase 2 (SDR2)

For all elements the SDR2 module calculates final stresses

and forces. These calculations are performed in two stages.

The first stage consists of forming the element stress matrix

and passing it, along with other element properties, to the

second stage. The second stage computes the final stresses

and forces. Therefore, two new routines are required for each

new element, one for each stage. The preprocessor will generate

these two routines from the information given in the Stress
Matrix and Stress and Force Calculation Packets. Once again,

the linkage for the new routines has been established.

Output File Processor (OFP)

The OFP module prints element stresses, forces, and

displacements. This module is almost totally table-dependent,

and if stresses and/or forces are to be output for a new element,

the correct tables must be updated. The preprocessor will

update the necessary tables with information supplied by the

Output Packet.
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Differential Stiffness Matrix Generator - Phase 1 (DSMGI)

The DSMG1 module does for the differential stiffness

matrix what the SMAl module does for the elastic stiffness

matrix. The preprocessor generates the new differential

stiffness matrix according to the Differential Stiffness Matrix

Packet.

MATRIX-PARTITION PHILOSOPHY

Since matrix partitions are basic to the matrix calculations

made by NASTRAN and therefore the preprocessor, the reader will

need to understand the NASTRAN philosophy which underlies the

preprocessor design. Note the distinction between the term
"word" and the term "variable" as used in the following

discussion: a variable is considered to be an array of words,

each word being one element of the array. An array may be

either a matrix, a vector, or a scalar.

In general, a grid point in NASTRAN is considered to have

six degrees of freedom. Therefore, if an element has N grid

points, the element stiffness matrix is of the order 6NX6N.

In most programs, this 6NX6N matrix will be computed for an

element and then inserted into the structure stiffness matrix.

However, this procedure is not used in NASTRAN. Instead,

during any one entry into the stiffness matrix routine for an

element, each row of 6X6 partitions, is calculated, one partition

at a time, and inserted into the structure stiffness matrix.

For example, consider the 6NX6N matrix to be composed of N2 6X6

matrix partitions. Each partition KIJ has associated with it two

grid points I and J (I and J will be identical on the diagonal).

If an element has three grid points, its stiffness matrix will

be partitioned as follows:

7



1 2 3

1 1(l 12 K 1131

2 IK21 K(22 JK23
3 K31 1K32 I K33

Therefore, in our example, the element subroutine will be

entered three times, once for each row of partitions. This

method of insertion is used for stiffness, mass, differential

stiffness, and viscous damping matrices.

During one entry into the thermal load vector routine for

an element, the load corresponding to each grid point is

calculated and inserted individually into the overall load

vector. Therefore, only one entry into the thermal load

vector routine, for a particular element, is necessary.

This method of matrix and vector insertions made it

desirable to design the preprocessor to accept input which

describes both matrix and vector partitions, although a full

6NX6N matrix may be specified by the user. Since we are

attempting to make the preprocessor as general as possible

within the limitations of NASTRAN, i.e., to allow a wide

variety of elements to be specified, several combinations of

options have been provided for specifying matrices or matrix

partitions. The options may be divided into two groups.

The first group of options concerns the dimensioning of

the matrix partitions to be specified. The choices are lXl,

3X3, 6X6, 6NX6N. Although the usual matrix partition size is

6X6, a 3X3 matrix partition will suffice if the degrees-of-

freedom of the element are 1, 2, and/or 3 (i.e., only

translations); or 4, 5, and/or 6 (i.e., only rotations). In

such cases, the generated routine will insert the 3X3 partition

into the particular 6X6 partition required by NASTRAN for

insertion into the structure stiffnest matrix. An example is

the triangular membrane element now in NASTRAN. If an element

is so structured that an individual matrix partition cannot be

described, then the full 6NX6N matrix may be specified instead.

8



In this case, the full 6NX6N matrix is calculated, after which

the appropriate 6X6 partitions are extracted as needed. However,

this method is more costly than the one describing each partition,

since the full matrix must be calculated N times, once for each

entry into the element routine. The lXl partition allows the

user to incorporate scalar elements with NASTRAN.

The second group of options concerns the way in which

partitions are defined. There are three possibilities. One

describes each of the N2 partitions separately. Since the full

6NX6N matrix is symmetric, only N(N+l)/2 partitions need be

specified, i.e., the symmetric and diagonal partitions; the

preprocessor will generate the remaining partitions for the

user. A second way describes all N2 partitions with one equation

in which variables that end with the letters I or J take on

various values. For example, in this second method, the

variable CI might represent the variables Cl, C2, C3,..., CN,

where N is the number of grid points. Thus, all the partitions

could be described with just one equation. A third way to

define the partitions specifies an equation which represents

the full 6NX6N matrix and enables partitions to be extracted

as described previously.

DUMMY ELEMENTS

To facilitate the insertion of new elements into NASTRAN by

means of the new-element definition capability, NASTRAN (Version

12.0) has been modified to include twelve dummy elements. The

general release Version 12.0 of NASTRAN contains 38 elements,

with a reasonable limit on the total number of elements (a limit

partially imposed by NASTRAN) of 50. The new elements are

therefore named ELEM39, ELEM40,..., ELEM50. These elements

need not be used in any particular order.

9



NASTRAN was further modified by inserting within the NASTRAN

tables the names of the dummy elements, some internal codes, and

some default values, most of which may be overridden by the user.

The new element subroutines are already named so that they may

*be linked with the remainder of NASTRAN by supplying the

appropriate FORTRAN CALL statements. For ELEM39, the corresponding

subroutine names (which follow present NASTRAN naming conventions)

are as follows:

Stiffness Matrix KLEM39
Mass Matrix MLEM39
Viscous Damping Matrix VLEM39
Thermal Loading Matrix M39
Stress Matrix SEL391
Stress and Force Calculation SEL392
Differential Stiffness Matrix DLEM39

The names of the routines for the other dummy elements follow

a similar pattern.

10



II. INPUT TO THE PREPROCESSOR

USE OF DATA PACKETS

The input to the preprocessor describes methods to NASTRAN

for performing calculations (a stiffness matrix, a mass matrix,

and so on), so that the analyst, using his element, may take

advantage of the existing NASTRAN analyses and system design.

Although the preprocessor relieves the analyst of the chore

of learning NASTRAN's requirements and idiosyncrasies related

to writing element subroutines and updating tables, the analyst

retains responsibility for specifying his requirements to the

preprocessor. To simplify this task, which itself could be an

arduous one, depending upon the complexity of the element

involved, the input has been categorized into different "packets"

of information, all but two made up of subpackets. There are

ten packets at the present time:

"* Preliminary Data Packet
"* Global Variable Packet
* Stiffness Matrix Packet
* Mass Matrix Packet
"* Viscous Damping Matrix Packet
"* Thermal Loading Vector Packet
* Stress Matrix Packet
* Stress and Force Calculation Packet
* Output Packet
* Differential Stiffness Matrix Packet

One of these-the Preliminary Data Packet---must be submitted

each time a run is to be made. This packet contains such

information as the element name (chosen from a list of dummy

names provided), the number of grid points, the degrees of

freedom that the element is allowed, etc. All other packets

are optional and may be supplied at the user's discretion. If

the optional Output Packet is supplied, tables related to the

NASTRAN output format of user stress and force calculations will

be updated. Each of the others, with the exception of the

Global Variable Packet, supplies information in symbolic form

11



that is necessary for the generation of a particular FORTRAN

subroutine. Thus, for example, the Stiffness Matrix Packet

would supply symbolic definitions of variables which the

preprocessor would need to use in interpreting the information

and generating a FORTRAN subroutine which would be used later

in calculating element stiffness matrices.

The Global Variable Packet is provided for the user in

keeping with NASTRAN's policy of recalculating rather than

saving and retrieving information that is needed in more than

one situation. The Global Variable Packet makes it possible

for the user to specify his multipacket variables the one time

instead of each time they are used.

Detailed descriptions of the ten packets are provided in

Section III. The subpackets which compose the packets are

described in another segment of this section.

CARD FORMAT

All input to the preprocessor is in free-field format.

Data fields within a data card are separated by commas, with

two successive commas indicating that a default value for the

field is to be taken. A dollar sign punched in any column

of the card indicates that a continuation data card follows. If

there is no $ punch on the card, it is either the last card or

the only card in the sequence.

VARIABLE NAMES

The variable names that may be used in the preprocessor

expressions are not completely arbitrary, although very nearly

so. There are two categories of so-called "illegal" variable

names: Those that may never be used (Table 2), and those that

may be used under certain limitations (Tables 1, 3, 4). In

the first category are the names already being used as SNOBOL

variables in the preprocessor. If the analyst were to use

these names, the preprocessor could become confused and the

12



results would be unpredictable. In the second category are

those reserved names which have already been defined by NASTRAN

COMMON statements or by the preprocessor and may be used only

according to these preassigned definitions. Table 3 lists the

COMMON names, the variables in each COMMON, and the preprocessor

definition of each variable. Table 4 lists the variables made

available to the user by the preprocessor. Individual packet

descriptions specify which COMMON names are used in a particular

subroutine. Tables5 and 6 provide a more detailed description

of portions of Tables 3 and 4 respectively, while Table 7

combines the Tables 1 through 6 into a comprehensive alphabetical

listing for the user's convenience. These tables follow:

TABLE 1 - FORTRAN LIBRARY FUNCTIONS
RECOGNIZED BY THE PREPROCESSOR

Function Name Function Name

DSIN SIN

DCOS COS

DSQRT SQRT

DEXP EXP

DLOG ALOG

DATN ATAN

TAN

DABS ABS

13



TABLE 2 - SNOBOL VARIABLE NAMES DENIED THE USER

Note: These variable names may neither be referenced nor
redefined

A CKFLAG DTEST

ABORT COL DUMDAT

ALPH COMMA DUMVAR

ANGLE COMMO Dli

ARB COMMI D12

ATEST COMM2 D2

Al COMM3 D21

A3 COMM4 D22

A4 COMMON D3

B COMPLEX D4

BAL CONTINUE ELMDEF

BDATA CPVAR ELl

BDO DATA EL2

BEG DEFEND EL3

BLANK DEFER EN

1BLANKI5 DEFFLAG ENDG

BLANK5 DELFLAG EQFLAG

BLANK20 DELIMITERI EQI

3LANK6 DELIMITER2 EQJ

BLANK8 DIM EQK

BLANK9 DIMSAVD EQT

BLANK72 DISFLAG EQUA

B1 DISFLAG1 ERMS

CARCTRL DISFLAG2 ERRCNT

CARD DISPAT F

CARDPRINT DMP FAIL

CC DO FENCE

CHARACTERS DOLLAR FILE

CHECKER DS FINFLAG

14



TABLE 2 -SNOBOL VARIABLE NAMES DENIED THE USER--Continued

FORCE GMV 3 ISi

FORMAT GMV4 152

FORT GMV 5 Ii

FORTFLAG GNCHECK 12

FORTFUNCT GNCHECK1 13

FORSAVE GOTO 14

FPASS GVGLAG 15

FUNCTIONS GVi j

FUNCT112 GV2 JE

FUNCT12 HA JPASS

FUNCT21 HB JPOINTER

FUNCT2 2 HIER JPROGFLAG

FUNCT31 H-O WDEF KFLAG

FUNCT32 I KI

FXV1 ID LENG

FXV 2 IDATA LENGER

FXV 3 I DD LENGER1

FXV4 IDSAV LIMIT

FXV 5 IE LINER

FXV 6 IF2 LINEl

FXV10 IND LINE21

Fl INDC LINE22

F2 INDSAV LINE3

F3 INFLAG LINE4

F4 INPUT LIST

GENCHECK INSCHK LISTi

GENSAVE INST LIST2

GETCARD INTEGER LL

GMPA INT VAR LOC,

GMVl IOFPl LOCi

CMV 2 IPARAM LP

15



TABLE 2 -SNOBOL VARIABLE NAMES DENIED THE USER-Continued

LR NUMBER PAT

MACPH NUMBERS PATOUl

MAT NVAR NUMBER 5

MATCH NUMBERO5 PATOUll

MATCH 1 NV PATA

MATCH 2 Ni

MATCH3 N2 PATZ

MATEQ N3 PATFi

MAX 1 N'4

MAX 2 N5 PATF6

MAX 3 N6 PAT1

MAX 4 N7 PAT 2

MAX 5 N8

MEQP OPER PAT100

MESS OPTION PCC

N OPTIONi PERIOD

NC OPT1 PHCOM

NEWFUN OPT2 PHCOM1

NC OUTFLC PHSTR

NMN OUTFLC8 PIECE

NMS OUTFLC9 PIECES

NMU POINTER

NN OUTFL24 POLSAV

NO CARDS OUTPUT PRE

NOCONE PACKED PRET

NOPIECES PACKET PREL

NOREAD PACKID PROCELAC

NORES PACKNO PUNCH

NO VAR PACKPAT P1

NULL PARTITION P2

NUMB PASS P3
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TABLE 2 -SNOBOL VARIABLE NAMES DENIED THE USER-Concluded

QCOM S TRB

QD SAVE TRBl

QDl SAVED TRB2

QDIM SAVTAB TRPAT

QE LNAMQ SAVVARTR

QEQ SLASH TR 2

QEQU SORi UL

QOP S0R2 UNARY

QQEQ STARS UR

QTIME S TN 0 V

QTIMl STR VAR

QTIM2 STRESS VAREQ

*QUE STRING VARFLAG

QX SUCCEED VARGENR

*QXYZ SVl VARN

Qi SV 2 VARNAM

Q2 51 VARTYP

Q3 S2 V2

REAL S7 V5

REM TA V6

RE PL TABLE 'WORDS

RE SDE F TDIMl WRTTFLAG

RESDIM TDIM2

RESEQ TMO

RES VAR TESTPAT

RIMAG THRU

ROW THRUU

RSVl TIMER

RSV2 TRANF LAG 1

RUN~NO TRANFLAG2
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TABLE 3 - NASTRAN-DEFINED VARIABLE NAMES

Note 1: These variables are available to the user as already
defined by NASTRAN, but may not be redefined by the
user.

Note 2: The asterisk indicates the variable names most commonly
used.

Common Name Variable Definition

MATIN MATID Material ID

INFLAG Input variable as described
on Page 66.

ELTEMP Element temperature.

STRESS Used in piecewise linear
analysis.

SINTH SIN of the anisotropic
material angle.

COSTH COS of the anisotropic
material angle.

MATOUT Depends on See Table 5
INFLAG value

SMAlET ECPT Reference variable for
real numbers.

NECPT Reference variable for
integer numbers.

NGRID A dimensional variable such
that NGRID(I) is the Ith
grid point of the element.

MATIDI Material ID

IDl,ID2,...,IDN Coordinate system number
for the 1st, 2nd,...,Nth
grid points of the element.

*XI,X2,...,XN X-coordinates of the 1st,

2nd,...,Nth grid points of
the element in basic
coordinates.

*YI,Y2,...,YN Y-coordinates of the 1st,
2nd,...,Nth grid points of
the element in basic
coordinates.
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TABLE 3 - NASTRAN-DEFINED VARIABLE NAMES--Continued

Common Name Variable Definition

*Zl,Z2,...,ZN Z-coordinates of the 1st,
2nd,...,Nth grid points
of the element in basic
coordinates.

DUMV Internal dummy variables.

All variable All user-defined connection
names given on card and property variables
the Preliminary- as given in the Preliminary
Data Packet Data Packet.
connection and
property cards.

SMAlIO DUM1 Internal dummy variable.

DUM2 Internal dummy variable.

DUM3 Internal dummy variable.

IFKGG Internal file number.

IF4GG Internal file number

SMAICL IOPT4 Internal variable.

K4GGSW Internal variable.

NPVT Internal variable.

SMAIDP I Dummy variable.

J Dummy variable.

IS Dummy variable.

IP Dummy variable.

Ii,I2 Dummy variable.

QI, I=1,...,9 Dummy variables.
*PI w to 9 significant digits

SMA2ET Same as SMAlET

SMA2IO IFMGG Internal file number.

IGMGG Internal variable.

IFBGG Internal file number.

SMA2CL BGGIND Internal variable.

SMA2DP Same as SMAIDP
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TABLE 3 - NASTRAN-DEFINED VARIABLE NAMES-Concluded

Common Name Variable Definition

EDTSP Same as SMAlET

TRIMEX Same as SMAlET

SDR2X5 Same as SMAlET

PHIOUT Internal variable.

FORVEC Internal variable.

SDR2X6 Same as SMA1DP

SDR2XX Z Internal variable

SDR2X4 DUM Dummy variable.

SDR2X4 IVEC Internal variable.

IVECN Internal variable.

*TEMP Element temperature
(average of the grid
point temperatures for the
element).

DEFORM Element deformation (not
used with preprocessor).

SDR2X7 PHIOUT Internal variable.

FORVEC Internal variable.

SDR2X8 Same as SMA1DP

DSIADP Same as SMAIDP

DSIAAA NPVT Internal variable.

DSIET Same as SMAlET
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TABLE 4 - PREPROCESSOR-DEFINED VARIABLE NAMES

Note: These variables are available to the user as already
defined by the Preprocessor; they may not be redefined.

Variable Definition Packets in which
Name Available

PI 3. 14159265 All

Ti Transformation matrices for the All
T2 first, second,...,Nth grid point
* for an element from the basic

TN coordinate system to the global
coordinate system IDI,ID2,...IDN

G Material properties matrix (Tables All
5 and 6)

TTI(J) Temperature at the Jth grid point Thermal Loading
for an element

DISPK Displacement vector for the first, Stress and
DISP2 second,...,Nth grid point for an Force Calculation

element. The vector is 3XI if
DISPN the degrees of greedom are 1, 2,

\and/or 3jor 4, 5, and/or 6. The
vector is otherwise 6X1.

XYZI
XYZ2

XYZN Alternate method of referencing All
Xl, Yl, Zl; X2, Y2, X2; ... XN,
YN, ZN defined in COMMON block
SMAlET. They are 3X1 vectors
predefined by the preprocessor.
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TABLE 5 - EXPANDED DEFINITION OF COMMON MATOUT (TABLE 3)

Note: For INFLAG values 1 and 4, the Material ID must be
supplied on a MAT1 card; for INFLAG values 2 and 3,
the material ID may be provided on either a MAT1 or
MAT2 card.

Form of MATOUT Definition

INFLAG=I

E Young's modulus.

GG Shear Modulus.

XNU Poisson's ratio.

RHO Density.

ALPHA Thermal expansion coefficient.

TSUBO Thermal expansion reference temperature.

GSUBE Structural element damping coefficient.

SIGTEN Stress limit for tension.

SIGCOM Stress limit for compression.

SIGSHE Stress limit for shear.

INFLAG=2

GI1 The 3X3 symmetric material property
matrix.

G12

Gl3

G22

G23

G33

RHO Density

ALPHAI Thermal expansion coefficient vector.

ALPHA2

ALP12

TSUBO Thermal expansion reference temperature.

GSUBE Structural element damping coefficient.

SIGTEN Stress limit for tension.
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TABLE 5 - EXPANDED DEFINITION OF COMMON MATOUT (TABLE 3)--Concluded

Form of MATOUT Definition

SIGCOM Stress limit for compression.

SIGSHE Stress limit for shear.

INFLAG=3

G1I The 3X3 symmetric material property
matrix.

Gl2

G13

G22

G23

G33

RHO Density.

ALPHA1 Thermal expansion coefficient vector.

ALPHA2

ALP12

TSUBO Thermal expansion reference temperature.

GSUBE Structural element damping coefficient.

SIGTEN Stress limit for tension.

SIGCOM Stress limit for compression.

SIGSHE Stress limit for shear.

XJIll The 2X2 transverse shear inverse matrix.

XJl2

XJ22

INFLAG=4

RHO Density.
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TABLE 6 - EXPANDED DEFINITION OF RESERVED VARIABLE G

Note: These variables are available to the user as already
defined by NASTRAN. They may not be redefined.

Definition of G

INFLAG=11 E [ XN 0G1 (XNU)2 0 0 1

INFLAG=2 GII GI2 G13
G12 G22 G23

LG1 3 G23 G33

INFLAG=3 Same as for INFLAG=2.

INFLAG=4 G is undefined.
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TABLE 7 -COMPREHENSIVE ALPHABETICAL LIST OF VARIABLE NAMES
EITHER RESTRICTED OR FORBIDDEN THE USER

Note: The symbol t denotes those variable names which may
be referenced (but not redefined)*by the user; all
others are forbidden the user.

A B1 DELIMITER1 tDUM3

ABORT CARCTRL DELIMITER2 DlI

tABS CARD tDER D12

tALOG CARDPRINT tDEXP D2

ALPH CC DIM D21

tALPHA CHARACTERS DIMSAVD D22

iALPHAI CHECKER DISFLAG D3

tALPHA2 CKFLAG DISFLAGl D4

IALPI2 COL DISFLAG2 iE

ANGLE COMMA DISPAT tECPT

ARB COMMO tDISPI ELMDEF

tATAN COMM1 tDISP2 tELTEMP

ATEST COMM2 ELl

Al COMM3 tDLOG EL2

A3 COMM4 DMP EL3

A4 COMMON DO EN

B COMPLEX DOLLAR ENDG

BAL CONTINUE DS EQFLAG

BDATA tCOS IDSIN EQI

BDO tCOSTH tDSQRT EQJ

BEG CPVAR DSlAAA EQK

IBGGIND DATA DS1ADP EQT

BLANK tDABS DSlET EQUA

BLANK15 IDATN DTEST ERMS

BLANK20 IDCOS tDUM ERRCNT

BLANK5 DEFEND DUMDAT IEXP

BLANK6 DEFER tDUMV F

BLANK8 DEFFLAG DUMVAR FAIL

BLANK9 IDEFORM tDUM1 FENCE

BLANK72 DELFLAG tDUM2 FILE
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TABLE 7 - COMPREHENSIVE ALPHABETICAL LISTING OF VARIABLE NAMES
EITHER RESTRICTED OR FORBIDDEN THE USER--Continued

FINFLAG GNCHECK IND tK'4GGSW

FORCE GNCHECK1 INDC LENG

FORMAT GOTO INDSAV LENGER

FORT tGSUBE tINFLAG LENGER1
FORTSAVE GVFLAG INPUT LIMIT

tFORVEC GV1 INSCHK LINER
FPASS GV2 INST LINEl

FUNCTIONS tcll -tINT LINE21

FUNCT11 tGl2 INTEGER LINE22

FUNCT12 tG13 INTVAR LINE3

FUNCT21 tG22 tINV LINE4f

FUNCT22 -vG23 IOFL1 LIST

FUNCT31 tG33 tIOPT'4 LISTi

FUNCT32 'HA tip LIST2

FXV1 HB IPARM LL

FXV2 HIER tis LOC

HOWDEF Iis LOCi

FXV6 ti IS2 LP

FXV10 ID tIVEC LR

Fl IDATA tIVECN MAGPH

F2 IDD Ii MAINVAR

F3 IDSAV 12 MATCH

LF4 tIDi 13 MATCH1

tG tID2 114 MATCH2

GENCHECK i5 MATCH3

GENSAVE IE tJ MATEQ

GETCARD 1-IFBGG JE MAXi

tGG tIFKGG .JPASS

GMPA tPIFMGG JPOINTER MAX5

GMVl IF2 JPROGFLAG iI4ADID

tIF4-GG KFLAG tMATID1

GMV5 tIGMGG Ki MATIN
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TABLE 7 - COMPREHENSIVE ALPHABETICAL LISTING OF VARIABLE NAMES
EITHER RESTRICTED OR FORBIDDEN THE USER-Continued

MATOUT OPER PAT2 QTIM2

MEQP OPTION QUE

MESS OPTIONi PAT100 QX
N OPT1 PCC QXYZ

NC OPT2 PERIOD Qi

tNECPT OUTFLAG PHCOM Q2

NEWFUN OUTFL8 PHCOM1

NG OUTFL9 PHSTR REAL
tNGRID tPH1OUT REM

NMN OUTFL24 tPI REPL

NMS OUTPUT PIECE RESDEF

NMU PACKED PIECES RESDIM

NN PACKET POINTER RESEQ

NOCARDS PACKID POLSAV RES VAR

NOGONE PACKNO PRE tRHO

NOPIECES PACKPAT PREI RIMAG

NOREAD PARTITION PRFL ROW

MORES PASS PROGFLAC RSV1

NO VAR PAT PUNCH RSV2

tNPVT PATOUl P1 RUNNO

NULL P2

NUMB PATOUll P3 SAVE

NUMBER PATA QCOM SAVED

NUMBERS PATB QD SAVTAB

NUMBERO5 QDIM SAVVAR

NUMBER5 PATZ QD1 SDR2XX

NV PATFI QELNAMQ SDR2X'4

NV1 QEQU SDR2X5

NV2 PATF6 QOP SDR2X6

Ni PATi QQEQ SDR2X7

QTIME SDR2X8

N8 QTIM1 tSIGCOM
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TABLE 7 - COMPREHENSIVE ALPHABETICAL LISTING OF VARIABLE NAMES
EITHER RESTRICTED OR FORBIDDEN THE USER-Concluded

tSIGSHE TEMPOR VARTYP

tSIGTEN TESTDAT V2

tSIN THRU V

tSINTH THRUU V5

SLASH TIMER V6

SMlCL TRANFLAG1 WORDS

SMAlET TRANFLAG2 WRITELAG

SMiIO TR 1-Xill

SMA2ET TRB 1-XJ12

SMA210 TRBl tXJ22

SORi TRB2 tXNU

S0R2 TRIMEX tXl

tSQRT TRPAT tX2

STNO TRi

STR TR2 tYl

tSTRESS tTSUBO tY2

STRING tTTI

SUCCEED tTl tZ

SVl tT2 tZl

SV2 tZ2

Si U L

S2 UNARY

* UR

S7 V

TA VAR

TABLE VAREQ

tTAN VARGENR

TDTM1 VARFLAG

TDIM2 VARN

± TEMP VARNAM
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SYMBOLIC EQUATION EXPRESSION

Much of the input will consist of symbolic expressions.

These expressions must be written in FORTRAN and must adhere

to all FORTRAN rules, including those for the naming of real

and integer variables, balanced parentheses, hierarchy of

arithmetic operations, etc. There is one very important

relaxation of the FORTRAN rules. Input to the preprocessor is

matrix-oriented, that is, all variables are considered to be

matrices. Scalars are lXl matrices. Therefore, if A and B are

matrices, the preprocessor will (1) recognize the expression

A*B as a matrix multiplication, (2) make sure that it is a

well-defined matrix multiplication (although a lX1 matrix may

multiply a matrix of any order), and (3) generate the code

necessary to perform the multiplication. This preprocessor-

defined symbolic definition of matrix operations is an important
extension to the available FORTRAN capability.

The functions listed in Table 1 and the four new functions

TR, INV, DER, and INT may never be used as variable names. Of

these four new symbolic functions, only the following two are

operational at the present time:

TR matrix transpose function
INV matrix inversion function

The TR function may be used in the preprocessor input to

indicate the transpose of a matrix or a matrix expression, but

should not be used in such a way that the transpose of an entire

right-hand side of an expression is taken, since this would prove

extremely wasteful. The following three examples will indicate

some uses of the .transpose function. Each example should be

considered as the right-hand side of an equation. All the

variables refer to matrices.

Example 1: TR(A)*B

Example 2: TR(A)

Example 3: TR(Cl*TR(El)*Tl)*G(Cl*TR(El)*Tl)
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All three examples illustrate acceptable uses of the

transpose function, although the second example will generate

unnecessary coding. The preprocessor will take an expression

such as that in the first example and generate a call to a

NASTRAN matrix multiply routine, and will at the same time set

a flag which will indicate that B is to be multiplied by the

transpose of A. However, the actual transpose of A will never

be computed; the transpose operation will be performed by

referencing the elements of A in a different manner.

The purpose of the INV function is to numerically invert a

nonsingular matrix. The preprocessor will generate the coding

necessary to check for a singular matrix; however, every use
of the INV function will produce this same error processing

coding. The user may thus wish to hand-optimize his generated
subroutine to remove all but one sequence of this error-checking

coding.

Through a special preprocessor variable called DETERM, the

user can obtain the determinant of his matrix for subsequent

calculations. One possible source of error exists, as follows:
Should the user employ the INV function more than once in a

particular packet and wish to use several of the determinants,

he should save the wanted determinants immediately after their
generation. In the generation of the FORTRAN coding produced by

interpretation of the INV function the same variable DETERM is

used to store the determinant no matter how may times INV is
used. Consult Sample Program 2 as to the method of avoiding the

error.

Variables forbidden the user and those which may only be

used under certain limitations are listed alphabetically in one
comprehensive listing in Table 7, which is a compilation of all
of the variable names from Tables 1 through 6, and includes the
preprocessor-allowed functions, TR, INV, DER, and INT. If an

allowed FORTRAN function (Table 1) is used in the definitions of
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variables in the Stiffness Matrix Differential or Mass Stiffness

Matrix Packets, the functions must be in double-precision form.

In all other packets, the functions must be in single-precision

form. Tables 1 through 7 may be found on pages 13 through 28.

RESTRICTIONS ON USE OF PACKETS

In adding a new element to NASTRAN, only one packet other

than the Preliminary Data Packet is needed-the Stiffness Matrix
Packet. If other packets are included, and errors are discovered

in these other packets during the preprocessor run (although

none are found in the Stiffness Matrix Packet), only the

packets with errors will have to be submitted again on a

subsequent run. At the user's option, the user's parameter cards,

described in subsequent paragraphs, specify (among other items)

a preprocessor run number for this dummy element being generated

which enables the user to keep track of the number of restarts

attempted.

GLOBAL PARAMETER CARDS

These cards provide information which remains pertinent

throughout the data deck and guides the preprocessor in the

execution of the data. They are, therefore, global parameter

cards in the sense that they provide a basic framework for all the

user data that follow

Mandatory Cards

The first set of cards in the user's input data deck is

supplied to specify certain program options to the preprocessor.

The following four option parameters must be specified by the

user either by permitting default values or by providing the

appropriate card in the input deck:
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"* Output parameter
"* Run number parameter
"* Maximum number of SNOBOL statements to

be executed
"* Dump parameter

Note that these four mandatory parameters and the other optional

parameters described in the subsequent paragraphs may be submitted

in any order.

* The Output Parameter

This card specifies how the FORTRAN coding that has been

generated is to be printed and/or punched. Punching of the

output allows the user to hand-change minor details in the

generated coding without rerunning the preprocessor. The format

for the card is as follows:

PARAM=I where I is an integer with a value of
1 or 2;
=1 Print, but do not punch the output

subroutines and BLOCK DATA sub-
programs

=2 Print and punch as for a 1 value

A value of 2 should be used only when the user is reasonably

certain that the input 'deck is error-free. The default value

is 1.

* The Run-Number Parameter

This card indicates to the preprocessor whether the current

run of the program is the initial execution or an update to

correct previous errors. This format for the card is as follows:

RUN NUMBER=I, where I is a non-negative integer
indicating the run number.

An initial run is indicated by a parameter value of zero. If

the data is for an initial run, the preprocessor produces a

message stating that fact. An informative message is produced

for all nonzero values of the parameter; the parameter itself

forms parts of the message. The default value is 0.
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* The Maximum-Number of SNOBOL-Statements to be Executed

This card indicates to the preprocessor how many statements

may be executed before a SNOBOL system error occurs. The format

for this card is as follows:

LIMIT=I, where I is a positive integer which,
if given, should be greater than
400,000, since 400,000 is the default
value.

This parameter is used to increase the number of statements

allowed when the input data deck is unusually long.

* The Dump Parameter

This card specifies how SNOBOL variables are to be treated

upon completion of execution. The format for this card follows:

DUMP=A where A is either the word YES or the
word NO.

The default value, NO, indicates that no SNOBOL variables are

to have their final values printed when execution ends. The

word YES indicates that the SNOBOL variables termination values

are to form a part of the output from the preprocessor. This

parameter aids in the debugging of data decks when the errors

are not readily apparent.

Optional Cards

Six optional parameter cards are available: the PUNCH

PRELIMINARY parameter card, the READ PRELIMINARY parameter

card, the TIME YES parameter card, the GLOBAL VARIABLES=I card,

the PACKET VARIABLES=J card and the DECK SIZE=I card. If the

PUNCH PRELIMINARY parameter card is included, the results of

the interpretation of the Preliminary Data Packet are punched

for submission in all subsequent runs in lieu of the Preliminary

Data Packet. Processing of this punched data will marginally

decrease total preprocessor execution time.
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The READ PRELIMINARY parameter card is used only if the run

under consideration is not an initial run, and if. the PUNCH

PRELIMINARY card was used to punch the interpreted Preliminary

Data Packed. Use of the READ PRELIMINARY parameter card indicates

that the already-punched Preliminary Data Packet information is

to be read rather than the user's original Preliminary Data

Packet. Failure to include the READ PRELIMINARY card when the

user has substituted the punched Preliminary Data Packet for

his original Preliminary Data Packet will result in the

preprocessor generating error messages and halting execution during

the interpretation of the Preliminary Data Packet.

The user may obtain timing information for the various

data packets composing his particular data deck by coding a

TIME YES card into his parameter card packet. The maximum

number of allowable global and local packet variables may be

increased by coding the two cards

GLOBAL VARIABLES = I
PACKET VARIABLES = J

where I and J are integer values designating the maximum number

of global and local packet variables, respectively. The default

value in either case is 75.

The maximum number of cards allowable in the user input data

deck may be increased by using the card

DECK SIZE = I

where I is a positive value. The absence of this card limits

the user to a maximum of 500 input cards.

All of the cards just described permit free format, in

the sense that blanks may be used wherever desired except within

the words themselves. Consider the following examples of a

parameter card packet

PARAMbb = bbl
DUMPbbbbbb = bYES
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where the small letter b designates a blank character. In this

example, the PUNCH PRELIMINARY CARD has been omitted, so the

interpreted Preliminary Data Packet will not be punched; the

input data deck size is limited to 500 cards; and the maximum

number of variables for the global and other packets is 75.

Preprocessor output will be printed but not punched, and all

SNOBOL variable termination values are printed.

PREPROCESSOR CONTROL CARDS

The various control cards for the preprocessor are indicated

here, together with their functions. Some of the cards must be

used at least once per input data packet, while others may be

used or not as desired.

1. COMMENT X where X is any alphanumeric information which

the user may want to code.

This card is useful in the listing of the input deck. It serves

to make the data more readable as the user may code comments as

he would in a FORTRAN program.

2. BEGIN X where X may be any one of the following character
strings (the lower-case letter b representing one
or more blanks):

GLOBAL
STIFFNESS
VISCOUS b DAMPING
MASS
THERMAL b LOADING
STRESS
STRESS b AND b FORCE
OUTPUT
DIFFERENTIAL b STIFFNESS

This card indicates to the preprocessor a new packet in the

input data; it also serves as a delimiter between the user packets.

