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Abstract

We consider the robust optimal control of a law of large numbers
approximation of a stochastic network. The robust control problem is
formulated as a di®erential game, with one player choosing the policies
that determine service and routing assignments, and the other choosing
quantities such as the arrival and service rates, subject to constraints.
The cost to be minimized by the ¯rst player and maximized by the
second is the time till the origin is reached. An explicit formula is given
for the value function, and some of its basic properties are studied.

1 Introduction

This paper considers the problem of robust service and routing control for
a network of servers. Consider such a network, and assume that at each
station there are a ¯nite number of distinct customer classes, each with its
own bu®er. In this paper we will work directly with what is sometimes called
a \°uid" model for the network [16]. Models of this sort are usually obtained
as law of large numbers approximations to more detailed models [5, 15],
and are particularly appealing because in many cases related optimization
problems admit closed form solutions [20, 21, 11].

Another feature of the networks we consider is model uncertainty, such
as uncertainty in the arrival and service rates. To deal with model un-
certainty we adapt the di®erential game formulation of robust control for
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unconstrained nonlinear systems [14]. Thus we consider a network where
there are two players. One player in the game will represent the \true"
control (e.g., service assignments and routing decisions). The other player
represents the uncertain or poorly modeled aspects of the system (e.g., ar-
rival and service rates). In keeping with existing convention, we will refer to
this latter control as \nature." The two players are antagonistic, with the
¯rst player attempting to maintain good system performance.

Di®erential game formulations provide a powerful tool for the design of
robust controls [3, 14]. In many situations knowledge of the true system is
limited. System parameters (e.g., arrival rates) may drift with time, and
statistical properties (e.g., correlations) may also be unstable. There may
be aspects of the system that are left unmodeled, either because they cannot
be estimated in any reliable way, or because they lead to a model that is
too complicated to be useful. This is a common occurence in stochastic
networks, where the network to be controlled is often a sub-network of some
larger system, and \full state information" is simply not available to the
controller of the sub-network.

In situations like these the use of a single \nominal" model can be prob-
lematic. For example, just as in the case of unconstrained systems one can
construct examples where controls that are optimal in some sense for the
nominal model perform poorly when the model is perturbed even slightly.
A di®erential game formulation allows one to contruct controls that perform
uniformly well over a class of perturbations of the nominal model, with each
choice of nature's control corresponding to a di®erent perturbation of the
design model. It is, of course, this insensitivity to model perturbations that
warrants the term \robust" control. Variations of di®erent kinds can be
accomodated through the choice of the cost structure, and one can carefully
balance the pursuit of optimality with respect to a nominal model against
the need to provide good performance for a range of models. The main
result of this paper is the explicit solution to a robust control problem for a
network. By explicit what we mean is that the value function can be repre-
sented in terms of a ¯nite dimensional optimization problem, and that from
this value function one can obtain controls with speci¯c robust properties.

In formulating the di®erential game special attention must be paid to the
cost applied to nature's control, since this determines the degree to which
model perturbations are allowed. Within the realm of \°uid" models there
are at least two types of cost structures that are natural. One is a cost
that simply imposes a constraint on the model parameters. We will refer
to this as the case of a \hard constraint." An alternative is to make nature
pay an increasing cost for perturbations away from the nominal model, and
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we will refer to this type of cost as corresponding to \soft constraints."
Hard constraints turn out to be mathematically simpler for °uid models
of networks, even though the reverse seems to be true for unconstrained
systems. In the present paper we will focus on the case of hard constraints,
and defer the case of soft constraints to future work.

Besides the cost that nature must pay, one must also specify the cost that
the true control faces. In this paper the cost we consider is the time to move
the state of the system from an arbitrary position to zero (i.e., all queues
empty). The true control will try to minimize this time, while the opposing
control will attempt to delay it as much as possible. This cost seems to
be a natural analogue, in the setting of constrained systems, of the familiar
quadratic cost for unconstrained systems. In particular, it leads to controls
with optimal robust stability (in addition to optimal robust performance),
and it also allows for a fairly explicit closed form solution.

An outline of the paper is as follows. In Section 2 we give a precise
formulation of the game problem, and show through examples how various
systems can be put into this framework. Sections 3 includes the main result
of the paper, which is a ¯nite dimensional max/min representation for the
value function of the game introduced in Section 2. Qualitative properties
of the value function (convexity, di®erentiability, etc.) are also discussed
in Section 3. The proof of this representation is given in Section 4. The
concluding Section 5 formally discusses how an optimal true control can be
constructed in feedback form. A proof of the existence of value for the games
we consider is given in an Appendix.

2 Formulation of the Control Problem

In this section we formulate the robust control problem as a constrained
deterministic di®erential game. As discussed in the introduction, the model
we use can be viewed as a law of large numbers approximation to a more
detailed stochastic model. This connection will be used for interpretive
purposes throughout the section. The state space of the process is IRN+ , and
one can interpret each of the components as a queue length associated with
a speci¯c customer class.

The formulation of the model involves two collections of N¡dimensional
vectors. The ¯rst are the directions of constraint, which we designate by
fdi; i = 1; :::;Ng. These vectors are used to de¯ne the Skorokhod or re°ec-
tion map, which properly corrects the dynamics of the model when one or
more components of the state are zero (i.e., one or more customer classes are
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empty). The second collection is designated fvjk; j = 1; :::; J; k = 1; :::; Kg,
and is used to de¯ne the dynamics of the system away from the boundary.
Nature's control takes values in a compact convex set A ½ IRK , and the in-
dex j 2 f1; :::; Jg corresponds to one of the possible \pure" service/routing
con¯gurations the true controller can select (illustrative examples will be
given below). If nature chooses the control ® 2 A and the true control is the
pure con¯guration j, then the quantity

PK
k=1 ®kvjk characterizes the (law

of large numbers) evolution of the network when the state of the network
is away from @IRN+ . More general service/routing policies can be obtained
by considering convex combinations of the pure controls, in which case the
velocity of the system is given by

F (½; ®) :=
JX

j=1

KX

k=1
½j®kvjk;

where

½ = (½1; :::; ½J) 2 S :=

8
<
:x 2 IRJ : xj ¸ 0; j = 1; :::; J;

JX

j=1
xj = 1

9
=
; ;

and ½j is the fraction of time allocated to the pure con¯guration j.
We will assume the following condition on the directions of constraint.

