
The Case For Reliable Concurrent Multicasting
Using Shared Ack Trees

BrianNeil Levine David B. Lavo J.J.Garcia-Luna-Aceves�
brian,lavo, jj � @cse.ucsc.edu

Departmentof ComputerEngineering
Universityof California
SantaCruz,CA 95064

ABSTRACT
Such interactive, distributed multimedia applicationsas shared
whiteboards,group editors,and simulationsrequire reliable con-
currentmulticastservices,i.e., the reliabledisseminationof infor-
mationfrom multiplesourcesto all the membersof a group. Fur-
thermore,it makessenseto offer that serviceon top of theincreas-
ingly availableIP multicastservice,which offersunreliablemulti-
casting. Thispaperestablishesthat concurrent reliablemulticast-
ing over the Internetshouldbe basedon reliablemulticastproto-
cols basedon a sharedacknowledgmenttree. First, weshowthat
organizingthe receivers of a reliable multicastgroup into an ac-
knowledgmenttreeandusingNAK-avoidancewith periodicpolling
in local groupsinsidesuch a treeprovidesthe highestmaximum
throughputamongall classesof reliable multicastprotocolspro-
posedto date. Second,weintroduceLorax, which demonstratesthe
viability of implementinga reliablemulticastingapproachin theIn-
ternetbasedon acknowledgmenttreesin a scalablemanner. Lorax
is thefirstknownprotocolthatconstructsandmaintainsasingleac-
knowledgmenttreefor reliableconcurrent multicasting,eliminates
theneedto maintainan acknowledgmenttreefor each sourceof a
reliablemulticastgroup,andcanbeusedin combinationwith any
of several tree-basedreliablemulticastprotocolsproposedto date.

Keywords: Reliable Concurrent Multicast, Performance
Evaluation, Transport Protocols, Collaboration, Internet

1 INTRODUCTION
Interactive, distributedmultimediaapplicationslike sharedwhite-
boards,groupeditors,andsimulationsrequirea reliableconcurrent
multicastingservice.Suchaserviceconsistsof disseminatinginfor-
mationfrom multiple sourcesto all membersof a multicastgroup,
suchthat(a) everypacketfrom eachsourceis deliveredto eachre-
ceiver within a finite time, free of errors,with no duplicates,and
in the ordersentby the source;and (b) nodesresponsiblefor re-
transmittingpacketscandeletepacketsfrommemorywithin afinite
time.

The developmentand implementationof end-to-endprotocolsfor

reliableconcurrentmulticastingover the Internetis beingenabled
by theincreasingavailability of multicastroutingin Internetrouters.
IP-Multicast routerspermit sourcesto transmitdataunreliably to
multiplereceivers[1]. Themostcriticalchallengefor thesuccessful
developmentand implementationof end-to-endreliableprotocols
built ontopof IP multicastconsistsof avoidingtheacknowledgment
(ACK) implosionproblemin largemulticastgroups:in a very large
reliablemulticastsession,thesourcesmaybeoverwhelmedby the
amountof work requiredto processtheacknowledgmentssentby
thelargereceiverset.

A considerableamountof work hasbeenreportedin therecentpast
onhow to copewith or eliminatetheACK-implosionproblem[2]—
[16]. However, thedesignof reliablemulticastprotocolsis complex
and thereis no consensusyet on which is the bestapproachfor
the implementationof protocolsfor scalable,reliable concurrent
multicastingover theInternet.This papermakesthecasethatend-
to-endreliableconcurrentmulticastingover the Internetshouldbe
basedon protocolsbasedon a sharedacknowledgmenttree. We
establishourcasein threeparts.