If the user has a packet containing an error, the next occurrence
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of a BEGIN card for a subsequent data packet would end processing

of the incorrect packet and begin processing of the next packet.

It must be the first card of each packet with the exception of

the Preliminary Data Packet, which is assumed to begin immediately

following the parameter cards.

3. END X where X is any desired string of alphanumeric

characters. The function of this card is the same as the "COMMENT"

control card. It may be used as the last card of a particular

packet to indicate the end of a packet. For example, the

card "ENDbGLOBALb PACKET" would appear in the listing of the

input deck before the next "BEGIN" card to indicate the end of

the Global Variable Packet.

4. DEFINITIONS b FINISHED

This card serves as a delimiter between Subpackets B and C

within the packets (see page 39); and should be the last card

of Subpacket B. It also indicates the end of a FORTRAN insertion

subpacket (see page 51).

5. INPUT b FINISHED

This card serves as the delimiter to the entire input deck.

It should therefore be the last card of the data deck. It

indicates to the preprocessor that all input data has been read

and processed.

PACKET SETUP

As already noted, all input information with the exception

of the parameter option information is assembled into packets.

Each of these packets but two-the Preliminary Data Packet and

the Output Packet-is itself composed of three mandatory separate

subpackets (Subpacket A, Subpacket B, and Subpacket C) which
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are described in the following paragraphs. If the user finds

it necessary, he may submit a fourth optional subpacket, the

user-supplied FORTRAN insertion subpacket. This subpacket will

be defined by the user in Subpackets B and C. The user may

supply as many insertion subpackets as he finds necessary.

Subpacket A

Since the form of Subpacket A varies in the different

packets, no generalizations can be made other than that it

usually consists of only two or three cards. Each Subpacket

A will be described in detail in the individual packet

descriptions.

Subpacket B

Subpacket B sets the overall specification of all user-

defined variables for a particular packet. It consists of a

set of cards, each-with the exoeption of the last-having the

following four fields of information on the data card in the

order shown, separated by commas:

Field 1 The variable name

Field 2 The first dimension of the variable (number
of rows)

Field 3 The second dimension of the variable
(number of columns)

Field 4 The manner of definition for the variable.

The first field, the variable name, has several restrictions.

First, the name itself is limited to no more than six characters.

Secondly, the name must conform to all FORTRAN specifications for

variable names. The variable name may not be one of the

preprocessor' s reserved words (Table 7). There is no default

that the user may assume; the existence of a null field in

this location produces a preprocessor error message.
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The second and third fields define the dimensions of the

variable given in the first field. All user-defined variables

therefore assume the form of a two-dimensional matrix. To

define a column vector, row, or a scalar variable, a user must

define the variable as an IXN, NXI, or a lXl array, respectively.

These two fields may be null, the default value being 1. Cards

such as

W,,COMM

and X,,2,TERM

define the variable W as a lXl scalar, and the variable X with

dimensions 1X2. The cards

Y,,,EQUA

Z,10,5,TERM

define Y as a lXl scalar and Z as a 10X5 matrix.

The'final field, the manner of definition for the variable,

will contain one of the four keywords TERM, EQUA, COMM, or

DEFER. TERM indicates that a term-by-term manner of definition

will be employed, i.e., each member of the array will be defined

separately and each term will be defined with a scalar symbolic

equation. In the discussion of the dimensioning of variables

Z and X above, each would be defined separately by scalar

equations in a subsequent subpacket.

The keyword EQUA is specified when the user wishes to

define a given variable by a matrix equation. Here, the user

does not define each element of the vector or matrix but defines

the entire vector or matrix through a FORTRAN-like matrix

equation. Addition, subtraction, multiplication, and exponentiation

are permissible, and the variables upon which the operations

are performed may be matrices, vectors, scalars, and constants.

Other special operators such as the transpose function TR

described earlier are also available for use in the equation. A

more detailed description of these equations appears in the

definition of the next subpacket.
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The keyword COMMON declares the associated variable name

to be a FORTRAN COMMON variable, the COMMON statement being

coded in a user-defined INSERT packet (see page 51). The

user therefore does not have to define the variable explicitly

in Subpacket C although he may use the variable as he would

any other NASTRAN COMMON variable.

The keyword DEFER declares that the user will not define the

variable explicitly in Subpacket C as usual but will define it

through one or more user-supplied INSERT packets. It is used to

define variables which cannot be defined by any other preprocessor

method.

The default specification of this fourth field is TERM.

The TERM manner of definition is preferred, since the preprocessor

will execute far fewer SNOBOL statements to generate the

necessary FORTRAN coding than if the EQUA mode of definition

were chosen.

The last card of Subpacket B contains the preprocessor

control card "DEFINITIONS b FINISHED" as described earlier. It

indicates that the subpacket is complete and that no further

input data for the subpacket follows. A very simple example

of a Subpacket B, which relates to other examples already used,

follows:

W,,,COMMON
X,,2,TERM
Y,,,EQUA
A,10,5,TERM
DEFINITIONS b FINISHED

A more complex example of a Subpacket B is provided in Figure 1.

Variables XLVl2, XLVl3, XX2, YY3, and A are scalars to be

defined by the term-by-term method. XX3 is a scalar defined

through a matrix equation. Variables V12, V13, XII, XKKl, XKK,

and XJJ are 3X1 vectors defined by a term-by-term method; and

variables El, Cl, C2, and C3 are 3X2 matrices defined again

through the term-by-term method.
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V12,3,I,TERM

XLV12,,,

Vl3,3,,TERM

XII,3,,

XKK1,3,1,TERM

XLVl3,,,

XKK,3,,TERM

XJJ,3,1,TERM

E1,3,2,

XX2,,,

XX3, ,,EQUA

YY3,,,

A,

Cl,3,2,

02,3,2,

C3,3,2,TERM

DEFINITIONS FINISHED

Figure 1 - Example of Subpacket B

Subpacket B has two restrictions, the first being that

each variable name must be a legal one as to FORTRAN conventions

(illegal variables are listed in Table 7), and the second

pertaining to the order of the variables. The FORTRAN coding

will be generated according to the order of the variables as

they are given in this subpacket. Therefore, if Variable A is

to be defined in terms of Variable B, Variable B must precede

Variable A in this subpacket. This requirement is irrespective

of whether the variable is to be defined term-by-term or by a

matrix equation. Therefore, the correct ordering of the variables

in this subpacket is vital to the correct execution of the

generated routine.
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Subpacket C

This subpacket defines variables set up in Subpacket B.

The elements of the variable array may be defined in either

of two ways:
(1) term-by-term, or

(2) matrix equation

The data in Subpacket C is given on a series of card sets, one

set for each variable to be defined. The appearance of the

data sets will vary according to the form of definition used.
Term-by-Term. If the user has specified that the variable

is to be defined by the term-by-term method, the card set is

as follows. The first card of the set gives the name of the

variable to be defined, the name starting in Column 1 for the

best optimization of the preprocessor coding. The following

set of cards is coded by the user to define all nonzero elements

of this array. (All variables are considered to be arrays.)

Each card has three fields:

Field 1 First subscript (Default is 1)

Field 2 Second subscript (Default is 1)

Field 3 Definition of the element of the array
with these subscripts

The three fields are separated by commas, and the user should

left-adjust the fields and compress out all blanks in order to

optimize execution. If the element definition extends beyond

the first card, the user enters a dollar sign ( $ ) in the

Field 3 of each card with the exception of the last. An

example of a card set using the sample definition for X from the

description of Subpacket B is:

x
l,1,A*B+C

,2,Xl-X2 $

*X3+Y3

where X =A*B+C and X1 ,2 Xl-X2*X3+Y3
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Note the use of the continuation sign and the assumption of

the first subscript for X1 , 2 . The expressions used in a term-

by-term definition may have subscripted variables; indeed,

the user is urged to supply both subscripts for all user-defined

variables, as the preprocessor will execute faster. The expression

is assumed to be a scalar, rather than a matrix expression.

The only non-integer subscript allowed is the variable name IP.

Its value has meaning only in the Stiffness, Mass, Thermal

Loading, and Differential Stiffness Packets. For these packets,

IP contains the current NASTRAN pivot point being calculated.

For an element with N grid points, the variable employing IP as

a subscript must have a dimension of N if the generated

subroutines are to execute correctly.

Matrix Equations. If the user wishes to define the

variable through a matrix equation, the card set is made up as

follows. The first card is punched with the variable name to

be defined, starting in Column 1 for fastest execution. The

user then codes the matrix expression on the next and succeeding

cards, using the same manner of indicating continuation if

necessary. The matrix expression may be scalar if the user so

desires.

Using the same specifications for Y described in the first

sample, Subpacket B, the user might define Y in the following

manner:

Y

Tl*X3+$

Xl+Y3

Another example of Subpacket C is given in Figure 2, pages
44, 45. This example defines the elements of the variables

specified in Subpacket B in Figure 1. Note that there is no

delimiter to indicate the end of Subpacket C; the preprocessor

will contain to process the input data deck until the next packet

is encountered. Every variable used in the definitions of

Subpacket C must be defined as to dimension, etc., through the
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preceding Subpacket B, unless (1) the variable used is a

NASTRAN COMMON variable, and the definition is thus already

known to the preprocessor, (2) the variable is global and

already defined in the Global Variable Packet, (3) the variable

is a preprocessor-defined variable, or (4) the variable is a

FORTRAN function.

A special type of matrix equation may be used to generate

certain types of variables. A variable may be generated by

rows or columns instead of by either a matrix equation or a

term-by-term definition. The user declares the variable's

definition to be by matrix equation in Subpacket B (keyword

EQUA).
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V12
COMMENT
COMMENT X1..Y,. i.. ARE COMMON VARIABLES AVAILABLE FOR USE
COMMENT
1,,X2-X1
2,1,Y2-Y1
3, ,Z2-Z1
V13
1, ,X3-Xl
2,1,Y3-Yl
3,l,Z3-Z1
XLV1 2

,,DSQRT(.V12(1,1)**2+V12(2,l)**2+V12(3,1)**2)
XII
,,V12 (1, l)/XLVi2 (1,1)
2,l,V12(2,l)/XLVl2(l, 1)
3,l,V12(3, l)/XLVl2(l,l)

XKK1
1,1,XKl(1, 1)/XVl3(l, 1)XI(,*V321
2,1,XKK1(2,1)/XVl3(ll-(1,1) *V331

1,1,XKK1T(3,K1)/L13(1,l)+K1(,)*
XJJ
1,1,XKK1(2,1) *XI1( 3, 1) XI,1)*K( )

2,l,XKK1(2,1)/XV3ll
3,l,XII1(3,l)/XV3ll

1, 2,XJJ(l,l)*XI31-I(,)XK3

2, 2,XJJ(2, 1)

3,2,XJJ(3,l)
XX 2
,,XLVl2(l,l)
XX 3
COMMENT
COMMENT V13 IS A 3 X 1 VECTOR --- TR(V13) IS A 1 X 3 VECTOR
COMMENT XII IS A 3 X 1 VECTOR --- SO XX3 IS A 1 X 1 VECTOR,
COMMENT IE, A SCALAR
COMMENT
TR(V13)*XII

FIGURE 2 - Example of Subpacket C



YY3
1,1, XLV13(1,1)
A
1,1,.5*XX2(1,1)*YY3(l,l)
C1
i, i,-i./XX2 (i,i)

2,2,CI(3,1)
COMMENT NOTE THAT ELEMENT (2,2) OF THE ARRAY IS DEFINED IN TERMS

COMMENT OF ELEMENT (3,1)---THE REVERSE WOULD HAVE CAUSED PROBLEMS

3,1,l./YY3(1,1)*(XX3(1,i)/XX2(i,l)-1.)
3, 2,Cl(1,1)
C2
i, I,-CI(I,1)

2,2,C2(3, 1)
3,I, -XX3 (i,i) /(XX2 (i, )*YY3 (i,i) )

3,2,1./XX2(I,l)
C3
2,2,C3(3,1)
3,l,1./YY3(I,1)

FIGURE 2 - Example of Subpacket C - Continued
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The first card in Subpacket C for this type of definition

will contain the variable name to be defined. On succeeding

cards, the user codes the keyword ROW or COLUMN followed by an

integer defining the appropriate row or column. After the

integer, the user punches a comma followed by the row or column

matrix equation definition. This definition will consist of

only a variable name, the variable having been defined earlier

as a row or column vector. The variable being defined must be

defined by either all row definition or all column definitions.

These cards that form the definitions of the variable on

Card 1 may be in any order; the user does not have to define all

of the rows or all of the columns in either ascending or

descending order. The cards are free format. The variable

defining each row or column must be a previously-defined

packet variable. Full matrix equations are not allowable. An

example of this special type of matrix equation follows.

Consider the following example: Let A be the 2X2 matrix to be

defined

A = 4

where B, C, D, and E are previously defined scalar variables.

The user may define A in terms of B, C, D, and E. If we define

the two vectors F and G to be

F = [B,D] , G [C,E]

then A can be defined in Subpacket C as follows:

A

ROW 1, F

ROW 2, G

If F and G have definitions

F = [B,C] , G = [D,E]
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we could have defined A as follows:

A

COLUMN 1, F

COLUMN 2, G

Another special type of matrix equation definition is by

partitions. If a variable to be defined is a square matrix,

the user may define it by partitions.

On the first data card, the user codes the variable name

to be defined. On the second and subsequent cards up to a

maximum of four, the user codes one of the following four

keywords:

(1) UL (define upper left partition)

(2) UR (define upper right partition)

(3) LL (define lower left partition)

(4) LR (define lower right partition)

After the keyword, a comma appears followed by the partition

definition in the form of a previously-defined variable name.

Let A be a four-by-four matrix as follows:

a b c d]

e f g h
A =

i j k 1

A m n 0 p_ _

If B, C, D, and E can be defined as follows,

B ]C [c d];

then

47



using the above example, A could be defined by the set of cards:

A

UL, B

UR, C

LL, D

LR, E

The existence of an upper left partition implies the

existence of a lower right partition in the subpacket; an

upper right partition being coded means that a lower left

partition must exist in the subpacket. If only one of each

pair is defined, the missing partition assumes the definition

of the supplied partition. For example, to create

a b c d

e f g h

c d a b

L g h e f j

with B and C defined as above, the user codes in the appropriate

Subpacket C:

A

UL, B

UR, C

The lower left and right partitions will be.defined by the

preprocesso r. The data cards forming the definition are free

format and may be in any order.

General Remarks Concerning Subpacket C.

If a variable is to be defined by a term-by-term definition,

the value of any element of the variable not given in Subpacket

C is defaulted to 0. If a variable is to be defined by a

matrix equation, all members of the variable are defaulted to

0 unless the matrix equation definition of the variable appears

in Subpacket C.
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If the user wishes to define an element of an array in

terms of another element of the same array, the following two

rules must be observed:

* If the two elements have different column numbers (second

subscripts), the element with the larger column number

may be defined in terms of the element with the smaller

column number, but not vice versa. For example,

A(2,2) = A(3,1)

is acceptable, but

A(3,1) = A(2,2)

is not.

* If the two elements have the same column number, the

element with the larger row number (first subscript)

may be defined in terms of the element with the smaller

row number, but not vice versa. For example,

A(5,4) = A(2,4)

is acceptable, but

A(2,4) = A(5,4)

is not.

In other words, the preprocessor takes the user's term-by-term

definitions and arranges them so that a column-wise definition

appears.

The following restriction in the use of matrix equations

must be observed. Stated briefly it is this: No more than nine

subexpressions may be coded in any one matrix equation definition.

The following example containing ten subexpressions illustrates

what happens when this restriction is ignored.

Example:

Let the user-variable A have the following definition:

A = (B+0)*(D+E)*(F+G)*(H+W)*(Z+X)*(O+P)*(Q+R)*(S+T)*(U+V)*(B+C)
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where B, C, D,.E, F, G, H, 0, P, Q, R, S, T, U, V, and W are

previously defined variables. Further, assume that these

variables are properly dimensioned so that the equation is

legal.

Each of the expressions (B+C), (D+C), etc., is called a

subexpression. Through the Polish notation convertor built into

the preprocessor, the definition of A becomes

A = B, O+D, E+F, G+H, W+Z, X+0, P+Q, R+S, T+U, V+B
C + *********

Through the preprocessor logic, all the subexpressions in this
particular equation must be resolved before the series of

multiplications can be performed. Nine intermediate variables

not available to the user--Ql, Q2,..., Q9-are used to store

these subexpressions. In the preceding equation, the variables

Ql, Q2,..., Q9 are defined as follows:

Q1 = B+O Q5 = Z+X

Q2 = D+E Q6 = O+P

Q3 = F+G Q7 = Q+R

Q4 = H+W Q8 = S+T

Q9 = U+V

During interpretation, the above equation temporarily becomes

Ql, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, B, C+*********

The resolution of the subexpression B+C transforms the equation to

Ql, Q2, Q3, Q4, Q5, Q6, Q7, A8, Q9, Ql*****•***

Now the variable Q1 appears twice in the equation. Furthermore,

it has the new definition Q1 = B+C. But the user desired Q1 to

be the expression B+O at the beginning of the original equation.

His equation has been transformed into

A = (B+C)*(D+E)*(F+G)*(H+W)*(Z+X).

A = (A *(O+P)*(Q+R)*(S+T)*(U+V)*(B+C))
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which was not his intent. Unless the user consciously looks

for it, he could easily overlook an error of this type. Nor

will FORTRAN compilation of the generated coding detect the

error.

To operate within this restriction, the user should break

up large equations having more than nine subexpressions into

smaller equations. In the above example, resolution could take

the following form.

Al = (B+O)*(D+E)*(F+G)*(H+W)*(Z+X)

A, = Al*(O+P)*(Q+R)*(S+T)*(U+V)*(B+C)

which would produce proper coding.

FORTRAN USER-SUPPLIED INSERTION SUBPACKET

Some FORTRAN coding situations are not amenable to the

techniques described earlier. For example, there is no way to

code the FORTRAN IF statements which may be used to test for

0-value denominators or to call a user-supplied subroutine.

FORTRAN statements may be incorporated within the generated

coding in one of two ways: either directly, through manual

insertion by the user; or indirectly, by having the preprocessor

code it along with the rest of the routine still remaining to

be coded.

Since the order of specification of the variables in

Subpacket B of a packet defines the order in which the coding

is generated (see page 40), the inclusion in Subpacket B of the

string

INSERT X

where X is a character string unique to this packet, will cause

the preprocessor to code the FORTRAN statements which appear in

Subpacket C following an INSERT X string in that subpacket.

The preprocessor will consider all cards following the INSERT

card to be part of the insertion subpacket until a DEFINITIONS

FINISHED preprocessor control card is encountered. The

51



DEFINITIONS FINISHED control card in this circumstance acts as

a terminator to the INSERT subpacket. For example, suppose in

Subpacket B we have the instructions

A, 1, 1, TERM

B, 1, 1, TERM

INSERT Q

C, 1, 1, TERM

INSERT V

and in Subpacket C we have

INSERT Q

IF(A.EQ.B) GO TO 9105

DEFINITIONS FINISHED

INSERT V

GO TO 9110

9105 C = 0

9110 CONTINUE

DEFINITIONS FINISHED

After the definitions of the variables A and B have been

generated, the coding will be

IF(A.EQ.B) TO TO 9105

C = (normal definition for C)

GO TO 9110

9105 C = 0.

9110 CONTINUE

Note the following important points:

1. The preprocessor handles INSERT X as though it were a

variable. Therefore, if several different insertions are desired,

unique X strings will be required.

2. In the Stress Matrix and the Stress and Force Calculation

Packets, variables appear on an options card in subpacket A as

well as in Subpacket B. The variables in Subpacket A are always
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generated after the secondary variables which appear in

Subpacket B. Therefore, if coding is to be inserted after the

definition of a variable which appears in Subpacket A for these

two packets, then the INSERT X string must appear in Subpacket

A immediately following the variable. However, this INSERT X

string should not be counted as a variable in the count that

must also be given in Subpacket A. For example, in Figure 9, the

variable THETA will be computed using the arctangent function.

Since THETA is a function of the elements of the SIG array

and since we wish to test elements of the SIG array, the INSERT X

strings must appear in Subpacket A. But note that the INSERT X

strings are not included in the count on the preceding card.

If coding is to be inserted during generation of the

secondary variables in Subpacket B, the INSERT X string should

appear in the appropriate place in subpacket B.

3. The user-supplied FORTRAN statements will be coded

exactly as they are punched. Therefore, all FORTRAN rules, such

as starting the coding in column 7, must be observed. The

preprocessor will not check for FORTRAN syntax errors.

4. Since the subscripts of an array are normally switched

by the preprocessor due to NASTRAN restrictions, it would be

wise for the user to set up a dummy variable if he desires to

add coding containing a subscripted variable.

5. Care should be exercised by the user in supplying

FORTRAN statement numbers. Statements numbers should be greater

than or equal to ((2(N+l)+1)100), where N is the number of grid

points of the element under consideration. The user should

automatically check the generated routine for such obvious

errors as duplicate statement numbers, since such errors can

easily be directly corrected.
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The user may also insert FORTRAN DIMENSION, COMMON, and

EQUIVALENCE statements into his generated subroutines. He

inserts FORTRAN statements after the preprocessor-generated

DIMENSION statements by coding an INSERT DIMENSION X packet with

the same restrictions as for the INSERT X packet. Statements

may be added after the preproces~or-generated COMMON and

EQUIVALENCE statements by coding INSERT COMMON X and INSERT

EQUIVALENCE X packets, respectively. See Sample Problem 2 in

the Appendix B for an exam ple of this procedure.



III. DATA PACKET DESCRIPTIONS

Descriptions of each of the ten packets follow. Examples

of each packet are included, unless the packet is identical to

another. Tables of variable names which may only be used as

already defined are provided on pages 13-28. Names denied the

user are also listed.

PRELIMINARY DATA PACKET

Logical Cards

The information specified in this packet is used to update

NASTRAN tables and to create FORTRAN COMMON statements that will

be of use to the user in his element subroutines. This packet

must contain three logical cards, each of which may consist of

several physical cards. The following items of information must

be supplied:

Card 1

Field 1 Element name

Field 2 Number of grid points for the element

Field 3 Sequence of digits specifying the degrees of
freedom for the element

Field 4 Indicator as to whether the element is a scalar
element or a structural element

Field 5 Number of permanent elements already residing in
the NASTRAN element library

Field 6 Approach acceptability flag for the element

Field 7 Number of data items for the element listed on
the connection card

Field 8 Number of data items for the element listed on the
property card

Field 9 Sequence of digits for the logical connection card
(Card 2)

Field 10 Sequence of digits for the logical property card
(Card 3)
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Card 2

The user-defined connection-card variables

Card 3

The user-defined property card variables.

The user enters all of the fields 1 through 10 on the first

logical data card in the packet. If the total length of these

fields is longer than one physical card (80 columns), the user

must continue on a subsequent card(s), entering a dollar sign ($)

anywhere in the last field of the card which is to be continued.

All of the cards but the last must contain the dollar sign. To

avoid overlooking this requirement, the user might do well to

form a habit of coding a $ in a particular column of a card-say

column 72, for example. Examples of the use of the dollar sign

convention are provided in the packet descriptions.

Description of Logical-Card Data Fields

Card 1

Field 1, the element name, must be entered in the form

ELEMx, where x signifies any integer less than 51 and greater

than the number of permanent elements already residing in

NASTRAN. (See the description of Field 5). After NASTRAN has

been successfully updated, the NASTRAN bulk data connection card

and property card mnemonics will be CELEMx and PELEMx, respectively.

The integer quantity x will be a subscripting parameter in the

later generation of BLOCK DATA subprograms. The default value

of x in ELEMx is (Field 5) + 1.

Field 2 must contain an integer which specifies the number

of grid points for the element. There is no default value for

this parameter. The largest value allowed' is 100.

56



Field 3 specifies the degrees of freedom that the element

may take. This field consists of a string of as many as six

integers, which may be any combination of the integers 1, 2, 3,

4, 5, 6. These integers refer to NASTRAN's present degrees-of-

freedom. Integer 1, 2 and 3 refer to the x, y, and z translations,

respectively; integers 4, 5, and 6 refer to the rotations about

the x, y, and z axes, respectively. An integer may not appear

more than once in the field. Thus, a .value of 123456 indicates

that the element has all six degrees of freedom; the string 12

indicates that only translations in the x and y directions are

possible. There is no default value for this field.

Field 4 contains the scalar indicator, which is an integer

with three permissible values: -1, 0, or 1. The default value

is 0, which implies that the element is a structural, rather

than scalar, element. A value of 1 indicates that the element

is a scalar element with grid point and component code. A

value of -1 indicates that the element is a scalar element with

scalar points only. At the present time only the structural

element may be added via the preprocessor, so the value in this

field must be 0.

Field 5 indicates the number of permanent elements already

residing in NASTRAN. The default value is 38 (the number of

elements in the Level 12.0 general release version). The

number of elements in Level 15 is 61. This field prevents the

user from generating FORTRAN coding which will then overlay

parameter values of existing NASTRAN elements.

Field 6 contains the approach acceptability flag for the

new element. This variable must be an integer ranging between

the values -2 and +2. The default value of 0 indicates that

any approach is allowable for the element. The values -2 and

+2 indicate that the force and displacement approaches, respectively,

are illegal for the element. The values -1 and +1 indicate that

the element is not used by the force or displacement approaches

respectively. Since NASTRAN does not contain the Force approach

at the present time, the parameter in this field should be 0.
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Fields 7-10 refer to the connection card variables

(CVl, CV2,...) and the property card variables (PVl, PB2,...)

described on page 100. The integer in Field 7 specifies

how many user-defined data items are contained on the connection

card for the new element. (The variable names themselves are

submitted on Card 2 of this packet.) The integer supplied must

be greater than 0 even though there is no default value, since

the anisotropic material angle must be specified in any case

(page 102). The user may use these variables in the definitions

of variables in other packets. He supplies the various

connection variables values to NASTRAN through the NASTRAN

bulk data connection card CELEMx.

Field 8 contains an integer which specifies how many

user-defined data items are contained on the property card for

the new element. This parameter may have a 0 value, indicating

that the element does not make use of a property card-in

which case Card 3 would be omitted from the Preliminary Data

Packet. If so, the element material property ID must then be

specified on the connection card (page 100. The property

variables themselves are defined on the NASTRAN bulk data

property card PELEMx. The sum of the integers in Fields 7 and

8 must not exceed 97-5N, where N is the number of grid points

for the element.

Field 9 must contain a sequence of n integers, with n the

number specified in Field 7. Each integer indicates the type

of the user-defined variable which is located in the corresponding

position on the connection card. Thus the first integer

supplies the type of the first variable located on Card 2, the

second integer supplies the type of this second integer on Card 2,

and so on. Commas must not be used to separate the integers. The

type of integers and the variable types they stand for in NASTRAN

are as follows:

1 Integer
2 Real
3 BCD
4 Double precision
5 Anything not covered by 1, 2, 3 or 4
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At the present time only the integer, real, and BCD representations

will be recognized, although future expansion of the preprocessor

will enable any of the various variable types listed to be used.

At this time the user's sequence will be made up of a combination

of l's, 2's, and 3's. The default value for this field is n

number of 2's.

Field 10 is similar to Field 9 except that it concerns the

user-defined property card variables listed on Card 3 rather

than the connection card variables given on Card 2. The number
of integers must be m, with m the number indicated in Field 8.
Field 10 must be empty if Field 8 contains a 0 value.

Card 2

Card 2 contains the list of user-defined connection card

variables for the new element. The user is presently restricted

to using only real, integer, and BCD variables. Variables
beginning with the letters I, J, K, L, M, or N will become

real variables. The variables must be separated by commas.

Continuation onto other cards is allowed if the $ punch is used.

Card 3

If Field 8 has a non-zero value, the user then supplies

Card 3 which lists the user-defined property card variables

PVI, PV2,..... The format is the same as that for Card 2.

The variables used on this card may not be listed on Card 2,

and vice versa. If the value in Field 8 is 0, this card must be

omitted.

Preliminary-Data-Packet Example and Discussion

In the example of Figure 3, Fields 4, 5, and 6 of Card 1
assume the default values 0, 38, and 0, respectively. The

sample element is to have the name ELEM40 with three grid

points; translation in the x and y directions is allowable.

Fields 7 and 8 indicate one connection card variable and two

property card variables. Fields 9 and 10 indicate that these

variables are to be real variables.
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Card 2 specifies that the user-defined connection card

variable is to be named TH. Card 3 specifies that the user-

defined property card variables are to be named T and FMU.

COMMENT

COMMENT BEGIN PRELIMINARY DATA

COMMENT

ELEM40, 3, 12,,,, 1, 2, 2, 22

COMMENT CONNECTION CARD VARIABLE

TH

COMMENT PROPERTY CARD VARIABLES

T, FMU

END PRELIMINARY DATA PACKET

Figure 3 - Example of a Preliminary Data Packet

GLOBAL VARIABLE PACKET

This packet sets up "global" variables-variables which may

be used in several different packets without being redefined in

each packet. The Global Variable Packet has the following four

parts:

Preprocessor control cards
Subpacket A
Subpacket B
Subpacket C

Preprocessor Control Cards

The first card of the packet may only contain the string

BEGINGLOBAL. This control card indicates to the preprocessor

that processing of the Global Variable Packet is to begin. Blanks

may be embedded anywhere on this card, even within the string
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itself, as in the example BEGINbGbLbObBbAbL in which the letter

b represents a blank. This feature, which applies to all the

packets, facilitates the reading of the input data. The

preprocessor control card COMMENTx, where x is any phase

desired by the user, can appear anywhere within the packet.

Subpacket A

Subpacket A consists of one logical card (which may

encompass one or more physical cards) which lists all of the

variables that are to be defined as global variables. Subpacket

A may consist of a blank card. If any variables are listed,

they must be separated by commas. The list may overflow onto

successive data cards if the dollar-sign convention is observed.

For example, the following notation

X12, V13, XII, $
VAR1, VAR2

specifies that five variables are to be defined in the Global

Variable Packet. Use of the second card is allowable, since a

dollar sign has been punched on the first card. There is one

restriction to this initial specification of variables, however.

The user must list variables in the order in which they are to

be used in the definitions. Suppose V13 and VAR1 are to be used

for the definition of VAR2. Then V13 and VAR1 must be punched

prior to VAR2 on the card. The variable names must conform to

all FORTRAN rules for variable name construction.

If Subpacket A contains only a blank card, the order of the

variables in Subpacket B (discussed on page 40) is critical,

which is true in all of the packets.

All of the variables listed in Subpacket B are considered

global variables, whether or not Subpacket A lists any variables.

Consequently, if any of the Subpacket B variables are used in the
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packets that follow without first being redefined, the preprocessor

will use the Global Variable Packet definition. Consider the

example of a global variable A which is redefined in the

Stress Matrix Packet. Each time the variable A is used in the

packets preceding the Stress Matrix Packet-the Stiffness Matrix,

the Mass Matrix, the Viscous Damping, and the Thermal Loading

Packets-the preprocessor will resort to the Global Variable

Packet for the definition of A. Note that once a global

variable has been redefined, the new definition remains for

any packets that follow.

Subpacket B

In Subpacket B, the user specifies the dimensions and

manner of definition for each of the variables to be defined.

Variables listed in Subpacket B which did not appear in

Subpacket A must also be defined. Thus, if Subpacket A consisted

of only a blank card, the user would have to define all the new

variables in Subpacket B, using the proper order described earlier.

Subpacket C

In Subpacket C, the user actually defines all the variables

symbolically, either term-by-term or with a matrix equation. All

Subpacket B variables not defined in Subpacket C assume the

default value of 0. If a matrix equation definition is supplied,

it overrides the default value. However, a term-by-term

definition will override only those particular array elements

which the user has specified. An example of the use of the zero

default in a term-by-term definition is for the case in which A

is to be a 2X2 diagonal matrix. The user need only code

A(l,l) and A(2,2) since all of the other elements left undefined

will assume the default value of 0.
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Global Variable Packet Example and Discussion

A complete example of a Global Variable Packet is provided

in Figure 4. In this example the variables V12, V13, XII,

XKKl, XKK, and XJJ are all 3Xl vectors to be defined term-by-

term. XLVl2, XX2, YY3, XLVl3, and A are scalars to be defined

term-by-term; XX3 is a scalar to be defined through a matrix

equation. Finally, El, Cl, C2, and C3 are 3X2 matrices to be

defined term-by-term. Note the use of the zero default in

Subpacket C for a term-by-term definition to set C1(1,2),

C1(2,1), C2(1,2), C2(2,1), C3(1,1), C3(1,2), C3(2,1) and

C3(3,2) to zero. All term-by-term definitions are actual

FORTRAN expressions involving scalars, while the matrix equation

definition for XX3 involves operations upon matrices (a

transpose and multiplication of two previously defined matrices).

The variables listed in Tables 1 through 6 are available to

the user, subject to the restrictions noted earlier. Thus,

COMMON variables Xl, X2, X3, Yl, Y2, Y3, Zl, Z2, and Z3 are

defined in Table 3.
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BEGIN GLOLbAL
COMMENT GLO3AL VAmI'ABLt. LIST
Vi2,XLV12,V13,XIIXKK1,XLV13,XKKXJJE1,XX2,XX3,YY3,AC1,C2,C-'
V12,39,1, TE~RM
XLV12,,,
V 13,93,9 ,T EA-,,
XII,3, f

XLV139t
XKK,3, ,TER1
XJJ,3, 1,Tc.M

XX2,9
XX3, , EQUA

C2,t3 ,2,
C393,2,TERM
DEFINIT1014S FINISHED
V12
COMM EN T
COMMENT XI,..YI...Z1.. A COMMON VARIARL-.S AVAILABLE FOR, USE-
COMMENT
1, ,X2-Xl
2, iY2-Yi
3, ,Z?-ZI
V13
1, ,X3- Xi

3, 1, Z3-ZI
XL V12

,,V12(1t1)/XLV12(i,1)
2,tV12(2,1)/XLVi2(1,1)
3, 1tV12(3,1)/XLV12(1t1)
XKKI

XLV13
Ip1, 1DSQkT ( XKKI (1, 1) **2 +X'(t((29 1) **2 4XKKI 3,t 1) *2
XKK
1,1,XKK1(1q1)/XLV13(1q1)
2, 1,XKK1 (2,1) /XLV13 (1,1)
3yiXKK1(3t1)/XLV13(Iqi)

Figure 4 - Example of a Global Variable Packet
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xJJ

E i

29 19XII (2,91)
3,iXII( 3,1)

29,2, XJJ(2,1)
3, 2,XJJ(3,1)
XX 2
99,XLV12( 1,1)
XX3
COMMENT
COMMENT Vi3 IS A 3 X I VECTOR---TR(V13) IS A i X 3 VECTOR
COMMENT XII IS A 3 X i VECTOR---SO XX3 IS A i X I VECTOR,
COMMENT I E, A SCALAR
COMMENT

YY3
1,1, XLVi3(l,1)
A

* ~1,1,.5*XX2(1qi)*YY3(i,1)
C1

2,2,CiC3 ,1)
*COMMENT NOTL. THAT ELEME.NT (2,2) OF THE ARRAY IS DEFINED IN TERMS

COMMENT OF ELEMENT (3,1)---THE REVE.RSE WOULD HAVE CAUSED PROBLEMS

39goY3,2C 11) 1*X311/X2ii-

C2

2, 2,C2 (3,1)

'3,2, 1./XX2 (1, 1)
C3
2j,29C3 (3,i)
3,19i./YY3(l,1)
END GLOBAL PACKET

Figure 4 Example of a Global Variable Packet-Concluded
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STIFFNESS MATRIX PACKET

This packet sets up the variables necessary to generate

an element stiffness matrix. The user has available to him

the variables contained in common blocks MATIN, MATOUT, SMAlET,

SMAlIO, SMA1CL and SMA1DP. The packet has four parts:

Preprocessor control cards
Subpacket A
Subpacket B
Subpacket C

Preprocessor Control Cards

The preprocessor control cards are similar to those in the

Global Variable Packet, except that the first card must be the

string BEGINSTIFFNESS instead of the string BEGINGLOBAL.