The condition is by now classical in the study of approximations to queueing
networks, and is called the Harrison-Reiman condition in [10]. It was ¯rst
used in [13]. Although the Harrison-Reiman condition is usually associated
with single class networks, it also de¯nes the proper Skorokhod Problem for
many formulations of controlled multiclass networks as well. Note that the
condition is the original Harrison-Reiman condition, and not the generaliza-
tion that is also studied in [10].

Condition 2.1 For each i 2 f1; :::;Ng

(di)i = 1; and (di)j · 0 for j 6= i:

Let D be the matrix whose ith column is di. Then the spectral radius of
I ¡ D is less than 1.

The following simple examples illustrate the role these di®erent quan-
tities play. The ith unit basis vector is denoted by ei. Some of the most
di±cult aspects in the control of networks are due to feedback and the in-
teractions between di®erent servers. >From this perspective, the ¯rst two
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examples are too simple to be of great interest. Also, it should be noted
that the game formulation we consider in this paper only allows routing at
the \fringes" of the network, and not between nodes. We hope to consider
the more general routing problem in future work.

Example 1. The ¯rst example is a simple routing control problem. The
rate of arrivals to the router is ¸(t), and the service rates of the two servers
are ¹1(t) and ¹2(t), respectively. The system is illustrated in Figure 1.

Figure 1: Simple routing control

This model is put into the framework described above by setting

®1 = ¹1 v1;1 = ¡e1 v2;1 = ¡e1
®2 = ¹2 v1;2 = ¡e2 v2;2 = ¡e2
®3 = ¸ v1;3 = e1 v2;3 = e2

:

The choice of A determines the uncertainties and perturbations against
which the optimal true control will be robust. For example, if the nomi-
nal service and arrival rates are ¹̧ = 1 and ¹¹i = 1; i = 1; 2, and if the service
rates are well modeled and the arrival rate less so, then one might consider
a set of the form

A = [¹¹L1 ; ¹¹U1 ] £ [¹¹L2 ; ¹¹U2 ] £ [¹̧L; ¹̧U ] = [:9; 1:1] £ [:9; 1:1] £ [:5; 1:5]:
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This model is very simple, and perhaps too simple to capture any \proba-
bilistic" intuition. For example, there is no constraint on combinations of
¹1 and ¹2. >From a probabilistic perspective one might imagine that it is
less likely that both of these parameters would equal their minimum value
at the same time. The introduction of a constraint to account for this would
lead to a set A with a \curved" boundary.

One might also wish to consider an increasing family of sets A(c) indexed
by c 2 [0;1), and with A(0) just the nominal model. The largest c such
that a certain robust performance measure can be met (e.g., ¯niteness of
the value function) is an important quantity. In particular, it characterizes
the control that is most robust, where the sense of robustness is determined
by the shape of A and the relative uncertainty it assigns to di®erent aspects
of the network.

We return our consideration to the particular example of Figure 1. If
a service is attempted at server 1 and the queue is empty then the proper
compensating action is simply to return queue 1 to the level zero. As a
consequence, the direction of constraint for the corresponding face is just
d1 = (1; 0). A corresponding remark applies to queue 2.

Example 2. Here we consider a simple service control problem. The system
is illustrated in Figure 2.

Figure 2: Simple service control

The Skorokhod Problem for this is the same as that for Example 1. This
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model is put into the standard framework by setting

®1 = ¹1 v1;1 = ¡e1 v2;1 = 0
®2 = ¹2 v1;2 = 0 v2;2 = ¡e2
®3 = ¸1 v1;4 = e1 v2;4 = e1
®4 = ¸2 v1;4 = e2 v2;4 = e2

:

Example 3. This example considers a network of servers, and as a con-
sequence the associated Skorokhod Map is more involved. The network is
illustrated in Figure 3. Since there are 6 customer classes the domain is IR6

+.
Suppose the service rate for class i is ¹i(t) and the arrival rate is ¸(t).

Figure 3: Network model

An example of a pure con¯guration (labeled say j), is to route to class
1 and serve classes 3, 2 and 5. If we let (®1; :::; ®6; ®7) = (¹1; :::; ¹6; ¸), then
the vectors vjk for k = 2; 3; 5; 7 are

vj2 = (¡e2 + e6); vj3 = (¡e3 + e4); vj5 = (¡e5 + e3); vj7 = e1;

while vj1 = vj4 = vj6 = 0. The velocity of the network under this con¯gu-
ration is ¹2vj2 + ¹3vj3 + ¹5vj5 + ¸vj7.

If a service is attempted for say customer class i = 3 and the queue
is empty, then queue 3 must be returned to zero and in addition queue 4
must be reduced by the same amount. Consequently, the proper direction
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of constraint for face i = 3 is d3 = (e3 ¡ e4). Analogous considerations can
be used to identify all other directions of constraint.

Example 4. In some problems there is randomized (uncontrolled) routing.
For example, after service a fraction µj of the class i customers may become
class j customers, and a fraction µ0 = 1¡PJ

j=1;j 6=i µj of the customers could
leave the system. Let (di)j = ¡µj if j 6= i and (di)i = 1. Then the direction
of constraint is di on the face fx 2 IRN+ : xi = 0g, and the reason is the same
as in the last case: compensating for a \¯ctitous" service of a customer
of class i requires a boost to coordinate i and a corresponding decrease in
coordinate j with constant of proportionality µj [18].

To formulate the robust control problem we must specify the dynamics.
Let

C+([0; 1) : IRN ) _= fÃ 2 C([0;1) : IRN) : Ã(0) 2 IRN+g;

where C([0; 1) : IRN ) is the usual space of continuous functions with the
sup norm metric, and suppose that a set of vectors that satisfy Condition
2.1 is given. For each point x on the boundary of IRN+ let

d(x) :=

8
<
:

X

i2I(x)
aidi : ai ¸ 0;

°°°°°°
X

i2I(x)
aidi

°°°°°°
= 1

9
=
; ;

where I(x) := fi : xi = 0g. The Skorokhod Problem assigns to every path
Ã 2 C+([0;1) : IRN) a path Á that starts at Á(0) = Ã(0), but is constrained
to IRN+ as follows. If Á is in the interior of IRN+ then the evolution of Á mimics
that of Ã, in that the increments of the two functions are the same until Á
hits the boundary of IRN+ . When Á is on the boundary a constraining \force"
is applied to keep Á in the domain, and this force can only be applied in one
of the directions d(Á(t)), and only for t such that Á(t) is on the boundary.
The precise de¯nition is as follows. For ´ 2 C([0;1) : IRN) and t 2 [0; 1)
we let j´j(t) denote the total variation of ´ on [0; t] with respect to the
Euclidean norm on IRN .