First, in Section2, we summarizethe known classesof protocols
that have beenproposedfor end-to-endreliablemulticasting. In
Section3, weusethis taxonomyandanapproximatemodelto ana-
lyze themaximumthroughputof theseprotocolclasses.Our anal-
ysis shows that the tree-NAPP protocol classis the mostscalable
approachwith respectto thenumberof receiversandprovidesthe
highestmaximumthroughputamongall reliablemulticastprotocol
classesproposedto date.� In a tree-NAPP protocol,the receivers
of a reliablemulticastgroupareorganizedinto anacknowledgment
tree(ACK tree)built ontopof themulticastroutingtree(s)provided
by suchmulticast routing protocolsas DVMRP [17], PIM [18],
CBT [19], or OCBT [20]. A sourcemulticastspacketsto all the
receiversthroughthe multicastrouting tree,andresponsibilityfor
retransmissionsis delegatedto thereceivers. Retransmissionstake
place only in local groupsof the ACK tree, and the numberof
ACK traffic within eachlocal groupis reducedby meansof NAK-
avoidancewith periodicpolling.

Second,Section4 presentsa simple extensionof any ACK tree-
basedreliablemulticastprotocol.This extensionallows thesource
to safelydeallocatepacketsfrom memorywhentheACK treeneeds
to bemodified.�

Theseresultsareconsistentwith theexperimentalresultsreportedin [6].

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1996 2. REPORT TYPE

3. DATES COVERED
 00-00-1996 to 00-00-1996

4. TITLE AND SUBTITLE
The Case for Reliable Concurrent Multicasting Using Shared Ack Trees

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Santa Cruz,Department of Computer
Engineering,Santa Cruz,CA,95064

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

12

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Finally, we note that it is not reasonableto set up an ACK tree
for every sourcein a concurrentmulticast session,and that the
ACK treeshouldadaptto changesin the constituency of eitherthe
receiversetor themulticastroutingtree(s).Section5completesour
caseby describingLorax ([21]), which is the first known protocol
that constructsandmaintainsa singlesharedACK treefor reliable
concurrentmulticasting. Lorax eliminatesthe needto maintain
an ACK tree for eachsourceof a reliable multicast group, and
canbeusedin combinationwith any of severaltree-basedreliable
multicastprotocolsproposedto date(e.g.,[5, 6]).

Section6 comparesour approachwith relatedwork anddiscusses
why Lorax andtree-NAPPprotocolsarethebestapproachto date
for the provision of scalable,reliableconcurrentmulticastingser-
vicesin theInternet.Conclusionsanddirectionsfor futureworkare
offeredin Section8.

2 BACKGROUND
To provideasummaryof known classesof reliablemulticastproto-
cols,weusea taxonomythatdecouplesthedefinitionof themech-
anismsneededfor thepacingof datatransmissionfrom themecha-
nismsneededfor theallocationof memoryat thesource[10]. Each
protocolclasscanbe viewedasusingtwo windows: a congestion
window (cw) that advancesbasedon feedbackfrom receiversre-
gardingthe pacingof transmissionsand detectionof errors,and
a memoryallocationwindow (mw) that advancesbasedon feed-
backfrom receiversasto whetherthe sendercanerasedatafrom
memory. In practice,protocolsmayuseasinglewindow for pacing
andmemoryallocation(e.g.,TCP[22]) or separatewindows (e.g.,
NETBLT [23]). In all classes,packetsaremulticastunreliablyfrom
the sourcedirectly to all receivers. The protocolclassesdiffer on
how acknowledgmentsflow from thereceiversbackto thesource.
A moredetaileddescriptionof all genericprotocolscanbe found
in [10].

2.1 Sender-Initiated Protocols
A sender-initiatedreliablemulticastprotocolisonethatrequiresthe
sourceto receiveACKsfromall membersof aknownreceiversetbe-
fore it is allowedto releasememoryfor thedataassociatedwith the
ACKs. Thereceiversarenot organizedinto any structure,andmay
contactthe sourcedirectly. An exampleof this type of protocols
is presentedin [13]. It is well known this schemesuffers from the
ACK-implosionproblem.Whetherthesourceor thereceiversarein
chargeof pacingthesourceandschedulingretransmissionsis unim-
portantfor our taxonomy. In otherwords,regardlessof whethera
sender-basedor receiver-basedretransmissionstrategy is used,the
sourceis still in chargeof deallocatingmemoryafter receiving all
the ACKsfor agivenpacketor setof packets.Theuseof NAKsen-
couragesashortenedretransmissionlatency, but isnotnecessaryfor
protocolcorrectness.Themainlimitation of sender-initiatedproto-
colsis not thatACKsareused,but rathertheneedfor thesourceto
processall of theACKsandto know thereceiverset.