Subpacket A

Subpacket A consists of two cards. The first is the

Stiffness Matrix Packet option card which contains two fields:

Field 1 An INFLAG value
Field 2 An indication as to the method used for

the stiffness matrix definition

Card 1

The value of INFLAG in Field 1 governs access to certain

NASTRAN COMMON variables which can be of help to the user in

building his definitions. These variables are related to the

material properties for the element. The INFLAG value must be

one of the integers 1, 2, 3, or 4. There is no default value.

The variables which may be used for a particular value of INFLAG

are indicated in Table S. If the element uses only isotropic

materials, a value of 1 should be used. However, if the element

may use either isotropic or anisotropic materials, the integer

2 should be specified. Table 6 lists the definitions for the

reserved variable G for INFLAG values of 1, 2, 3, and 4.
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Field 2 must contain one of the two keywords K or KIJ.

The variable K indicates to the preprocessor that all diagonal

and symmetric 6X6 partitions of the element stiffness matrix are

to be defined separately. For instance, if the number of grid

points specified in the Preliminary Data Packet is 2, the user

must defined KIl, K12, K21, and K22 separately in Subpackets B

and C. The only exception is for that case in which a partition

is to be identically zero. If the keyword KIJ is used, the

user specifies the partitions by defining KIJ, the general (I,J)

stiffness matrix partition. The keyword KIJ implies that the

user will be defining the stiffness matrix in Subpacket C by

means of a matrix equation. The equation used will be different

from all other matrix equations in one important respect: All

variables ending with either I or J will represent a series of

variables. I and J assume different values 1,2,.., N, where

N is the number of grid points. To illustrate, assume the

following form for the general matrix partition KIJ in Subpacket

C:

KIJ = TR(Cl*TR(El)*TI)*G*(CJ*TR(El)*TJ)

If the value of N were 2, the following four equations would

actually be set up:

K11 = (Cl*ElT*Tl)T G(Cl*ElT*Tl)

K12 = (Cl*ElT*Tl)T G(C2*ElT*T2)

K21 = (C2*EIT*T2)T G(Cl*EIT*Tl)

K22 = (C2*EIT*T2)T G(C2*ElT*T2)

jNote that the variables Cl, C2, and El must have been defined

in Subpackets B and C as to dimension, manner of definition,

and actual definition. The variables G, Tl, and T2 were

predefined in the preprocessor for the user's convenience via

Tables 1 to 6.
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Card 2

The user codes the right-hand side of a stiffness matrix

equation (hereafter to be known as a stiffness matrix expression)

on the second card of Subpacket A, continuing onto additional

cards as needed by using the dollar-sign convention. The

following several paragraphs are devoted to a discussion of the

stiffness matrix expression, its restrictions, and its implications.

Any reference to a 6X6 partition will also apply to an alternate

MX1 or 3X3 partition.

The stiffness matrix expression must contain the variable K

or the variable KIJ. KIJ represents a 6X6 matrix partition; K

represents a 6NX6N stiffness matrix with N the number of grid

points of the element. Whichever one is used, it must be

defined in Subpackets B and C. The KIJ or K used within the

stiffness matrix expression indicates what is being computed-

either a 6X6 partition or a 6NX6N matrix, respectively. The

variable used must relate to the value supplied in the second

field of the options card as follows: If K is used in the

stiffness matrix expression, the user has no choice but to

punch K in the options card. If KIJ is chosen for the stiffness

matrix expression, the user may choose to punch either K or KIJ

in the second field of the options card, depending upon whether

he wishes to define the matrix partitions Kll, K12,...,

individually (in which case he will choose K), or whether he

wishes to define the matrix partitions by means of a master

equation (in which case he will choose KIJ). In any case, he

has a choice as to the way his matrix partitions will be

dimensioned--as iXl's, as 3X3's or as 6X6's, according to the

options he supplies.

As previously mentioned, the punching of KIJ on the

stiffness matrix expression and in the second field of the

options card implies that the matrix partitions Kll, K12, etc.,

will be defined by a master definition of the variable KIJ in

which I and J will be integers within the closed interval [1,N]
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with N the number of grid points of the element. Therefore,

the user must define KIJ as a lXl, 3X3, or 6X6 matrix defined

by a stiffness matrix equation (keyword EQUA) in Subpacket B.

In Subpacket C, the user provides the master equation definition

of KIJ. All variables ending with I or J stand for a series of

variables.

If the user has the option of placing variables in either

the stiffness matrix expression or in the definition of variable

KIJ in Subpacket C, he should choose to place them in the

definition of KIJ. This placement will result in fewer FORTRAN

statements in the preprocessor-generated stiffness matrix
subroutine. Therefore, the stiffness matrix expression could

become just K or KIJ, if the entire definition of the stiffness

matrix or the stiffness matrix partitions could be specified in

Subpacket C.

Subpacket 5 and C

After punching the stiffness matrix expression in Subpacket

A of his Stiffness Matrix Packet, the user punches Subpackets B

and C to completely define all variables used to build the

stiffness matrix or its partitions.

Stiffness Matrix Packet Example and Discussion

In the example of Figure 5, all undefined variables are

either global or reserved. The global variables were listed in

Figure 4. INFLAG has a value of 2. The user has selected KIJ

as his option, thus implying that KIJ will be used in the stiffness

matrix expression, and that variables ending in I or J will

represent N number of variables. The stiffness matrix expression

is A*T*KIJ, with KIJ defined as a 3X3 matrix in Subpacket B.

As already explained on page 7, each matrix partition will

subsequently be inserted into a 6X6 partition. Finally, the
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definition of the general (I,J)th stiffness matrix partition

KIJ is given in Subpacket C. Since this new element will have

three grid points, as indicated in the Preliminary Data

Packet example (Figure 3), the definition given will generate nine

separate equations-equations in which I and J in the variables

CI, CJ, TI, and TJ take on different values 1, 2, 3. In

Figure 4, the variable El, Cl, C2, and C3 are defined. Table

4 indicates that the reserved variables Tl, T2, and T3 are

available for use.

BEGIN STIFFNE'SS
2,KIJ
COMMENT sTIFFNL.SS MATRIX EXPRESSIUN FOR THE (I,J)TH PARTITION
A*T*KIJ
COMMENT BEGiN LISTING OF STIFFNLSS MATRIX PACKET VARIABLES
KIJ, 3,3, EQUA
DEFINITIONS FINISHED
KIJ
TR(CI*Tt (-I) *TI) *G*(CJ*TP,(--I)*TJ)

END STIFFNLSE PACKET

Figure 5 - Example of a Stiffness Matrix Packet

MASS MATRIX PACKET

The format and restrictions for this packet are identical

to those set out for the Stiffness Matrix Packet just described,

except that the first card will now contain the string BEGINMASS,

and the variables MIJ and M will be used instead of the variables

KIJ, and K, respectively. The COMMON's used by the routine

generated from this packet will be MATIN, MATOUT, SMA2ET,

SMA210, SMA2CL, and SMA2DP (Table 3). Table 4 lists the other

reserved variables available for use with this packet.
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Mass Matrix Packet Example and Discussion

In the example of Figure 6, the mass matrix expression

is MIJ. This fact, together with the M option supplied on

the first card of Subpacket A indicates that the user will

supply specifications for MII, M12,..., MNN separately for

each non-zero MIJ in Subpackets B and C. In Subpacket B, one

scalar variable XMASS is supplied, in addition to the mass matrix

partitions. Note that several partitions are unspecified and

consequently will be assumed to be identically zero. Subpacket

C indicates that the matrix partitions Mll, M22, and M33 are

diagonal 3X3 matrices with XMASS on the diagonals. The

definition of A is supplied from the Global Variable Packet

(Figure 4). The COMMON variable RHO's definition is found in

Table 5. Finally, FMU and T are user-defined property card

variables already made available in the Preliminary Data Packet,

Figure 3.
BEGIN MASS
COMMENT SUBPACKE] A
2,M
COMMENT MASS MATRIX MATRIX -EQUATION
MIJ
COMMENT SUBPACKET B
COMMENT BEGIN LISTING OF MASS MATRIX PACKET VARIABLES
XMASS,,,
Mip3E939TERM
M22v3,39
M3393,39 TE.RM
DEFINITIONS FINISHED
COMMENT SUBPACKET C
COMMENT PARIITIONS M129Mi39tM21,M23tM319AND M32 ARE IDCNTICALLY ZERO
XMASS
iItA* (RHO T+FMU) /3,
Mil
i9i9XMASS(i1)
29 2v XMASS (1i1)
3p39XMASS (1,1)
M22
I919XMASS(iI)
2,29XMASS (1,1)
3,3, XMASS (i1,)
M33
i9i9XMASS (1,1)
292,XMASS(II)
3,3,XMASS(1,1)
END MASS PACKET

Figure 6 - Example of a Mass Matrix Packet
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VISCOUS DAMPING MATRIX PACKET

This packet is identical to the Mass Matrix Packet as to

format and restrictions, except that the first card of the

packet will contain the string BEGIN VISCOUS DAMPING (with

blanks embedded as needed), and the variables VIJ and V will

be used instead of the variables MIJ and M. The COMMON's

and the reserved variables available are the same for both

packets. Because of the similarity of this packet to others

already described, an example has not been included.

THERMAL LOADING VECTOR PACKET

The format for the Thermal Loading Vector Packet is

similar but not identical to that for the Stiffness Matrix

Packet. The first card will contain the string

BEGINbTHERMALbLOADING. The INFLAG variable on the Subpacket

A options card operates in the usual way. The second option

will be either PPI or PP, with PPI having the same function as

KIJ (except that variables ending on J will no longer carry

any special significance) and PP will function in the same way

as K.

The second card of Subpacket A will contain an expression

for the thermal loading vector using either the variable PPI

or PP. Just as KIJ must be a lXl, a 3X3, or a 6X6 matrix, and

K must be a 6NX6N matrix in the stiffness matrix expression,

so must PPI be a lXl, a 3X1, or a 6X1 vector. PP must be a

6NXI vector with N the number of grid points. The thermal

expansion coefficient vector will likely be used in the

definition of PP to obtain the final thermal loading (as is true

in the example in Figure 7 in which ALPHV is the thermal expansion

coefficient). Remember that when PPI is present on both cards

of Subpacket A, variables ending in J represent only themselves,

and not several other variables.
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If PPI is used in the thermal loading expression, the

user can choose between P or PPI for his options card. How-

ever, if PP is used in the expression, PP must be chosen for

the options card. Whichever variable is chosen for the thermal

loading expression must then be defined in Subpackets B and C.

The user has access to the variable TTI, a vector which

contains temperatures at the different grid points of the

element. For example, the variable TTI(I) would indicate

the temperature at the Ith grid point of the element. Note

that in the example of Figure 7, the variable TBAR in Subpacket

C is the average of the temperatures at the various grid points

minus some reference temperature TSUBO which enters through the

named COMMON block MATOUT (Table 5).

The COMMONs used by the routine generated from this packet

are MATIN, MATOUT, EDTSP, and TRIMEX (Table 3). Other reserved

variables available for use in this packet are those listed in

Table 4.

Thermal Loading-Packet Example and Discussion

On the first card of Subpacket A in this example of

Figure 7, the value of INFLAG is 2. The presence of PPI implies

that the general definition of the Ith vector partition will be

specified. The thermal loading vector expression is

A*T*PPI*TBAR

which implies the following three equations:

A*T*PPI*TBAR

A*T*PP2*TBAR

A*T*PP3*TBAR

The variable A has already been defined in the Global Variable

Packet (Figure 4). T is a property card variable which was

listed in the Preliminary Data Packet, Figure 3. PPl, PP2, PP3,

and TBAR are to be defined through Subpackets B and C (although

according to existing options, only PPI need be specified).
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In Subpacket B, ALPHV is defined in terms of the COMMON

variables ALPHA1, ALPHA2, and ALP12. (See Table 5.) TBAR's

definition is formed from TSUBO and TTI. TSUBO comes from

the COMMON variable TSUBO (Table 5). The temperature vector

TTI (Table 4) is predefined by the preprocessor. PPI, the

general thermal loading vector, has the definition

TR(TI)*El*TR(Cl)*G*ALPHV. Since PPI is used on both cards of

Subpacket A, it in turn defines the equations

PPl = TR(Tl)*El*TR(Cl)*G*ALPHV

PP2 = TR(T2)*El*TR(C2)*G*ALPHV

PP3 = TR(T3)*El*TR(C3)*G*ALPHV

The variables El, Cl, C2, and C3 are defined through the Global

Variable Packet (Figure 4). The variables Tl, T2, T3 are the

preprocessor-defined transformation vectors (Table 4).

BEGIN THEi.MAL LOAOING
2,PPI
COMMENT THLKIAL LOADING EQUATION
A*T*PPI*T•AR
ALPHV3p, 9TCTRM
TBAR,,,
PPI,3, ,zQUA
DEFINITIOtiS FINISHED
ALPHV
I1IALPHAI
29,1ALPHA2
3,iALP12
TBAR
I• i,(TTI (i)+TT I(2)+TTI (3))/3.- TSU •.

COMMENT ALPHAIALPHA29ALPI2,TSU.30 COME FROM COMMON MATOUT
COMMENT TTI IS THC VECTOR OF GRID POINT TEMPERATURES
PPI
TR(TI) Ei'Ti6(CI) *G*ALPHV
END THERMAL LJADING

Figure 7 - Example of a Thermal Loading Packet
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STRESS MATRIX PACKET

This packet generates a FORTRAN subroutine that is used to

pass necessary variables to a routine that will compute element

stresses and forces. These variables are passed as elements

of the NASTRAN array PHIOUT. The preprocessor generates a

series of FORTRAN EQUIVALENCE statements to perform this

function.

The first card in the data pack must contain the string

BEGINSTRESS with blanks wherever convenient.

Subpacket A

Card 1

The next card in the data packet, the first of Subpacket A,

will be the options card. The INFLAG option values are the

same as for the Stiffness Matrix Packet already described.

The second option will contain an integer quantity that specifies

the number of words to be loaded into the PHIOUT array, calculated
as follows. Suppose that there are a total of nine elements in

the variable arrays on the stress matrix card (discussed next).

To this number add N+l, in which N represents the number of

grid points. The sum will be the value to be supplied for the

second option. This number must be less than or equal to 100,

or the NASTRAN table will overflow.

Card 2

The second card of Subpacket A is the stress matrix card

which must contain a list, in proper order, of all the variables

the user wishes to pass to the stress and force calculation

routine via the PHIOUT array. Since the variables in COMMON

MATOUT are not made available to the Stress and Force Calculation

Packet which follows this packet, MATOUT variables desired for

use in that later packet must be passed through PHIOUT, and
therefore must also be listed on the stress matrix card of this

Packet (second card of Subpacket A).
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An example of a stress matrix card follows:

TSUBO, SB1, SB2, SB3, ST

where TSUBO, SBI, SB2, SB3, and ST are Stress Matrix Packet

generated variables. One restriction applies in general to

all stress matrix cards: subscripted variables may not be

listed. If the second word of an array SIG is the only one

being passed, a suitable variable (SIG2, for example) can be

listed on the stress matrix card. SIG2 will then have to be

set to SIG(2) in Subpacket C.

Subpackets B and C

Subpackets B and C are similar to those in other packets.

The user may employ secondary variables to build these stress

matrix card variables. He has access to the global variables

and to the COMMON's MATIN, MATOUT, SDR2X5 (Table 3) and to the

other reserved variables made available in Table 4.

Special Subpacket A

There are certain circumstances which require that Special

Subpacket A be used (Section V discusses these circumstances).

This special subpacket consists only of an options card and a

card containing the string BLOCK DATA ONLY. None of the other

data cards in the Stress Matrix Packet, with the exception of

the BEGIN card and the optional END card, need be supplied

if the Special Subpacket A is used. If the Stress Matrix

Packet with Special Subpacket A is to be used, the example

Stress Matrix Packet of Figure 8 will be replaced by the

following four-card packet:

(1) BEGIN STRESS
(2) 2,35
(3) BLOCK DATA ONLY
(4) END STRESS (optional)

Cards (2) and (3) compose the Special Subpacket A.
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Stress-Matrix Packet Example and Discussion

In the example of Figure 8, the INFLAG option value is 2.

The second option value of 35 was derived as follows: First,

remember that the number of grid points has already been

established as 3 in Figure 3. The preprocessor sets

PHlOUT(2) = NGRID(l), PHlOUT(3) = NGRID(2), and PHIlOUT(4) =

NGRID(3), where NGRID(I) is the Ith grid point of the element

(Table 3). Secondly, add to this value of 3 the sum of the

dimensions of TSUBO, SBI, SB2, SB3, and ST (these dimensions

being IXI, 3X3, 3X3, 3X3, and 3XI) for a total of 34. Add

one more and the sum is 35. This final addition is due to the

fact that the processor places the element ID number in PHlOUT(l).

The stress matrix card indicates that TSUBO, SBI, SB2, SB3,

and ST are to be inserted into PHlOUT(5) through PHlOUT(35).

Note that the secondary variable ALPHV has not been loaded into

PHIOUT. All variables assume their definitions as supplied in

Subpackets B and C, as predefined by the preprocessor or as

supplied in the Global Variable Packet (for Cl, C2, and C3,

and for El in Figure 4). Scalar definitions for ALPHA1,

ALPHA2, and ALPHV are taken from COMMON MATOUT, since the

INFLAG value is 2.

After the Stress Matrix Packet has executed, the variables

on the stress matrix card are made available for use in the

Stress and Force Calculation routine generated. (PHIOUT is

passed from COMMON SDR2X5, which is available in the Stress

Matrix routine, to COMMON SDR2X7, which is available in the

Stress and Force Calculation routine (Table 3)).
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BEGIN STRLSS
2935

COMMENT 35 WOROS WILL 3E PASSED INTO THE STRESS AND FORCE
COMMENT CALCULATION PAGKET--THE 35 WORDS ARE
COMMENT L'LLJMzNT ID(1) ,GRID POINTS(3),TSUBO(I),SBi(3 X 3 =9)p
COMMENT S32(3 X 3 =9) SB3(3 X 3 =9) ,AND ST(3 X i =3)
TSUBOS31,•SB2 5t33,ST
SBi,3,39EDUA
SB2,3, 3, EQUA
S8393,33EQUA
ALPHV,3•, i•,:RM
ST ,3, •,EQUA
DEFINITIONS FINISHE:D
SBo
G*Ci*TR(Ei) *Ti

S82
G*C2*TR(E1) *T2
SB3
G*C3*TR(El) *T3
ALPHV
19iALPHA1
2,IALPHA2
3,tyALP12
ST
-G*ALPHV
END STR.L-SS

Figure 8 - Example of a Stress Matrix Packet

STRESS AND FORCE CALCULATION PACKET

This packet generates a FORTRAN subroutine for computing

element stresses and forces. The first card will contain the

string BEGINSTRESS AND FORCE, with blanks wherever convenient.

Subpacket A

Card 1

The first card in Subpacket A (the next data card) is the

options card which contains four fields. All four options will

be integer values. The first, the number of stress words to

be produced by the subroutine, must be less than or equal to 100.

The second, the number of force words to be passed by the

subroutine, must be less than or equal to 200. Neither of these
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two options has a default value. The third and fourth parameters

supplied will serve as pointers. The third points to the first

word of the complex stress output string, and the fourth points

to the first word of the complex force output string in the

NASTRAN variable COMPLX. Both have a 0 default value. At

the present time, only the 0 value may be specified for these

two variables, which means that the stress and force output for

the new elements must be expressed as real single-precision

numbers, and not as complex representations. The values for

the first two options are derived by adding 1 to the n number of

stress words output by the routine or force words output by the

routine. The addition of 1 is necessary to allow for the element

ID which is passed automatically. If no words are to be produced,

a 0 value will be inserted. The stress and force words will be

passed to NASTRAN according to user specifications supplied to

the Output Packet. The discussion of card 2 which follows will

explain what is meant by stress and force words.

The words output from the routine generated by this

packet will be printed according to specifications given by the

user in the Output Packet. The relationship between the Stress

Matrix, Stress and Force Calculation and Output Packets is

discussed following the Output Packet section.

Card 2

The second card of Subpacket A lists all user variables

(separated by commas) to be passed from the Stress and Force

Calculation subroutine. They will be produced in the order

in which they are listed on the card, except that the element ID

will automatically be inserted before the list of stress words

and again before the list of force words. However, the user must

not himself punch the element ID on the card. Thus the order

of the output will be: Element ID, stress words; Element ID,

force words. Any secondary variable used to build these variables

need not be listed on this card. No subscripted variables may

be included on the list.
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The variables on this card are interpreted as stress or

force variables according to the first and second options

described in the preceding page. If the first option is a

non-zero integer N and the second option is a non-zero integer

M, then the first N-i words contained on the second card of

Subpacket A are assumed to be stress words and are placed in

one NASTRAN array. The last M-1 words are assumed to be force

words which are placed in another NASTRAN array. The first

word of each of the above NASTRAN arrays is reserved for the

element ID. If either option is 0, all the variables on the

card will be assumed to be either stress variables or force

variables, as indicated by the non-zero option. Of course,

if both options are zero, there is no need for this packet at

all.

Subpackets B and C

Subpackets B and C are punched as in the other packets to

define the variables listed on the second card of Subpacket A.

The variables listed on the stress matrix card (second

Subpacket-A card) of the Stress Matrix Packet as well as the

reserved variables (Table 4) are available to the user. The

COMMON's used by the routine generated from this packet are

SDR2XX, SDR2X4, and SDR2X8 (Table 3).

Stress and Force Calculation Packet Example and Discussion

In the example of Figure 9, the first option value 8

implies that seven stress words are to be passed. The eighth
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BEGIN STRESS AND FORCE
8 P0, 0, 0
COMMENT 8 STRESS WORDS WILL BE OUTPUT -- THESE ARE
COMMENT ELE.MENT ID (i) ,SIG(3 X I =3)pTHETAQi) SIGPi(i) ,

COMMENT S IGP2 (1),oAND TAU (i)
SIGINSERT ATHr.TAqINSERT BSIGPiSIGP2,TAU
SIG, I,3,EQUA
SAVq1iqiOEFL.R
TAU, , TERM.
SIGP1,, ,TERM
SIGP2, ,,TERM
THETA,1, 1. TERM
DEFINITIONS FINISHED
SIG
COMMENT HERE~ DISPJ IS THE 3 X 1 TRANSLATION VECTOR FOR GRID POINT J
COMMENT TEMP IS ELEMENT TEMPERATURE
SBiODISPi+SB2*015P2*583#015P3+ST# (T'i-MP-TSUB0)
TAU
, ,SQRT(C(SAV (1,1)/2.)**2+

SIGPi
1,1, (SIGh,1i) SIGC1,2) )/2..TAU (1,1)
SI GP2
liti(SIG(1,1)4SIG(1,2))/2.-TAU(1,1)
INSERT A

SAV(1,1)=SIG(1,1)-SIG(2,1)
IF(A;3S(SAV(Ii,)) .LT.I.E-15.AND.ABS(2.*SIG(3,1)).LT.i.E-15)GO TO 90

100
IF(A3S(SAV(1,i)).LT.t.E-15)GD TO 9100

DEFINITIONS FINISHED
THETA

INSERT B
GO TO 9200

9000 THETA(1,i)=09
GO TO 9200

9100 THETA(1,1)=45.
9200 CONTINUE
DEFINITIONS FINISHED
END STRESS AND FORCE

Figure 9 - Examples of a Stress and Force Calculation Packet
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word (the first to be passed) is the element ID. The 0 value

for the second option indicates that no force words are to be

passed, and all of the variables listed on the next card are

stress variables. There is a 0 value for both the third and

fourth options, as is presently required. The next non-COMMENT data

card ihdidates the seven stress words to be output which are

SIG(1), SIG(2), SIG(3), THETA, SIGPI, SIGP2, and TAU. These,

together with the element ID, account for the eight words

indicated. Notice the INSERT variable names after SIG and THETA

which indicate that user-supplied FORTRAN coding is to be

added after SIG and THETA are generated. These INSERT variable

names are not to be included in the count as force or stress

variables.

Subpackets B and C in this example are specified in the

usual manner. Note that the variables TSUBO, SBI, SB2, SB3, and

ST are available for use even though they are not redefined here,

since they have been passed from the Stress Matrix Packet

example discussed in the previous packet description (Figure 8).

Note also the use of the reserved variables DISPI, DISP2, and

DISP3 (Table 4), the displacement vectors for the first, second,

and third grid points of the element, respectively. Each of

the vectors DISP1, DISP2, and DISP3 may have the following

interpretation: If the degrees of freedom (supplied in the

Preliminary Data Packet) are some combination of 1, 2, and 3,

the numbers supplied are three translations. If some combination

of 4, 5, and 6, the numbers supplied are three notations. If

some combination of both of these sets of integers, the numbers

supplied imply all six displacements, three translations plus

three rotations. The variable TEMP is a COMMON variable in

COMMON SDR2X4 (Table 3). A third point to be noted is that the

arguments of the ATAN function are tested using user-supplied,

not preprocessor generated coding.
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Special Subpacket A

Just as in the Stress Matrix Packet, use of the Special

Subpacket A may sometimes be indicated. If so, the example in

Figure 9 would become:

(l) BEGIN STRESS AND FORCE

(2) 8, 0, 0, 0

(3) BLOCK DATA ONLY

(4) END STRESS AND FORCE (Optional)

For discussion of the precise circumstances which prompt the

use of this special subpacket, see Section V.

OUTPUT PACKET

The Output Packet generates a BLOCK DATA FORTRAN subprogram

which produces updates to various NASTRAN tables containing

NASTRAN FORTRAN format statements. Its use complements the

Stress Matrix Packet and the Stress and Force Calculation

Packet in that it contains the headings and formats needed to

label and print the results of the stresses and forces calculated

by NASTRAN. Therefore, if stresses and/or forces are to be

calculated and printed, all three of these packets-the Stress

Matrix, the Stress and Force Calculation, and the Output

Packet-must be submitted. If stresses and forces are not to be

calculated for a new element, these three packets are unnecessary.

The NASTRAN Output File Processor functional module-and

therefore the Preprocessor Output Packet-is rather complicated.

The logical cards needed by this packet are listed below, with

numbers assigned to facilitate discussion of the various cards

in the pages that follow.

(1) BEGIN OUTPUT

(2) STRESS or FORCE card

(3) Options card

(4) Card containing six integers, five of which are
heading formats
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(5) Sequence of integers ending with a 0, all but

the last are format pieces

(6) A format number Card (4)
n heading Repeated for

(7) FORTRAN format for a new heach new heading

7format

(8) Integer from Card (5) Repeated for each integer
on Card (5) that represents

(9) New format piece a new format piece

Optional Logical Cards:

(10) STRESS or FORCE card (whichever was not
submitted in Card (2))

(17) Repeat of type of information contained in
Cards (3) through (9) above if Card (10)
is punched

(18) DEFINITIONS FINISHED

Discussion of the Cards

Card 2

The information in Card (2), which follows the BEGIN OUTPUT

card, will be either the word STRESS or the word FORCE. This

information will indicate which type of specification output is

to be printed by NASTRAN; stresses or forces. There is no

default value for (2).

Card 3

The options card (3) contains three parameters: the first,

may be either the keyword SORTI or SORT2; the second, the key-

word REAL or COMPLEX; the third (to be used only if COMPLEX has

been specified as the second parameter), the keyword MAGNITUDE/

PHASE or REAL/IMAG. The user indicates use of the defaults by

coding two consecutive commas on the card or by inserting a

blank card. For example, a card with

SORTI, COMPLEX,
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will have a default value for the third parameter of REAL/IMAG.

However, since the preprocessor does not allow complex stress

or force output at the present time, default values for the

second and third parameters on this card should be used.

The difference between SORT1 and SORT2 output is noted

here. SORT2 output is available only for Transient-Response
and Frequency-Response NASTRAN problems. In the SORT2 mode,

the output is arranged so that results are printed according to
point ID; the results are printed at every selected time

step (TSTEP bulk data card) for a point ID. In the SORT1 mode,

the reverse is true; for each time step, the results are
printed for every point ID. As an example of SORT1 and SORT2

3use, refer to the NASTRAN Programmer's Manual, p.4 62-1. The
permanent elements already existing in NASTRAN are presently set

up for both SORT1 and SORT2 Output; formats exist for printing

results from all rigid formats. However, the preprocessor

prevents its new elements from containing SORTI and SORT2

formats simultaneously. This means that if the SORT1 formats are

to be introduced into NASTRAN for the new elements via the

preprocessor, some change will have to be made before running

a Transient-Analysis or a Frequency-Response problem which

selects SORT2 formats. Actually, under the present rigid

NASTRAN formats, only SORT2 output is available for the

Transient-Response problem.

Two relatively simple solutions to this dilemma are possible.

One solution is to perform a preprocessor run with one set of
formats, e.g., SORT1, and to then submit a subsequent preprocessor

run to provide optional SORT2 formats. The data for this second

preprocessor run would consist only of the Preliminary Data

Packet and the Output Packet, the input being made up of the set

of SORT2 formats. If SORT2 formats later prove desirable, the

formats could then be linked into NASTRAN.
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The second solution is to provide SORTI formats only.

If these formats have been linked into NASTRAN and a Transient

Response analysis is desired, the user places the following

DMAP alter statements in the NASTRAN Level 12.0 or Level 15.0

Executive Control deck:

ALTER 128, 130

CHKPNT OPPI, OQPl, OUPV1, OES1, OEFl$

OFP OPPl, OQPl, OUPV1, OEFl, OESl, //V, N

CARDNO$

ALTER 136

SDR3, OPPl, OQPl, OUPV1, OESl, OEFl, /OPP2,
OQP2, OUPV2, OES2, OEF2, $

CHKPNT OPP2, OQP2, OUPV2, OES2, OEF2 $

ENDALTER

These DMAP changes will cause NASTRAN to print results

(stresses and forces) in SORTI format, but will make the changes

required to perform any X-Y plotting.

Card 4

This card will contain six integers, each separated from

the other by a comma. The first is a pointer to the NASTRAN

FORTRAN array OFP1BD, its value ranging from 1141 to 1400, with

a default of 1141. It determines where the five headings will

be stored in NASTRAN's storage scheme. There is one restriction

to this integer which is noted a little later in the discussion

of (5). The next five integers affect NASTRAN print procedures.

A value of 0, -1, or an integer in the range 217 and 336 may

be used. Five values must be supplied. If fewer than five

format headings are to be supplied, the user must fill the

remaining integer spaces with -l's. The -1 value is merely a

filler value, used to comply with the five-integer requirement

and does not affect the NASTRAN output. A 0 value produces a

blank line of output during a NASTRAN run. The integers 217

through 336 indicate output-heading FORTRAN format statement
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numbers. The order in which the numbers are listed on the data

card is the order in which NASTRAN will print the lines defined

for those statement numbers. Consider, for example, a card

containing the string 1141, 218, 0, -1, 240, 220. The card

will be interpreted in the following way. The pointer has a

value of 1141. The user will specify in subsequent cards of

the Output Packet complete FORTRAN formats for FORMAT statements

218, 240, and 220. NASTRAN will print the contents of FORMAT

statement 218, follow with a blank line (as a consequence of

the 0), and then print the contents of FORMAT statements 240

and 220, in just that order. The -l value will not have any

affect, and merely fulfills the requirement that five integers

be supplied on the card.

Card 5

Card (5) contains a sequence of integers which direct the

selection of NASTRAN format pieces. Each "piece" defines a

segment of a line of computer output. Table 8 lists the format

pieces defined by NASTRAN which are available to the user. These

format pieces, when strung together, produce the computer-listing

FORTRAN format for printing stresses or forces. The first

integer is a four-digit packed number (for example, 0101,

which is the same as 101) in which the two right-hand digits

control the number of output lines to be produced by the data

record (a data record being defined as the force or stress data

for one element), and the two left-hand digits control the number

of data records contained per line of output. Therefore, at

the user's option, NASTRAN will print stresses and forces for

more than one element on the same line of NASTRAN output. If

the two left-hand digits are both 0's, each line of the NASTRAN

output will contain at most one data record. As an example of

how this first integer will be interpreted, assume that the

integer is either 101 or 1. The data for a single element will

then be printed one data record per line. If data for the

elements are to be processed two data records per line, the
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number would be 201. If one data record were to produce two

lines of output, the integer would be 2 or 102. There is no

default value for this integer.

The sequence of integers which follows this packed four-

digit integer may be continued onto subsequent cards by using the

preprocessor's dollar-sign convention. The last integer of the

sequence must be a 0, which acts as a terminator. When added

to the first integer of (5), the number of coded integers

(including the 0 value), must be less than 1401. This sum is

the restriction mentioned earlier in the description of Card

(4). Also, the number of integers specified must be less than

or equal to 45.

The interpretation of these integers is as follows. None

but the last integer of the sequence may have a 0 value. All

the others must lie within one of the following two closed

intervals: [-40, -11 or [1, 100]. NASTRAN's COMMON block

OFP5BD contains two arrays, ESINGL and E. If I, the integer,

has a value less than 0, NASTRAN will reference ESINGL(-I); a

positive I value will cause NASTRAN to reference E(5"I-4)

through E(5*I).

Since a format piece for I in the closed interval [-40, -32]

is not defined in Table 8, a new format for the entry in

ESINGL must be defined for that value of I. Most existing

ESINGL formats are either FORTRAN X or H formats. In any case,

an ESINGL format piece should contain no more than four

characters. I in the interval [29, 39] implies that E(5'I-4),

E(5"I-3), E(5"-2), E(5*I-l), and E(5*I) must be defined. These

five words can be divided into two groups: the first to be made

up of E(5*I-4) and E(5"I-3); and the second to be made up of

E(5*I-2), E(5*I-I), and E(5*I). The first group is termed

the standard format; the second group is called the alternate

format. The standard format comprises a single E or F format

piece which NASTRAN uses to print non-zero terms. NASTRAN uses

the alternate format if the value to be printed is exactly zero.
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If I is the interval [74, 100], then E(5*I-4) and

E(5*I-3) may contain the X, I, or A FORTRAN format specifications.