De¯nition 2.1 Let Ã 2 C+([0;1) : IRN) be given. Then (Á; ´) solves the
SP for Ã (with respect to IRN+ and di; i = 1; :::; N) if Á(0) = Ã(0), and if for
all t 2 [0;1)

1. Á(t) = Ã(t) + ´(t),

2. Á(t) 2 G,
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3. j´j(t) < 1,

4. j´j(t) =
R
[0;t] 1fÁ(s)2@IRN+ gdj´j(s),

5. There exists a Borel measurable function ° : [0; 1) ! IRN+ such that
dj´j-almost everywhere °(t) 2 d(Á(t)), and such that

´(t) =
Z

[0;t]
°(s)dj´j(s):

Note that ´ changes only when Á is on the boundary, and only in the direc-
tions d(Á).

Under Condition 2.1 the Skorokhod Problem has a solution for all Ã 2
C+([0; 1) : IRN). In addition, the mapping Ã ! Á is Lipschitz continuous
[8, 13].

We next de¯ne a constrained ordinary di®erential equation. As is proved
in [8], one can de¯ne a projection ¼ : IRN ! IRN+ that is consistent with the
constraint directions fdi; i = 1; :::;Ng, in that ¼(x) = x if x 2 IRN+ , and if
x 62 IRN+ then ¼(x) ¡ x = ®r, where ® ¸ 0, ¼(x) 2 @IRN+ , and r 2 d(¼(x)).
Figure 4 illustrates the projection for a two dimensional problem.

Figure 4: The discrete projection

With this projection given, we can de¯ne for each point x 2 @IRN+ and each
v 2 IRN the projected velocity

¼(x; v) := lim
¢#0

¼(x + ¢v) ¡ ¼(x)
¢

: (1)
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For details on why this limit is always well de¯ned and further properties
of the projected velocity we refer to [6, Section 3 and Lemma 3.8] and [7].
The dynamical model for the game we consider is then given by

_Á(t) = ¼(Á(t); F (½(t); ®(t))); (2)

where

F (½(t); ®(t)) =
JX

j=1
½j(t)®k(t)vjk; (3)

and for all t 2 [0;1) the true control ½(t) takes values in the set S and
nature's control ®(t) takes values in the set A. According to the Skorokhod
Problem, the velocity F (½; ®) governs the evolution of the network when all
states are positive. When one or more states are negative, the projection
of the velocity provides the proper correction to the dynamics due to non-
negativity constraints.

An absolutely continuous function Á : [0;1) ! IRN+ is a solution to
(2) if the equation is satis¯ed in an a.e. sense in t. By using the regular-
ity properties of the associated Skorokhod Map, one can prove that all the
standard qualitative properties (existence and uniqueness of solutions, sta-
bility with respect to perturbations, etc.) hold [8]. In fact, because of the
particularly simple nature of the right hand side (i.e., ¼(Á(t); ¯(t)) rather
than ¼(Á(t); b(Á(t))+ ¯(t)) for some function b), one can show that Á solves
(2) if and only if Á is the image of Ã(t) :=

R t
0 F (½(s); ®(s))ds + x under the

Skorokhod Map, in which case all such issues become trivial [8].
The ODE (2) de¯nes the dynamics for the game that we will consider.

The cost we consider is the time for the state to reach the origin, which the
true control will attempt to minimize and which nature will try to prolong.
As usual in di®erential games, one must deal with the issue of which player
has the \information advantage" [12]. For the problems we consider it will
always turn out that the game has value, and so the value function will be
the same regardless of who has the information advantage.

We use the standard Elliot-Kalton formulation of the game. De¯ne the
spaces of (open loop) controls

N := f½ : [0;1) ! S : ½ is measurableg

and
M := f® : [0; 1) ! A : ® is measurableg:

We identify any two controls that are equal almost everywhere. Given x 2
IRN+ , the dynamics of the game are given by (2) and (3). Associated with
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these dynamics is the cost

Cx(½; ®) := ¿x;

where ¿x
:= infft ¸ 0 : Á(t) = 0g. A mapping µ : N ! M is said to be a

strategy for the maximizing player if for each s ¸ 0 and ½; ½̂ 2 N

½(t) = ½̂(t) for a.e. 0 · t · s

implies
µ[½](t) = µ[½̂](t) for a.e. 0 · t · s:

A strategy for the minimizing player, which will be denoted by ±, is de¯ned
in an analogous manner. We denote by £ the set of all maximizing strategies
and by ¢ the set of all minimizing ones. The lower value of the game and
the upper value of the game are de¯ned by

V ¡(x) := inf
±2¢

sup
®2M

Cx(±[®]; ®) (4)

and
V +(x) := sup

µ2£
inf
½2N

Cx(½; µ[½]); (5)

respectively. If V ¡(x) = V +(x), then the game is said to have value.
Let V : IRN ! IR. For points x 2 IRN and directions w 2 IRN for which

the limit exists, we let DwV (x) denote the directional derivative in direction
w at x:

DwV (x) := lim
a#0

V (x + aw) ¡ V (x)
a

:

We say that V is radially linear if V (ax) = aV (x) for all x 2 IRN and
a 2 [0; 1).

3 Representation for the Value Function

For V +(x) and V ¡(x) to be ¯nite we will need some conditions. De¯ne the
convex cone

C :=

(
¡
NX

i=1
aidi : ai ¸ 0; i = 1; :::;N

)
;

which is the negative of the cone of constraint directions that are allowed at
the origin. As observed in [6], this cone can be used to characterize stability
conditions for (2).
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The following formula gives an explicit representation for the value of
the game de¯ned in the last section. The precise statement is given at
the end of the section, and the proof is given in Section 4. Recall that
F (½; ®) :=

PJ
j=1

PK
k=1 ½j®kvjk. Then set

W (x) := sup
®2A

inf
½2S

inf f¾ : x + ¾F (½; ®) 2 Cg : (6)

We will also make use of

W®(x) := inf
½2S

inf f¾ : x + ¾F (½; ®) 2 Cg : (7)

The following condition is necessary and su±cient for W (x) to be ¯nite
for all x 2 IRN . Let C± denote the interior of C.

Condition 3.1 For each ® 2 A there exists ½ 2 S such that

F (½; ®) 2 C±:

It follows directly from the de¯nition of W®(x) that under this condition
W®(x) < 1 for all x 2 IRN . Since A is compact, an open covering argument
can be used to prove that W (x) < 1 for all x 2 IRN .

