
Using Agents to Exploit Heterogeneous Parallelism on High Performance
Computers

Mark H. Linderman
Air Force Research Laboratory/IFTC

26 Electronic Pkwy.
Rome, NY 13441
(315) 330-2164

(315) 330-2953 (FAX)
lindermanm@rl.af.mil

While homogeneous parallelism has traditionally been exploited on scaleable high performance
computers (HPCs) for applications such as signal processing, parallelism in requiring data
dependent processing applications is often difficult to predict and exploit with traditional
methods. This paper describes the adaptation of ‘agent-based’ systems that have been
investigated in other domains such as the Internet.

An agent is a autonomous process that adapts to its environment to accomplish a specific task.
An agent first discovers the location of needed information, and then either sends the data to a
central location or spawns processes to process the information in place. A process is spawned
by encapsulating its executable code and state information (including how and where to send the
results) into a package sent to the host compute node. The process is then scheduled and
executed according to its priority.

Agents are used in distributed control applications to coordinate resource utilization for optimal
performance, typically in a bandwidth-limited environment. The research presented here uses
agents in a bandwidth-rich environment to dynamically allocate computational resources to
several interacting tasks to maximize system performance. The flexibility of agent-based high
performance computing can exploit the natural ebb and flow of computational requirements over
time and space to maximize system performance in dynamically evolving environments.

C2I applications tend to be control flow oriented rather than data flow oriented. A query of an
indexed database, for example, requires traversal of the index data structures involving many
comparisons and conditional statements. Overall, the speed of the operation is determined by
several factors including: whether the relevant portions of the index reside in core, the size of the
database, how efficiently it is keyed for this query, and the particular records being sought. The
cumulative effect of these factors is unpredictable query response time. A C2I system handling
many simultaneous queries on a multiprocessor system has unpredictable load balancing
dynamics. The semi-autonomous nature of agents allows them to adapt to constantly changing
load conditions which improves load balancing and system performance.

The implementation of an agent system should be tailored to its problem domain and the
architecture on which it is implemented. In many ways, the high performance computing agent
systems are similar to the prevailing ‘Internet’ or Wide-Area Network (WAN) based systems:
control of agent propagation and replication and coordination of agents. However, there are

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1999 2. REPORT TYPE

3. DATES COVERED
 00-00-1999 to 00-00-1999

4. TITLE AND SUBTITLE
Using Agents to Exploit Heterogeneous Parallelism on High Performance
Computers

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/IFTC,26 Electronic
Parkway,Rome,NY,13441

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
1999 Command & Control Research & Technology Symposium

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

3

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

important differences as well: communication bandwidth, security models and computational
requirements.

The most obvious difference between an HPC and a Internet/WAN system is communication
bandwidth. HPCs exhibit bisection bandwidths on the order of several gigabytes per second, in
sharp contrast to the Internet with effective communication bandwidth of 1 KB/s to 1 MB/s.
This extra bandwidth allows agents within the HPC to interact more closely and move about
more freely. For example, a multi-part query may simultaneously launch several agents to seek
out a preliminary data set from data available on the nodes of the HPC, and several other agents
to receive the distributed preliminary dataset for further processing. Each of the agents may
move about the nodes of the HPC in search of data and computational resources.

This example highlights one difference between traditional HPC applications and an agent-based
system within an HPC. Traditional HPC applications typically exhibit communication patterns
that are known when the application is spawned. Consequently, MPI v1.0, the de facto standard
message passing application programming interface (API) for supercomputing supports only
static communication patterns. Unfortunately, agents roam around the system in ways that are
hard to predict, and therefore the communication infrastructure must be flexible enough to allow
communication fabrics to evolve over time.

The second difference between the HPC and the Internet involves security and ‘trust.’ Agents
operating over the Internet are typically untrusted, and therefore are not permitted access to
storage devices (except in very carefully controlled situations), or to manipulate address pointers
directly. Assumptions of trust are very different in a HPC environment. Users are authenticated
when they log into the machine, and the programs that they execute are assumed benign.
Furthermore, the authenticated user identity is associated with each agent/program, and agents
may be granted extensive access to system resources (such as the file system) on a user by user
basis, and the agents may be granted the privileges to which the user is entitled. In particular, if
a user has many agents interacting, the agents may jointly manipulate data created by the user or
the agents themselves.

The third way that an HPC-based architecture may differ from an Internet-based one is the
manner in which resources are allocated to tasks. Because an HPC-based agent expects to
interact directly with other agents and, it may inquire about the resources, agents and data
resident on the node. The node and the agent may then jointly decide whether the agent should
be allowed to run on that node and at what priority or whether it should go elsewhere. While
there may be nothing precluding Internet-based agents from implementing a similar scheme, the
heterogeneity of Internet resources may make it very difficult.

Several of the previously mentioned themes were incorporated into the Fusion Processor of the
Discriminating Interceptor Technology Program (DITP). The Air Force Research Laboratory
(AFRL) is developing this system for the Ballistic Missile Defense Organization (BMDO). The
fusion tracker initiates, maintains, and discards detection tracks over time. Because it is
impossible to predict the lifetime of a track, new work is dynamically allocated to maintain
acceptable system throughput. A new detection is broadcast to the distributed track processes
and the detection is associated with the track that best matches it. When a new track is

initialized, it is assigned to a node chosen to maintain an acceptable load balance with sufficient
memory and compute resources to handle the track process.

When a track is migrated to a node, the data and code associated with that object are migrated
with it and dynamically linked as a user process by the receiving node. A track manager catalogs
the location (i.e. forwarding address) of the track process so that any process wanting to
communicate can find it

While this work is a step in the direction of agents on a HPC, there are several aspects of an
agent-based system that have not yet been addressed. First, the track processes are not semi-
autonomous; they move and adapt only when directed by a centralized server. The
‘authoritarian’ control of the server is counter to the ‘free-market’ philosophy of agent-based
systems. Second, an agent on a node does not reference any data belonging to other processes or
interact with any other processes. Consequently, processes cannot be allocated to nodes based
upon locality of related data. This lowers the efficiency of the system by creating more message
traffic than necessary.

In the future, we intend to adapt agents to query dynamic databases resident upon an HPC. To
derive maximal performance, the agents will be assigned prioritized tasks that may be comprised
of subtasks. Because the resources to complete a task depend upon the type and quantity of data
stored at each node, each task will determine the approximate computational requirements to
accomplish that task on that node. The tasks will then be prioritized and spawned upon the
nodes either sequentially or concurrently. The order and priority of a node task assignment will
be influenced by several factors. For queries, these factors may include whether the query is
existential or universal in nature. For database updates, the timeliness of the data is a factor in
the priority assigned to the task.

Agent technology will dynamically exploit the natural time-varying resource requirements of
C2I applications. It can be used to prioritize and balance the computational load to meet quality
of service requirements. The introduction of agents to the HPC community will allow the
tremendous computational capability of these machines to be harnessed for C2I applications and
grows HPCs into new ‘information-centric’ application domains.