Cards 6 through 9

The user next defines on Cards (6) through (9) all the

full formats and format pieces left undefined by the preprocessor.

Each of the five integers following the pointer on (4) must have

a full FORTRAN format associated with it. The user must

supply a format for those integers greater than 217 and less

than 336. An integer value of 0 produces a blank line. A value

of -1 defaults to no format. Each format supplied must be

less than 134 characters, or one line of computer output. The

five integers mean that five output lines at most, are available

for each new NASTRAN output heading. The output headings for

the 12 new preprocessor elements--as many as ten per element

format, five for stress and five for forces-equals 120 new

formats in all. These 120 new formats may not exceed 2000

characters.

The preprocessor ensures that any of the five integers

which is greater than zero will find a format match. It does

so in the following manner. First, the user codes a format

number on (6). It must match one of the five integers on (4)

or an error will appear in the preprocessor output, and all

further FORTRAN code generation for the Output Packet will halt.

The actual format is punched on (7) and may spill over onto

additional cards as needed by using the dollar-sign convention.

A left parenthesis must be the first character of the format,

and a right parenthesis must be the last. If either parenthesis

is missing, the preprocessor generates an error; and subsequent

coding stops. This algorithm retains control until all five

integers are defined. Each format should produce one line of

NASTRAN output.
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The user now defines the format pieces indicated by the

sequence of integers (5). If the integer I is in one of the

closed intervals [-40, -32], [29, 39], or [74, 100], then

specification for the format piece is necessary. Otherwise,

the format piece will be assumed in accordance with the listing

in Table 8.

The I value is punched on (8). This integer must match

one of the integers of the sequence of integers on (5). The

preprocessor generates an error message if no match occurs.

For I in the interval [-40, -32], the user codes on the

subsequent card (9) a four-character format. For I in the

interval [74, 100], he punches a string of characters, eight

at most. The contents of (9) are the format. The last

character specified must be a part of the format and not a

trailing comma, since NASTRAN automatically places a comma

after the eight-character string specified.

If I is the interval [29, 39], the form of the format

piece will be slightly different. The user first specifies

one E or F FORTRAN format of at most eight characters as the

standard format. He then codes a comma and follows it with a

character string of up to 12 characters which will be the

alternate format. The last character of the string may not be

a comma, since NASTRAN automatically inserts a comma after two

twelveth character.

The user must code the paired cards (8) and (9) until

each previously undefined integer I on (5) has been assigned

an associated format piece. Moreover, the order in which the

format pieces are defined must correspond to that in which the

I values were previously specified on (5).

Cards 10 through 18

If the second card of the Output Data Packet contains the

word STRESS, the user may now code the word FORCE on the

Card (10) and follow it with a succession of cards such as
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those just described for the headings and formats of the stress

output. Thus, the Output Packet may consist of two subpackets,

each of an identical form: one subpacket, with the word

STRESS on the first card, to update NASTRAN formats with respect

to the printout of stress values. The other, with the word

FORCE on the first card, updates NASTRAN formats with respect

to the printout of force values.

Output-Packet Example and Discussion

aEGIN OUTPUT
STRESS

COMMENT W.- ARE DEFINING FORMATS FOR SORTiREAL OUTPUT
COMMENT NEW HEADING FORMATS ARE 2401220,AND 225
1150,P240 P 0 9220 ,-1 ,225
COMMENT THE FOLLOWING ARE THE I VALUES FOR THE FORMAT PIECES
19 749-49 30,v-33 939,- t30,v-339,30,9-4 v39y-33 t39• $

-3,3,30,0
COMMENT WE WILL NOW SP'.CIFY THE NEW FORMAT HEADINGS
240
(40X95iHE L E M E N T S T R E S S L S F 0 R L L E M 4 0 )
220
( iX 7HELEMENT)
225
(3X,3HIDe99XgbHsIG(1) t10X,6HSIG(2) piOX 6HSIG(3) 91iXvHTHETAf$
iiX,5HSIGPiElIX95HSIGP2912X,3HTAU)
COMMENT WE WILL NOW SPECIFY THE NEW FORMAT PIECES
74
1Xq17
30
iPEIlo *, OPF8, I ,3X
-33
5X
39
iPEIi.E,9 OPF8. 1 ,3X
DEFINITIONS FINISHED
COMMENT ACCORDING TO THE STRESS AND FORCE CALCULATION PACKET
COMMENT 8 VALUES WILL BE OUTPUT, THE FIRST BEING THE ELEMNT ID ---
COMMENT COMBINING THE SPECIFIED FORMAT PIECES9ADDING IN THE APPROP'RIATE
COMMENT COMMASAND THE BEGINNING AND ENDING PARENTHESES(WHICH NAST.AN
COMMENT DOES) WE GET
COMMENT (IX,17,5X9iPEii.4,5X, ,ii.5X 1P•- .4+5X iPE11.4 5X •PEii.4,
COMMENT 5X,1PEIi.4,5XiPEli,4)
END OUTPUT

Figure 10 - Example of an Output Packet
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Since the word STRESS is coded on the second card of the

example packet, the following data is interpreted with respect

to stress values. The third data card, the options card, is

blank, so SORT1 and REAL are the parameters selected by the

preprocessor. The fourth data card indicates that the pointer

into the NASTRAN COMMON block OFPIBD is to be 1150; the new

format headings 240, 220, and 225 are to be defined. During

NASTRAN execution, Format 240 will be printed first, followed

by a blank line. The formats 220 and 225 will be printed next.

The -1 value is included on the card only to fulfill the five-

integer requirement and does not indicate any action to be taken.

The sequence of integers ending with a value of 0 is

supplied on (5). Note the use of the dollar-sign convention to

indicate continuation onto a subsequent card. Through inter-

pretation of the first integer-the packed value-the preprocessor

knows that one line of output is to be produced per data record.

The integer format heading numbers other than 0 or -1 are

defined on (6) through (12). Formats 240, 220, and 225 are

therefore coded in paired cards. Note that in each case, the

first character is a left parenthesis and the last character

is a right parenthesis.

All undefined integers in the sequence on (5) are now

defined. As Table 8 indicates, the -4 value produces a format

piece of 5X. The integers 74, 30, -33, and 39 produce the

following four pieces respectively: 1X, 17; IPEII.4, OPF8.1,

3X; 5X; and lPEII.4, OPFS.I, 3X. Stress output is printed

following Format 225 in the following format:

lX, 17, 5X, IPElI.4, 5X, lPElI.4, 5X, lPEI1.4,

5X, lPEII.4, 5X, IPElI.4, 5X, IPEII.4, 5X, IPEIl.4

Therefore, seven element stresses will be printed on each NASTRAN

output line. Note that the format pieces are specified in an

order that corresponds to that in which the I values were

specified on (5). Since there is no card containing the word

FORCE supplied in the packet following the format piece

definitions, no output subpacket for force values is included.

Coding of the packet is ended, and the card containing the

string DEFINITIONS FINISHED verifies that fact.
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TABLE 8 - NASTRAN FORMAT PIECES AVAILABLE

Value of I Format

Standard Alternate

-1 / None

-2 15X

-3 loX
-4 5X

-5 IX

-6 /IOX

-7 16X

-8 2H1

-9 2H2

-10 2H3

-11 2H4

-12 2H5

-13 7X

-14 /16X

-15 /13X

-16 4X

-17 /14X

-18 liX

-19 /24X

-20 IHO

-21 2H/

-22 2HEN

-23 2HDA

-24 2HDB

-25 /IHO
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TABLE 8 - NASTRAN FORMAT PIECES AVAILABLE-Continued

Value of I Format

Standard Alternate

-26 23X None

-27 /26X

-28 /9x

-29 /12X

-30 /lH

-31 /20X

1 1PEl5.6 OPF6.l, 9X

2 1PEl6.6 OPF7.l, 9X

3 1PEl7.6 OPF8.l, 9X

'4 1PE18.6 OPF9.l, 9X

5 1PE19.6 OPFlO.l, 9X

6 1PE20.6 OPFll.l, 9X

7 1PE21.6 OPFl2.l, 9X

8 1PE30.6 OPF2l.l, 9X

9 1PE26.0 OPFl7.l, 9X

10 1PE2'4.6 OPFlS.l, 9X

11 OPF11.4 OPF8.l, 3X

12 OPFl'4.'4 OPFll.l, 3X

13 1PE28.6 OPFl9.l, 9X

141PE37.6 0PF28.l, 9X

15 1PE22.6 OPFl3.l, 9X

16 1PElLI.6 OPF5.l, 9X

17 OPF15.'4 OPF2l.1-, 3X

18 OPF9.'4 OPF6.l, 3X

19 OPFl5.'4 OPFl2.l, 3X
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TABLE 8 - NASTRAN FORMAT PIECES AVAILABLE--Continued

Value of I Format

Standard Alternate

20 1PE23.6 OPF14.l, 9X

21 1PE35.6 OPF26.1, 9X

22 1PE25.6 OPF16.1, 9X

23 1PE50.6 OPF41.1, 9X

24 OPF46.4 OPF43.1, 3X

25 OPF15.4 OPFl2.1, 3X

26 OPF20.4 OPFI7.1, 3X

27 OPFl6.4 OPF13.1, 3X

28 0PF22.4 OPF19.19, 3X

40 IPE9.1 Al, 8X

41 6X,A1,3X 17, 3X

42 115 None

43 I9, iX

44 IHO, 18

45 1X, 113

46 Ix, 18

47 IHO, 17

48 6X, 18

49 IX, I15

50 IX, 112

51 110

52 17, iX

53 3X, A4

54 IHO, 113

55 1X, 120

56 5X,AI,3X
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TABLE 8 - NASTRAN FORMAT PIECES AVAILABLE-Concluded

Value of I Format

Standard Alternate

57 IX,I22 None

58 112

59 iX, 119

60 Blank

61 18 A4, 4X

62 19 A4, 5X

63 Ill A4, 7X

64 120 A4, 16X

65 119 A4, 15X

66 1X, 123 None

67 123

68 128

69 /1H, 118

70 IHO, 115

71 IHO, 114

72 0PF22.4 19, 13X

73 OPFI6.4 15, 11X
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Discussion of the Interrelationships Among Stress Matrix, and
Force Calculation, and Output Packets

These next remarks apply in general to the ecamples

provided in Figures 8,9, and 10. Figure 10 is the packet

that will ultimately print the results of input packets of

Figures 8 and 9. They show how the Stress Matrix, the Stress

and Force Calculation, and the Output Packets are interrelated.

Eight is the number of stress words to be produced, as

indicated on the options card of the Stress and Force Calculation

Packet. The sequence of integers on (5) in the Output Packet

must specify a format which will correctly present these stress

words to the user via NASTRAN output. For example, in Figure 9

a total of eight stress words are indicated to be produced, the

first being the element ID and the other seven being the stress

values. As we have already noted, these values will be printed

according to the format specified in (5) as follows:

lX, 18, 5X, IPElI.4, 5X, 1PElI.4, 5X, IPE1I.4, 5X,

IPEII.4, 5X, IPElI.4, 5X, IPElI.4, 5X, IPElI.4

We can see the element ID will be printed in the 17 format, and

that the other seven stress words will be printed in the IPEII.4

format. Note that in this example, the value indicating the

number of force words to be produced is 0; consequently a

FORCE card and others to specify FORCE formats are not included.

Using the generated subroutines and BLOCK DATA subprograms

generated by Figures 8, 9, and 10, if SORT1 is to be specified

in the NASTRAN case control deck and if Transient Response or

Frequency Response analyses are not to be run, stress output

will consist only of the element ID followed by the specified

seven stress words. If a Transient Response analysis is to

be run, the output will consist of the time, the element ID,

and the seven stress words indicated. In this case, time is

an output word. However, since the time is automatically noted

by NASTRAN, the user may specify his input (in both the Stress

and Force Calculation Packet and the Output Packet) as though time

were not an output word. NASTRAN sets up the format for

printing the time.
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If SORT2 is to be specified in the NASTRAN case control

deck, the output will be the element ID, the time, and the

stress words indicated. In this case again the user specified

his input in the Stress and Force Calculation Packet as though

time were not an output word. However, provision must be made

in the Output Packet for noting the time as has been done in

Figure 10, for example, in which the fourth input card specifies

six integers. The second integer (240) is the first output

heading format. If SORT2 is to be specified, then the first

output heading format integer should be 108, which will cause

the element ID to be labeled and printed. The heading TIME

should be specified next, instead of specifying a heading for

the element ID, as in Figure 10. Finally, the actual format
piece corresponding to the time should be an E or F format,

rather than the integer format (17) for the element ID supplied

in Figure 10. The DEFINITIONS FINISHED card indicates the end

of the Output Packet.

The complexity of the Output Packet reflects the complexity

of NASTRAN's Output File Processor. If the user prefers, he may,

through a user-supplied insertion subpacket in the Stress and

Force Calculation Packet, generate a printout of his results

directly via FORTRAN statements in lieu of using the Output Packet.

Although unorthodox, this approach saves the user's time. In any

case, the number of output words must always be included on the

options card of the Stress and Force Calculation Packet.

DIFFERENTIAL STIFFNESS PACKET

The setup of the Differential Packet is identical to that

of the Stiffness Matrix Packet. The user should change all

references to K and KIJ to D and DIJ, respectively. The

variables Kll, K12, ... , become Dll, D12, ..... The COMMON's

used by the routine generated by this packet are MATIN, MATOUT,

DSIET, DSIAAA, and DS1ADP, which are listed in Table 3. Table 4

lists the other reserved variables available.

98



IV. OPERATING INFORMATION

COMPUTER SYSTEM CONTROL CARDS

For the CDC-6000 series computers, cards similar to the

following are needed to control the execution of the preprocessor:

ATTACH(PREP, PREPROCESSOR)

RFL, 250000.

NOREDUCE.

SNOBOL(PREP,,PUN,INPUT)

7/8/9

input data 6/7/8/9

where PREP is the logical file name for the preprocessor
source coding

PREPROCESSOR is the permanent file name under which the
preprocessor is catalogued

PUN is the file containing preprocessor-
generated subroutines and BLOCK Data
subprograms

SNOBOL invokes the system SNOBOL interpreter

INPUT is the file containing the user input data

On the SNOBOL card, the preprocessor name PREP indicates the

SNOBOL program to be compiled by the SNOBOL compiler, and INPUT

is the name of the standard input file containing the input

data. The preprocessor is written in the SNOBOL computer

language, Version 3. At present, the preprocessor requires an

approximate minimum of 2500008 words of central memory, although

less core can be provided at the user's discretion at a cost of

longer running times. Output will be printed and/or punched

as the user options specify.
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NASTRAN CARD FORMAT FOR PREPROCESSOR-GENERATED STRUCTURAL
ELEMENTS

(The reader is assumed to be familiar with NASTRAN Bulk Data
cards in general and with element connection and property cards
in particular.)

The connection cards and,if necessary3the property card, for

a new element will have to be designed by the analyst before

the preprocessor may be used. The new bulk data cards may be

used in a NASTRAN run as soon as the preprocessor-generated

routines and tables have been inserted within NASTRAN.

Names designated for the new connection and property cards

must correspond to the name of the element to be generated.

Thus, for ELEM39, the connection card name would have to be

CELEM39, and the property card name would have to be PELEM39.

For the other elements ELEMj, the connection and property

card names would be CELEMj and PELEMj, respectively, with j = 40,

41,..., 50. These names are referred to as connection card and

property card mnemonics.

When both a connection card and a property card will be

needed, the following format must be used:

1 2 3 4 5 6 7 8 9 10

CELEM39 T EID PID G1 G2 --- GN CVI etc. etc.

PELEM39 7 PID MID PVl PV2 -. .. etc.

If only a connection card is needed, a different format must be

followed:

CELEM39 T EID I l G2 --- N CVI etc.' MID
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In these format descriptions, the integers 1 through 10 refer

to the different data fields of the bulk data card. The symbols

have the following meanings:

EID Element identification number

PID Identification number of a PELEM39 property
card

Gl,G2,---GN Grid point numbers to which this element
connects. N is the number of grid points
for this element.

CVl,...,etc. Connection card variables as specified in
the Preliminary Data Packet.

MID Identification number of a material property
card.

PVl,...,etc. Property card variables as specified in the
Preliminary Data Packet.

Note the following:

* As with element identification numbers for present

NASTRAN elements; EID is arbitrary, but must be unique with

respect to all other elements in the problem.

* The PID on the CELEM39 connection card refers to the

PID on the corresponding property card.

0 The MID on the connection or property card refers to a

NASTRAN material bulk data card identification number.
9

* A logical connection or property card may be made up

of a number of 10-field cards. However, at the present time this

number must be fixed; no open-ended cards are allowed. This

number is determined by data supplied to the Preliminary Data

Packet. Also, the total number of data items on the connection

and property cards combined must not be greater than 97-5N, with

N being the number of grid points for the new dummy element.

• If no property card exists, the material identification

number must be the last variable on the logical connection card.

* The connection card variables CVl,..., etc., and the

property card variables must, for now, be real, single-precision

numbers.
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* The preprocessor requires that a variable corresponding

to an anisotropic material angle be given on the connection

card, even though the value of this variable may be zero for

every use of the element. The preprocessor will assume that this

angle (in degrees) will be the last connection card variable if

a property card exists, or the next-to-the-last connection card

variable (immediately preceding MID) if no property card exists.

This variable must be given and must be included as one of

the connection card data items given in the Preliminary Data

Packet as specified on page 58.

LINKAGE

NASTRAN consists of 15 separate programs or links, one of

which may be termed the super-link. One of the duties of this

superlink is to supervise the movements of the other 14 links

into and out of central memory. At least four links need to be

updated when a new element is to be added. If the analyst makes

full use of the preprocessor, six links will require updating.

Those individuals wanting to use CDC equipment will want to

obtain the Naval Ship Research and Development Center report4

which describes a linkage-editor that is an extension of the

standard NASTRAN CDC linkage editor.

Before a new element may be used, the preprocessor-

generated routines and tables must be inserted into NASTRAN. At
present, the updating (re-link-editing) of the appropriate

NASTRAN links must be performed by the user in a separate
computer run after the new routines and tables needed have been
generated by the preprocessor. At some future time, this step
may be incorporated as an automatic function of the preprocessor.

After this link-editing run is complete, the analyst may use

his new element with NASTRAN. In all, three computer runs must

4 Martin, Roger, "A General Purpose Overlay Loader for CDC-6000
Series Computers; Modification of the NASTRAN Linkage Editor,"
Naval Ship Research & Development Center Report 4062 (Apr 73).
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be made before the results with a new element may be obtained:

a preprocessor run, a link-editing run, and a NASTRAN run.

The following paragraphs discuss the re-link-editing of

the NASTRAN links on the CDC 6000-series computers, and explain

just what must be link-edited. Six files are required in the

re-link-editing process:

1. A file of the object decks of the preprocessor-
generated routines and tables.

2. A file containing the NSRDC-modified CDC linkage
editor.

3. A file containing all the object decks in the links
being updated.

4. A file of the overlay structure of the links being
updated.

5. A file containing NASTRAN in executable form.

6. A file named LINKLIB which contains the CDC system
library routines.

The Level 12 NASTRAN file (5) indicated is not the standard

release version, but one that contains updates to handle the

new elements. Those wishing to use the preprocessor under

Level 15's dummy element facilities may use the standard

release issued by NASA. Files (1) through (5) for Level 12

may be obtained from the Navy NASTRAN Systems Office (NNSO,

Code 1844) of the Computation and Mathematics Department, NSRDC.

A Sample Link-Edit Run Deck:

The cards in the following example have been numbered to

facilitate discussion.

(1) ATTACH (NEW, SOURCEDECKS)

(2) RUN (S,,,NEW,,NEWOBJ,,,1)

(3) REWIND(NEWOBJ)

(4) ATTACH(LINKEDT, LINKAGE)

(5) ATTACH(LINKLIB, LIBRARY)

(6) ATTACH(NASTRAN, UPDATED)

(7) ATTACH(NASTOBJ, DECKS)
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(8) NOREDUCE.

(9) LINKEDT.

(10) EXTEND,NASTRAN.

(11) 7/8/9

(12) LINKEDIT INFILE=NASTRAN(C), OUTFILE=NASTRAN(C)

(13) LIBRARY NEWOBJ, NASTOBJ

overlay cards for all links to be updated

6/7/8/9

Card (1) attaches to the job the file containing the output

of the preprocessor-the source decks of the new routines and

tables. Card (1) may be omitted if the new source decks are

in card form, in which case the string NEW in Card (2) would be

changed to INPUT. Card (2) invokes the FORTRAN RUN compiler.

(NASTRAN is written in RUN FORTRAN. However, the RUN compiler

needed is a special one. The necessary updates to the standard

RUN compiler are received from COSMIC from which the CDC

version of NASTRAN is ordered.) The user may also obtain

NASTRAN Level 15 compiled under the FORTRAN EXTENDED compiler

from NNSO of the Computation and Mathematics Department. The

extended linkage-editor mentioned as Reference 4 may be used.

The input to the compiler consists of the new source decks.

The new object decks are written on file NEWOBJ. Card (3)

rewinds this object file. The file containing the CDC linkage

editor is attached by Card (4). Cards (5) and (6) attach the

LINKLIB library and NASTRAN, respectively. Card (7) attaches

all the NASTRAN object decks. Although only the file containing

the object decks for the links being re-link-edited is required,

there is no penalty for attaching all the object decks. Card

(8) specifies that the central memory size is not to be reduced

after the linkage editor is loaded. Card (9) loads and executes

the linkage editor. Card (10) signifies that the changes to

NASTRAN are to be permanent. Card (11) indicates the end of the

control card record. Cards (12), (13), etc., are the input to

the linkage editor. Other options are available on the LINKEDIT

card. These options are discussed in the NASTRAN Programmer's
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Manual, Section 5.5. Card (9) could be replaced by

LINKEDT(OVERL)

in which OVERL is a file of the source cards (12), (13), etc.

The original NASTRAN file, attached with Card (6), and

the overlay cards for the links that pertain to the preprocessor

must be obtained from NNSO (Level 12).

When this link-edit run has been successfully completed,

the new element will have been fully implemented into NASTRAN.

The new structural element may now be used in a NASTRAN analysis

run.

NASTRAN OVERLAY

This section will discuss which new routines and tables fit

into which link, when a link must be updated, and how to update

NASTRAN when previous updates have already been made.

The NASTRAN links 1, 2, 3, 5, 13, and 14 may be updated.

Table 9 lists the various routines and tables and the links in

which each belongs. The functions of the various routines have

already been discussed in Section III.

TABLE 9 - LINKS CONTAINING THE GENERATED ROUTINES AND TABLES

Name of Routine or Link to Receive Routine or NAS-
NASTRAN COMMON Block TRAN COMMON Block Replacement

IFPCOM, IFSCOM 1
GPTCOM 2
EDSCOM 2
SMICOM 3
SM2COM 3
KLEMi 3
MLEMi 3
VLEMi 3
EDTCOM 5
Mi 5
SDRCOM 13
SELil 13
SELi2 13
DLEMi 13
DSAl 13
OFPCOM, HEDCOM 4,5,6,12,14
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Since a subroutine is generated only if the appropriate data

packet is used, no confusion exists as to whether or not a

subroutine need by linked into NASTRAN. With the exception

of OFPCOM, HEDCOM, and DSAl, all tables are updated each time

the preprocessor is executed. Table 10 indicates the circumstances

in which the NASTRAN COMMON Blocks must be link-edited into

NASTRAN.

TABLE 10 - LINK-EDITING THE NASTRAN COMMON BLOCKS

Block Name When Re-Link-Editing is Required

IFPCOM, IFSCOM Each time the preprocessor is run

GPTCOM Each time the preprocessor is run

EDSCOM If a new element is to be plotted

SMICOM After each preprocessor run, since a new
stiffness matrix routine is required.

SM2COM If a mass matrix and/or a viscous-damping
matrix routine for the new element to be
link-edited.

EDTCOM If a thermal-loading-vector routine for the
new element is to be link-edited, or if the
new element is to be used with other elements
which will have temperature loading.

SDRCOM After each preprocessor run, since output
of displacements, forces, and stresses
make use of this table.

OFPCOM, HEDCOM If the Output Packet has been used as
input to the preprocessor (which is only
true if stress and/or force output is
desired.

DSA1 If the Differential Stiffness Packet has
been used as input to the preprocessor.

From Tables 9 and 10 it may seem that Links 1, 2, 3, and

13 must be updated for every new element. When a new element

is to be added to NASTRAN via the preprocessor and a previously

added element is to remain, some manipulation of the table

updates becomes necessary.
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Almost every preprocessor-generated FORTRAN variable in

every generated table is initialized to 0, unless the user

specifies otherwise--the only exceptions being the two variables

IFRMTS and IFMT in table HEDCOM which are initialized to four

blanks per computer word (4Hbbbb) by the preprocessor execution.

This initialization includes those variables which pertain to

the 11 elements not defined in a preprocessor run.

For example, suppose that a version of NASTRAN contains

38 permanent elements, that Element 39 was added via the

preprocessor in an earlier run, and that Element 40 is to be

added without affecting Element 39. The tables for Element 39

and Element 40 must be hand-merged if these two elements are

to reside simultaneously in NASTRAN. When the routines for

Element 40 are link-edited into NASTRAN, the tables to be

link-edited should be the union of the tables for Element 39

and those for Element 40. The union of a zero and a non-zero

number is defined to be the non-zero number. This union must

be performed for every variable in every DATA statement in every

table and must include all new elements that the user wishes to

remain operable. For example, if Element 39, 40, and 43 are

all to be operable in the program, the following original

DATA statements for the variable NWDEST for the three elements

DATA NWDEST/19,11*0/
DATA NWDEST/0,22,10*0/
DATA NWDEST/4*0,21,7*0/

must be merged. The variable NWDEST is a dimensioned variable

with dimension 12. If Element 39 had already been added to

NASTRAN, the addition of ELEMENT 40 would require the DATA

statement

DATA NWDEST/19,22,10*0/

When Element 43 is to be link-edited, this DATA statement must

become

DATA NWDEST/19,22,0,0,21,7*0/
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This merging of tables for every variable in every DATA

statement for every table is not the formidable task it might

seem, since the number of variables is not large, and the same

DATA statement appears in several different tables.

The two exceptions in table HEDCOM mentioned earlier are

the variables IFRMTS and IFMT. Each element of both arrays is

initialized to four BCD blanks, i.e., 4Hbbbb, with b representing

the blank. The user need never alter IFMT, since it is not set

to other than its initial values by these tables and will thus

always appear to the user to be initialized. However, the

variable IFRMTS will change. This variable contains the

output headings as specified in the Output Packet. Since there

are a maximum of ten output headings per element (five for

stresses and five for forces), and since each output heading

is limited to 133 characters by computer hardware characteristics,

each element is allotted 333 words of IFRMTS (four characters

per word). Element 39 is allotted words 1-333; Element 40,

words 334-666; and so on. Therefore, after the preprocessor

run is made for Element 40 in this example, words 334-666 of

variable IFRMTS will, in general, be filled; words 1-333 and

words 667-3996 will be initialized to 4Hbbbb.

If the user wishes to add Element 40 to NASTRAN without

disturbing the previously added Element 39, he will have to

merge the DATA statements for variable IFRMTS (assuming of

course that Output Packets were specified for both elements).

This merger is affected by placing the DATA statements for

IFRMTS which were generated for Element 40, into the BLOCK DATA

subprogram for Element 39.

The foregoing discussion should enable a user to add a

new element into NASTRAN via the preprocessor without disturbing

any of the elements already added.
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V. OUTPUT CONSIDERATIONS

The output received from a preprocessor run will be a

series of FORTRAN subroutines and BLOCK DATA subprograms. The

output will be printed, punched, or written on an external

storage device, as the user options specify. The subroutines

and the output they produce are listed in the following table.

TABLE 11 - PREPROCESSOR-GENERATED SUBROUTINES

Subroutine Quantity Computed

KLEMi Element stiffness matrix
MLEMi Element mass matrix
VLEMi Element viscous damping matrix
Mi Element thermal loading vector
SELil Element stress matrix
SELi2 Element stresses and forces
DLEMi Element differential stiffness

matrix

Note: i = 39, 40,..., 50. KLEM39 is the
stiffness matrix routine for ELEM39.

As many as ten BLOCK DATA subprograms may be produced.

These subprograms contain the table updates which NASTRAN will

use to correctly compute results for the new elements. The

subprograms and the functional modules which contain them are

listed in the table that follows.
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TABLE 12 - PREPROCESSOR-GENERATED BLOCK DATA SUBPROGRAMS

Named Functional Module Which
COMMON Employs the Named COMMON

IGPCOM, IFSCOM Input File Processor
GPTCOM Geometry Processor
EDSCOM Plot Set Definition Processor
SMICOM Structural Matrix Assembler,

Phase 1
SM2COM Structural Matrix Assembler,

Phase 2
EDTCOM Static Solution Generator,

Phase 2
OFPCOM, HEDCOM Output File Processor
DSAl Differential Stiffness Matrix

Generator, Phase 1

ERROR-HANDLING

If a preprocessor run produces no error messages, the

user should make an attempt to compile the new subroutines and

BLOCK DATA subprograms to make sure that he has not coded

"illegal" FORTRAN. If the output compiles correctly, the decks-

are ready to be linked into NASTRAN.

When a user looks at his generated routines he may find

that the dimensions of variables have been reversed, or that

calls have been made to unknown subroutines, or that there are

some inefficiencies or other seeming peculiarities in the coding.

Since the preprocessor only partially checks the FORTRAN coding

in term-by-term definitions, it is conceivable, although not

likely, that the preprocessor might code incorrect FORTRAN.

Some of these situations may be caused by NASTRAN-imposed

restrictions; others may be caused by intentional preprocessor

shortcuts designed to save computing time. The obvious

inefficiencies may be corrected manually by the user, exercising

extreme caution. By changing the punched card output directly,

the user may correct a simple FORTRAN error in the specification
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of a term-by-term definition or make a slight change in the

coding. However, changes to correct coding peculiarities

resulting from NASTRAN-imposed restrictions should be made only

by the experienced NASTRAN programmer.

Error messages returned by the preprocessor are explained

in Appendix A. After the user has identified and corrected

the error, he resubmits his data for another run. He may not

need to resubmit his entire data deck, since some of his packets

may have been successfully processed. An error in a particular

packet causes the preprocessor to discontinue the processing

of that packet and to start the processing of the next logical

packet.

RESUBMITTING DATA

When errors are to be corrected or changes are to be made

in the various data packets, the appropriate packets must be

submitted. For an initial run, the Preliminary Data Packet and

the Stiffness Matrix Packet must both be included, among with

other optional packets to data to be processed. In successive

runs, only the Preliminary Data Packet must be included with

those packets to be changed or corrected. The first card in

the input data will indicate whether or not the run is an

initial one. Table 13 notes the packets needed in changing the

various quantities of the Preliminary Data Deck. Note that this

table applies only to the Preliminary Data Packet; changes to

quantities in other packets might likely involve additional

packets. Obviously, if a packet was not needed for an original

run, it will not be needed for a repeat run. The same would

hold true for the use of the special Subpackets A of the Stress

Matrix Packet and the Stress and Force Packet.
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If the preprocessor finds an error in the Preliminary

Data Packet itself, the entire data deck must be resubmitted

when the corrected Preliminary Data Packet is resubmitted,

since the preprocessor will make no attempt to process other

packets if it finds an error in the Preliminary Data Packet.

When a coding error is detected in a data packet, the user

should discard all FORTRAN coding generated by the preprocessor.

A complete routine will be generated when the corrected data

packet is submitted.
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TABLE 13 - INPUT PACKETS NEEDED FOR PRELIMINARY-
DATA-DECK CHANGES

Quantity to be Packets Needed
Changed

Element name Preliminary Data
Stress Matrix (Special Subpacket A,

only)
Stress and Force (,Special Subpacket

A, only)
Output
(Note: All subroutine names must be

changed manually.)

Number of grid All, except for Output
points

Degrees of freedom All

Scalar indicator None. At the present time, new
elements may not be scalar elements

Number of permanent Preliminary Data
elements Stress Matrix (Special Subpacket A)

Stress and Force (Special Subpacket
A)

Output

Approach acceptability Preliminary Data
flag Stress Matrix (Special Subpacket A)

Sequence of digits for Stress and Force (Special Subpacket

connection card; A)

Sequence of digits for
property card

Number of data items All, except for Output. (Only the
on connection card Special Subpacket A of Stress and

Force is required.)
User-defined
connection card
variables

Number of data items
on property card

User-defined property
card variables
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APPENDIX A
ERROR MESSAGES

There are 101 situations which will cause an error message

to be printed. Following is a listing of these error messages

and the corresponding numbers which appear in the output,

together with an explanation of each error.

1 BAD ELEMENT NAME: X

The user has not coded the new element name in the correct

manner which is ELEMy, where y is an integer less than 51 and

greater than 38. The Preliminary Data Packet generates this

error. X is the erroneous element name defined through the

input.

2 NUMBER OF GRID POINTS IN ERROR: X

The number of grid points for the new element, the second

data item in the preliminary data, is in error. This number

must be an integer greater than zero and less than 101. X is

the erroneous value obtained through the input data.

3 SEQUENCE OF DIGITS IN ERROR: X

The sequence of integers specifying the degrees of freedom

for the new element is in error. This value is the third

data item in the preliminary data, and it must be a string of

integers each of which is greater than zero and less than seven.

No integer may appear twice. X is the erroneous value.

4 SCALAR ELEMENT INDICATOR IN ERROR: X

The integer designating whether the new element is a

scalar element or a structural element is in error. As scalar

element implementation for the preprocessor does not yet

exist, this value must be zero. This error comes from the

interpretation of the preliminary data; x is the erroneous

value.
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5 NUMBER OF PERMANENT ELEMENTS IN NASTRAN ERROR: X

The integer in the preliminary data designating the

number of permanent NASTRAN elements is in error. It must be

an integer greater than 37 and less than 50. X is the value

in error.

6 APPROACH ACCEPTABILITY FLAG IN ERROR: X

The approach acceptability flag, found in the preliminary

data, is in error. It must be an integer y < 131; X is the

erroneous value.

7 NUMBER OF DATA ITEMS ON CONNECTION CARD IN ERROR: X

The integer in the preliminary data designating the number

of variable names on the connection card is in error. It must

be an integer greater than zero and less than 97-5N, where N

is the number of element grid points. X is the erroneous value.

Trying to assume a default also produces this error.