In order to motivate the representation (6), we ¯rst consider (7). In this
case there is just \true" control for a ¯xed set of arrival and service rates.
It turns out that W® equals the minimum time for a control problem that
uses the dynamics de¯ned by the Skorokhod Problem and stops when the
origin is reached. However, from the formula for W® it is clear that W®
equals the solution to the minimum time problem with the much simpler
dynamics _Á(t) = F (½(t); ®) and the stopping set C. Away from the boundary
@IRN+ these two di®erent minimum time problems should satisfy the same
Hamilton-Jacobi Bellman equation.
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Figure 5: Level sets of W®: Classical boundary conditions

Owing to the constraining dynamics, the ¯rst minimum time problem should
satisfy a Neumann boundary condition hDW®(x); dii = 0 for i 2 I(x) on
@IRN+nf0g (in the viscosity sense). It turns out (under Condition 2.1) that
the shape of the stopping set C in the second minimum time problem pro-
duces a function whose gradient satis¯es this boundary condition, and so by
uniqueness one would expect the two minimum time problems to coincide
on IRN+ [1]. Figure 5 illustrates the situation for a particular two dimensional
problem with no control (so that F (½; ®) = v is a constant). The dotted
lines indicate level curves of W®, and since these level curves are parallel to
di for x near fx 2 (IR2

+)nf0g : xi = 0g, the boundary conditions hold, even
in a classical sense.

The situation is not always so simple, as indicated by Figure 6.

Figure 6: Level sets of W®: Without classical boundary conditions

Here only one boundary condition holds in the classical sense, and this is due
to the fact that at the other boundary v points into the interior and away
from this boundary. One of the important properties of viscosity solutions
is that they allow such relaxations.
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The remarkable fact is that an analogous representation continues to
hold even in the game problem, with simply an additional supremization on
® 2 A. It should be noted that even though the game has value, one cannot
permute the inf½2S and sup®2A in (6).

In the rest of this section we will prove qualitative properties of W that
are needed for the proof that W is the value of the game.

Theorem 3.1 Assume that Conditions 3.1 and 2.1 are satis¯ed and de¯ne
W®(x) for x 2 IRN and ® 2 A by (7). The following conclusions hold.

1. W® is ¯nite and radially linear on IRN .

2. For each x 2 IRN the in¯mum in (7) is achieved at some probability
vector ½.

3. W® is convex on IRN .

4. W®(x) > 0 for x 2 IRN+nf0g.

Proof: Under Condition 3.1 it is obvious that the cone C can be reached
from any starting point x, and so W®(x) < 1, while radially linearity is
an immediate consequence of the de¯nition of W®(x). It follows from the
compactness of S that the in¯mum is achieved in the de¯nition of W®(x).
Thus the proofs of parts 1 and 2 are complete.

To prove property 3 we ¯rst consider points x1 and x2 such that W®(x1) =
W®(x2) 6= 0. Let c denote the common value, and let ½1 and ½2 denote
minimizing probability vectors in the expression that de¯nes W®(x1) and
W®(x2), respectively. Thus xi + cF (½i; ®) 2 @C for i = 1; 2. For s 2 [0; 1],
the convexity of C implies

sx1 + (1 ¡ s)x2 + scF (½1; ®) + (1 ¡ s)cF (½2; ®)
= (sx1 + (1 ¡ s)x2) + cF (s½1 + (1 ¡ s)½2; ®) 2 C:

Since s½1 + (1 ¡ s)½2 2 S, it follows that

W®(sx1 + (1 ¡ s)x2) · c = sW®(x1) + (1 ¡ s)W®(x2):

We next consider the case of any points x1 and x2 such that W®(x1) 6= 0
and W®(x2) 6= 0. Let

c = sW®(x1) + (1 ¡ s)W®(x2):

14



Since W® is radially homogeneous,

W®(sx1 + (1 ¡ s)x2)

= W®
µ

s
W®(x1)
W®(x1)

x1 + (1 ¡ s)
W®(x2)
W®(x2)

x2
¶

= W®
µ·

sW®(x1)
c

x1
W®(x1)

+
(1 ¡ s)W®(x2)

c
x2

W®(x2)

¸
c
¶

· sW®(x1)
c

W®
µ

x1
W®(x1)

c
¶

+
(1 ¡ s)W®(x2)

c
W®

µ
x2

W®(x2)
c
¶

= sW®(x1) + (1 ¡ s)W®(x2):

The case where W®(x1) or W®(x2) equals zero is similar and omitted.
Finally we must prove property 4. The Harrison-Reiman condition im-

plies what is called the completely-S condition ([17, 4]), which requires the
existence of a vector v 2 IRN satisfying vi > 0; i = 1; :::;N and hv; °i > 0
for all ° 2 d(0). Hence if y 2 Cnf0g then hv; yi < 0, and so y 62 IRN+ . This
shows that

C \ IRN+ = f0g;

and therefore W®(x) > 0 for all x 2 IRN+nf0g.

Theorem 3.2 Assume that Conditions 3.1 and 2.1 are satis¯ed and de¯ne
W (x) for x 2 IRN by (6). The following conclusions hold.

1. W is ¯nite and radially linear on IRN .

2. W is convex on IRN .

3. W (x) > 0 for x 2 IRN+nf0g.

Proof: It follows from Condition 3.1 that for each x 2 IRN W®(x) is bounded
uniformly in ® 2 A. All the claims then follow from the preceding theorem
and W (x) = sup®2AW®(x).

Remark. Since W is convex, directional derivatives exist at all points and
for all directions.

Theorem 3.3 Assume that Conditions 2.1 and 3.1 are satis¯ed and de¯ne
W (x); V ¡(x) and V +(x) by (6), (4), and (5), respectively. Then for all
x 2 IRN+

W (x) = V ¡(x) = V +(x):
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4 Proof of the Representation

In this section we give the proof of Theorem 3.3. The proof that the di®eren-
tial game has value (i.e., that V ¡(x) = V +(x)) is deferred to the appendix.
We ¯rst prove some preparatory lemmas. Let

½(x; ®) := f½ 2 S : x + W®(x)F (½; ®) 2 Cg :

Lemma 4.1 Assume Condition 3.1. For each x 2 IRN+ and ® 2 A the set
½(x; ®) is nonempty and convex, and moreover the mapping from IRN+ £ A
to S de¯ned by (x; ®) ! ½(x; ®) is upper semicontinuous.