2.2 Receiver-Initiated Protocols
Thecritical aspectof receiver-initiatedprotocolsfor our taxonomy
is that no ACKs are used. The receivers sendNAKs back to the

sourcewhena retransmissionis needed,detectedby eitheran er-
ror, askip in thesequencenumbersused,or a timeout.Becausethe
sourcereceivesfeedbackfrom receiversonly whenpacketsarelost
andnot whenthey aredelivered,thesourceis unableto ascertain
whenit cansafelyreleasedatafrom memory. Thereis no explicit
mechanismin a receiver-initiatedprotocolfor thesourceto release
datafrom memory(i.e., advancethe mw), even thoughits pacing
andretransmissionmechanismsarescalableandefficient (i.e., ad-
vancingthecw).

Becausethe sourcemay experienceNAK-implosion if many re-
ceivers detect transmissionerrors, previous work on receiver-
initiatedprotocols([8, 11]) adoptsthe NAK-avoidanceschemefirst
proposedin [2]: upondetectionof a lost packet,receiverssched-
ule a NAK for a randomtime in the nearfuture. During that time
the receiver listensfor a NAK by anothermulticastgroupmember
for the samepacket. If anotherNAK is heard,the transmissionis
scheduledfor a subsequent time. It is hopedthat only one NAK

is sentby the whole groupto the parentfor a lost packet. We re-
fer to this protocolsubclassas RINA (for Receiver-Initiated with
NAK-Avoidance). The scalablereliablemulticasting(SRM) pro-
tocol [11] andthe “log-basedreceiver-reliablemulticast” (LBRM)
protocol[12] areexamplesof RINA protocols.

2.3 Ring-Based Protocols
Our genericdescriptionof ring-basedprotocols is basedon the
ReliableMulticastProtocol(RMP)[7], whichis basedontheToken
RingProtocol(TRP)[3].

Ring-basedprotocolswork by organizingthe receiversinto a ring,
with arotatingtokensitedesignatedastheonlynodeto ACK backto
the sourcefor thecurrentpacket.Thesourcedeletespacketsonly
whenan ACK/tokenis received. The ACK alsoservesto passthe
tokenandto timestamppackets,so that all receiver nodeshave a
globalorderingof thepacketsfor delivery to theapplicationlayer.
ReceiverssendNAKs to the tokensite for selective repeatof lost
packetsthat wereoriginally multicastfrom the source.Both TRP
and RMP specify that retransmissionsare sentunicastfrom the
tokensite.Thetokenis notpassedto thenext memberof thering of
receiversuntil thenew sitehascorrectlyreceivedall packetsthatthe
formersitehasreceived.Oncethetokenis passed,asitemayclear
packetsfrom memory. Wecancharacterizering-basedprotocolsas
placingthe tokensite in controlof themw (conditionalon passing
the token),andplacingcontrolof thecw with eitherthe tokensite
or thesource.

2.4 Tree-Based Protocols
Tree-basedprotocolsdesignatethree types of nodesover a pre-
constructedACK treeduringreliabletransmission:source,hop,and
leaf nodes.Sourcenodesmulticastto theentirereceiver setandare
responsibleto at most � childrenfor retransmissionsof data.Leaf
nodesarestrictly receiversandhave no children in the ACK tree.
Hop nodesareintermediatenodesbetweenthe sourceandleaves,
responsiblefor requestinglost datafrom a parenthopnodeandfor
retransmittingdatarequestedby at most � children. A hop node
andits childrenconstitutea local group, with the hop nodeasthe

group leader. Note that leaf nodesareessentiallyhop nodeswith
no children,� andsourcenodesarehopnodeswith no parent.