8 NUMBER OF DATA ITEMS ON PROPERTY CARD IN ERROR: X

The integer in the preliminary data designating the number

of variable names on the property card is in error. It must

be an integer greater than -1 and less than 97-5N, where N is

the number of element grid points. An attempt by the user to

obtain a default value will also produce this error message.

X is the erroneous value.

9 SEQUENCE OF INTEGERS FOR CONNECTION CARD IN ERROR: X

The sequence of integers designating FORTRAN variable type

for all connection card variables is in error. Each integer

must range between zero and five; there must be an integer for

each connection card variable. However, since the preprocessor

can presently handle only user-defined integer and real variables,

the integers must all presently be 1 or 2. This value is the

default value. X is the erroneous value found through

interpretation of the preliminary data.
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10 SEQUENCE OF INTEGERS FOR PROPERTY CARD IN ERROR: X

The sequence of integers designating FORTRAN variable

type for all property card variables is in error. Each

integer must range between zero and five, and there must be an

integer for each property card variable. However, since the

preprocessor can presently handle only user-defined integer

and real variables, these integers must all presently be 1 or

2. This value is the default value. X is the erroneous value.

11 LIST OF VARIABLES ON CONNECTION CARD IN ERROR: X

One of the variables found on the connection card does not

conform to FORTRAN rules for the construction of variable

names, or the name is a NASTRAN common variable. X is the

variable name in error.

12 LIST OF VARIABLES ON PROPERTY CARD IN ERROR: X

One of the variables found on the property card does not

conform to NASTRAN rules for the construction of variable

names, or the name is a NASTRAN common variable. X is the

erroneous variable name.

13 THE NUMBER OF CONNECTION AND PROPERTY CARD VARIABLES

IS GREATER THAN X.

The total of connection and property card variables is

greater than X, the maximum number allowed, which is 97-5N,

where N is the number of element grid points.

14 NUMBER OF ITEMS FOR PROPERTY CARDS DOES NOT MATCH

ACTUAL NUMBER FOUND.

The preprocessor generates this error message if the number

of FORTRAN variable names specified as existing on the property

card does not equal the number of names specified earlier as

the eighth parameter in the preliminary data.
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15 PRELIMINARY ERRORS EXIST, ERROR CHECKING WILL CONTINUE

This error message appears if the user has coded an

erroneous Preliminary Data Packet. Error checking for the

remainder of the preliminary data will occur, whereupon the

program will halt execution.

16 NO DATA AT ALL EXISTS - EXECUTION ABANDONED

The preprocessor prints this error message if execution

is attempted with no input data set.

17 INPUT EXHAUSTED WHILE READING PRELIMINARY DATA

The input data deck did not contain enough cards to permit

full processing of the preliminary data. The entire set of

input data has been read.

18 NUMBER OF DATA ITEMS FOR CONNECTION CARD DOES NOT MATCH

ACTUAL NUMBER FOUND

The number of FORTRAN variable names specified as existing

on the connection card does not equal the integer specified as

the seventh preliminary data parameter.

19 INFLAG/OPTION CARD IN ERROR: X

The user has coded the inflag/option card for a particular

packet in an erroneous manner. X is the representation of the

bad card.

20 INFLAG/OPTION CARD DOES NOT EXIST

The preprocessor generates this error message if the

input data deck has been completely read prior to an attempt

to read an INFLAG/OPTION card.
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21 ERRORS IN PRELIMINARY DATA PREVENT FURTHER PROCESSING

If any error exists in the Preliminary Data Packet, this

error message appears in the output. The preprocessor halts

execution and all subsequent input data is ignored.

22 NUMBER OF STRESS WORDS ERROR: X

The first value on the options card for the Stress and

Force Calculation Packet is in error. This value must be

greater than or equal to zero or less than or equal to 100.

X is the erroneous value.

23 NUMBER OF FORCE WORDS ERROR: X

The second value on the options card for the Stress and

Force Calculation Packet is in error. This value must be

greater than or equal to zero and less than or equal to 100.

X is the erroneous value.

24 OPTION ERROR FOR PACKET: X

The second value on the inflag/option card for the

Stiffness Matrix, Mass Matrix, Viscous Damping Matrix,

Differential Stiffness Matrix, or Thermal Loading Vector Packet

is in error. X is the incorrect value.

25 TERMINATION OF EXECUTION REQUESTED

An earlier error could not be rectified. As further

processing is futile, the preprocessor halts execution.

26 INPUT EXHAUSTED WHILE READING MAIN EQUATION

All data had been read prior to an attempt to read the

main expression (e.g., Stiffness expression). For the Global

Variable Packet, this card is the list of global variables.

For the Stress Matrix and Stress and Force Calculation Packets,

this card should be a list of variables to be loaded into the

NASTRAN array PHIOUT.
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27 ERROR IN GETVAR

This error message indicates that a terminal error has

occurred in the definition of user variables (Subpacket B),

and all variables cannot be defined. The usual cause for

this error is an absence of input data; preprocessor execution

stops at once. Earlier messages should point to the reason

for the error.

28 ERROR IN DEFELEM

The input data was exhausted while processing Subpacket C.

The error message is fatal; preprocessor execution halts

immediately. Earlier error messages should point to the reason

for the error.

29 NO OPERATOR IN HIERARCHY-INPUT IS: X

The user has coded an erroneous equation. This error

message comes from the infix notation to Polish notation

convertor. Error message 30 should appear as a pointer to the

bad equation. The error comes from the interpretation of a

main expression (e.g., stiffness expression) or an equation in

a particular Subpacket C. X serves as a relative pointer to

the position of the error in the equation. Typical sources

of errors are unbalanced parentheses, unrecognizable operators,

and failure to code an operator between variable names

(e.g., AbB to mean A+B, where b is a blank character).

30 USER HAS CODED AN ERRONEOUS EQUATION: X

The bad equation is given by X. Something in the equation

confuses the Polish convertor.

31 VARIABLE NAME IS TOO LONG: X

The user-defined variable name X, which appears in a

Subpacket B, is longer than six characters. X is the bad name.
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32 DEFINITIONS FINISHED CARD IS MISSING

The preprocessor attempted to read the next data packet to

resolve all undefined variable names. The user should look

for the absence of a "DEFINITIONS FINISHED" card at the end of

a particular Subpacket B.

33 PREPROCESSOR HAS TRIED TO READ NEXT PACKET TO DEFINE
ALL VARIABLES

An undefined variable(s) exists in a particular packet.

Look at the table of variables at the end of the packet output

prior to the code generation for the undefined variable(s).

34 USER HAS TRIED TO DEFINE THE NULL STRING AS A VARIABLE

Subpacket B contains a mispunched card. A typical error

would be trying to assume a default and misplacing the necessary

comma. In any case, the first field on the card is incorrect.

35 ILLEGAL ATTEMPT BY USER TO REDEFINE THE RESERVED NAME: X

The user has attempted to redefine a NASTRAN common

variable or preprocessor-defined variable. The use of the name

appears in Subpacket B for the current packet under consideration.

X is the variable name in error.

36 NOT ALL VARIABLES CAN BE DEFINED - INPUT EXHAUSTED

Subpacket B is in error for the current packets. Typical

sources of errors are mispunched variable names, undefined

variables, and the absence of a "DEFINITIONS FINISHED" card.

In any case, all input has been read and processed; this

error message forms part of a terminal error message. Error

message 27 should also appear.
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37 THE FOLLOWING VARIABLES ARE UNDEFINED: X

In the interpretation of the main expression (e.g.,

stiffness expression) and Subpacket C for the current packet,

the user has not defined some packet variables. X is the list

of unresolved variable names.

38 THE FOLLOWING VARIABLE MUST APPEAR AND DOES NOT: X

In the Stiffness Matrix, Mass Matrix, Thermal Loading

Vector Viscous Damping Matrix, and Differential Stiffness

Packets, the main variable (i.e., stiffness matrix, mass

matrix, etc.) does not appear. It must appear for the packet

to have a meaning. The forms X may assume are as follows:

(1) KIJ - stiffness matrix

(2) MIJ - mass matrix

(3) VIJ - viscous damping matrix

(4) PPI - thermal loading vector

(5) DIJ - differential stiffness matrix

39 DIMENSIONS ARE WRONG FOR VARIABLE X

In the Stiffness Matrix, Mass Matrix, Viscous Damping

Matrix, Thermal Loading Vector and Differential Stiffness

Packets, the dimensions of the main variable (mass matrix,

stiffness matrix, etc.) are in error. For an interpretation of

X, see error message 38 above. KIJ, MIJ, VIJ, and DIJ may

have the dimensions 3X3, 6X6, or 6NX6N, where N is the number

of grid points for the new element. PPI may have the dimensions

3XI, 6X1, or 6NXl. All of the above variables may be defined as a

lXl scalar.

40 THE VARIABLE UNDEFINED IN THE VARIABLE VECTOR IS: X

In Subpacket C for a particular packet, the user defined

a variable which was never used in an equation. X is the

variable name in question.
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41 THE NUMBER OF UNDEFINED VARIABLES IS: X

In Subpacket C for a particular packet, X variables are

undefined either through the NASTRAN COMMON area or through

Subpacket B.

42 THIS PACKET IS ALREADY DEFINED: X

The user has defined two packets with the same name, or

a card exists in the input data with the string "BEGIN X",

where X is a packet name. In the former case, remove one of

the packets. For the latter, remove the indicated string.

A typical error would be a "COMMENT" control card containing

the word "BEGIN".

43 PACKET NAME IN ERROR: X

This header card for a packet has a mispunched packet

name. X is the mispunched name. It appears on a "BEGIN"

card.

44 PACKET ORDERING IS IN ERROR

The ordering of the various packets within the input data

is in error. The correct ordering is:

(1) Preliminary Data Packet

(2) Global Variable Packet

(3) Stiffness Matrix Packet

(4) Mass Matrix Packet

(5) Viscous Damping Matrix Packet

(6) Thermal Loading Vector Packet

(7) Stress Matrix Packet

(8) Stress and Force Calculation Packet

(9) Output Packet

(10) Differential Stiffness Packet
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45 DATA EXHAUSTED IN THE GLOBAL PACKET

The preprocessor ran out of data while processing the

Global Variable Packet.

46 UNDEFINED VARIABLE FOUND: X

An unresolved variable occurred in an abnormal part of

the preprocessor coding. The printout of this error message

indicates an error in the preprocessor logic, and the printout

should be sent to the authors to determine the cause for the

error. X is the erroneous variable name.

47 SUBSCRIPT OF VARIABLE IS IN ERROR - EQUATION OF: X

In the term-by-term definition of variable X, one of the

variables used has an illegal subscript. For example, if A

had dimensions of 3X1 and was referenced as A(1,3), this

error message would occur.

48 NEITHER STRESS NOR FORCE WAS SPECIFIED FOR THE OUTPUT

PACKET: X

In the output packet data, the card indicating whether

the headings to be produced are for stresses or forces is in

error. X is the value in error. A typical error would be:

BEGIN OUTPUT

STRESbSES

X must be either the word "STRESS" or the word "FORCE". In

this case, X is the bad value "STRESSES".
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49 OUTPUT PACKET INDICATORS IN ERROR: X

In the portion of the Output Packet devoted to either

stresses or forces, the indicators used to compute variable

subscripts are in error. The three fields have the following

permissible values:

(1) Field 1: SORT1 OR SORT2

(2) Field 2: REAL or COMPLEX

(3) Field 3: REAL/IMAG or MAGNITUDE/PHASE (if necessary)

Error message 49 will appear if any of these three fields

is mispunched. X is the list of the three user-supplied

indicators.

50 INPUT EXHAUSTED WHILE READING OUTPUT PACKET

The preprocessor ran out of input data during the processing

of the Output Packet.

51 HEADING FORMAT STATEMENT NUMBER IS ERROR: X

In the Output Packet, the user attempted to insert a new

format heading which had an erroneous value X. X must fall

in the closed interval [217,336] or be either zero or minus

one. Sources of this error are mispunched data cards or

attempting to define a statement number whose value is not

allowed. X appears on the card containing the six integers.

52 FORMAT NUMBER FOR NEW FORMAT IN ERROR: X

While attempting to define one of the new format headings

coded on the card containing the six integers, the user coded

a format number which did not match one of the six integers.

The user has therefore mispunched his heading format number.

X is the erroneous value.
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53 NEW FORMAT LENGTH IS GREATER THAN 34 WORDS: X

In the specification for a new format heading, the user has

coded a format whose length is greater than 34 words (133

characters). X is the number of words used by the erroneous

format.

54 FORMAT MISSING LEFT PARENTHESIS AND/OR RIGHT

PARENTHESIS: X

The user has left off either the starting left parenthesis

or the terminal right parenthesis or both for the specification

of a new format heading. All new format headings must begin

with a left parenthesis and end with a right parenthesis. X

is the erroneous format.

55 FORMAT NUMBER TO BE LOADED IS IN ERROR: X

The user has attempted to append more than five new format

heading numbers; only five are allowed. X is the sixth new

format number which is not allowed. Note that there may be

more than 6 erroneous format header numbers.

56 NEW FORMATS CONSUME MORE THAN 20000 CHARACTERS: X

The total number of characters used by the five new

format headings is greater than 20000. X is the erroneous

total number of characters.

57 MORE THAN 45 FORMAT PIECES ARE SPECIFIED

The user has attempted to insert more than the maximum

number (45) of format pieces.

58 ERROR IN WRFORT

The preprocessor encountered a user-error in the portion

of the coding devoted to the generation of FORTRAN coding.

Other error messages should point to the actual reasons for

the program failure.
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59 NUMBER OF PIECES SPECIFIED DO NOT MATCH ACTUAL NUMBER

FOUND

The user has defined more format pieces than he coded on

the card containing the format pieces to be defined. An

example would be 1, 74, -4, 30, 0 on the format piece definition

card followed by

74

lX, 17

30

IPEII.4, OPF8.1, 3X

31

IPEI0.3, OPF7.0, 3X

Format piece 31 was not coded on the above card; therefore;

error message 59 appears in the output.

60 I VALUE FOR FORMAT PIECE IS NOT IN THE PROPER RANGE: X

If a format piece defined by the user has a value I such

that

(1) I < -40 or

(2) I > 100 or

(3) -32 < I < 29 or

(4) 39 < I < 74,

then error message 60 appears in the output. I may range in

the two closed intervals [-40, -1] and [1, 100], but the user

may define I only for I in [-40, -32], [29, 39] or [74, 100].

Therefore, this error has several meanings. First, an

erroneous I value may have been punched by the user, i.e., an

I value not in the allowable ranges. Secondly, he may be

trying to define an I value which may not be defined. X is

the erroneous I value.
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61 ERROR FLAG SET - NO CODING WILL BE GENERATED

The preprocessor found a user data error prior to FORTRAN

code generation in one of the following packets: Stiffness,

Mass, Thermal, Loading, Stress Matrix, Differential Stiffness,

or Stress and Force Calculation. No FORTRAN code will appear in

the output for this packet until its errors are coirected.

62 USER HAS TRIED TO TRANSPOSE AN ENTIRE MATRIX EQUATION

The user currently may not transpose a matrix equation.

An example would be

A

TR (B*C)

in Subpacket C of a particular packet where A, B, and C are

previously defined matrices. This restriction will not exist

in later versions of the preprocessor. This condition is

detectable only during FORTRAN code generation. Upon finding

the error, code generation stops immediately.

63 ILLEGAL USE OF BINARY OPERATOR IN A UNARY FASHION: X

The user has coded an erroneous equation in a particular

Subpacket C. Binary operators such as * and / expect two

operands, e.g.,: A*B where A and B are operands. Use of such

an operand in a unary fashion (e.g.,: C =*A) will produce this

error message. X will contain the operator in error as well

as the variable definition under which this error occurs. This

error appears during FORTRAN code generation; its appearance

halts the code generation at once.

64 USER SPECIFIED WRONG DIMENSIONS FOR: X

In Subpacket B for a particular packet, the user defined

a variable with dimensions Dl and D2. However, the preprocessor

has determined during FORTRAN code generation that the variable

should have dimensions D3 and D4 such that Dl # D3 and/or

D2 9 D4. Code generation is therefore halted. X contains

the variable in error as well as a printout of Dl, D2, D3,

and D4.
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65 AN UNDEFINED VARIABLE HAS ONLY NOW BEEN FOUND: X

The preprocessor discovered an undefined variable

during FORTRAN generation. As all variables should be resolved

during the interpretation of Subpacket B, this error indicates

an error in the preprocessor logic. The user should return

the output to the authors to determine the reason for the error.

X is the undefined variable.

66 MULTIPLICATION CANNOT TAKE PLACE AS MATRIX DIMENSIONS

DO NOT MATCH: X

During the interpretation of a user-defined matrix equation,

the preprocessor attempted to multiply two matrices whose

dimensions would result in improper multiplication. An example

would be trying to multiply two 3xl matrices. X contains

both matrices and their preprocessor-determined dimensions.

67 ADDITION CANNOT TAKE PLACE AS MATRIX DIMENSIONS DO

NOT MATCH: X

During the interpretation of a user-defined matrix equation,

the preprocessor attempted to add two matrices whose dimensions

would result in improper multiplication. An example would

be trying to add a 1x3 matrix to a 3xl matrice. X contains

both matrices and their preprocessor-determined dimensions.

68 EXPONENTIATION CANNOT TAKE PLACE AS MATRIX IS NOT

SQUARE: X

The user has attempted to raise a matrix to a power.

However, the matrix is not square. X contains the matrix name

and its preprocessor-determined dimensions.

69 NEGATIVE OR ZERO EXPONENTIATION CANNOT TAKE PLACE: X

The user has attempted to raise a matrix to the zero or

a negative power. X contains the matrix name and its preprocessor-
determined dimensions.
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70 USER MAY NOT USE G MATRIX WITH AN INFLAG VALUE OF X

The user may use the predefined materials matrix G only

with INFLAG values of one, two or three. All other INFLAG

values will produce errors.

71 NUMBER OF VALUES TO BE LOADED INTO PHIOUT FROM OPTIONS

CARD DOES NOT MATCH ACTUAL NUMBER COMPUTED: X

On the INFLAG/OPTION card in either the Stress Matrix

or the Stress and Force Calculation Packet, the user coded an

integer specifying how many values were to be loaded into

PHIOUT. However, the preprocessor has determined that more

variables than this earlier specification will be used. As

an example, let the options card for the Stress Matrix Packet

show 2, 35 indicating that 35 words are to be inserted into

PHIOUT. Now let the card containing the variables to be

inserted into PHIOUT be TSUBO, SBI, SB2, SB3, ST, G where

(1) TSUBO is a scalar

(2) SBl is a 3X3 matrix

(3) SB2 is a 3X3 matrix

(4) SB3 is a 3X3 matrix

(5) ST is a 3XI vector

(6) G is a 3X3 matrix

Therefore, 40 variables are to be inserted from this card.

Since these two values are not equal, the preprocessor generates

error message 71. X is the number of words to be inserted

into PH1OUT computed from the card containing the variable names.

72 THERE ARE MORE VALUES TO BE LOADED INTO PH1OUT THAN

THERE ARE LOCATIONS AVAILABLE: X

The user may not insert more than 100 variables into

PH1OUT from the Stress Matrix Packet and 100 each for stresses

and forces from the Stress and Force Calculation Packet. X is

the erroneous number of variables which the user is attempting

to insert.

1
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73 ILLEGAL USE OF A FORTRAN FUNCTION IN THE MATRIX

DEFINITION OF X

The user may not use FORTRAN functions in any matrix

equation definition in any Subpacket C. X is the variable

being defined in which the error exists.

74 THERE EXIST UNRESOLVED DEFINITIONS IN THE OUTPUT PACKET

The user has coded an undefined format heading or format

piece number in the Output Packet. One of the following two

cards contains the error.

(1) Card containing the six integers

(2) Card containing sequence of N+l integers

75 A FORMAT PIECE WITHIN THE RANGE FROM 29 TO 39 IS

GREATER THAN 20 CHARACTERS: X

Let X be a format piece under consideration whose value

falls into the closed interval [29, 39]. Now the format to be

inserted for piece X contains two fields, a standard format

plus an alternate format. The preprocessor separates these

two fields and adds enough blanks in front of the first to

form an eight-character field. If the sum total of characters

found from the modified field one and the original field two

is greater than twenty, this error message appears in the output.

76 A VARIABLE WAS FLAGGED EARLIER AS GLOBAL BUT DID NOT

APPEAR IN THE LIST OF GLOBAL VARIABLES: X

The preprocessor determined that a user-defined variable

was global; however, the variable was found not to be a global

variable. X is the erroneous variable name. This error indicates

an error in preprocessor logic, and the output should be

returned to the authors to determine the reason for the error.
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77 MATRIX IS NOT SQUARE: X

The user has attempted to define a non-square matrix

partition. Depending upon which data packet is under

consideration (Stiffness Matrix, Mass Matrix, Viscous Damping

Matrix, or Differential Stiffness); the user should check his

intermediate equations which produce the partition as to proper

dimensions. X is the illegal partition, and the illegal

dimensions follow X in parenthesis.

78 FORTRAN INSERTION SUBPACKET NAME NOT FOUND IN THE LIST

OF PACKET VARIABLES: X

During the interpretation of the current subpacket, the

preprocessor found a user-defined FORTRAN insertion subpacket

name which was not defined in the previous Subpacket B. The

preprocessor therefore could not determine the ranking of the

insertion subpacket relative to the other packet variables.

X is the undefined subpacket name.

79 THE SOFTWARE FOR THIS PACKET IS NOT YET AVAILABLE

The user has attempted to use the Piecewise Linear

Analysis - Stiffness Matrix Packet or the Piecewise Linear

Analysis - Stress Matrix Packet. The use of either of these

packets by the analyst is illegal.

80 INPUT EXHAUSTED WHILE READING UPDATE PRELIMINARY DATA

PACKET

The input data deck has been exhausted during the reading

of the interpreted Preliminary Data Packet punched by the

preprocessor from an earlier computer run. The user should

check for an extraneous end-of-file or end-of-record terminator

in the middle of his data deck.
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81 ILLEGAL ATTEMPT TO INVERT A NONSQUARE MATRIX - X

During interpretation of a user-supplied matrix equation,

the preprocessor has found an attempt to compute the numerical

inverse of a matrix which is not square. X is the illegal

matrix in question, and it is followed by the name of the

variable being defined whose definition calls for the illegal

inversion.

82 ILLEGAL ATTEMPT TO INVERT A SCALAR - X

The user may not try to use the INV function to compute

reciprocals. X is the variable name in question.

83 A TERM-BY-TERM DEFINED VARIABLE HAS ALL ZERO ELEMENTS: X

In any Subpacket C supplied by the user, he may not define

a variable whose elements are all zero. At least one of the

elements of a vector or matrix must be non-zero. All scalars

must be non-zero. If the user desires a variable (scalar,

vector, or matrix) to be ideally zero, he must use a FORTRAN

insertion packet to perform the function. X is the all-zero

variable name.

84 A VARIABLE NAME WAS NOT FOUND WHERE EXPECTED

In a typical Subpacket C, the user codes his variable

definitions in the following manner. His first card contains

the variable name to be defined. His second and subsequent

cards (if needed) contain the actual definition. For this error

message to be produced, the user must be employing a term-by-

term definition. The preprocessor has read the card containing

the variable name and a number of subsequent cards to define all

elements of that variable. The program then loops to obtain

another variable name. However, such a card was not found, and

the error message indicates this condition. The typical source

of this error is in defining a particular element of a variable

more than once or in mispunching the variable name card such

that the name is not entirely alphanumeric.
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85 ILLEGAL SUBSCRIPT ENCOUNTERED; DATA CARD IGNORED

A term-by-term definition card has three fields: the

first subscript, the second subscript, and the definition for

the element of the current variable being defined having these

subscripts. The first and second fields must each be purely

numerical; they may not have alphabetic information. The

illegal card number will be included in the error message.

86 ILLEGAL DIMENSION ENCOUNTERED; PACKET PROCESSING STOPPED

In the current Subpacket B under consideration, the user

has coded a variable's first or second dimension which is not

entirely numeric. As the packet FORTRAN coding produced

depends exactly upon these dimensions of the variables, all

processing of the current data packet is suspended. The error

message will contain the card number of this card containing

the illegal dimension.

87 ILLEGAL MANNER OF DEFINITION IN SUBPACKET B: PACKET

PROCESSING STOPPED

In Subpacket B, the user has employed an illegal manner-

of-definition field. Therefore, the field contains data.which

is not EQUA, TERM, COMM, or DEFER. All subsequent data in

the packet is ignored, and the preprocessor proceeds if

possible to the subsequent data packet submitted by the user.

88 PREVIOUS MATRIX EQUATION DIMENSION MISMATCH: X

In a matrix equation definition for a Subpacket B variable,

the dimensions defined for that variable in Subpacket B do not

match those dimensions dynamically computed by the preprocessor's

interpretation of the matrix equation. As an example, let

variable X have dimension 2X3 defined in Subpacket B. Let the

definition of X be Y*Z in Subpacket C, where Y and Z are 1X3

and 3X1 vectors respectively. The resolution of the equation

Y*Z gives X dimensions of lXl, or a scalar. But X was defined

as a 2X3 matrix in Subpacket B. Therefore, the error message
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is generated, and generation of the current FORTRAN subroutine

is halted. In the generation of a stiffness matrix partition,

a mass matrix partition, a thermal loading vector, a viscous

damping matrix partition, and a differential stiffness matrix

partition, the dynamic dimensions may be less than or equal

to those dimensions defined in Subpacket B. X is the ill-

defined variable followed by the two pairs of dimensions.

89 TOO MANY PACKET VARIABLES: INCREASE DIMENSION SIZE

In the current packet under consideration, the user has

defined more than 75 distinct variable names. The user should

employ the PACKET VARIABLES parameter card to increase the

number of allowable user-defined variable names. If such a

card is already in use, he should increase the integer field

of the card.

90 ILLEGAL SPECIFIER FOR MATRIX GENERATION BY

PARTITIONS: X

In the matrix equation definition of a matrix by partitions,

the data card defining a particular partition does not contain

one of the keywords UL, UR, LL, or LR. As an example, let

variables A, B, C, and D be previously-defined 2X2 user matrices

and E be a 4X4 matrix defined as follows:

Ez A B]

In Subpacket B, the user would define E to be a 4X4 variable

defined through a matrix equation. The user might then code

in Subpacket C to define E:

E

UL, A

UR, B

LL, C

LR, D
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Suppose, however, he punches the following:

E

UL, A

UR, B

LQ, C

LR, D

The card containing LQ, C is in error as LQ does not describe

any partition of the matrix E. X is the variable being defined

that contains the illegal partition definition.

91 MORE THAN FOUR PARTITIONS SPECIFIED: X

The user has provided more than four partition definitions

in the matrix equation definition of X.

92 MATRIX MUST BE SQUARE AND NONSCALAR FOR PARTITION

DEFINITION: X

For the user to be able to define the matrix X by the

partition method, X must have dimensions NXN where N is a

positive even integer.

93 ONLY VARIABLE NAMES AND TRANSPOSES MAY BE USED IN

GENERATING PARTITIONS: X

On the cards defining the partitions for user variable X,

the matrix equations defining the particular partition must be

of the forms A, or TR(A), where A is a previously defined

user variable. To reiterate, full matrix equations may not be

used to define partitions of a variable. The user should

define an intermediate variable with his full matrix equation

for a particular partition definition. He would then use

that intermediate variable name in the partition definition.
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94 DIMENSION MISMATCH DOES NOT ALLOW PARTITION GENERATION: X

Let variable X have dimensions NXN, where N is a positive,

even integer. The four partition definitions which makeup

the definition of X must have resultant dimensions of N N

Refer to the example described in error message 90 for the

following. To define the 4X4 matrix E, the variables A, B, C,

and D must be 2X2 matrices. Any other dimensioning for any

of the four definition matrices would produce an'error condition.

95 USER MAY NOT REDEFINE A COMMON VARIABLE: X

The user is not allowed to define any variable which

is declared to be a NASTRAN defined COMMON variable. In addition,

any variable described by the user to be COMMON by way of the

COMMON keyword in Subpacket B may not be defined in the current

Subpacket C or in any subsequent packet definitions. Once a

variable name is declared to be a COMMON variable, it retains

that status throughout the remainder of the job. However,

prior to the variable's declaration as a COMMON variable, it

may be redefined and otherwise treated as any other local

packet variable.

96 ERRONEOUS ROW/COLUMN SPECIFIED: X

Let variable X have dimensions MXN, where M and N are

positive integers. The user may not define a row number

greater than M or a column number greater than N. Negative

row and column numbers also produce the error message. If X

has dimensions 2X3, he may define X by defining rows one and/or

two or by defining columns one, two, and/or three. He may

not combine row and column definitions to define a particular

variable.
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97 ROW AND COLUMN DEFINITIONS CANNOT BOTH BE USED: X

The user may not define variable X by using both row

and column definitions. He must define X by using only row

definitions or by using only column definitions. He would

otherwise redefine one or more elements of matrix X, thus

producing an error condition.

98 ONLY VARIABLE NAMES AND TRANSPOSES MAY BE USED IN

GENERATING BY ROWS OR COLUMNS: X

In the row or column definitions of user variable X, the

matrix equations defining the particular rows or columns must

be of the form A, or TR(A), where A is a previously defined

user variable. Full matrix equations are not allowable. If

a particular row or column is defined by a full matrix equation,

the user should define an intermediate variable to be the matrix

equation and use the intermediate variable name in his row

or column definition.

99 DIMENSION MISMATCH DOES NOT ALLOW GENERATION BY ROWS

OR COLUMNS: X

Let the user variable X have dimension MXN, where M and

N are positive integers. Furthermore, let X be defined by a

series of variables A(M), A(2),..., A(M) defined through the

row definition manner of matrix equation definition. For the

definition of X by A(M), A(2),..., A(M) to be legal;

A(M), A(2),.., A(M) must each have one of the two following

dimensions:

lXN, or

NXl.

The same argument is true for definition by columns. If the

N columns of X are defined by B(l), B(2),..., B(N), each of the

B(l), B(2),..., B(N) must have dimension lXM or MXl. Of course,

the user may leave one or more rows or columns undefined, thus

defaulting their definitions to zero.
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100 ERRONEOUS MAIN EXPRESSION: NO X OR Y

On the main expression card for the Stiffness Matrix,

the Mass Matrix, the Viscous Damping, the Thermal Loading, or

the Differential Stiffness Matrix Packet, the user has failed

to code the main variable name or the general main variable

partition. For example, in the Stiffness Matrix Packet he

has coded neither K or KIJ on the main expression card. X and

Y are the two values from which the user may choose (K and KIJ

in the example).

101 ILLEGAL SUBSCRIPTED VARIABLE: X

In the definition of user variable X, the user has

referred to a variable Y with subscripts I and J. One or both

of the two subscripts, I or J do not conform to the dimensions

of Y described in the preceding Subpacket B. For example, let

Y have dimensions 2X2; the user may not refer to Y(3,3), as

no such element of Y exists.

139



BLANK PAGE
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APPENDIX B
SAMPLE PROBLEMS

Two separate examples follow. In the first sample problem,

all of the data packets supplied in this report as examples in

the discussions of the various data packets have been combined

to form a complete set of input that will produce the FORTRAN

routines and tables that are necessary for adding the triangular

membrane (TRMEM) element into NASTRAN. Such an element has

actually been incorporated within NASTRAN, using the cards

shown in the examples. The input packets provided and the

generated routines or tables associated with each are included as

Figures 11 through 25.. For interpretation, the reader should

refer to the descriptions of the packets provided in Section

III.

The second sample problem is concerned with the production

of the FORTRAN routines and tables necessary to generate a

three-dimensional isoparametric thermal element. Figure 26

contains input data needed for the three-dimensional isoparametric

thermal element. Figure 27 contains the subroutines and tables

generated from the data.

The time used in producing the output of the first sample

problem was approximately six minutes, using.a CDC 6400

computer and 2500008. words of central memory. The CPU time

used in the second sample problem was eight minutes, even

though only two packets of input were used.
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PAPAM = I
( OM MENT
COMMENT THE FOLLOWINr, INPUT DATA WILL ADD ELEMENT ELEM4O TO NASTRAN
COIMENT ELFML+] IS JUST THE TRIANGULAR MEMBPANE ELEMENT(TRMEM) NOW IN
COMMENT NAST AN
COMMENT
COMMENT BEGIN PPELIMINARY DATA
COMMENT
FLEM4),3o,12, ,,1, 2,22
COMMENT .ONNECTIoN CARD VARIAPLE
TH
COMMENT DROPERTY CARDO VARIABLES
T, FM0U
END PRELIMINARY OATA P0AKET

Figure 11 - Preliminary Data Packet, Sample Problem 1
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PRELIMINARY PACKET FORTRAN CODING

BLOCK DATA
COMMON/IFPCOM/NOELEM,[APpFLG(24),IRANOS(48),IFX7PT(24),IFX7SQ(384)/

£ IFSCOM/NLEM, IFSN (24)
DATA NOELEM, IAPFLG9 NLEM/382,2j on 0920410 ,38/
DATA IANOS/4*0, 8,12949 8940*3/
DATA IFX7PT/2*0,L.291920'a/
DATA IFSN/2*096,4,20*0/
END
BLOCK DATA
COMMON /GPTCOM/NOELEMNOATCN(12),NOATPR(12),.NGRDPT(12),INOSCA(i2) ,

1NWDEST(12) ,IFSTPTUi2)
DATA NOELEM/38/
DATA NOATCN/O,6,i(J#O/
DATA N0ATPR/0q4,iE*Jf
D A TA NGROPT/0,3,10*0/
DATA INDSCA/0,O,iO*9/
DATA NWDEST/O,2,iO0*/
DATA IFSTPT/093,11O*/
E ND
BLOCK DATA
COMMON /EDSCOM/NJOELEM,NOATCN4(1i2JNGRDPT(i2)
DATA NOELEM/38/
DATA NDATCN/O,b,10*1/
DATA N(GRDPTfOt,3IL*3/
E ND
*BLOCK DATA
COMMON/EDTCOM/NDECLEM,NWDEST(i2) ,NGRDPT(12)
*DATA NOELEM/38/
DATA NWDEST/O,2i1910*/
DATA NGRDPT/fl,3910'O/
END
BLOCK DATA
COMMON /SMICOM/KIOELEM,NWO)EST(12)
DATA NOELEM/38/
DATA *NWDEST/0,2L1va*/
E NO
BLOCK DATA
COMMON /SM2 COM /N0E L EM , NW DES T 12
DATA NOELEM/38/
DATA NWDEST/0,21,1",
END
BLOCK DATA
COMMON /SDRCOM/NUELEM,NWDE--ST(12),NGROPT(i2),NWD)STM(12),NWOSTR(i2),

INWDFOFU12),NPTSTP(i2),NPTFOR(i2)
DATA NOELEM/38/
DATA NWDEST/O,?1,1O0/
DATA NGRDPT/0,3,1'*J/
DATA NWOSTM/6q3,o3C3 /
DATA NW DS T R/O098, 10 * 0
DATA NWDFOR/0q,9,i)*0/
DATA NPTSTR/OU"94O'Of
DATA NPTFOP/O,C,101I/
END

Figure 12 - BLOCK Data Subprogramsý Sample Problem1
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BETIN GLOBAL
CO.MMENT GLO'3AL VARIABLE LIST
V12,XLVl2,V13,XIIXKK1,XLVi3,pXKKXJJE1,XX2,XX3,YY3,AClC2,C3
V 12 2,3, 1, T F R M
X L V12,9v
V 13 3, ,vT E RM

XKK1, 3,1,TERM
XLV13,99
XKK,3, ,TERM
XJJ,3,9 1, T E PM
F.1,93, 2
XX2,,t
)(X3,,,EOUA

vY3,"2TR

DEFINITIONS FINISHED
V 12
t" 04 MP N T
CO'1MENT Xi..Y,.,i.. ARE COMMON VARIABLES AVAILABLE FOR USE
C' OA ME N T
1, ,X2-XI
2, 1,Y2-Y1
3, 7 2-71.