Proof: Fix x 2 IRN+ and ® 2 A, and let ½m come within 1=m of the in¯mum
of

inf f¾ : x + ¾F (½; ®) 2 Cg
over ½ 2 S. Let ¾m come within 1=m of the in¯mum over ¾ when ½ = ½m.
By extracting a subsequence, we can assume that (½m; ¾m) ! (½¤; W®(x))
with ½¤ 2 S. We claim that ½¤ 2 ½(x; ®). Indeed, we have

x + W®(x)F (½¤; ®) = lim
m!1(x + ¾mF (½m; ®)) 2 C;

which proves that ½¤ 2 ½(x; ®), and shows that ½(x; ®) is nonempty. Since
½ ! F (½; ®) is linear, it follows that ½(x; ®) is also convex.

To prove the upper semicontinuity we ¯rst show that W®(x) is jointly
continuous in (x; ®). Let (xi; ®i) ! (x; ®) as i ! 1. Under Condition
3.1, for all " > 0 we can ¯nd ½ 2 S such that x + [W®(x) + "]F (½; ®) 2
C±. This implies lim supi!1W®i(xi) · W®(x) + ", and since " > 0 is
arbitrary lim supi!1W®i(xi) · W®(x). Let ½i 2 ½(xi; ®i). By extracting a
subsequence, we can assume that W®i(xi) ! M and ½i ! ½ 2 S. Taking
the limit as i ! 1 in

xi + W®i(x
i)F (½i; ®i) 2 C

gives
x + MF (½; ®) 2 C;

and therefore lim infi!1W®i(xi) ¸ W®(x). We conclude that W®(x) is
jointly continuous in (x; ®).

Next let (xi; ®i) ! (x; ®) as i ! 1, and let ½i 2 ½(xi; ®i). We must
show that ½i ! ½¤ implies ½¤ 2 ½(x; ®). Using the continuity of W®(x),

x + W®(x)F (½¤; ®) = lim
i!1

³
xi + W®i(x

i)F (½i; ®i)
´

2 C:
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We conclude that ½¤ 2 ½(x; ®), and therefore (x; ®) ! ½(x; ®) is upper
semicontinuous.

Lemma 4.2 Assume that Conditions 2.1 and 3.1 are satis¯ed and de¯ne
W (x) for x 2 IRN by (6). Consider any point x 2 IRN+nf0g and let v 2 IRN

be such that x + W (x)v 2 C. Then

DvW (x) · ¡1:

Proof: Since x + W (x)v 2 C it follows that W (x + W (x)v) = 0. The
convexity of W then implies that for any a 2 (0; W (x))

W (x + av) · a
W (x)

W (x + W (x)v) +
µ

1 ¡ a
W (x)

¶
W (x)

·
µ

1 ¡ a
W (x)

¶
W (x):

It follows that

DvW (x) := lim
a#0

W (x + av) ¡ W (x)
a

· ¡1:

De¯ne
B(x) := fF (½(x; ®); ®) : ® 2 Ag:

These are the velocities that are optimal (for the true controller) at x for
the control problem W®(x) for some ® 2 A.

Lemma 4.3 Assume that Conditions 2.1 and 3.1 are satis¯ed and de¯ne
W (x) for x 2 IRN by (6). Then for any x 2 IRN+ and v 2 B(x) we have
x + W (x)v 2 C.

Proof: Suppose that v 2 F (½(x; ®); ®) for some ® 2 A. We know that

x + W®(x)v 2 C and W®(x) · W (x):

If v 2 C then we are done, since C is a cone with vertex at the origin. Now
x 2 IRN+ implies that v = v1 + v2, where v1 2 ¡IRN+ and v2 2 C. Thus
we need only show ¡IRN+ ½ C. Since C is a convex cone, to show this it is
enough to prove that ¡ei 2 C for each i = 1; :::; N .
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Let the vectors fd¤i ; i = 1; :::; Ng be de¯ned by

D
di; d¤j

E
=

(
1 i = j
0 i 6= j :

Condition 2.1 implies the vectors fdi; i = 1; :::;Ng are linearly independent,
and so this is well de¯ned. The vectors fd¤i ; i = 1; :::;Ng provide an external
representation for C in that

C =
n
y 2 IRN : hy; d¤i i · 0; i = 1; :::;N

o
:

Thus ¡ei 2 C will follow if we show hei; d¤ji ¸ 0 for j = 1; :::;N . Let D be
the matrix whose ith column is di. Then D¡1 is the matrix whose jth row
is d¤j . We can write D = I ¡ A, where A is nonnegative. Under Condition
2.1 the spectral radius of A is less than one, and so we can express D¡1 asP1
`=0 A`. This shows that D¡1 is nonnegative, and completes the proof of

the lemma.

We recall the de¯nition of the projected velocity given in (1) and I(x) :=
fi : xi = 0g for x 2 IRN+ .

Lemma 4.4 Assume that Conditions 2.1 and 3.1 are satis¯ed and de¯ne
W (x) for x 2 IRN by (6). Let x 2 IRN+ be given. Let y · x componentwise,
and assume y 62 C (so that W (y) > 0). Let v 2 B(y), and suppose there
exist ai ¸ 0; i 2 I(x) such that

*
v +

X

i2I(x)
aidi; ej

+
= 0; j 2 I(x): (8)

Let q = v +
P
i2I(x) aidi. Then

DqW (y) · ¡1:

Proof: By Lemma 4.2 it is enough to show that y + W (y)q 2 C. According
to the last lemma y + W (y)v 2 C, and so we can express (y=W (y)) + v as
¡ PN

i=1 ¹aidi for some constants ¹ai ¸ 0; i = 1; :::; N . To prove

y + W (y)q = W (y)

2
4(y=W (y)) + v +

X

i2I(x)
aidi

3
5

= W (y)

2
4¡

NX

i=1
¹aidi +

X

i2I(x)
aidi

3
5

2 C;
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it is therefore enough to show that ¹ai ¸ ai for i 2 I(x).
Since v = ¡(y=W (y)) ¡ PN

i=1 ¹aidi, the equations (8) can be rewritten as
*

¡(y=W (y)) ¡
NX

i=1
¹aidi +

X

i2I(x)
aidi; ej

+
= 0

for j 2 I(x). Let M denote the cardinality of I(x). We recall that hdj; eii · 0
if i 6= j and yi · xi · 0 for i 2 I(x). As a consequence, we can rewrite this
system of M equations as

(I ¡ DM )r = q;

where I is the M £ M identity matrix, DM is non-negative with spectral
radius less than 1, rj = aj ¡ ¹aj for j 2 I(x), and qi =

P
j 62I(x) ¹ajhdj; eii +

(yi=W (y)) · 0 for each i 2 I(x). Since each component of r = (
P1
`=0 D`M )q

is obviously nonpositive, we conclude that ai · ¹ai for i 2 I(x).