BecauseACKs aresentto the parentnodeandnot the source,we
refer to them as hierarchical-acknowledgments(HACKs). In our
generictree-basedprotocol,a nodesendsa HACK to its parentas
soonit receivesa packetcorrectly (in order to move the cw), not
when all its own children (if any) have senttheir HACKs. If the
sourcehadto wait for ACKs to be aggregatedall theway from the
leafnodes,it wouldhaveto bepacedbasedontheslowesttreepath.
In the tree-basedprotocolsproposedto date([4, 5, 6]) the cw is
advancedby HACKs,but in thereis noprovisionfor deletingpackets
andadvancingthe mw safely. Section4 addressesthis important
point in moredetail,providing anextensionto thetree-basedclass
thatallows thesourceto safelydeletepacketsandadvancethemw.

We assumethat the sourceandgroup leaderscontrol the retrans-
missiontimeouts;however, suchtimeoutscanbecontrolledby the
childrenof the sourceandgroup leaders.Accordingly, whenthe
sourcesendsapacket,it setsatimer, andeachhopnodesetsatimer
asit becomesawareof a new packet. If thereis a timeoutbefore
all HACKs have beenreceived,thepacketis assumedto belost and
is retransmittedby the sourceor groupleaderto its children. We
assumea selective repeatstrategy is used,so thatoncea packetis
received correctly, it is never rebroadcastto the local groupagain.
Several tree-basedprotocolpossibilitiesarediscussedin [4], and
havebeenfully developedastheReliableMulticastTransportPro-
tocol (RMTP) [5].

2.5 Tree-NAPP Protocols
Tree-NAPP protocolsarea subclassof tree-basedprotocols. The
utilization of NAK-avoidanceandperiodicpolling describedin [2]
by the local groupsin a tree-basedprotocoldefinesthis subclass.
NAKS aloneare not sufficient to guaranteereliability with finite
memory, so receivers senda periodic positive (hierarchical)ac-
knowledgmentto their parentsso that the cw may be advanced.
Note that the settingof timersneededfor NAK avoidanceis done
entirelyon thelocalgroupscale,soit is scalable.

An implementationof tree-NAPPing can be found in the Tree-
basedMulticast TransportProtocol (TMTP) [6]. One approach
to implementNAK-avoidancewithin a local groupof an ACK tree
consistsof using a multicastaddressfor eachlocal group of the
ACK tree.

3 MAXIMUM THROUGHPUT ANALYSIS
To analyzethe relative maximumthroughputof reliablemulticast
protocols,wecontinueto usethesamemodelusedin [10] andfirst
introducedin [8], which focuseson theprocessingrequirementsof
genericreliablemulticastprotocols,ratherthanthecommunication
bandwidthrequirements.Accordingly, themaximumthroughputof
a genericprotocolis a functionof theper-packetprocessingrateat
thesenderandreceivers,andtheanalysisfocuseson obtainingthe
processingtimesperpacketatagivennode.

We assumea singlesender, � , multicastinga constantstreamof
packetsto � identical receivers. For clarity, we assumea single
ACK treerootedat the source. All losseventsat any nodein the

multicastaremutuallyindependent,theprobabilityof packetlossis� for any node,andno ACK is ever lost.

Following thenotationin [8] and[10], weplaceasuperscript	�
 on
any variablesrelatingto thegenerictree-NAPPprotocol.Additional
notation and variablesare introducedas neededin the analysis;
Figure 1 is a completelist of all variablesusedin this paperfor
quick reference. The following paragraphsderive the maximum
throughputfor tree-basedprotocolswith localNAPP;themaximum
throughputsfor therestof theclassesarederivedin [8, 10].

Assuminga finite amountof memoryat every node,it is easyto
show [10] that the genericsender-initiated, ring-based,and tree-
basedprotocolsarefree of deadlocksanddeliver packetsreliably,
while RINA protocolsincur deadlocks. Table 2 summarizesthe
resultson maximumthroughputandcorrectnessreportedin [10],
togetherwith thetree-NAPPthroughputresultderivednext.

3.1 Throughput of Tree-NAPP Protocol
To boundthe overall systemthroughputin the generictree-NAPP
protocol,wefirst derive andboundtheexpectedcostat thesource,
hop,andleafnodes.To makeuseof symmetry, weassume,without
lossof generalitythatthereareenoughreceiversto form a full tree
at eachlevel.