VI 13
1, ,X3-X1

3, IIZ3-Z1
X L V12

, ,V1 2(1,1) /XLV1.2(i,1)
2 , 1,V 12 (2 , 1) /XLV12 (1,1)
3 , 1, Vt 12 ( 3, 9 ) / XL%'1. 2 (1,1)
XKK1

XLV13
1,1, DS-QPT (XKKIC 1, 1)* ?+XKK1(2 1)**2*XKK1 (3,1*2

l,1,XKK1(1,1)/XLV13 (1,1)

29 1,XKK1(3I1)/X(LV13VL;I)

X< J J

Figure 13 - Global Variable Packet, Sample Problem 1
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2,1,XKK(3, 1)*XII(i,1) -XII(3,pi) 'XKK(igi)

.El
9ixiII(i, 1)

2, 1,XII(2, 1)
3, 1,XII(3, 1)
i,2,XJJ(i, I)
2,2,XJJ(2,, I
3,2,XJJ(3, 1)
XX2
.,o9XLV12(I vi)
)(X3
0OMMENT
COMMENT V13 IsJ A 3 X I. VECTOR---TR(V13) IS A I X 3 VECTOR
COMMENT XII IS A 3 X I VECTOR---SO XX3 IS A 1 X i VECTOR,
COMMENT I E, A SCALAR
.COMMENT

YY3
1,1, XLV13(I91)
A

C1

292,C (3,1)
COMMENT NOTE THAT ELEMENT (2,2) OF THE ARRAY IS DEFINED IN TERMS
COMMENT OF ELEMENT (391) --- THE REVERSE WOULD HAVE CAUSED PROBLEMS

3,2,CI (1,1)
02
1,1,-Cut, 1)
2,929C2(391)

3,2,i./XX2 (1, 1)
C3
2,2, C3 (3,1)
3, 1,1./YY3 (1i )
END GL09AL PACKFT

Figure 13 -Global Variable Packet, Sample Problem 1--Continued
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9EGIN STIFFNESS
2, KIJ
COMMENT STIPFNFSS MATRIX EXPRESSION FOR THE (I,J)TH PARTITION
A*T*KIJ
COMMENT 9EGIN LISTING OF STIFFNESS MATRIX PACKET VARIABLES
KIJ, ,3, E ) UA
DEFINITIONS ;7IN ISHED
KIJ
TR(CI*TP,(E1)*TI)*G* (CJ*TR(El)*Tj)

ENf STIFFNES7 PACKT

Figure .14 - Stiffness Matrix Packet, Sample Problem 1
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STIFFNESS PACKET FORTRAN CtIOING

SUBROUTINE KLEM4+-
DOUBLE PRECISION Q1,Q2,Q3,Q4,05,Q6,Q7,Q8 ,09,PIDETERMTEMPOR,TMPOR

11,G,T1,T2,T3,V12,XLV12,V13,XIIXKKI,XLV13,XKK,XJJ,Ei,XX2,XX3,YY3,A
1,C'IC2,C3,KII,K12,KI3,Klt,K2lK31,K12,K22,K3?,K13,K23,K33
DIMENSION ECPT(1)
DIMENSION TMPOR1 (36)
DIMENSION XYZi(1,3) ,XYZ2(1,3) ,XYZ3(1,3)
DIMENSION K11(3,3),K12(3,3) ,K13(3,3) ,K21(3,3),K22(3,3),K23(3,3) ,K3

11(3,3) , 32(3,3), K33 (3,3)
COMMON /MATIN/MATIJ, INFLAG,ELTEMPSTRESS,SINTHCOSTH/SMA1IO/DUM1(I

10), IFKGG,OUM?(1) ,1F46G~flUM3(23) /SMAtCL/IOPT4,KL.GGSW,NPVT/SMA1ET/NE
JCPT(1),NGRID(3),THMATIr)1,T,FMiJIOI,X±,Y1,Z1,ID2,Y2,Y2,Z2,ID3,X3,Y

12(39,3)qT3 (393) ,V12 (1,3) ,XLV12 (1,I),V13(1,3),tXII(1,3),9XKKI(1, 3) XLV
113(1,1),XKK(1,3),X(JJ(1,3),EI--(2,3),XX2(1,1),XX3(1,1),YY3(1,1),Ac1,I
l),C1(2,3),C?(2,3),C3(2,3),ilNJX(L.,3),KIi(3,3),K12(3,3),K13(3,3)/MAT
IOUT/Gli1G12,G13,G22,G23,G33,RHO,ALPHA1,ALPHA2,ALPi2,TSU3C0,GSU:3E,SI
IGTEN,ST(-COM,STGSHE
EQUIVALENCE (ECPTNEr',PT)
EQJIVaLENCE (XI, XYZ1(1, 1)) t ( X2,XYZ2 (1,1) ) , (X3,XYZ3 (1,1)

lCK31(1,l),KI1(1,lfl,(K3?(1,4'),KI2(1,1)),CK33(1,1i),KI3(1,l))
DATA TMPORi/3(-* ouDG/

IN~FL AG=2
DO I IP=1,3
IF(N-PI:IJ(Ic).FQ.NjPVT)GO To 2

1 CONT INUZ-
CALL 4ESAGE (-30 ,349,ECPT (1I

2 CONT INUE
MAT IO=MATID01
ELTE:MP=D)UMV (1)
SINIT H=DS IN (P 1(1 ,1I) /18 . TH)
COST H=TiCOS ( PI(191,)/1.TH)
CALL M.AT(NECPTtl))

6(1, 1)=Gil
G (291, G :12
G(1, I)=G12

6(3, 1)=G13
G (2 ,2) =G22
G6(2,93) = G23
G(3, 2)=C623
G (3,9 3) =G33
CALL T?ANSO(Ifl1,Ti)
CALL TRANSO(ID2,T2)

-CALL TchANSD (103,9T3)
V12 (1,1) =X?-X1
V12 ( 1, 2) =Y2-Y1
V12 (1,3)=72-Zi

Figure 15 - Stiffness Matrix Subroutine, Sample Problem 1
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XV12(i, 1)=DSQRT (V12( 1, 1)#*2+VI2 (1,2)**2+V12 (1,3)**2)
V13 (iqI)=X3-XI
V13 (1,2)=Y3-YI
V13 (1,3)=Z3-Z1
XII(1,i)=V12(1,1)/XLV12CI.,i)
)(II(192)=V1?(1,2)/XLV12(1,i)

XKK(1,3):XKK1(1,2)/XLVi3 (1,1)
XKKI(1,3)=XK(1(1,2)/XVi3(1,3)XIi3*V312
XJ ,)XKK (1,2)) XII(193* (, 3) -XII(i, 2)*V(KK(1,3)
XJ ( 1,2) =XKK (1, 3)*VII 9)-(1,2t-(T(,)4XK< (1,1)

XJJ ( I v3I) =XKKi it, 1) /YLI3 (, ?X I , 1, ) )#K<U

EIK(i,2)=X11(1,2)/XV3Ii
E1K(1,3)=XKII (1,3)/XVI1
El (2,1) =XJJ (1,1)*IIi3-Ii2)XK9
E1(2 ,2)=XJJ (1,2)*XI11-I~9)XKIi
E1( 2,3) =XJJ (1,3)*XIi?-I~~)X~l
E' I( 1, qI) =XL\I I 1, 1)

YY3(1,1) =XLV 13 211

C I (1I, 3) = X I U1

El(291)=J t, 0
El(2,92) =01 (1,3)

CI2(1,3)=C1(12(1,1

C2 (1,1) =-CI(13, 1)

C2(1,3) =-5XX3(1, 1)/( 2(1, 1) Y3,)

02(2 ,3)=1./XX2 (1,t)

03 (1.,0) =l./YY3 11*(X(1,1) /X2ii-.
03(2,1l) =C *.
C13(2 ,2) =01 (1,3)
0 ( 2,'3) =0 C

CGO t2 Ti,2 1 , 3J),I
C 2E~PT T2 MAI 3VXPXA13L

Fiur 5 tifns MtixSbrutn, apl roleU-Cnine

C3 1 ) = . /Y Y3 I ,8



i0O CONTINUE
CALL GMMATD(Cl,3 ,2,3,Ei,392,IQi)
CALL GMMATO (Ql,3 ,3,0,Ti,3,3,0,Q2)
CALL GMMATO (Q2,3,3,1,G,3,3,oTEMPOR)
CALL GMMATD(C1,3,2,0,E1, 3,2,iQ1).
CALL GMMATD (Qi,3,3,0vTiv,3,3,aQ2)
CALL GMMATD(TEMPOR,3, 3, 0,Q2,3,3,0,OKiI)
CALL GMMATD (C2, 3 ,2,0,Ei9,3,2,1Q1)
CALL GMMATO(Ql,3 ,3,OT2, 3939O02)
CALL GMMATO (TEMPOR, 3,3, a ,2, 3,3,0,12)
CALL GMMATD(C3,3,2,0,Ei ,3,2,lQi)
CALL GMMATO(Ql,39393,T3 3,3,0,02)
CALL G)MMATO (TEMPOR,3,3,0,9Q2,3,3,OK13)
GO TO 400

200 CONTINUE
CALL 6MMATO(C2 3,2,0,E193,2,lQ±)
CALL fMMATO(Q1,3 ,3,3,T2,3,3,JQ2)
CALL GMMATD (02,3,3,1, G,3,3,JTEMPOR)
CALL GMMATO(Ci,3,2,0,E1.,3,2,91,Qi)
CALL G4MATO(0Q,3 ,3,0,T1,3,39aQ2)
CALL GMMATD (TEMPOR, 3,3,0,02,3,3,0 ,K21)
CALL GMMATO(C2, 3,2,0,EI, 3,2,i,Qi)
CALL GM MATO0 ( Q1,93,93,90,T2 , 3,3,0 ,Q2)
CALL GMMATO(TEMPOR,3, 3,C,02, 3,3,0,K22)
CALL flMMATD (C3,3 ,2,,Ei,3,2,iQ1)
CALL GMMATD (Q1#33,3,,T3, 3,3q,Q,2)
CALL GMMATJ (TE-MPOD, 3,3,0,02,3,33,0,K? 3)
GO TO +Go~

300 CONTINUE
CALL GMMATD (C3,3,?,o,E1, 3,2,1,Q1)
CALL GMMATD (01,3,3,0,13,3,3,0 ,02)
CALL GNIMATD(Q29,3,3,1,G-,93,3,0,TEMPOR)
CALL GMMATD (Ct,3,2,0qEI.,3,2, 1,01)
CALL GMMATO (QI.,3,3,),Tit,3,3,JqQ2)
CALL GMMATD (TEMPOP,3, 3,C0 ,2,3,3,0 ,K31)
CALL GMMATD(C?,3,2,0,Ej., 13,2,1,Q1)
CALL GMMATD(QI,3 ,3,0,T2,3q3,0,Q2)
CALL GMiMATD(TEMPOR,3, 3t,0 2,3,3,0,K32)
CALL.GMMATD (03t2,3,2, f i,3,2,1, Qi)
CALL GMM1ATO (01,3,3,6u, 3,3,3,0,02)
CALL GMMATO (TEMPOR,3, 3,.0 ,02,3,3,3 ,I33)

4 0 GO TO(5'3 U,6d0g700),Ip
C GENERATE THE MAIN EXPRESSION

5L0 CONTINUE
TEMPOR(l) =A fig1) *T
00 5331 1=1,3
D0 5411 J=1,3

Figure 15 - Stiffness Matrix Subroutine, S ample Problem 1-Continued
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501 Ki1( I,J)=TEMPORC1)*K1i(IJ)
DO 50J2 I=193
0O 5C2 J=193

502 K<12 (IJ) =TEMPOR( 1)*Ki2 (I J)
00 503 1=1,3
DO 5113 J=193

503 K13 (IJ)TEt1POR(i)*K13CIJ)
GO TO .800

600 CONTINUE
TEMPOP (1) =A(1,1)*
DO 601 I=193
00 601 J=19,3

601 K21 (IJ)=TFMPOR(1)*K21(IJ)
DO 6C2 I=193
DO 662 J=103

6C2 K22 (I,J) =TFMPOR(1)*K(22(IJ)
DO 153 I19,3
DO 6iJ3 J=193

6C3 K23(I,J)=TEMPOR(1)*K213CIJ)
GO TO 830L

700 CONTINUE
TEMPOR(1)=A(1,1)*T
0O 701 I=19,3
00 7'^1 J=193

DO 7 ý.F? 1=1,93
0O 762 J=193

702 K32(IJ)=TEMPOR(1)*K32(IJ)
00 7C3 I=1,3
DO 7ý*3 J1I,3

7C3 K33 (I,J)=TEMPOR(1)*K37(IJ)
800 CONT INUE"

C INSERT STIFFNES3 PARTITION
DO 801. 1 =1, 3
TMP0P1 (I) =1<1(1,1)
TMPOP ( 1+6)=K11( I,?)

8 01 TMPOR1 (I+12) =KII(I,3)
CALL SMA1B(TMPO-Rl,NGrI0(1) ,-1,IFKGG99.00)
IF(IOFT'+.EO. 0.OR.GSU~3E.E-Q..-.)GO TO 832
TEMPO'-)(1)=GSU93E
CALL SHt41OCTMPOR1,NGRID(1) ,-1,IF4GG,TEMPOR)
KL.GrSW= I

802 CONT INUC-
no 163 1=1,3
T4POP1 (I)=KI2 (I,1)
TMOPO1 (I+o) = KI 2I,?-)

Figure 15 -Stiffness Matrix Subroutine, Sample Problem 1--Continued
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803 TMPOR 1(+12) =K12 (1,3)
CALL SMAiB(TMPORiNGRID(?) ,-1,IFKGG0,0D0)
IF(IOPT4.EQ. 0.OR.GSU4E.EQe.o.)GO TO 804.
TEMPOR( 1)=GSUBE
CALL SMAiB(TMPORiNGRIO(2),-iIF4GGTEMPOR)
K4GGSW~i

804 CONTINUE
DO 805 1=1,3
TMPOR1 (I)=K13(I, 1)
TMPOR1(1+6)=KI3 (I2)

805 TMPOR1 (1+12)=KI3 (1,3)
CALL SMA1B(TMPORiNGRIO(3) ,-1,IFKGG,9.0O)
IF(IOPT4.EQ.o0.OR*GSU83E.E0.0. )GO TO 806
TEMPOR(1 )=GSUBE
CALL SMAIR(TMPORINGRID(3) ,-1,IF4GGTEMPOR)
K4GGSW~i

806 CONTINUE
RETURN
E ND

Figure 15 -Stiffness Matrix Subroutine, Sample Problem i--Continued
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BEGIN MASS
COMMENT SURPACKET A

COMMENT MASS MATRIX MATRIX EQUATION
MIJ
'COMMENT SU9PACKET 3A
ýCOMMENT BEGIN LISTING OF MASS MATRIX PACKET VARIABLES
*XMASS, ,,

'Mi 93,9 3, TE RM
,M2293, 3,
.M33,3, 39TERM
DEFINITIONS PINISHED
.COM1MENT SU'3PACKET C
uCOMME NT PARTITIONS M12,Mi3,M,1023,M3iAND M32 ARE IDENTICALLY ZERO
.XMASS
191qA*(RH3*T4PMU)/3.
.M1

I, 1,XMASS (i,1)
.2,2,XMASS (14)
3,3,XMASS (1,1)
M22
191, XM ASS (1,1.)
2, 2tX"ASS:(1,1.)
3, 39XMASS (1,1)
M 33
lqlXMASS (141)
,2 ,qX11ASS( 1,1)

39,3, XMASS (1, 1)
END MASS PAC<ET

Figure 16 -Mass Matrix Packet, Sample Problem 1
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MASS PACKET FORTRAN COOING

SUB3ROUTINE MLEM40
DOUBLE PRECISION QiQ2,Q3,Q4,Q5,Q6,Q7,Q8,Q9,PIDETERMTEMPORTMPOR
1iXMASSV12, XLV12,V13 ,XIIXKKiXLVi3,XX2,YY3,AMIIMI2,MI3,r.1iM2i
i,031,Mi2,M220M320130 230M33
DIMENSION ECPT(i)
DIMENSION TMPORi (36)
DIMENSION XYZi(i,3)qXVZ2(i,3)qXYZ3(i,3)
DIMENSION M11(3,3),M12(3,3),M13(3,3) ,M21(3,3),M22(3,3),M23(393) ,M3

li(39 3) 9M32(3,3) ,M33(3,3)
COMMON / MATI N/MA TI0, I NFL AG, ELTEMP, STRESSsrINTH,9COSTH/SMA21OOUMI (i

10),IFMGGIGMGGIFB3GGOUM2(23)/SMA2CL/IOPT4,BGGINO,NPVTtoUM3(157)/S
IMA2ET/NECPT(i),NG-RID(3),TH,MATID1,TFMU,IDIX1,YiZiIf2,X2,Y2,Z2,
I I03,9X3,Y39 73 9DLMV( 30)/SMA20P/I 9JqIS, IP,11,129PI figi) ,rEMPOR(9) DET
IEPM,01(9) ,Q2 (9) ,03(9),Q4 (9) ,QS(9) ,06(9),07(g9) Q8 (9),Q9(9) ,XMASS(i,
ii),Vi2(1,3),XLV12(i,1),V13(1,3),XII(i1,3),XKKi(193),XLVi3(i,1),XX2(
lii~i) YY3(1, 1) ,A(1,1) ,INDX (4,3),MII(3 ,33,MI2 (3,3),MI3 (393)/MATOUT/G
111,G12,G13,G22,PG23,G33,RHOALPHA1,ALPHA2,ALP12,TSUB0,GSUBE,SIGTEN,
I.SIGO OM, SIGSHE
EQUIVALENCE (ECPTNECPT)
EQUIVALENCE (X1,XYZI1(1)) ,(X2,XYZ2(1,1) ) ,(X3,XYZ3(i,1) )
EQUIVALENCE (M11(1,1) ,MII(1,1)),(M12(1,1),MI2(1ifl,)(M13(1,i),PMI3(

DATA TMPOPi/36*J .j9~)/
PI(1i) =3.14i592E&5
INFLAG?2
D0 1 IP=i,3
IF(NGP',I0(IP) .EQ.rNPVT)GO TO 2

1 CONTINUET
CALL MESAGE(-30q34qE0PT(1))

2 CONTINUE
CALL VLEM40O
MATID=MaTID1
ELTEMP=DUMV (1)

CALL MAT (NECPT ()I
V12 ( 1,1 )=X2- Xi
V12 ( 1, 2) =Y2-Yi
V12(1,3)=Z2-Zi
XLV121,oQ(v1,1)=SRTV2(g)*?+V12tit2)**2+Vi2(1,3)**2)
V13 ( 1,1) =X3- Xi
V13 (1,t2) =Y3-YI
V13 ( 1, 3) =Z3- Z1

XII( 1,3) =V12 (1,3 )/XLV12 ( 1,1)

Figure 17 - Mass Matrix Subroutine,, Sample Problem 1
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XLV13ý(191)=DSQRT (XKKi.(igi)**2+XKKiti,2)**#2+XKKi(193)**2)
XX2 (It,1) =XLV12 (1, 1)
YY3 ( 191)=XLV13(Iti)
A (1,1) =.5* XX2 (1,1)*~Y 3(1,1)-
XMASS(1,1)=A (i,1)*(RHO*T+FMU)/3.
GO TO(1(1C,2OO,3jU)qIP

c GE-NE R4TE TH'-- MAIN VAPIVrILE
IJO CONTINUE

MU (1,1)=XMASS (1,1)
Mit (1,2)=L *J
M11(193) =0.9
Mit (2,1) =0.*
Mit (2,2)=XMASS (1,1)
Mu. (2,3) =t * 0
M11( 3,1) =6.0
M 11 ( 3,2 )=1.,. 0
M~it(3,3)=XMASS (1,1)
0 0 Ut1 1=1,3
D0 101 J=it3

it-1 M12 (I,J)=0.0
0O 1022 I=1,3
DO 1-`2 J=1, 3

102 M13(IJ)=u.3
GO TO 0 4+C'.

200 CONTINUE
00 201 I=1, 3
DO 2j1 J=193

201 M21 (I19J ) =,3 .
M22 (1i,1I) =XMASS (1,1)
M?22(1,2) = ý *

M22 (1,3) =J *ý.

M22 (2,1.) = *.

M2? ( 2, 2) =XMASS (1,1)
M 2?, ( 2,3) =j) .
M22 (3,1) =' *
M22 (3,?)='6.^
M22(3,3)=XMASS(1q1)
DO 2 C2 I1=1 ,3
0O ?-!2 J=1,3

2[ 2 M23 (1, J) =6.J0
GO TO 4C'L

3CO CONTINUE
DO 3'W1 I=1,3
00 3ul J=193

301 M31(I,J)=C.1
00 3-'12 1=1,3
00 31"2 J=1,3

Figure 17 - Mass Matrix Subroutine, Sample Problem 1--Continued
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302 M32(IJ)=0-0
M33(1,1) =XMASS,(i91)
M33 (1,2) =0.0
M33 (i,3)=0.0
M33 (291) =0. 0
M33 (2,2) =XMASS (191)
M33(2,3) =0.0
M33 (3,1) :0.0
M33 (392 ) =0.
M33 (3,3) =XMASS (1,1)

C NO EXPRESSION-MAIN VARIAI3LE IS MAIN EXPRESSION

400 CONTINUE
C INSERT MASS PARTITION

D0 401 I:1,3
TMPOR1(I)=MIi(Iq, )
TMPORi(I+6)=M11(I92)

401 TMPORi(I+i2)=MI1 (I,3)
CALL SMA2B(TMPORiNGRID(1),1i,IFMGG,OOO0)
00 402 I=193
TMPORI(I)=MI2(I, 1)
TMPOR1 (I+6)=MI2 (1,2)

402 TMPOR1(I+i2)=M12(I,3)
CALL SMA2B(TMPORINGRID(2)9 ,-,IFMGG9,0.1.C)
00 433 I:1,3
TM0 OR1( I)=MI3(I, 1)
TMPOR1(14-6)=MI3(1,3)

463 TMPOR1(I+i2)MI3 (1,3)
CALL SMA2B(TMPOR1,NiG.ID(3),-iIFMGG,0.D0)
RETURN
END

Figure 17 -Mass Matrix Subroutine, Sample Problem 1---Continued
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3EGIN THERMAL LOADING
2 , PPI
COMMENT THERMAL LOADING EQUATION
A*T*PPI*TBAR
ALPHV,3,1,TEqM
TR. AP,
PPI,3, ,EOUA
DEFINITIONS FINISHED
ALPHV
I, 1,ALPHAI
2,1,ALPHA?
3,I, AL P12
T BAP
1,1,(TTI(1)+TTI(2)+TTI(3))/3.-TSUBO
COMMENT ALPHAi,ALPHA2,ALPI2,TSU3O COME FROM COMMON MATOUT

COiMENT TTI 13 THE VECTOR OF GRID POINT TEMPERATURES
PPI
TR (TII) *F1* TP(C I ) G*ALPHV

END THERMAL LOADING

Figure 18 - Thermal Loading Packet, Sample Problem 1
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THERMALLOADING PACKET FORTRAN CODING

SUBROUTINE M40(TTI,PG)
REAL GTiT2,T3, V12,TBARALPHVXLVI2,Vi3,XIIXKKiXLV13,XKKXJJEi
1,XX2,XX3,YY3,ACiC2,C3,PP1,PP2,PP3
DIMENSION ECPT(i),PG(1),TTI(1)
DIMENSION TMPORit36)
DIMENSION XYZ1(i,3) ,XYZ2 (i,3) ,XYZ3(1q3)
COMMON /MATIN/?4ATIDINFLAGELTEMP,STRESSSINTHCOSTH/TRIMEX/NECPT(

ii) ,NGtRID(3) ,THMATIDiTFMU,IDiXiYiZi,1D2,X2,Y2,Z2,1D3,X3,Y3,Z3
,oDUMV(80)/EDTSP/iJIsIPI1,12,PI(1,1),TEMPOR(9),DETERtI,Q1(9),02(

1),T3 (3,3) Vi2(1, 3) ,TBAR(,it) ,ALPHV(1,3) ,XLVi2(1,i) ,V13(1,3) XII(i,
13),XKK1(1,3),XLV13(i,1),)(KK(193),XJJ(1,3)i,Ei(2,3),XX2(igi)i,XX3(i,1
1) ,YY3(i1) ,A (1,1) ,C1(2,3) C2 (2,3) ,C3 (2,3) ,INDX (4,3) PPI(193) ,PP2 (1
1 ,3) ,PP3(1,3) /MATOUT/G1iG12,G13,G22,G23,G33,RHOALPHAiALPHA2,ALPI
12, TSUB0 ,GSUBE, SI GTEN, SIGCOM, SIGSH-E
EQUIVALENCE (EC0 TNECPT)
EQUIVALENCE (X1,XY;!1(1,1)),(X2,XYZ2(,ifld)gX3,XYZ3(1,1))
DATA TMPORI/36*0.0/
PH 1,1)=3.14i59265
INFL AG=2
MATID=MATID1
ELTEMP=DUMV (i)
SINTH=SIN(PI (1,1)/180 .4TH)
COST H=COS (P1(1,1)/180 .*TH)
CALL MAT(NECPT(1))
G (191) =Gi1
G(19 2)=r,12
G (2,91) =G12
G (1, 3 )G13
G ( 3, 1)=G13
G (2 , 2) =(22
G (2,9 3)=G23
G(3, 2) =G23
G (3,9 3) G33
CALL TRAN(IO1,Ti)
CALL TRAN(1029T2)
CALL TRAN(103,T3)
V12 (1,1) =X2-Xi
V12( 1,2) =Y2-Y1
V12 (1,3)=Z2-Zi

C FOLLOWING CARD CHANGED TO REFLECT PACKET PRECISION

V13 ( 1,1) =X3-X1
V13 (1,#2)=Y3-Y1
V13 ( It3) =Z3-ZI
XII( 1q1) ":V12 (1, 1)/XLVi2 ( 1,1)
XII(1-,2)=V12(1,2)/XLV12(1v1)

Figure 19 -Thermal Loading Subroutine, Sample Problem 1
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(KKi (1, 2)=XII(1, 3) *V13(1,1)-XIIti,1i) V13 (1,3)
XKKi (1, 3)XII(i, i)*V13(i,2)-XII(i,2)#V13 (1, 1)

C FOLLOWING CARD CHANGEr) TO REFLECT PACKET PRECISION

XKK( 1,1) XKKi(1, 1)/XLVI3 (1,1)

XJJ (1,?) ZXKK (193)*)II (1, 1)-XII (1,3) XKK (1,3)

El (I,1) =XII( (1,1A)

EI(I,2)=XII(iq2)

E1(2 21) =XJJ ( 1,2)

El ( 2,3) =XJJ ( 1,3)
XX? (I,I)=XLV12 (1.4)
CALL GIMMATS (V13,3,1,1,XTT,3,1,0,XX3)
YY'3Ci9I)XLVI3(I,1)

Cl (1.9,1) =-I ./ XX'2 (1It.I

Cl (1,2) =C.*J
CI (1 ,3)=l./YY3 (i,1)*(X>\3 (1,Jj/XX.?(i, 1)-i.)
Cl (2,1)=C .0

C2 (1II) =-C1 (1I,1)
C2(I,?)=L .0

C2(l,3) =-.XX2 (1,1)/X2,1Y311

C2 (1.,21) =C2 (1 3
C3 (1.,? ) = I ./ 2( 91

C3(l,3)=l./YY3(1.,1)
C3 (2,1)=Lý .0
C,3(2,2)=C3(l.,3)

ALPHV(I,2)=ALPHý2
ALPHV(1.93) =ALPI2

C GENERATE THE MAIN V4RIARLE
CALL GMMATSTIT,7 ,3,t,E1.,3,2,u,0I)
CALL C-MfIATS 11, 3,2,CvC1, 3,2, 1,Q2)
CALL GMMATS )(02, 3,3, , ~G, 3,3,3,03)
CALL GM1IAT- (Q3 ,3,3,J, ALC)LV, 3,1.j, iPP91
CALL CMIIAT-)(T2,.3,3,1,F1, 3,2,3,01)vi

Figure 19 - Thermal Loading Subroutine, Sample Problem 1-Continued
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CALL GMMATS(Q1,3,?,OC2, 3v2vlQ2)
CALL GMMATS (Q2,3,3,GsGv3v3,0 ,Q3)
CALL GMMATS(Q3,3,3,0, ALPHV,3,1,0,PP2)
CALL GMMATS(T3,3 ,3,1vEi,3,290,Q1)
CALL GMMATSMQI3 ,2,0,C3,3,2, 1,2)
CALL GMMATS (Q2, 3,3,0, G,3, 3,0,3)
CALL GMMATS(Q3, 3,3,OALPHV,3,i,0,PP3)

C GENERATE THE MAIN EXPRESSION
TEMPOR(1)=A (i,1) T
DO ± I=1,3

I 01( )=TEMPOR (1 )PPI (1,1)
D0 ? 1=1,3

2 PP1(1,I)=TBAR(1, 1)*01 (I)
0O 3 1=i,3

3 Qi(I)=TEMPOR(1)*PP2(1,I)
0O 4 1=1,3

4 PP2(1,I)=TBAR(1, 1)*Q1(I)
00 5 1=1,3

5 01(1 )=TEMPOR (1) *PP3 (i,1)
00 6 I=193

6 PP3(1,I)=TBAR(1,1)*Qi (I)
C INSERT THERMALLOADING PARTITION

D0 7 I=193
7 TMPORI(I)=PPI(i,I)

00 8 11,96
L=NGRIO (1)+I-1

8 PG(L)=PG(L)+TMPOR1(I)
DO 9 I19,3

9 TMPOP~fI)=PP2TiI)
DO 10 I=196

L=NGRIO (2)+I-I
10 PG(L)=PG(L) +TMPOR1(I)

DO It. I=193
11 TMPOR1(I)=PP3(1, I)

00 12 1=1,6
L=NGRIO (3) +I-I

12 PG(L)=PG(L)4TMPOR1(I)
RETURN
E NO

Figure 19 -Thermal Loading Subroutine, Sample Problem 1-Continued
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3 LGIN STPRSS
2, 35
CO4MENT 35 WORDS WILL BE PASSED INTO THE STRESS AND FORCE
COMMENT CALCULATION PACKET--THE 35 WORDS ARE
COMMENT ELE'AENT IT(1),GRID POINTS(3),TSUBO(1),SR1(3 X 3 =9),

-COMMENT S92(3 X 3 =9) ,S'33(3 X 3 =9),AND ST(3 X 1 =3}
-TSU93 ,, 919 S'29, S?3 , ST
Sfl,3, 3, EQUA
SB2,3,3,E9)UA
S B3,3, 3, ,F' U A

ALPHV, 3v, 1 TE'>M
ST,3,1,EQUA"
0•FINITIONS FINTSHCD
S R1

(-*C2*TR(E!)*T23•3?

S 33
I C3*TR(E I )•T3

ALPHV

I, 1, AL P4A!
7,v1, ALPHA2
3,1,ALP12
3 T

-,G*ALPHV
END ST R- S S

Figure 20 - Stress Matrix Packet, Sample Problem 1
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STRESS PACKET FORTRAN COOING

SUBROUTINE SEL4Oi
REAL GTiT2,T3, SBiSB2, sR3,SrALPHV,V12,XLV12,v13,XIIvXKKi, XLVi3,

1XKK, XJJ,EiXX2,XX3,YY3,CiC2,C3
DIMENSION ECPT(i) ,GRI~t1)
DIMENSION XYZi(1,3),XYZ2(i,3),XYZ3(i,3),SB1(3,3) ,SB2(393),SB3(3,3)

1 9ST(1,3)
COMMON /MATIN/MATIOINFLAGELTEMPSTRESSSINTHCOSTH/SDR2X5/NECPT (

1i),NGRID(3)9THMATIDiTFMUI~iX1,YiZi,102,X2,Y2,Z2,103,X3,Y3,Z3
1,DUMV(80),PHiOUT(300)/SDR2X6/IJISIPI1,12,PI(±,i),TEMPOR(9),DET

11(393),T2(3,3),T3(3,3),ALPHV(1,3),V12(i,3),XLVi2(1,ii),V13(1,3),XII
i(i,3),XKKi(1,P3hXLVi3(i,9 ),XKK(i,3),PXJJ(i,3),pEl(2,3),XX2(1,1),PXX3(
i1,i),YY3(1,1),tCi(293),C2(2,3),C3(2,3),INDX(4,3)/MATOUT/GIIGi2,G13
1,G22,G23,G33,RHOALPHAI,ALPHA2,ALPi2,TSUB0,GSUBESIGTENSIGCOMSIG
I. S HE
EQUIVALENCE (ECPTNECPT)
EQUIVALENCE (GRI~oNGRIO)
EQUIVALENCE (XiXYZI(igi)) ,(X2,XYZ2(i,1) ) ,(X3,XYZ3(1,i))
EQUIVALENCE (PHIOUT(Fi),SR1C1,1)) ,(PHiOUT (15) ,SB2(i,1)), (PH1OUT(24)

1,St33(1,i)), (PHIOUT(33),ST(igi))
PHIOUT (1)=ECPT(1.)
DO I. I=193

1 PHIOUT (I+1) =GRID (I)
PI(i,1)=3.14159265
INFLAG=2
MATIO=MATIDI
ELTE Mc) DUMV ( 1)

COST H=COS(PI(1,Pt)/10i.*TH)
CALL MAT(NECPTti))

G(1, 2)=G12
G(29 1) =G12
G(1, 3)=G13
G ( 3, 1)=G13
G (2, 2) =G22
G(?, 3) =G23
G (3,2) =G23
G (3,93) =G33
PHIO UT ( 5) =TSUr3O
CALL TRANSS(ID1,Ti)
CALL TRANSS(I02,T2)
CALL TRANSS(ID3,T3)
V12( 1,1)=X2-X1
V12 (1,2) =Y2-Y1
Vi? (1,3)=Z2-Z1

Figure 21 - Stress Matrix Subroutine, Sample Problem 1
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C FOLLONING, CARD CHANGED TO REFLECT PACKET PRECISION

V13 (1qI)=X3-Xi
V13 ( 192) =Y3-YI
V13 (1,7)=Z3-ZI
XII ( It1)=V12 (1,1)/XLV12 (1,1)
XII(1,2l)=V12(t,2ý)/XLV'I2(1,i)
XII (1,3) =V1?(1, ) /XLVI2 (1,1I)

C FOLLOWING CARD CHArJGEO TO REFLECT PACKET PRECISION

XKK(1,1)=XKKiA't,1)/XLV13(1,1)

E1K(1q2)=XII (1,2)/XV31I

Ei(i 1,=)XIKI (,3)*XI13-I(,)XKi3

E,-)1(,3)=XJJ(1,1)*Il,ý)XI11XKit2

EI1(2,2) :XJJ(1,2)

X(2 ( 19,1) =XLV 12 (1,1)
CALL GMMATS(V13, 3,1,1 ,XII,3,1,0,XX3)
Y'(3 (1,!)=XLV13 (i ,1)
011 (, 1) = -1. XX2 ( 1, 1)
C1(1 ,?) = .0

C1 (2,1) =0U0
C I (2 ,2 j CI 1 ,3
CI f 2,t3) =01 (1,1)
C2 (t ,0 ) =-C1 (1 ,1)
c'-- (1I, ?) =~ U- .