In the proof of Theorem 3.3 we will need to construct a nearly optimal
strategy for the minimizing player to prove that V ¡(x) · W (x). If W were
smooth then such a strategy would be easy to construct. However, since
W is only convex it must be molli¯ed to construct this policy, and this
molli¯cation in turn complicates the construction of the optimal control on
the boundary. In the lemma that follows we apply the previous lemma to
deal with this issue.

Lemma 4.5 Assume that Conditions 2.1 and 3.1 are satis¯ed and de¯ne
W (x) for x 2 IRN by (6). Let ° > 0 be given. Then there exists a convex,
continuously di®erentiable and radially linear function W° : IRN ! [0; 1)
such that for all x 2 IRN+ , ® 2 A, and ½ 2 ½(x; ®),

jW°(x) ¡ W (x)j · °W (x) (9)

and
h¼(x; F (½; ®));DW°(x)i · ¡(1 ¡ °): (10)

Proof: Fix ° > 0. We begin by noting a relation between directional
derivatives and subdi®erentials for convex functions. Fix x 2 IRN+ , and let
@W (x) denote the set of subdi®erentials of W at x. Then for any v 2 IRN

and any q 2 @W (x), hq; vi · DvW (x). According to Lemmas 4.1, 4.2,
and 4.3, for each ® 2 A and ½ 2 ½(x; ®) we have DF (½;®)W (x) · ¡1, and
therefore for all such ® and ½

hq; F (½; ®)i · ¡1 (11)
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for all q 2 @W (x).
We next mollify the function W . De¯ne the convex set G := fx : W (x) ·

1g. For a > 0 de¯ne the translation Ga
:= fy = x + a(1; :::; 1) : x 2 Gg, and

for ± > 0 consider the ±¡fattening G±a
:= fy : ky ¡ xk · ± for some x 2 Gag.

Since 0 2 G±, we can assume without loss that a is small enough that the
origin is contained in the interior of G±a. As we will see, the translation is
needed to ensure that the fattening does not interfere with the boundary
conditions that are required of the molli¯cation. Finally, let

W ±
a (x) := inffc ¸ 0 : x 2 @(cG±a)g:

The construction is illustrated in Figure 7.

Figure 7: Construction of G±a

It is easy to check that W ±
a is ¯nite and convex. Also, it is well known

that G±a has a C1 boundary for each ± > 0, and thus W ±
a is continuously

di®erentiable on IRN+nf0g. We ¯rst compute the gradient of W ±
a . Fix any

point x 2 IRN+nf0g and let n be the outward normal to G±a at y := x=W ±
a (x).
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Since W ±
a is radially linear the gradient of W ±

a (x) must be proportional to
n, which means there must be a supporting hyperplane of the form hx; rni
to W ±

a at x (here we use the fact that W ±
a (0) = 0). Thus using the equality

W ±
a (x) = hx; rni, we ¯nd that

DW ±
a (x) = rn =

Ã
W ±
a (x)

hx; ni

!
n =

µ
1

hy; ni

¶
n:

Let y0 be the unique point in Ga that is exactly distance ± from y, and let
z = y ¡ a(1; :::; 1). Then n is also an outward normal to G at z, and an
analogous calculation to the one just given shows that for any point of the
form bz, b 2 (0;1), (1=hz; ni) n is a subdi®erential to W at bz. Therefore

DW ±
a (x) =

µ hz; ni
hy; ni

¶
q;

where q is a subdi®erential to W at z. We can make jy ¡ zj as small as
desired by choosing a > 0 and ± > 0 small. Let ½ 2 ½(x; ®). Since hy; ni
is uniformly bounded from below away from zero, for all su±ciently small
a > 0 and ± > 0 equation (11) implies

hF (½; ®);DW ±
a (x)i · ¡(1 ¡ °):

Observe that conditions (8) characterize ¼(x; F (½; ®)). Thus if we knew that
z · y (componentwise) then

h¼(x; F (½; ®)); DW ±
a (x)i · ¡(1 ¡ °)

would also follow from Lemma 4.4. However, z · y follows easily by ¯xing
a > 0 and then choosing ± 2 (0; a). Finally, it is also easy to check that
G and G±a can be made arbitrarily close in the Hausdor® topology, which
immediately implies

jW ±
a (x) ¡ W (x)j · °W (x)

when a and ± are small. The lemma now follows by taking W° = W ±
a for

suitable a > 0 and ± > 0.

In the proof of Theorem 3.3 we will use a veri¯cation argument to show
V ¡(x) · W°(x) plus a small error. The use of feedback controls for the
minimizing player would be problematic. The next lemma will allow the use
of piecewise constant controls and thereby simplify the proof. The lemma is
an immediate consequence of the continuity of DW°(x) for ° > 0 and x 6= 0.
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Lemma 4.6 Assume that Conditions 2.1 and 3.1 are satis¯ed and for ° > 0
de¯ne W°(x) for x 2 IRN by Lemma 4.5. Then there is º > 0 such that
for all z 2 IRN+ with kzk = 1, all y with kz ¡ yk · º, all ® 2 A, and all
½ 2 ½(z; ®),

h¼(z; F (½; ®)); DW°(y)i · ¡(1 ¡ 2°): (12)

Proof of Theorem 3.3: We ¯rst prove that W (x) · V +(x). Fix x 2
IRd+n f0g and ® 2 A. Let ½ 2 N be any open loop control, and let ¿x > 0 be
the corresponding ¯rst time that the origin is reached by the solution to

_Á(t) = ¼ (Á(t); F (½(t); ®)) ; Á(0) = x:

If ¿x = 1 there is nothing to prove, and so we assume ¿x < 1. Using the
de¯nition of the Skorokhod Problem, there exist ai(t) ¸ 0; i = 1; :::; N; t 2
[0; ¿x] such that

_Á(t) = F (½(t); ®) +
NX

i=1
ai(t)di

for almost every t 2 [0; ¿x]. Integrating over [0; ¿x] and using the de¯nition
¹½ := 1

¿x

R ¿x
0 ½(t)dt, we ¯nd that

¡x = ¿xF (¹½; ®) ¡ !

for some ! 2 C, and so x + ¿xF (¹½; ®) 2 C. The de¯nition of W®(x) then
implies ¿x ¸ W®(x). Since µ[½](t) = ® is a legitimate strategy to use in the
de¯nition of V +(x) and ½ 2 N is arbitrary, it follows that V +(x) ¸ W®(x)
for all ® 2 A. Taking the supremum on ® 2 A gives V +(x) ¸ W (x).