3.1.1 Source node We considerfirst ���� , the processing
costsrequiredby thesourceto successfullymulticastanarbitrarily
chosenpacketto all receiversusingthe 	�
 protocol.Theprocess-
ing requirementfor an arbitrarypacketcanbe expressedasa sum
of costs:� ����� � initial transmission��� � retransmissions�� � receiving NAKs��� � receiving periodicHACKs�� ��� � ����� �� � � � ��� �! ���

��" � � �$# �!% ���&�'�$((1)

where ��� is the time to get a packetfrom a higher layer, ��� �! �
is the time for (re)transmissionattempt , �$# �!% � is the time for
receiving NAK % from thereceiverset, �$(is theamortizedtimeto
processthe periodicHACK associatedwith the currentcongestion
window, and) is thenumberof transmissionsattemptsthesource
will haveto makefor thispacket.Takingexpectations,wehave

E * � ���,+ � E * ��� + � E *) + E * ��� +� � E *) +.-0/ � E* �$# + �1� E * �2(+ (2)

Following our previous analysisfor tree-basedprotocols[10], we
derive the valueof) , given that the sourcehasa local receiver
subsetof size � from whichto collectNAKsandretransmitpackets
to. Theexpectednumberof transmissionsperpacketis [2, 8]

E *) + �43� � � � 5 � 76 � -'/ �
�98 � /� /:- � � � (3)

It is shown in [9] that ;�<=�> ? �0@ E *) + @ / �4;�<=A> ? ��B where C 3 �D 3� � � /FE , the harmonicnumbers. From the known inequalityGIH � / � � �AJ �� 8 � , it follows that - GIH ��K � = �� . Usingthis result,
assumingall operations(e.g. ��� and ���) areof constantcost,and
takinginto accountthat C 3MLN � GIH �O� , it is shown in [8] that

P
- Branching factor of a tree, the group size.Q
- Size of the receiver set.R � - Time to feed in new packet from the higher protocol layer.R � - Time to process the transmission of a packet.R'SUT!R # T!R'V - Times to process transmission of a ACK, NAK, or HACK.R'WXT!YZW
- Time to process a timeout at a sender or receiver node respectively.Y � - Time to process a newly received packet.Y � - Time to deliver a correctly received packet to a higher layer.Y # T[Y V - Times to transmit a NAK , or HACK respectively.R (Y (- Times to process the reception and transmission, respectively, of a periodic HACK .\ - Probability of loss at a receiver; losses at different receivers are assumed to

be independent events.]�^
- Number of transmissions necessary for receiver _ to successfully receive a packet.]
- Number of transmissions for all receivers to receive the packet correctly;

]a`cb'dFe ^gf] ^ihR ��� T!Y ��� - the processing time per packet at the sender and receiver respectively in protocol j2kj ��� - Processing time per packet at a hop node in tree-based protocols.lnmo - Throughput for protocol p0q fsr T!t�uFTvt k TvQwT j uFT j$k h where x is one of the source y ,
receiver (leaf) _ , or hop-node z . No subscript denotes overall system throughput.

Figure 1: Notation

protocol processorrequirements � asa constant �2{}| correctness
Sender-initiated[8] N�~ � � / � � > ?��� = � �[� N � � GIH �w� - { N � �w� safeandlive

Receiver-initiatedNAK-avoidance[8] N ~ / � � > ?��� = � � N � GIH �w� - { N � / � notcorrect

Ring-based(unicastretrans.) [10] N ~ / ��� ��= �v� �� = � � N � ��� - { N � / � safeandlive
Tree-based[10] N � � � /�- � ��� � � GIH ��� N � / � - { N � / � safeandlive

Tree-basedwith localNAPP Nc� / � � � = �
8 � > ? 3

8 �F� � � =.� � �� = � �[� N � / � - { N � / � safeandlive

Figure 2: Analytical bounds and results on correctness.