C2 (2,1)=D.0
C2(2,21)=C2(1,3)
C2 (2 , 3) = 1 .1)(VX2 ( 1. , 1)
C3 (1,1)=j.*U
C3 (1,92) = 0 .J
C 3 1,3) =i./YY3(i,1)

C3(2,?)=C3U,3

A L PH V (1 , 1) = A LP H! A2

ALPHV(1, 3)=ALPI2

Figure 21 - Stress Matrix Subroutine, Sample Problem 1-Continued

162



CALL GMMATS (G,3,j3,OvC±, 3,2,,Qj)
CALL GMMATS (Qi93,2, 3,EI#3,2,i,Q2)
CALL GMMATS(Q2,3,3,OTl,3,3, OSBI)
CALL GMMATS (Gs3, 39 OC 2 3 92,o0,qQI)
CALL GMMATS (Q±,3,2,0,El,3,2t±,Q2)
CALL G'I1MATS (Q29,39390 , T29 3s,39 0OS02)
CALL GMMATS (G,3, 3,0,03, 3,2,O90
CALL GMMATSCQi93 ,2, 0,El, 3 s2,1Q2)
CALL GMMATS(Q2, 3 ,3,qT3, 3,3,0,583)
CALL GMMATSCG,3, 390,ALPHVj3,iOQI)
00 2 1=1,3

2 ST 191,) =-Qi 1)
RETURN
END

Figure 21 -Stress Matrix Subroutine, Sample Problem 1--Continued
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BEGIN STRESS ANO FORCE
9, 9,C, 0
COMMENT 8 STRESS WORDS WILL BE OUTPUT --- THESE ARE
COMMENT ELEMENT ID (i),SIG(3 X I =3),THETA(i),SIGPi(i),
COMMENT SIGP?(1),AND TAU(1)
SIGINSERT A,T HFTA ,INSERT BSIGPISIGP2,TAU
SIG,1, 3i EQUA
S A V, i, 1,DEFER
TAU, , , TERM
SIGPI, ,,TERM
SIGP2,,,TERM
THFTA, ,1,TERM
DEFINITIONS FINISHEO
SIG
COMMENT HZEE DISPJ IS THE 3 X 1 TRANSLATION VECTOR FOR GRID POINT J
COIMENT TEM0 IS ELEMENT TEMPERATURE
S i*nDISPI+SB? DISP2+S33DISP3+ST{(TEMP-TSUBO)
TA U
, SORT ( (SAV ( pl, )12o ) * 2+
S I G(It3) 2)

IS i G PI
1.,1, (313S(1. ,1) ÷S IS (1,2 ) /2.*+ TA' (1,1i)

SI GP2
1,1, (SIG{I.,I)+STG(1,2))/2.-TAU(I,l)

INSEQT A
SAV ( 1t)"I '(1,1) -SIG (2, 1)
IF(A'3S(SAV(1,1)) .LT. .E-15.ANO. ABS(2. SIG(3,1) .LT. .E-15)GO TO 9C

i0 1

IF(AFS(SAV(1,1)).LT.I.E-15)GO TO 9100
DEFINTTIONS FI NISHE0
THEiT!
I,I,AT,,N(2'.*SI,(1, 3)/SAV(1,1-))*28.64789

INSERT ,3
GO TO 920,

93. 6 THETA(t,,)=1 2 .
GO TO 92'1

91L THITA (T,1)= 4.
92U10 CONT INUE
7FINITIONS FINISH-D

END STRESS ýND FOPrE-

Figure 22 - Stress and Force Calculation Packet, Sample Problem 1
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STRESSANDFORCE PACKET FORTRAN CODING

SUBROUTINE SEL402
REAL SIG,9THETA qSIGPi, SIGP2, TAUSAV
DIMENSION NGRID (3),9STRESS (8)
DIMENSION XYZI(1,3),XYZ2(1,3) ,XYZ3(1,3) ,SBI(3,3) ,S82(3,3) ,SB3(3,3)

1 ,ST(1,3)
DIMENSION SIG(3,1),THIETA(Iil),SIGP1(1,1) ,SIGP2(igi),TAtJ(1,1)
COMMON/SOR2XX/Z (1)/SOR2X4/DUM (35) , VEC, IVECNTEMPDEFORM/SDR2X7/PH
1iOUT(200)9FORVEC(i00)/S0R2X8/IJIS,IPI,12,PI(1,j),TEMPOR(9),DET

13),OISP2(1,3),OISP3(i,3),SAV(iIboINDX(493)
EQUIVALENCE (NPH1OUPHIOUT),(NGRID(t),PHIOUT(2)),(STRESS(i),PH±OUT

1 (101))
EQUIVALENCE (X1,XYZi(1,i)),(X2,XYZ2(i,1)),(X3,KYZ3(1,1))
EQUIVALENCE (PHiOUTt6),Sr31(1,1)),(PHiOUT(i5),SB2(i,1)),,(PHiOUT(24)

iSB3(1,1))i,(PHIOUT(33),ST(ii,1))
EQUIVALENCE (PHIOUT(102),SIG(1,1)),(PHiOUT(105),THETA(t,1fl,(PHIOU

IT (106) ,SIGPi(1,1)) ,(PHiOUT (107) ,SIGP2(i,1)) ,(PHiOUT(i08) ,TAU (11) )
EQUIVALENCE (PHiOUT(5),TSUB3)
PHiOUT (101)=PHIOUT (1)
PHiOUT t201) =PH1OUT(i)
IP=IVEC+NGRID(i) -1
J=IP+2
00 1 T=IPJ

IS I -IP+ i
i OISPi(1,IS)=Z(I)

IP=IVEC+NGRID(2) -i
J=IP+2
DO 2 IIlPj
IS=I-IP+1

2 DISP2(i,IS)=Z(I)
IP=IVEC+NGRIO(3) -1
J=IP+2
D0 3 I=IPJ
IS1I-IP+1

3 DISP3 (1,5)=Z( I)
PI(1 Uo) =3.141513265
CALL GMMATS(SB1, 3,3,0 ,OISPi93,i,0901)
CALL GMN1ATS(SB2, 3,3,G0flISP2,3,1,0,Q2)
00 4 1=1,3

4 Q3(I)QOI(I) +Q2(I)
CALL GMMATS (SB3,3,3,0,DISP3,3,1t,0,QL)
D0 5 1:1,3

5 Q5(I) =Q3 (I) +Q4(I)
Q6( i)=TEMP-TSUBO
00 6 1=i,3

6 Q7(I)=Q6 (1)*ST(ivI)
-0O 7 1=,3

Figure 23 - Stress and Force Calculation Subroutine, Sample Problem 1
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7 tIG (I,iD)=Q5 (ID+Q7 (1)
SAV ( it1 0 SIG (it I )-SIG (21, D)
IF(ABS(SAV(i,1)) .LT.1.E-i5.ANO.ABS(2.*SIG(3,i))oLToi.E-15)GO TO 90

IF(ABS(SAV(1,iflLTo1.E-15)GO TO 9100
THETA(i,1)=ATAN(2o*SIG(391)/SAV(igi~))28.64789
GO TO 9200

9000 THETA (19 )0=0
GO TO 9200

9100 THETA (,19)=4r).
9200 CONTINUE

SIGP2rI.1)=(SIGC1i,i)+SIG(2,1))/2.-TAU(i,1)

RETURN

ENO

Figure 23 -Stress and Force Calculation Subroutine, Sample
Problem 1-Continued
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BEGIN OUTPUT
STRESS

COMMENT WE ARE DEFINING FORMATS FOR SORTiREAL OUTPUT
COMMENT NEW HEADING FORMATS ARE 240,220,AND 225
115C,24, 09,220,-1,225
COMMENT THE FOLLOWING ARE THE I VALUES FOR THE FORMAT PIECES
1,74',-4,3J, -33,39,-4,30,-33,3J,-4,39,-33,39, $
-33,30,0
COMMENT WE WILL NOW SPECIFY THE NEW FORMAT HEADINGS
24C
(4fX,51HE L E M E N T S T R E S S E S F 0 R E L E M 4 a
220

(XT7HELEMENT)
225
(3X,3HID.,9X,6HSIG(,1)1OX,6HSIG(2),1iX,6HSIG(3),1IX,5HTHETA,$
11X,5HSIGil, i1X,5HSIGP2,12X,3HTAU)

COMMENT WE WILL NOW SPECIFY THE NEW FORMAT PIECES
74
1 X,17
33
IPEII. 4, OPF5. 1, 3X
-33

* 39
jPEtj*49UPF..1, 3X
DEFINITIONS FINISHED
'O9MENT ACCOR'ING TO THE STRESS AND FORCE CALCULATION PACKET
COMMENT 8 VALUES WILL BE OUTPUT, THE FIRST BEING THE ELEMNT ID
COMMENT COMIINING THE SPECIFIED FORMAT PIECES,ADDING IN THE APPROPRIATE
COMMENT COMMAS,AND THE 13EGINNING AND ENDING PARENTHESES(WHICH NASTPAN
%OMMENT DOES) WE SET
COMMENT (iX, I,5X, IPE1I. ,5X, iPEII.4,5XlPEII.4,5X, iPEII.4,5X,lPEil.4,
,O;1MENT 5X,DEEii. 4,5XiPELi.4)

END OUTPUT
INPUT FINISHED

Figure 24 - Output Packet, Sample Problem 1
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OUTPUT PACKET

BLOCK DATA
COM11ON/OFPCOM/NOELEMIPOINT(24),10FP2(144),IOFPI(250),10FP5(300),I

I PTFPi (24) /HE DCOM/ISTNO(3,9120 ),9IFRMTS (5000),I 1FMT( 180)
DATA NOELEM/38/
DATA IPOINT, IOFP2,IOFPi, IOFP5,IPTFPiISTNOIFRMTSIFMT/i1O2*0,5i80

I~i0H/
.DATA IOFP2(19) ,IOFP2(20) ,IDFP2(2i),IOFP2(22),,IOFP2(23),IOFP2(24)/i
1i50, 240, 0,220,-i ,225f
DATA IPOINT(4)/571/
DATA ISrNOti,ib) ,ISTNO(29i6) ,ISTNO(3,16)/240,6,334/
DATA IFRMTS(334)/iOH(40X,5iHE /,1FRMTS(335)/1OHL E M E N /,IFRMTS(

1336)/IOHT S T R E/,IFRMTS(337)/iOH S S E S /9IFRMTS(338)/iOHF 0
iREL/,IFRMTS(S39)/i0tl E M 4 0 )

DATA ISTNO(1,17)/O/
DATA ISJTNO(i,18) ,ISTNO(2,i8) ,ISTNO(3,18) /220,2,340/
DATA IFRMTS(34C)/IOH~iX,7HELEM/,tFFMTS(341)/I0HENT)/
DATA ISTND(1,i9)/-I/
DATA ISTNO(1,20) ,ISTNO(2,203) ISTNO(3,20)/225,1O,342/
DATA IFRMTS(342) /iOH(3X,3HI0.,/,IFRMTS(343)/iOH9X,6HSIG(I/,IFRMTS(

13L.4)/IOIH),iOX,6HSI/,IFRMTS(345)/iOHG(2),iOX,o6/,IFRMTS(346)/iOHHSIG
i(3),ii/,IFRMTS(347)/ICHX,5HTHETA,/,IFPMTS(348)/iOHIIX,5HSTGP/,IFRM
ITS(349)/iDHiIiX,5HSI/,IFRMTS(350)/IOHGP2,12X,3H/,IFRMTS(35i)/iOHT
LAW)
DATA IPTFPI(4)/I/
DATA IOFPIC1)/!/
DATA I0FPi(2),IOFP5(i3,IOFP5(2) ,IOFP5 (3) ,IDFP5(4),IOFP5(5) ,IDFP5(6

DATA IOFPI(3)/-4./
DATA IOFPI(4),IOFP5(7),IOFP5(8),IOFP5(9),IDFP5(10),IOFP5(ii) ,IOFP5

LI.CH/
DATA IJFPI(5),IOFP5(13),IDFP5(14),IDFP5(i5),IOFP5(i6),tOFP5(17),IO

iFP5(18)/2*-33,1JH5X ,1OH ,iOH ,10H
I 910H/
DATA IOFPI(6),IOFP5(i9),IDFP5(2O),IDFP5(21),IOFP5(22),IOPP5(23),IO

IFP5(24)/2*39,p1JH ,LOH iPEI1.4,1OHOPF8.i,3X ,IOH
I I~CH/
DATA IOFP1(7)/-L+/
DATA IOFPI(8)/30/
DATA IOFPI(9)/-33/
DfT A I0F~PI(iC)/30l/
DATA TOFPi(11)/-4/
DATA IOFPI(12)/ 3q/
DATA IOFPI(13)/-33/
DATA IOFPi(14)/3'9/
DATA IOFPI(15)/-33/
DATA IOFPI(16)/30/
DATA IOFPI(17)/3,/
ENO

Figure 25 -Output Packet BLOCK DATA Subprogram,
Sample Problem 1
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IPARAM = i
PACKET VARIABLES = 90
ELEM5O,8,iO,9389,3,o,121
JOI, ANGLE, JO?
BEGIN STIFFNESS
2, KIJ
KIJ
INSERT COMMON A
INSERT EQUIVALENCE A
INSERT A
XX, 8,3 EQUA
INSERT B
PT ,2,i TERM
DK Xti 1,9i TERM
DKY~i, iTERM
DKZ919 1 1,TERM
DN~i, 3 TERM
DNA,3, 8,TERM
DNB,3 , 8, TE RM
ONC,3,P8,TERM
DNO,3, 8,TERM
ONE,3, 8,TERM
DNF,93, 8, TERM
DNG, 3,8,TERM
ONH,3, 89TERM
KXq,iqGOMM
KY, 1, 1COMM
KZ,1,1 ,CflMM
DNLA, 3,8,EQUA~
OETA,, ,EQUA
ONLB, 3 98,9EQUA
DETB,, ,EQ'JA
DNLC,3 ,89EQUA
DETC9,,,EQUA
DNLD93,8, EQUA
DETO9,, EOUA
DNLE93 ,89EQUA
DETE,, ,EQUA
DNLF , 3 98, EQUA
DETF, , ,EQUA
DNLG,3 ,8,EQUA
OETG,, ,EQUA
OJNLH9 398,E QUA
DETH9,, EQUA
I3TA,1, 3,TERM
9Tf3,1, 39TERM
BTC,i, 39TERM
RTD,1,9 3, TERM
BTE,1i, 39 TERM
BTF,1, 3,TERM
;BTG,i, 3,rE-RM
F3TH,1, 3,TERM
SAVEA,9 1, 8, EQUA

Figure 26 - Preliminary Data Packet and Stiffness
Matrix Packet, Sample Problem 2
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SAVEB, 198, EQUA
SAVEC 91, 3, EQUA
S.AVEI, 1.,8, EQUA
SAVEE, 1., 3,P EQUA
SAVEFt1,8, EOUA
SAVEG, 1,3, FQUA
SAVEH, 1, 8, EQUA
SUMi9,1T,
SUM29,,,TFRM
SUM3,9,,TFRM
SUM49,, TERM
SUM5, , ,TERM
SUM6,, ,TERM
SUM79,, TERM
S U MS, 8,TERM

, 99EQUA

QEFINITIONS FINISHED
INSERT COMMON A

DIMENSION I Z(
DIMENSION TA(9),TOFF(3)
DIMENSION XXI(3) ,XX2(3),XX3(3),PXX4(3),XX5(3) ,XX6(3)
DIMENSION XX7(3),XX8(3)
COMMON /SYSTEM/OUMM(36),ISOP
COMMON /SMAlX/ZC1)
COMMON /SMA1'3K/ICSTM, NCSTM

DEFINITIONS FINISHED
INSERT EQUIVALENCE A

EQUIVALENCE (Z,IZ)
DEFI NI TIONS FIN ISHED
1NSEPT A

IF(ISOP.E0.-1)CALL MESAGE(-30,154,ECPT(i))
IF(JOI.EQ.J4)rGO TO 1065
IF(NCSTM.EQ.3)GO TO ioil.
00 IC2J I=1,NCSTM,14
I I= I C ST M+ I
IF(JOI.NE.IZ(IJJ))GO TO 1J00
IF(IZ(14-1).EQ.I)GO TO 1030
GO TO IJ20

10 ý- CONTINJE
1C10 CALL MESAGE(-30,259IDi)
1C20 CALL MESAGE(-30,t55,ID1)
1636 DO 1049J J=1 99

l1= I+4+J

DO 105J J=1,3
I1=I+1s-J

1650 TO Fr'(J) =Z I i
DO 11'60 1=1,3

XXC"( I)=XYZ21(i1,)-TOFF(I)

XX'.(I)=XYZ4(1,I)-TOFF(I)

Figure 26 - Preliminary Data Packet and Stiffness

Matrix Packet, Sample Problem 2--Continued
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XX5 ( 1) =XYZ5 (itI) -TOFF Q)
XX6( I) =XYZ6(i, 1)-TOFFtI)

1860 XX8 (I) =XYZ8 (i, I) -TOFF( I)
CALL GMMATD(TA,3,3,±,XX1,3,±,0,XXc±,±))
CALL GM'IATD TA,3,3,±,XX2,3, 1,8,XX(1,2))
CALL GMMATD(TA,3,3,1,XX3,3,±,CXX(1.,3) )
CALL GMMATD(TA,3,3,iXX4,3, i,0,XX(1,4))
CALL GMMATO (TA,3 ,3,1,XXS,3, i,0,XX(±,5))
CALL GMMATO(TA,3,3,1,XX6,3,1,0,XX(±,6~)
CALL GMMATO(rA,3,3,1,XX7,3,i9a9XX(1,7))
CALL GMMATO(TA,3 ,3,iXX8.3,i,0,XX(1,8))
GO TO 1070

J065 CONTINUE
DEFINITIONS FINISHED

ROW I IXYZ1I
ROW 2,XYZ2
ROW 3,XYZ3
ROW 4,XYZL.
ROW 5,XYZE3
ROW 69XVZ6
ROW 7,XYZ7
ROW 89XYZB
INSERT B
1070 CONTINUE

DEFINITIONS FINISHED
PT
1, 1,-).577 35)27DO
2, 1,-PT( 1,1)

OKY

DKZ
±91 1O
ON
1, 1,0.*125D0*'(1.!J)+PT (1,P1) )*

DNA
19 1 -D Nt I, 2)
2,9 1-) N (01 4 2)
3,91, -n N( 1 2)
1i,2 , +ON ( 1 2)

2, 2,ON(1,3)
3, 2v-DN(1, 3)
1,39+ON(1, 3)
2t3,-DN(1, 1)
3, 39+DN(1, 3)
1,94,9-D N (I, 3)
2,94,-D N( I, 3)
.3, 4, + N (, 2)

Figure 26 - Preliminary Data Packet apd Stiffness

Matrix Packet, Sample Problem 2-Continued
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1,5,-DN(i, 3)
2, 59+DN(1, 2)
3, 5,-DN - , 3)
l96,+ONI1,3)
2,6,+DN(1,3)
2,6,-ON!I, 3)

29,7 ,+DN i, 1.)
2,7,+ON(l, 1)

3, 7,+DN( ,I )
1,98,-ON(1, 1)
2,8,+ON(1,3)
3,8 +DN N, 3)
DNB
1, 1,-DNI, 3)
2,1,-DN(l 3)
3,1,- D N(1, 2)
1,92,9+ODN(1,9 3)
2, 2,9- D N I, 1 )
3,2,-DN(i,3)
1,3,+DN(i,2)
2, 3,-DN( , 3)
3, 3,+DN( , 3)
i.,4,-DN 1, 2)
2,4,-DNCI, 2)
3,4,+DN(1,2)
i 5,-DN(1, 1)
2,5, +'DN(1, 3)
3,5 ,- N i, 3)
i,6,+DN(1,1)
2,6,+DN(I, I)
3, 6,-DN(i, 1)

2, 7,+DN(1, 3)

3,7,+DNt, 1)
t, 8,-ONN1, 3)
2, 8,+DN(I, 2)
3,,8,+DN( 1,3)
0 NC
1,1,-DN(1,$3)
2,1 -DN I, 2)
3,1 -ON(I, 3)
1,2, +DN(1,3)
2,2 -DN(i, 3)
3,2 2-DNI 1,)
1,3 +0N(I, 1)
2,3 3,-DN, 1)
3,3 3+DN(i, 1)
1, 4,-4 Ni, I)
2,+4,-0N I, 3)
3, 4,+DN(1, 3)

Figure 26 - Preliminary Data Packet and Stiffness

Matrix Packet, Sample Problem 2-Continued
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1, 5,-+GNU, 2)19 5,-ON(i,9 2)
3,5,-0N(I, 2)
3,6,+DNt0N 2)

2, 6,+DN(i, 3)
39 6,-DN( 1 3)
1 7,+DN(1, 3)
2 7,+DN(i1i)
3, 7,+ON( I 3)
i 8,-DN(i, 3)
2,8,+DN(i 3)
3,8,+DN(i,2)
DND
1,1,-GNU., 1)
21, i-DN{1q3)
2,i,-DN(i, 3)
3,91, -ODN (1, 3)
1, 2, +DN(1, 1)
2,2,-DN(1, 1)
392,-ON (1, 1)
1, 3, +DN(1, 3)
2t 3,-DNN 1,3)
3,3,+DN(1, 1)
1,4,-ON(i, 3)
2,4 -DN(1, 2)
3t4,+DN(1 3)
1,5,-f0 N(l 3)
2,5,+ON(i, 3)
3,5,-0N(1 2)
1,6,+DN 1,3)
2, b,+DN(,I 1)
3,6,-DNU, 3)
1,7,+DN (1 2)
2,7,+DN(i 3)
3, 7,+DN(1 ,3)
1,8,-GNU,?2)
2, 89+-N( 1 2)

3,8,÷+ NIt 2)
9NE
1,1,-ONU, 2)
2,1,-DN(1, 3)
2 , 1 , - 0 N (1I, 3)3, 1,-ON!l 13)

1,2, +0 N (I t2)
2,2,-GN1, 2)

3,2,-DN(i 2)
1, 3,+DN(1 3)
2,3,- DN(, 3)
3,3,+0N(i, 2)
1,4,-fN ( 3)
2,4,-0lN(1, 1)
2, 4 , - D N ( 1 , 3 )3949+0N(19 3)

Figure 26 - Preliminary Data Packet and Stiffness
Matrix Packet, Sample Problem 2-Continued
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1,5,-DN 1i 3)2,5,÷DN(i,3)

3, 5,-DNl, i)
1 ,69+DN(I , 3)
2, 6,+D N(1, 2)
3,6,-DN( 1 3)
1,9,+DN(1,i)
2, 7,+DNtI , 3)
3, 7,+DN(j, 3)
1., 8,-DN(, i1)
2, 8, +ON(i, 1)
3,8,+DNUj 1)
DNF
1, 1-DN 1, 3)2,i,-DNlj, 1)

3,1,-DN 1 3)
1,2,+DN(1,3)
2, 2,-DNI, 13)
3,2,-DN(1,2)
1, 3,+DN( 1, 2)
2,3,-DNti,21
3 , 3, + D N ( I, 2)
1,4,-ON(1, 2)
2, 4,- DN (1 3)
"3,4, +0 Nt, 3)
"i,5,-DN(1, 1)
•2,5,÷DN(1, 1)"3, 5,-DN, 1)
15,6,+DN(1,1)
.3,6,-DN{1, 3)

t 1,7,+ON{Ij,3)
L2, 7,+ON{ , 2)
3, 7,+0N(1, 3)
., 8,-DN 1, 3)

'2, 8,+7 N1, 3)
,3,8,÷DN(1,3)
II,9-DN(1,,3)

2, 1,-DN(1, 3)

3, 1,-DN(i,1)
1,2,ODN(1,3)

2, 2, -D0N( 1, 2)
3,2,-DN(I, 3)
1,3,+DN(., 1)
2,3,-DN0(, 3)
3,3,+DN(1,3)
1,4,-DN(1, 1)
2,4,-0N(I, I)
3, 4,+flN+ 0 1,t
1, 5,-lD N CI, 2)
2, 5, +DN 1, 3)
3,5,-DN(1,3)

Figure 26 - Preliminary Data Packet and Stiffness

Matrix Packet, Sample Problem 2-Continued
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i96,+ON(i, 2)
2,6,+DN(i19 2)
3,6,-ON~i, 2)
It 7,+ON(1., 3)
2 97,9+D0N ( 1 3)
3, 7,+DNfi, 2)
1 , 8,9- DN (1, 3)
2, 8,+ON(i, 1)
3, 8,+DN'Ii,3)

2, 1,-DN(19 , )

39 1, -DNCI19 1)
iq2,+DN(i, I)
2,2,-DN(I, 3)
3, 2,-ONE 1,3)
1,3,+DN(1, 3)
2 , 3 , - N 1 9 2)
3 ,3,9+ 0N(1, 3)
1 ,4,-'JN( 1, 3)
2,94 ,- DN (II, 3)
3, 4, +0N(1, 1)
1 5 , - DN (i9 3)
2,5,+DN(1, 1)
395,-DN(i, 3)
1,6,+ 0N I , 3)
2 , 6,+DN(A1., 3)
3, 6,-ON~i , 2)
1 , 7,v+ 0Nj 1, 2 )
2, 79+ D N I , 2)
3, 7, +0N (1,?)
1, 8 , - N ( I, 2)
2, 8,+ON(i, 3)
3,8,+DN(1, 3)
ONLA

I NV (DN A*XX )*D 9NA

DETERM
ONLO3
INV(DNB*XX) #DNB
DETB
DETERM.
ONLC
INV (DNC*XX) *ONC,
OETC
DETERM
ONLO
INV (DND*XX )*DN0
OETD
OETERM
ONLE

Figure 26 -Preliminary Data Packet and Stiffness
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INV (DNE*XX )'DNE
OETE
DETERM
ONLF
INV(ONF*XX ) DNF
DETF
DETERM
ONLG
INV (DNG*XX( )'ONG
OETG
DETERM
DNLH
INV(DNH*XX)*DNH
DETH
DETERM
BTtA
iqiDKX(ivi)#DNLA(ivIP)

i,2,DKY(1,1)*DNLA(2,IP)
1, 3,DKZ(i 1,) #DNLA ( 3, EP)
BTC

1, 2,DKY(i, 1) *DNLC (2 ,IP)

B3TE
1, iDKX(1, 1)*DNLE iqIP)
1,2,DKY(iq1)ODNLE(2,IP)
1,3,DKZ~i,1)*DNLE(3,IP)
F3 T F

1.,i1,DKX(1, 1) !ThL (i, IP)
1, 2,DKY(1, 1)*ONLG (2, IP)

BTE
1,1, D<X( 1, 1) *NLH (1,IP)
1, 2,OKY(1, 1) *DNLH (2, IP)

193,K#ON i)*NLEETIP

t3T F~NB# T
SAVEC iq)DNF1,P

Figure 26 - Preliminary Data Pace) n tfns

Matrix ace,DK Samp*Dle role 2Cotiue
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13T C*DNLC* E TC
SAVEI
f3TD*DNLD*UJETD
SAVEE
LBTE*DNLE*OEr'E
3AVEF
f3TF*DNLF*OETF
SAVEG
BrG*DNLG*DErG
SAVEH
DTH*DNLH*DETH

SAVEA (1,1) +SAVFR(1,1) +SAVEC (1,1) +SAVEI (1,1)+SA VEE ( 1, )+SAVEF( 1, 13
3A VEG (1, 1) +54 E Hf1, 1)
S U M 2
19 1 9
'SAVEA(1,2) +SAVEB(1,2)+SAVEC(1,2)+S.AVEI (1,2)+SAVEEP(i,2) +SAVEF(1,?)+S
SA VEG C1, 2) +SA VFH(1,2)

SAVEA7(1,3ý)+SJAVEý3(1,3)+SAVEC(i,3)+SAVEI(1,3)+SAVEE(i,3)+SAVEF(1,3)+ý
S AVE G ( Iq3) +S AVE:H ( I, 3)
SU M4.