We next prove W (x) ¸ V ¡(x). Let ° 2 (0; 1=2), and let º > 0 be given
according to Lemma 4.6. Fix x 2 IRd+n f0g and let the open loop control
® 2 M be given. We recursively construct a strategy ± 2 ¢ as follows. Given
a point of the form xi 6= 0 (with x0 = x) and corresponding times ¿i (with
¿0 = 0), we consider the normalized version zi = xi=kxik. Let ½¤(x; ®) be
any single-valued and measurable selection from ½(x; ®). We de¯ne ±[®](t)
for t 2 [¿i; ¿i+1) to be ½¤(zi; ®(t)), where ¿i+1 > ¿i is de¯ned by

infft ¸ ¿i : kÁ(t)=kÁ(t)k ¡ zik ¸ ºg ^ infft ¸ ¿i : Á(t) = 0g;

where
_Á(t) = ¼(Á(t); F (½¤(zi; ®(t)); ®(t))); Á(¿i) = xi:

Since the speed k _Á(t)k is uniformly bounded from above, it is easy to check
that infft ¸ ¿i : kÁ(t)=kÁ(t)k ¡ zik ¸ ºg ¡ ¿i is uniformly bounded away
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from zero if xi is in a closed set that does not contain the origin. We will
make use of the fact that for any x 6= 0 and any v ¼(x; v) = ¼(x=kxk; v).
According to Lemma 4.6,

hDW°(Á(t)); _Á(t)i = hDW°(Á(t)); ¼(Á(t); F (½¤(zi; ®(t)); ®(t)))i · ¡1 + 2°

for almost every t prior to the ¯rst time Á hits the origin, and therefore for
all such times

W°(Á(t)) ¡ W°(x) =
Z t

0
hDW°(Á(t)); _Á(t)ids · ¡t(1 ¡ 2°):

We conclude that
W°(Á(t)) · W°(x) ¡ t(1 ¡ 2°);

and therefore Á reaches the origin by time W°(x)=(1 ¡ 2°): This implies
V ¡(x) · W°(x)=(1¡ 2°), and since ° > 0 is arbitrary, that V ¡(x) · W (x).

Thus we have shown that V ¡(x) · W (x) · V +(x). The proof that
V ¡(x) = V +(x) is based on a uniqueness result for the corresponding PDE,
and is presented in the Appendix. This completes the proof of the theorem.

5 Synthesis of Controls

The \true" controls used to prove W (x) ¸ V ¡(x) in the proof of Theorem
3.3 are not very useful, since they require knowledge of the control that
nature applies at all times. In this section we will formally discuss how to
construct controls that are optimal (or nearly optimal), and which depend
only on the state of the network. A rigorous proof will appear elsewhere.

Formally, W = V ¡ = V + is the solution to the equation

sup
®2A

inf
½2S

[hDW (x); F (½; ®)i + 1] = 0; x 2 (IRN+ )±; (13)

together with the boundary conditions

hDW (x); dii = 0; i 2 I(x); x 2 @IRN+nf0g; W (0) = 0: (14)

Since F is a±ne in each variable seperately and A and S are compact and
convex, [19, Corollary 37.6.2] implies that the sup and inf in (13) can be
interchanged (i.e., one expects the game to have value).

Since W is not necessarily smooth we cannot expect a classical sense
solution to (13)-(14), and so one must consider a weak sense solution, e.g.,
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viscosity solutions. Because W is convex, the set of subdi®erentials to W at
x (denoted D¡W (x)) is never empty. It follows from the characterization
of viscosity solutions (see the Appendix) that for any q 2 D¡W (x) there
exists at least one saddle point (½(q); ®(q)) such that

sup
®2A

hq; F (½(q); ®)i · ¡1:

Let R(q) denote the set of all points ½ 2 S which have this property. It is
easy to check that this set-valued function is upper semicontinuous: qn ! q,
½n ! ½ and ½n 2 R(qn) implies ½ 2 R(q). At each point x 2 IRN+ we de¯ne
a set of controls S(x) ½ S by

S(x) = [q2D¡W (x)R(q):

Note that since x ! D¡W (x) and q ! R(q) are upper semicontinuous, so
is the composition S(x), and that the radial linearity of W implies a radial
homogeneity of S: S(ax) = S(x) for all x 2 IRN+ and a 2 (0;1). The set of
conjectured controls for x in the interior is then S(x).

However, when on the boundary we must be more careful. As can easily
be seen by considering two dimensional examples, there is an important
distinction depending in whether the boundary condition holds in a classical
sense or not. The following conjectures for the form of the optimal control
are based on the analysis of two dimensional examples, and have not been
veri¯ed in any generality. Let us ¯rst consider the case of a point x where
I(x) = i for a single value i. In this case the classical sense formulation of
the boundary condition is hDW (x); dii = 0. If this condition holds, it means
that all optimally controlled trajectories push into the boundary, and that
any selection from S(x) is optimal. If however hDW (x); dii 6= 0, then even if
some elements from S(x) lead to trajectories that push into the boundary, we
must restrict ourselves to only those for which the saddle point dynamics
do not push strictly into the boundary. If the boundary condition is not
valid in the classical sense, then we conjecture that this set is always non-
empty. Analogous considerations hold for the points at the intersection of
two or more faces. In general, choosing a control for which the saddle point
dynamics push into a face is only allowed when the corresponding boundary
condition holds in the classical sense.

6 Appendix

In this appendix we will prove that the game has value, i.e., that V +(x) =
V ¡(x) for all x 2 IRN+ . A key ingredient is a uniqueness result for the partial
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di®erential equation (PDE) that V + and V ¡ should satisfy. An excellent
general reference for the theory of viscosity solutions of ¯rst order nonlinear
PDE is the book [2]. The particular results we will need can be found in [1]
(see also [9]).

For q 2 IRN de¯ne

H(q) = max
®2A

min
½2S

[hq; F (½; ®)i + 1]

= min
½2S

max
®2A

[hq; F (½; ®)i + 1] ;

where the two expressions on the right hand side are equal since F (½; ®) is
a±ne in each variable separately and S and A are convex and compact. Con-
sider a Lipschitz continuous function V : IRN+ ! IR, and for a continuously
di®erentiable function g : IRN ! IR let y be a local maximum (respectively,
minimum) of

x ! V (x) ¡ g(x):

Then V is called a viscosity subsolution (respectively, viscosity supersolu-
tion) to (13) and (14) if

H(Dg(y)) _ max
i2I(y)

hDg(y); dii ¸ 0 (15)

Ã
H(Dg(y)) ^ min

i2I(y)
hDg(y); dii · 0

!
; (16)

and
V (0) · 0; (V (0) ¸ 0): (17)

We henceforth drop the adjective \viscosity," and note that a function that
is both a sub and supersolution is called a solution.