E *I) + L�N 5 / � �/�- � GIH � 6 (4)

UsingEq.4, wecanboundEq.2 asfollows

E * � ���,+ L�N � / � / � �/�- � GIH ��� L�N � / � �/�- � GIH ��� (5)

It thenfollows thatwhen� is aconstantE* � ��� + L�N � / � .
3.1.2 Leaf nodes Let � ��� denotethe requirementon nodes
thatdo not have to forwardpackets(leaves). Let �U� �! � bethetime
it takesto processthe(re)transmission , �.# �! � bethetime it takes
to sendNAK , �2# �! � be the time it takesto receive NAK (from
anotherreceiver), � W bethetime to setthe W V timer, ��� bethetime
to deliverapacketto ahigherlayer, and �.(betheamortizedcostof
sendingaperiodicHACK for agroupof packetsof whichthispacket
is amember.� ��� � � receiving transmissions��� � sendingperiodicHACKs�� � sendingNAKs��� � receiving NAKs�� ����� �� � � � � /�- � ��� � �! ���&� � �&� (� �� � � � � � #� � � � -1/ � �$# �! �� �

�&�'�g���i��) ^w�
�� �'� = �� � � � � W �! � (6)

Takingexpectationsof Eq.6,

E * � ��� + � E *) + � /A- � � E * � � + � E *I� � + � E *I� (+� � E*I) +.-1/ � � E *I� # +� � � � -0/ � E * � # +� �� Prob�v) ^ �
�� � E *I) ^��) ^ �
 +�-
�� E * � W + (7)

It follows from thedistribution of) ^ that[8]

E *) ^ �) ^w� /,+ E* � W + � �
 - � � E � /�- � � (8)

E *) ^ �) ^w�
 + E* � W + � �v� -
 � � E � /�- � � (9)

Therefore,noting that �'�s���g��) ^ �
�� � � � , we derive the
expectedcostas

E*I� ���,+ � E *) + � /A- � � E * � � + � E *I� � + � E * � (+� � E *) +.-0/ � 5 E *I� # +� � � � -0/ � E * � # +� 6� � � 5 � -
 �/�- � -
 6 � * � W + (10)

Again,usingtheboundof E *) + givenin Eq.4,wecanboundEq.10
by

E * � ���,+ L N 5 / � � /�- � � � GIH �1� � � � /�-c¡ � �/�- � � 6 (11)

When� is treatedasaconstantE * � ��� + L�N � / � .
3.1.3 Hop nodes To evaluatethe processingrequirementat a
hopnode, ¢ , we notethata nodecaughtbetweenthesourceanda
nodewith no childrenhasa two jobs: to receive andto retransmit
packets.Becauseit is convenient,andbecauseahopnodeis botha

senderandreceiver, wewill expressthecostsin termsof � and � .
Oursum£ of costsis	 ��� � � receiving transmissions��� � sendingperiodicHACKs�� � receiving periodicHACKs��� � receiving NAKs�� � sendingNAKs��� � retransmissionsto children�	 ��� � � /�- � � �� � � � � � �! ���&� (�&�'� (�&� �� �� � � � � �.# �! �� � � � -0/ � �$# �! �� �

� Prob��) ^ �
�� � � � �� � � � � W �! �� �� � � � � � # �! ���M� � �! ��� (12)

Computingtheexpectedvalueof 	 ��� ,
E * 	 ���,+ � � /�- � � E*I) + E * �U� + � E * �.(+ �1� E * �2(+ � E *I��� +� � E *) +.-0/ � � E * �.# +� � � � -¤/ � E * �$# +� �� � � � � -
 �/�- � -
�� E * � W +� � E *) +.-0/ � � E * � # + � E * � � + � (13)

In other words, the averagecost on a hop nodeis the sameas a
sourceandaleaf,without thecostof receiving thedatafrom higher
layersandonelesstransmission(theoriginalone)

E * 	 ����+ � E*I� ���,+ � E * � ���,+¥- E * ��� +�- E * ��� + (14)

Therefore,Eq.13 canbeboundedby

E *I	 ����+ L�N � � *I� ���,+ ��¦ N � E * � ����+ �L�N 5 / � � /�- � � � GIH �1� � � � /:-¡ � �/�- � � 6 (15)

When � is a constantE * 	 ��� + L�N � / � . Therefore,all nodesin
thetree-NAPPprotocolhavea constantamountof work to do with
regardto thenumberof receivers.