3-AVEA(1,4) +SAVEBR(1,4)+SAVEC(1,4)+SAVEI(1,'+)+SAVEE(1,4)+SAVEF(1,?4)+S
SA VE G (1, 4)+ S AVE H( 1 94)
S UM 5E

SAVEACi,5) +SAVEBý(1,5) +SAVEC(1,5)+SAVE-I (1,5)+SAVEE:-(1,5)+SAVEF(i,5)+$'.
S AVEG,( I, 5) +S A V:H (1 , 5

S AVE A (1,6) +SAVEfl(1,6) +SAVEC (1,6) +SAVEI (1,6) +SAVEE (1, 6) +34VEFC 1,6)$

S U M1 7

3AVEt,7)+S4VEq'(1,7)+SAVEC(i,7)+SAVEI(1,7)+SAVEE(1,p7)+SAVEF(1,7) +$
SA VEG; 1, 7) +3 VFTHU , 7)

'SaVEA(1,8)+3.4VEO(i,8)+SAVEC(i,8)+SAVEI(1,8)+S-'AVEE(1,8)+SAVEF(1,3)+Fý

S U MJ
%JQ0 STIFFNESS
LNPUT FINISHEEJ

Figure 26 -Preliminary Data Packet and Stiffness
Matrix Packet, Sample Problem 2-Continued
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STIFFNESS PACKET FORTRAN COOING

SU3ROUTINE KLEM50
DOUBLE PRECISION Qi,Q2,Q3,v.,Q5,Q6,07,QB ,Q9,PI ,OETERMTEMPORTMPOR

IiiXX 9PT ,DKX,9DKYIDKZ9DNDN AONRONCD NDO NE, DNF,DNGgDNH,DNL A, DETA9 O
1 NLB, DETF3,DNLC,DETCDNLD, DETD,ONLEOETE,DNLF,DETFDNLG,DETGONLHDE
iTHBTA,BTBF3TC,BT03TTEBTFBTGBTH,SAVEASAVE8,SAVEC,SAVEI,SAVEE,S
IAVEF,SAVEGSAVEH,SUMISUM2,SUM3,SUML4,SUM5,SUM6,SUM7,SU!18,KI1,KI2,K

i,K42,K52,K62,K72,K82,K13,K23,K33,K43,K53,K63,K73,K83,K14,K2L4,K34,K
144,K54,K64,K74,K84,K15,K25,K35,KL45,K55,K65,K75,K85,K16,K26,K36,oK46
iK56,K66,K76,KB6,K17,K27,K37,K47,K57,K67,K77,K87,Ki8,K28,K38,K48,K
158, K68,K789,K88
DIMENSION ECPT(1)
DIMENSION TMPOR1 (36)
DIMENSION Q4(6L+) Q5(64),06(6'.),Q7(64),r)8t64),O9(64),PXYZi(1,3),XYZ2

IXXC3 ,8),PT(1,2),OKX (1,1) ,OKY(1,1) ,DKZ (11) ,DN(3, 1) DNA(893) ,DNB (8,
13) ,DNC 8,3) ,DND(8,3), ONE (8, 3) ,DNF(8, 3) ,DNG(8 ,3) ,ONH(893) ,ONLA(8,3)
1,DETAI, 1) ,DNLB( 3,3) , ETB(i,1) ,DNLC,(8,p3) ,DETC(li, ) ,NLD(8, 3) ,DETD(
11,1) ,DNLE (8 ,3) ,DETE (1,1) ,NLF(3,3) ,DETF (1,1) ,DNLG(8, 3) ,OETG(1, 1)9

IF(3,i),BTG(3,l),r3TH(3I1),SAVEA(8,i),SAVEB(8,1),SAVEC(8,i),SAVEI(8,
ii) ,SAVEE C8,1),SAVEF (8,1),SAVEG(8,i) ,SAVEH(8, 1) ,SUMI(ii) ,SUM2(ili)
1,SUM3{lDgSUML+(1,1),SUM5(1,i),SUM6(i,1),SUM7(1,1),SuM8(1,1),INOX(

1) ,KI8(1,1)
DI1ME N'SION I Z( 1)
DIMENSION TA(9),TOFF(3)
DIMENSION XXI (3) ,XX2(3),XX3(3),XXL+(3),XX5(3),XX6(3)
DIMENSION XX7(3),XXB(3)
C OM MON / SYS TEM/ 0UM4( 3 6) , I SOP
COMMON /SMAIX/Z(1)
COMMON /SMAI3K/ICSTM, NCSTM
DIMENSION K11(i, 1) KI2(1 l) ,K13(1,l) ,KI4(I,l) ,K15 (li),K16 (1,1) K1

17(1,1) ,Kl8 (1,1),K21(igi) ,K22 (1,1),K23 (1 1) ,K24.(1,l) ,K25(i, i) K26(I
1,i),K27(1,iIK28(i,1),K31(,it),K32(l,1),K33(1,1),K34(1,1),K35(1,i)
1,K35(lIiK37(il, ) K38(I,l) ,K41(i,1) ,K42 (1, 1) K43(l,1),K4L+(1,l) K4
15(I,l),K46(1,1),K47(i,1),KL+8(1,i),K31(il,),K52(lgl),K53(i,1),K54(i

1,K6L4 (1, 1) K65(l,1) ,K66(1,l) ,K67 (1,1),K68 (1 1) ,K71(1, 1) K72 (1,1) K7
13(l,1),K74(i,l),K75(i,i),K76(1,1),oK77(1,1),K78(1,1l),K81t11i),PK82(I
1,1),K83(1,l) ,K84+(1,1) ,K8 (1,1) ,K36 (1,) ,K87 (1,1),K8B(i, 1)
COMMON /MATIN/MATID, INFLAG,E-LTEMP,STPESSSINTH,COSTH/SMA1IO/OUMI( 1

10) ,IFKGG,ODUM2(l) ,IFL+-GG',DUM3(23)ISMAICL/IOPTL,,K4GGSW,NPVTISMAiETINE
ICPTUl,Nr7 RI10c5,J01,ANGL%:-J0)2,MATID1,Iol,XI,Y1,Zl,ID2,OX2,Y2,Z2,1o3

Figure 27 - Stiffness Matrix Subroutine and BLOCK
DATA Subprograms, Sample Problem 2
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j,9X3,)Y39Z39,104, X4 9Y49Z49 I05,X5,Y5,9Z59,106,X6,Y6,Z6,ID7,XTY7,Z7qI08,
jX8,Y8,Z8,OUMV(55)/SMAIDP/IJISIPIl,12,PI(1,1) ,TEMPOR(614),OETERM
I,Qi(64),Q2(64),Q3(6L.)/MATOUT/Glioi,2,G13,G22,G23,G33,RHOALPHAiAL
IPHA2,ALPi2,TSUBOGSUBESIGTEN,SIGCOMSIGSHE
EQUIVALENCE (ECPTNECPT)
EQUIVALENCE (XiXYZi(1,lfl, CX2,XYZ2(1,1)),(X3,XYZ3(1,1)) ,(XL4,XYZ4(

i190jj) 9(X59,XYZ5 Ai, )1 (X6,XYZ6(i,l) ) ,(X79 XYZ7 (1, 1)) q(X89XYZ8(1,i))
EQUIVALENCE (K1(11(,.) ,KlI(1,1)),(Ki2(1,i),KI2(ioi)), (Ki3(igi),KI3(

l)(K2(,),KI2(1,1)),(K73(1,1),KI3(1,1)),(K74(1,1),K14ig)t(2(1,),(1(75

DATA i)TMPO1/6(l .>)Of6ii)(2tilgI(g),K2(g)K8i
EQUIVALENCE KI(Z,IZ))K3(ggK2i ))(311tI(g)9K4

IK7P1 )9(3(1,1) 3. Ii+ 159265Kl~ii),(42ig~gI2i
INFL AG:?K3ti),K4(g)K4(~),t4(~iI(ii)(
00 (1 P1),K8(g)gK71191(94))(4(g~K8ii)(5(

MAT I AJ.MTIPR/6 10110
ELTEMPVOULMVNC (1) IZ
PINTH'A.I)(=3.14159265 'ANLE

00 1 CO(P(1,)/=.ANLE
CALL MATD(IPE'QPT(1))(-OT

CAL(I-SOP.E (-3)AL MESG34,3Q,15,ECPT1)

E LJ0T EOMP= O TO ( 1)

00INTH=0I1NCSTM1,14/1.AGE
CO ISTM+CO(I(11/3.AGE
CALLJMAT.NE.I (I1) )G TOI0

IF(IZCI1).EQ.IZI)GO TO 1~3C

GO TO 102L
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1000 CONTINUE
1010 CALL MESAGE(-30,259rnl)
1020 CALL MESAGE(-30,155,IOi)
1030 00 104') Jj,99

II=I+4+J
1040 TA(J)=Z(I1)

0O 11550 J~i,3
II=I +1+J

1050 TOFF(J)=Z(I1)
DO 1660 1:1,3
XXi (I) =XYZI (iq,1) -TOFF (I )
XX? ( I)=XYZ2 (1,1) -T0FF (I )
XX3 ( I) :XYZ3 (1,1) -10FF (I )
XX4( I) = XYZ4 (I, I) -T10FF (I)
XX5 ( I)=XYZ5 (1,1) -10FF (I )
XX6 ( I) =XYZ6 ( 1 1 ) -10FF ( I)
XX7( I) =XYZ7 (1,1) -10OFF (I )

1060 XX8(I)=XYZ8sc1,)-rOFF(r)
CALL Gt1MA TO(TA,3,3,i,xXX1I, 391, J,jXX I1,1))
CALL GMNIATD ( TAv3 , 3,j, XX 2 , 3, 1, 2 , XX (t1,2) )
CALL GMMAT ( TA , 3 93 1 XX3, 3, 19 J 9XX (1,3) )
CALL GMMA1D(TA,3,3,j, XX4,3,1,jXX(1,4))
CALL GMMATO(TA,3,3,1,XX5,39,l,2XX (1,5))
CALL GtIMATO(TA,3,3,I,XXb,

3, 1,u,XX(1,6))
CALL GMMATD (TI,3,3, 1, XX7,3, 1,CjXX (1,7))
CALL GMMAIO (TA, 3,3,1, XX 8,3,1,0,XX 1, 8))
GO TO 1070

1065 CON4TINuE
DO 3 I=.",3

3 XX (I,j)=XYZ1(1, 1)
00 4 I=1,3

4 X X( I ,2) :XYZ2 (1, I)
00 5 I10,

5 XX (1,3)=XYZ3 (1,1)
DO 6 =1:,3

6 XX(i ,4) XYZ4 (1,1)
00 7 1 =I, 3

7 XX(I,5)=XYZ53(1,1)
DO 8 I=1,3

8 XX(I,6)=XYZ6(1,I)
DO 9 I1 3

9 XX(I,7)=XYZ7 (1,1)
00 10 I=1,3

10 Xy(I ,8)=XYZ8 (1,1)
1070 CONTINUE

P1(1,1) =-0.5 7735C2700
PT (1,2)=-P ( 1,1)
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DKX( 1,1)21.0
OKY( 191) =1.0
DKZ (1,1)=1.0

DN( 29j) =0o 125DO* (I. DO -PT (I1ti) ) *
DN\(3,1)=0.125D0' (1.00-PT~ii)(.3P~o)

DNA( (1,!) =-ON (2,1)
DNA (1,2) =-DN(2,1)
DNA ( 1, 3) =-ON (2, 1)
DNA (2,1) =+DN(2,1)
DNA ( 2,2) =-ON (3, 1)
DNA (2,3)=-ON (3,1)
DNA (13,1) =DN(3,1)
DNA (3,2) =-ON fit 1)
DNA( (3,3) =+ON (3,9 1)
DNA (4, 1) =-DN (3, 1)
DNA (4,2))=-DN (3,1)
DNA(493) =+ON (2v 1)
DNA ( 591) =-DN (3,91)
DNA (5,2 )=+ON (2,91)
DNA (5,3) =-DN (3,91)
DNA (6,1) =+DN(3,1)
D NA ( 6,92) = +ODN (3,91 )
DNA(6,3)=-ON (1,1)
DNA (79i)=+DN (1,11
DNA (7,?) =+DN (It1 1)
DNA ( 793) =+ON (1, 1)
DNA ( 8,1 ) =-DN U(91,)
DNA (8,2) =+DN (3,1)
DNA (8,3) =+DN (3,1)
ON3(1II)=-DN (3,1)
ONIB (1I,'?) =-rDN (3,9 1)
DN3( 1,3) =-ON(2,1)
DNB (2,1) =+DN (3, 1)

DN3 (2c,2) =-DN U, 1)
DNB (2,3) =-DN (3,1)
DNB(3vI3,) =+ON (2,91 )
DNB (3,2) =-DN (?,1)
ON8 ( 3,93) =+D N (3,91 )
DNB (4,1) =-DN(2,1)
DN,3(4,2) =-DN ( 2, 1)
D149( 4 ,3 ) =+DN (2,91)
DND (5,1) =-DN (1,1)
DN ( 5 ,?2) =+ON (3,91 )
DNB( 5q3) =-DN (3,1)
DNa (6, 1)=+DN (1,1)

DM8 (6,2) =+DN (1,1)I

DN9(6,3) =-DN (I1v1)
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ONS(7,1)'+DN (3,1)
ONB (792) -'+DN (3,1l)
ONB(7,3) =+ON (1,t)
ONB( 8,1)ý-DN (3,91 )
DN8( 8,2) =+DN (2,1)
DNB( 8,3) =+ON (3, 1 )
ONG (1,1)=-ON (3,91 )
DNC(1,2) =-ON (2,1)i
OJNC (1,3) =-ON (3,1)
0DN C(2,1) =+ON (3,q1)
ONG (2,92) =-ON (3,1)
ONG (2,3) =-ON (,1)
ONC (3,13 =+DN (1,1)
ONO ( 3,92 ) -DN (1,v1i)
ONG (3q3)=+DN (1,)
DM0 (4,1) =-DN (1,1)
ONC (4,,2) =-DN (3,91)
ONC (4 193 ) =+ON (3,91)
0MG (5,1) =-DN(2,1)
DNC (592 ) =+ON (2,1)
DNC (5,3) =-DN (2,1)
DNC (6,1) =+DN (2,1)
DNC ( 6 2 ) =+ON (3,vi)
DNC (6,3) =-ON (3,91)
ONG (7 ,1I) =+DN (3,91)
ONG ( 7,?2) = + DN (1,91)
DNC (7,3) =+DN (3,1)
DM0 '(8,1) =-DN (3,91.
ONC ( 8,92) =+DN (3,91)
ONC (8, 3)=+O N (2,1
DM0 ( 1,1I) =-ON (.1, 1)
DMIJ(1,2)=-ON (3,1)
OND (1,3)=-ON (3,1)
ONO (2,1) =+DN (1 91)
DN0 ( 2, 21=-ON (1,91)
DND ( 2,3) -DN (1,91)
OND (3,913 +ON (3,1.)
DMN0L ( 3 , 2)- 9 (3,1)
DOND(3,3) =+DN(1,1)
OND (4,1) =-DM(3,1)
OND (4,2) =-DN (2, 1)
DNO( 4,3) =+DN (3, 1)
OND(5tI)=-DN(3,i)
ON9(5,2)=+DN (3,13
OND (5,33 =-ON (2,1i)
DMO (6, 1) =+DN (3,91 )
DN0 (6 92 +D N (I1,1)
DN0 (6,3) =-ON (3,91)
ODM0(7q1)=+DN(2,1)
DM0 (792) =+DNM(3 , I)
DM0 ( 7,3) =+ON (3,1 )
ON ( 8, 1 )=-ON (2,1)
DM0 (892) =-OM(2 9 )
DM0 (8,3) =+DN (2,1)
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ONE (t1,) =-DN (2,P)
ONE(1,2) =-DN (31)
DNE (I,3)-ON(391)
DNE(2,i)=+DN (2,1)
ONE t2,2) =-DN (2,I)
ONE (2,3) =-DN 2 21)
ONE (3,1) =+DN (3, )
ONE (3,2) =-DN(3,1)
DNE(3,3)=÷DN(2,I)
DNE(41) =-DN (3, )
ONE (4,2) =-DN (i I)
DNE(4,3) =+ON (391)
ONE (5,1)=-DN(3,1)
ONE (5,2) =+0N (3 ,)
ONE (5 ,3) =-DN (i 1)
ONE (6,1) =+0N(3,1)
DNE (6,2)=DN(2,1)
ONE (6,3) =-DN (3 1)
DNE(7,1)=+DN (1 I)
ONE (7,2) =+DN (3,1)
DNE(7,3)=4DN (3,I)
ONE 8,1) =-DN (i ,)
ONE (8,2)=+DN(1 i)
DNE(8,3) =+DN (1,1)
DNF (1,1) =-ON (3 I)
ONFI,2)=-DN (I,1)
DNF(It3)=-DN (3 1)
DNF(2,1)=+DN(3,1)
ONF (2,2) =-DN (3 1)
ONF(2v3) =-ON (2 ,1)
DNF(3,1)=+DN(2,1)
DNF(3,2)=-DN (2 1)
DNF (3,3) =+DN (2 ,)
DNF(4,1) =-DN (2 1)
ONF(4,2)=-DN (3,1)
ONF ( 4,3) =+DN3 tI)
DNF (5,1) =-ON (1 1)
DNF(5,2)=÷DN (1,1)
DNF (5,3) =-DN (I 1)
DNF(6,1) =+DN (1,1 )
ONF (6,2) =+DN (3 1)
DNF (6,3) =-DN (3 1)
DNF (7,1) =+DN (3 ,)
DNF (7,2) =+DN (2, )
DNF (7,3) =+DN (3 1)
DNF(8,1) =-ON (3 i)
ONF (8,2) =+DN (3, )
DNF (8,3)=+DN(I 1)
ONG(1,i)=-DN (3 1)
ONG(1,2) =-ON (3 1)
ONG (1,3) =-ON(I (I)
ONG(2,1)=+DN (3,I)
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ONG(2, 3) =-ON (3,P1I)
ONG(3,i)=+DN (1,)
ONG( 3,92) -DN(3,i)
ONG ( 393) =+DN (3vI)
ONG ( 491 )=-DN (1,1 I)
0MG (4,2) =-DN (1,1)
DNG( 4,3) =+DN (1,)
DNG( 5,1):-DN (2,1)
DNG( 5,q2 )=+ON (3,91 )
DNG(5,,3)=-DN (3,1)
ONG, ( 6, 1) =+DN (2,91 )
ONG (6,2) =+DN (2,91 )
ONG ( 6,P3) =-ON (2,91)
ONG ( 7, 1) =+DN (3,91)
ONG,(7,2) =+DN (3,1)
ONG (7,13) =+D N (2,9 1 )
DNG(9,1) =-DN (3,1)
0MG (8,2) :+DN (1,1)
ONG ( 8, 3) = +DN (3,91 )
DNH(1,1)=-DN (1,1)
DNH (1,2)=-DN (1,)
DN11(1,3)=-DM (It1,)
DNH( 2, P1) =+D N (1,P1I)
ONH(2, 2 =-ON (3,1 I)
DNH(2,3)=-ON (3,1)
DM11(3,1) =+DN (3,1 )
DMH (3P2") =-DN (2,1)
DM11(3,o3) =+DN (3,1)
DNH( 4 9+ 1) =-DN (3,91 )
DNH(49.2)=-DN (3,1)

DNH (5,1)=-DN (3,1)
DM11(5,2) =+DN (1,1)
DNH(5t3) =-DN (3,1)
DM11(6,1) =+DM (3,1)
DM11(6,2)=fDN (3,1)
DM11(6,3) =-DN (2,1)
DM11(7,1) =+DN (2,1)
MH ( 7,P2 ) =+ON (2,91 )

DM11(7,3) =+DN (2,1)
DNH( 8,1) =-DN (2,1)
DNH( 8,2) =+DN (3, 1)
DNH( 893)=+DN(3,I)
CALL GIIMATO (DNA, 3,8,) ,XX ,8q3,0,QI)
IS=J
DO 11 I=193
00 It J=193
IS=IS+i
IJ=3*(J-i) +I
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1i Q2 (IS) =Q(IQJ)
CALL INVERD(3,Q2,3,Q2,O, OETERMIS,!NDX)
IF(IS9EQ.1)GO TO £2
CALL MESAGE(-30,£569ECPT(i))
CALL DUMP
STOP

£2 IS=O
DO 13 1=1,3
DO 1.3 J=i,3
IS=Is+i

£3 Q3(IS)=02(IJ)
CALL GMMATD(Q393,3,O, DNA93,8,OONLA)
DETA (1,1) =DETERM
CALL GMMATD(DNB,3,8,3 ,XX9,EI39uQj)

00 14 1=1,3
DO 14 J=103
IS=Is+i
IJ=3'*(J-I) +I

14 Q2(IS)=Qi(IJ)
CALL INVERO (3,Q2,3,Q2,), DETERM, ISINDX)
IF(IS.EQ.1)GO TO 15
CALL MESAGE(-30t156,ECPT (in
CALL DUMP
STOP

15 IS=O
0O 16 I=103
DO £6 J=i,3
Is=I s+1

16 Q3(IS)=02(IJ)
CALL GMMATO (03,3,3,3,ONB,3,8,09DNLB)
DETB (1,1) =OErERM
CALL GMMATD (ONCq3,8,J ,XX,8,3,J,01)
IS=O
D0 17 I~i1,3
00 17 J=193
Is=Is+1
IJ=3*(J-1) +I

17 Q2(IS)=Qi(IJ)
CALL INVERD (3,Q2,3,Q?,O ,JETERMISINDX)
IF(IS.EQ.1)GO TO 18
CALL MESAGE(-30,156,EC.PT (1))
CALL DUMP
STOP

18 IS=0
00 19 I=1,3
DO 19 J~i,3
Is=IS+i

Figure 27 - Stiffness Matrix Subroutine and BLOCK
DATA Subprograms, Sample Problem 2--Continued

185



i9 Q3(IS)=cQ2(IJ)
CALL GMMATD(Q3,3,3,o, ONC,3,18,O,ONLC)
DETO (It1) =DETER M
CALL GMMATD(OND,3,8,0 ,XX98,39,OQcj)

DO 20 11,93
DO 20 J=193
IS=IS4-1
IJ=3*(J-1) +1

20 Q2(IS)=Qi(IJ)
CALL INVERD (39Q,3029302 DDETERM, IS, INOX)
IF(IS*EQ.i)GO TO 21
CALL MESAGE(-30,156,ECPT (1))
CALL DUMP
STOP

21 IS=O
00 22 I=1,3
DO 22 J1,93
Is=Is+1
IJ=3* (J-1) +1

22 Q3(IS)=Q2IJ)
CALL GMMATD(Q3,3,3, JDND,3,89,C',ONLD)
DETD (1,1) =DE TERM
CALL GMMATD (ONE, 3,8,0 ,XX,8,3,0,oi)
IS=O
0O 23 I=1,3
D0 23 J=1,3
IS=Is+i
IJ=3*(J-1) +1

23 Q2(IS)=Q1(IJ)
CALL INVERD(3,O2,13,f2,0,DFT;ý7M, I3,INOX)
IF(IS.EQ.1)GO TO 2L4
CALL MESAGE(-30,156,RCPT (1))
CALL DUMP
STOP

24 IS=0
DO 25 I=1,3
DO 25 J=1,3
Is=Is-'+i

25 Q3 C'IS)=Q2(IJ)
CALL GMMATO (03,3 ,3,a, ONE,3,89,DNLE)
DETE (Ii)=OETERM
CALL GMMATO(DNF,3,8,o ,XX ,8,3,0qoi)

00 26 1--193
00 26 Jjt3
IS= I S4-1
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26 Q2(IS)=0t(IJ)
CALL INVEPO(3,Q2,3,Q2 ,jOETERMISINOX)
IF(IS.E'Q.1)GO TO 27
CALL MESAGE(-3Gqi56,ECPT(1fl
CALL DUMP
STOP

27 IS=O
DO 28 I=193
D0 23 J=1,3
IS=I3+l
IJ=3*(J-1) +I

28 Q3C1S)=Q2(IJ)
CALL GMMAT ('Q3,3 ,3,C,0ThF,31,9,GJNLF)
DETF (1,91)O=E TERM
CALL GMMATO (ONG, 3,3,,) XX,8,3,' 0tI)

00 29 I=193
DO 29 J=1,3

29 Q2(IS)=01(IJ)
CALL INVERD(3,Q2,3,Q2 ,,,OETERM,ISINJDX)
IF(IS.Eo.1)GO TO 3)
CALL MESAGF(-3fl,1jCPT-i)
CALL 9UMP
STOP

30 IS=QI
DO 31 1=1,3
00 31 J=193
13=I 3+1
IJ=3* U-i) +1

31 Q3(IS)=Q2(IJ)
CALL GMMATn (03,3,3,C,flNGr3,3,.ý,DNLG)
OETG (1, 1) DE"TERM
CALL CMM ATO DNH, 3,39,),XX, 8,3, , Ql)
Is=')
00 32 I=193
DO 32 J=193
13=I3+1
IJ=3*(J-1)+I

32 Q2(I13)01Q(IJ)
CALL IN'JERD (3,0?, 3,0? ,.ý ,DETERM, IS, INOX)
IF(IS.EQ.1)GO TO 33
CALL MESAGE(-73v1ý6t,%-GcT(I))
CALL IDUMP
STOP

33 IS=J
DO 34 I=1,3
DO 34+ J=1,3
13=13I+1
IJ=3* (J-1) +1
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34 Q3(IS)=Q2(IJ)
CALL GMMATD (Q3,3,3,ODNH,3,8,0,DNLH)
DETH (it 1)=DE TERM
BTA( 11) =DKX (1, i)*fNLA( PIP1)
BTA(2,1)=DKY(i,i)*DNLA(IP,2)
BTA.(3,i)=DKZ (1 1 )*ONLA( IP93)
BTEH1, i)=DK.X (i1, 1) *NLRV( I P 1)
BTB(2,1i)=DKY (it 1)*ONLB( IP92)
BTB3( 3,1)=0KZ (1, 1)*DNLB( I P, 3)

BTD (1,1)=DKX (1I. )*0NLO(IPqi)
BTD(2qI)=DKY(i,1)*DNLC(IP,2)
BTD (3, 1) =DKZ (1, I )*DNLD( I P,3)

BTF(1,i) =DKX(1,iI)*DNLF(IP,1)
BTF ( 2, 1) DKY (ItI) *DNLDFI IP,2)
BTF( 3,1) =DKZU(,1)*D!NLF( IP,#3)
BTG( 1,1)=DKX (1, 1)*NLE(IP,1)
BTG( 2,1) =0KY (1, 1) 0NLE( IP,?)
BT ( 391) =DK? (1, 1)*DNLE( IP93)
BTH( 1,1)=DKX (1, 1)*DNL H( PI,1)
BTH(2,1)=DKY (1,1)ONLH(IP,2)
BTHC 3,1) =DKZ (1,1) *DNLH( IP, 3)

CALLGMMAT)D(BTA, I)3,ONLA,3,IPQ)
DOG 35 1)=1,8 itI DN (I q3

35 AVE(I,1)=DETXt1,1)*DQ1(~i)
CALL GMMATDKY(BIB, 1,3,Ij,DNB38,,1

36SVBT(I, 1)=OEYB (1, 1 )*D P,1 3)
CALL GMMATD(6TC,1,3,O ,ONLC,3,8.,3,Q1)
DO 37' 1=1,8

37 SAVEC(I,1)=DETC(,iq)*O1 (I)
GALL GMMAT0U3TO, 1,3,ODNLO,3,8,DO1)
DO 36 1=1,8

38 SAVE 1(1,1) =DETD ( 1,1) *1( I)
CALL GMMATD (9TE, 1,3,G ONLE,3 ,8,OQi)
DO 39 I19,8

39 SAVEE(I, 1)=DETE (1,1)*01 iH)

CALL GMMATD (BTD,1,3,O DNLD,3,8,UQ01)
DO 31 I=1,8

41 SAVEI(Iq1)=DJETG C1i)*0I (I)
CALL GMMATD (9TH,1,3G,0 ,NLH,3,8,0,QI)

00 42 I=198
Fiur02 StVIiffnessMtrix SubroutineadLC

DATA Sb rorms, ample Prob900lem 2-Continue
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42 SAVEH(I,1)=DETH(i~i)*Qi( I)
SUMi(1,1)=SAVEA(iii)+SAVEB.(1,1)+SAVEC(itj),SAVEI(1,j.)+SAVEE(j,±,+S

IAVEF (i,1)+SAVEG(i,2J+SAVEH(1,1)
SUM2(1,1)=SAVEA(2,i)*SAVEB(29i)+SAVEC(2,±)+SAVEI(2,i)+SAVEE(2,1)+S

LAVEF (2,1) +SAVEG (2,i)+SAVEH(2,1)
SUM3(1,1)=SAVEA(3,1)+SAVEB(3,1).SAVEC(391)+SAVEI(3,1)+SAVEE(3,1)+S

I. AVEF (3, 1) +SAVEG (3,1) +SAVEH(3,i)
SUM4.(i,1)=SAVEA(4,1)+SAVEB(4,i)+SAVEC(L.,1)+SAVEI(4,i),SAVEE(4,±)+S

iAVEF (4vi)+SAVEG(4,1)+SAVEH(4,1)
SUM5(1,1)=SAVEA(5,1)+SAVEB(5,1)+SAVEC(5,1)+SAVEI(5,1)+SAVEE(5,1)+S

IAVEF(5,I)+SAVEG(591)+SAVEH(5,i)
SUM6(i,1)=SAVEA'(6,1)+SAVEB(6,i)+SAVEC(6,i)+SAVEI(6,±)+SAVEE(691)+S

IAVEF(6,1)+SAVEG(6,j)tSAVEH(6,i)
.SUt17(iti)=SAVEA(791)+SAVEB(7,i)+SAVEC(7,i)+SAVEI(7,j)+SAVEE(7,jj+.S

IAVEF (7, 1)+SAVEG(7,1J+SAVEH(7,i)
SUM8(1,1V=SAVEA(8,i)+SAVEB(8i,i)+SAVEC(8,l)+SAVEI(8,i)4SAVEE(B84).S

IAVEF (8,1) +SAVEG(8,1)+SAVEH(8,1)
GO TO( IOUJ200, 3069400 95009600,9700,980 0) ,IP

C GENERATE THE MAIN VARIABLE
100 CONTINUE

KlIi(,i)=SUMi(ivi)
1(12 (1,1) SU12(Ii, )
K(13(1,1)=~SUM3(1,1)
1(14(1,1) =SUM4(1, 1)
K15(1,1)=SUM5(1 I.)
K16(IqI) =SUM6(1, 1)
K(17 (1, 1) =SUM7( 1, 1)

GO TO 9100
200 CONTINUE

K21 ( 1, 1) =SUMI( I, 1)
1(22114t I) =SUM 2(, 1A )
K23 (i.P1=SUM3('1, 1)
K(24 ( 1,1) =SUM4 ( 1 1)
K25 (1,-P1) =SUrI5( 1,t1)
1(25(1,1)=SUM6(i, 1)
K(27 ( 1, 1) =SUM7 ( I, 1)

GO TO 90ý
300 CONTINUE

K(31(1,1) =SUMt1I,91)
K(32 C 1,1I) =SUM2 (i, 1)
1(33(1,1) =SUM3( 1,1)
1(34 (1,1)=SUM4(i, 1)
1(35 (I,1)=SUM5(1, 1)
1(36(1,1)=SUM6(1, 1)
1(37(1,1) =SUM7(1, 1)
K(38 (1,t1) =SU18 ( 1, 1)
GO TO 93C

Figure 27 - Stiffness Matrix Subroutine and BLOCK
DATA Subprograms, Sample Problem 2--Continued
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400 CONTINUE
K~i (1,-P1) =SUM it1I 1)
K42 (Iti) =SUM 2(19 1)

K44 ( 1,1) =SUM4(1, i)
1(45(1,1) =SUM5(1, 1)
K46 (191) =SUM6(i, 1)
K47(191)=SUM7(i, 1 )
K48 (1,1)=SUM8(1, 1)
GO TO 900

500 CONTINUE
KS1 (1,1 ) =SUM1(1, 1)
1(52(1,11 SUM2 (i,1I)
K53 1,1) :SUM3(l I,1)
K54 (i91)SU14(i, 1 )
1(55(1,1) =SUM5(1, 1)
K56 (1,1) SUM6(1, 1)
1(57(1,1) =SUM7(1 ,1)
K58 (1,1) =SUM8(1, 1)
GO TO 900

660 CONTINUE
1(61(1,1 ) =SUM1(1I, 1)
K62 (It 1) =SUM 2( 1, 1)
1(63 (1,1) =SUM3 (1, 1)
1(64(1,1) =SUM4(1, 1 )
K(65 11,1) =SUM5(1, 1)
K(66 (1,1 ) =SUM6( 1,1)
1(67(1,1) =SUM711, 1)
1(68 C1,1)=SUM8 (1,1)
GO TO 90Dq

700 CONTINUE
1(71(1,1) =SUM1(1, 1)
1(72(1,1) =SU42(1,1)
K73( 1,1) =SUM3( 1,1)
1(74(1,1)=SUM4(1, 1)
1(75(1,1)=SUM5(1, 1)
1(76( 1, j)SUM6 (1, 1)
1(77 (1,1)=SUM7(1q 1)
1(78(1,1) =SUM8( 1,1)
GO TO 9JO

800 CONTINUE
K81( 1, 1)=SUMi(1, 1)

1(83 (1,1) =SUM3 (1, 1)

1(84(1,1) =SUM4(1, 1)
1(85(1,1) =SUM5(1, 1)
1(86 C1t1) =SUM6( 1,1)
1(87(1,1) ='UM7 (1,1)
1(88(1,1)=SII8 (1, 1)

C NO EXPRESSION-MAIN VARIABLE IS MAIN EXPRESSION

Figure 27 - Stiffness Matrix Subroutine and BLOCK
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900 C6ONTINUE
C INSERT STIFFNESS PARTITION

TMPORI.(i)=KI(i(01
CALL SMAiB(TMPORiNGRIO(i) ,-1,IFKGG,0.O0)
IF(IOPT4.EQ. 0.OR.GSUBE. EQ.0o.)GO TO 901
TEMPOR( )'=GSUBE
CALL SMAiB(TMPORiNGRIO(1) ,-iIF4GGTEMPOR)
K4GGSW1l

901 CONTINUE

CALL SMAiB(TMPOR1,N4GRIO(2),-1,IFKGG,0.O0)
IF(IOPT4.EQ.0.OR.GSUBE. EQ. .) GO TO 902
TEMPOR(i)=GSUBE
CALL SMA1B(TMPORi,NG.RIO(2) ,-1,IF4GG,TEMPOR)
K4GGSW=l

902 CONTINUE
TMPORi(i)=KI3(1, j
CALL SMAIB(TMPOR1,NGRIO(3) ,-i,IFKGG,0.O0)
IF(IOPT4.EQ. 0.OR.Gý3IUrE.EQ.3. )GO TO 9G3
TEMP OR(1) =GSUBE
CALL SMAiB(TMPOR1,NGRID(3),-1,IF4GG,TEMPOR)
KI.GGSW~l

903 CONTINUE
TMPOR1i()=K14(i, 1
CALL 3JMAiB(TMPORiNGRID(4),-1,IFKGGC.DO)
IF(IOPT4.E.O..OR.GSU)BE.EQ.J. )GO TO 904
TEMPO!R( ) =GSU3E
CALL SMAI8(TMPO~1,NGRIO(4),-1,IF4GGTEMPOR)
K4GGSW1i

9C4 CONTINUE
TMPOR1(i)=KI5(i, 1)
CALL SMA1B(TMPOR1,NGRIO (5) ,-1,IFKGG,0.D0)
IF(IOPT4.EQ. O.OR.G3U93E.EQ.J.)GO TO 905
TEMPOR (1) GSUBE
CALL SMA1B(TMPOR1,NGRID(5) ,-iIF4GGTEMPOR)
K4GGSW=i

905 CONTINUE
TMPOR1(1)=KI6(1, 1)
CALL SMA1P(TMPOR1,NGRID(6) ,-1,IFKGGO.00)
IF(IOPT4.EQ.0.OR.GSU'3E. EQ.0. ) O TO 906
TEMPORC1)=GSUBE
CALL SMAIB(TMPOR1,NGRID(6),-iIF4GGTEMPOR)
K4GGSW:I.

9C6 CONTINUE
TMPOR1 (i)=KI7(i, 1
CALL SMAJB(TMPOR1,NGRIO(7),-1,IFKGGC.O0)
IF(IOPT4.EQ. 0.OR.GSURIE.E).O. )GO TO 9C7
TEMPOR(1) :GSUBF
CALL SMAIB(TMPORiNGRID(7) ,-IIF4GGTEMPOR)
K4GGSW=1

Figure 27 - Stiffness Matrix Subroutine and BLOCK
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907 CONTINUE
TMPORtiJ=KI8( It 1)
CALL SMAIB(TMPOR1,NGRIO(8) ,-iIFKGG90.00)
IF(IOPT4.EQ. O.OR.GSU81E.EQ.a. )GO TO 908
TEMPOR(1)=GSUBE
CALL SMAIB(TMPORI.,NGRID)(R9),1.,IF4GGTEMPOR)
KL.GGSW~i

908 CONTINUE
RETU RN
END

PRELIMINARY PACKET FORTRAN CODING

BLOCK DATA
COMMON/IFPCOM/NOELEM,IAPFLG(24),IRANOS(48),IFX7PT(24),IFX7SQ(384)/

i IFSC OM/ NLEM,9 IF SN (24)
DATA NOELEM, IAPFLG,,NLEM/.38,22*O,O,0,38/
DATA IRANOS/44*09162O9,4/
DATA I F X7PT /22~ *~ Inv82, IV
DATA IFX7SO/1,i, 1,1,igi,1,igi,1,2,,1,137Ii*/
DATA IFSN/22*0,13,t)/
E NO
BLOCK DATA
CO MM ON / GPTC OM/ NOE LEM ,ND0ATC N(12) , NDA TPR(12) 9 NGRD PT (12),INODSC A(12),

iNWOEST (12) ,IFSTPT(12)
DATA NOELEM/38/
DATA NOATCN/11i%,13/
DATA NOATPR/12.*Q,0/
DATA NGRDPT/11i0,8/
DATA INDSCA/11'590/
DATA NWDESI/ijjO,46/
DATA IFSTPT/1i1J ,2/
END
BLOCK DATA
COMMON /EDSC OM/N OEL'TýMND ATCN (12),NGRDPT (12)
DATA NOELEM/38/
DATA NOATCN/11*0,13/
DATA NGRDPT/i1*9,8/
END
BLOCK DATA
COM MON/EDOTC OM/ NO ELE M 9NW 0EST (12) ,N GRDPT (12)
DATA NOELEM/38/
DATA NWDEST/11*O,46/
DATA NGRDPT/ii*J,8/
E NO

Figure 27 - Stiffness Matrix Subroutine and BLOCK
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BLOCK DATA
COMMON /SMICOM/NOELEM9NWOEST(12)
DATA NOELEM/38/
DATA NWOEST/ii*0946/
END
BLOCK DATA
COMMON /SM200M/NOELEMNWOEST(12)
DATA NOELEM/38/
DATA NWDEST/i1*0,46/
END
BLOCK DATA
COMMON /SDRCOM/NOELEM,NWDESTti2hvNGRDPT(i2),NWDSTM(i2),NWDSTR(i2),

INWDFOR(i2),NPTSTR(12),NPTFO'R(12)
DATA NOELEM/38/
DATA NWDEST/11*3,46/
DATA NGRDPT/ii*O,8f
DATA NWDSTM/ii*OO/
DATA NWDSTR/ii'OO/
DATA NWDFOR/ii*a90f
DATA NPTSTR/iI#UO/
DATA NPTFOR/ii*G9Of
END

Figure 27 - Stiffness Matrix Subroutine and BLOCK
DATA Subprograms, Sample Problem 2--Continued
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