Recall that V : IRN+ ! IR is said to be radially linear if V (ax) = aV (x) for
all x 2 IRN+ and a 2 [0;1). According to [1, Theorem 4.3], there is only one
function V satisfying the following conditions: (i) V is a viscosity solution
to (15){(17), (ii) V is Lipschitz continuous and radially linear, and (iii)
V (x) > 0 for x 2 (IRN+ )nf0g. Suppose that V + and V ¡ satisfy conditions (ii)
and (iii) of the last sentence. Then standard arguments based on dynamic
programming can be used to show that (i) holds ([1, Theorem 3.2] and [2,
Chapter VIII]). Thus V + = V ¡ will follow if we can prove that (ii) and (iii)
hold for both V + and V ¡.

Assume for now that V + is uniformly bounded on bounded sets. It
follows from Theorem 3.3 that 0 · V ¡(x) · V +(x) · 1. It is also imme-
diate from the de¯nitions that both V +(x) and V ¡(x) are radially linear,
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and that V +(x) ^ V ¡(x) > 0 for x 2 (IRN+ )nf0g. Thus if V + is uniformly
bounded on bounded sets, all that needs to be shown is that V + and V ¡

are Lipschitz continuous. We give the proof for V +, and note that the
proof for V ¡ is analogous. Let M := maxy:kyk=1 V +(y), and assume for
now that M < 1. Owing to the radial linearity, V +(x) · Mkxk. Fix
points x; y 2 IRN+ and " > 0. Let K < 1 be the Lipschitz constant of
the Skorokhod Map de¯ned in Section 2. We claim that V + is Lipschitz
continuous with constant MK. The proof adapts a standard argument [2].
Choose ¹µ 2 £ such that V +(x) · inf½2N Cx(½; ¹µ[½]) + "=2. Since ¹µ is sub-
optimal at y, V +(y) ¸ inf½2N Cy(½; ¹µ[½]), and hence there is ¹½ such that
V +(y) ¸ Cy(¹½; ¹µ[¹½]) ¡ "=2. Note that also V +(x) · Cx(¹½; ¹µ[¹½]) + "=2, and
hence

V +(x) ¡ V +(y) · Cx(¹½; ¹µ[¹½]) ¡ Cy(¹½; ¹µ[¹½]) + ":

If Cy(¹½; ¹µ[¹½]) ¸ Cx(¹½; ¹µ[¹½]) (i.e., it takes longer to reach the origin from y than
x) then of course V +(x) ¡ V +(y) · ". On the other hand, if Cy(¹½; ¹µ[¹½]) ·
Cx(¹½; ¹µ[¹½]) then we can stop the process that was started at x at time ¾ :=
Cy(¹½; ¹µ[¹½]). If we let Áx(t) and Áy(t) denote the processes started at the
points x and y, then the Lipschitz property of the Skorokhod Map implies
kÁx(¾) ¡ Áy(¾)k · Kkx ¡ yk. Since Áy(¾) = 0, this means that kÁx(¾)k ·
Kkx ¡ yk. We can now use dynamic programming to argue that V +(x) ·
¾ + V +(Áx(¾)) + "=2 · ¾ + MKkx ¡ yk + "=2, and thus V +(x) ¡ V +(y) ·
MKkx¡ yk+ ". Combining the two cases and using that " > 0 is arbitrary,
it follows that V +(x) ¡ V +(y) · MKkx ¡ yk for all x; y 2 IRN+ .

With the proof that V + and V ¡ are Lipschitz continuous complete, all
that remains is to prove that V + is uniformly bounded on bounded sets.
Under Condition 2.1, it was shown in [8, Lemma 2.1, Theorem 2.1, and
page 60] that there is a compact, convex set B ½ IRN with the following
properties:

1. 0 2 B±,

2. if z 2 @B and n is an outward normal to B at z, then jhz; eiij · 1
implies hn; dii = 0,

3. if z 2 @B and n is an outward normal to B at z, then hz; eiihn; dii ¸ 0.

By considering sets of the form B± := fy : ky ¡ xk · ± for some x 2 Bg
(with ± > 0), it is easy to verify that without loss we can assume B has a
continuously di®erentiable boundary. De¯ne the function R : IRN ! [0; 1)
by

R(x) := inffc : x 2 @(cB)g:
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>From the convexity, properties 1 and 2 listed above, and the smoothness of
@B, it follows that R is continuously di®erentiable save at x = 0, and that
for x 2 IRN+nf0g

hDR(x); dii = 0 if i 2 I(x): (18)

Now ¯x any point x 2 IRN+nf0g, and let z 2 @B satisfy z = ax for
some a 2 (0; 1). If n is the corresponding outward normal to B at z, then
DR(x) = bn for some b 2 (0;1). According to properties 2 and 3 above,
hDR(x); dii ¸ 0. Let the vectors d¤i ; i = 1; :::;N be de¯ned by hdi; d¤ji = ±ij ,
where ±ij is 1 if i = j and 0 otherwise. These vectors are well de¯ned,
since Condition 2.1 implies the linear independence of fdi; i = 1; :::;Ng.
Writing DR(x) =

PN
i=1 cid¤i , it follows from hDR(x); dii ¸ 0 that ci ¸ 0 for

i = 1; :::;N . We now apply Condition 3.1. It follows from this condition
that for each ® 2 A there is ½ 2 S and c > 0 such that

hDR(x); F (½; ®)i · ¡c:

Since A is compact, an open covering argument shows the existence of c > 0
such that

max
®2A

min
½2S

hDR(x); F (½; ®)i · ¡c: (19)

Finally, the radial linearity of R, the continuity of DR(x), and another open
covering argument that uses the compactness of @B \ IRN+ shows that c > 0
can be selected so that (19) holds for all x 2 IRN+nf0g.

Equations (18) and (19) imply that R=c is a (classical) supersolution to
(13) and (14). Standard arguments based on dynamic programming can
then be used to show that V +(x) · R(x)=c. (See, for example, the proof
of Theorem 3.3.) This completes the proof that V +(x) = V ¡(x) for all
x 2 IRN+ .
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