3.1.4 Overall system Let § ���¨ � /FE E * � ��� + , § ���V �/FE E *I	 ��� + , § ���^ � /sE E * � ��� + equalthethroughputat thesender,
hops,andleaves,respectively, then§ ��� �©%� vª �«§ ���¨ B § ���V B § ���^ � (16)

FromEquations5, 11,15,and16, it follows that/sE § ��� L�Nc� / � � /A- � � � GIH �&� � � � /�-¡ � �/�- � �[� (17)

Accordingly, if either � is a constantor �¬{| , we obtain from
Eq. 17 that /sE § ��� L®N � / � . Therefore,themaximumthroughput
of the tree-NAPP protocol, as well as the throughputwith non-
negligible packetloss, is independentof the numberof receivers.
Tree-basedprotocolsis theonlyclassof reliablemulticastprotocols
thatexhibitssuchadegreeof scalabilitywith respectto thenumber
of receivers.

tree−NAPP
RINA
trees
recv−init
rings
send−init

1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

T
hr

ou
gh

pu
t

1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

T
hr

ou
gh

pu
t

Number ofReceivers

p=0.01

p=0.10

1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

T
hr

ou
gh

pu
t

p=0.25

tree−NAPP
RINA
trees
recv−init
rings
send−init

10
−1

10
0

10
1

10
2

10
3

10
4

0

5000

10000

S
up

po
rt

ab
le

 r
ec

ei
ve

rs

p=0.01

10
−1

10
0

10
1

10
2

10
3

10
4

0

5000

10000

S
up

po
rt

ab
le

 r
ec

ei
ve

rs
p=0.10

10
−1

10
0

10
1

10
2

10
3

10
4

0

5000

10000

Processor Speed

S
up

po
rt

ab
le

 r
ec

ei
ve

rs

p=0.25

Figure 3: Above: The maximum throughput for each
protocol. Bottom: Number of supportable receivers for
each protocol. The branching factor for trees is set at
10.

3.2 Numerical Results
To examinethe relative performanceof thevariousclassesof pro-
tocols,all meanprocessingtimesaresetequalto 1, exceptfor the
periodiccosts�$(and �.(whicharesetto 0.1.Figure3(a)compares
therelative throughputsof theprotocolsdescribedin Section2. The
graphrepresentstheinverseof Eq.13astheexactexpectedthrough-
put for tree-NAPPprotocolsaswell asthethroughputequationsde-
rived in [8, 10] for all otherclasses.The top, middle andbottom
graphscorrespondto increasingprobabilitiesof packetloss, 1%,
10%,and25%,respectively.

The throughputof tree-basedand tree-NAPP protocolsare inde-
pendentof the sizeof the receiver set,andthereforeany increase
in processorspeedwould directly increasethroughput.A smaller
branchingfactor would also increasethroughputat the cost of a
longerpaththat retransmissionsmust traverseto an expectingre-
ceiver.

Figure 3(b) shows the numberof supportablereceivers by each
of the different classes,relative to processorspeedrequirements.

This numberis obtainedby normalizingall classesto a baseline
processor¯ . As describedin [8, 9], thebaselineusesasender-initiated
protocol and can supportexactly one receiver. As in [8, 9], let°�± *I� + , be the speedof the processorthat cansupportat most �
receiversunderprotocol ² , where ² L �«³ BX´ / Bµ´
 B � B 	 / B 	�
��representingsender-initiated,receiver-initiated, RINA, ring-based,
tree-based,andtree-NAPP, respectively. If we set °�¶ * /,+ � / asa
baselineit is shown in [8] that

E * � ¶ +¸···· � � � � /° ¶ * /µ+ � - �/A- � � � - �/�- �
Thespeedupof tree-NAPPprotocolscanbecalculatedastheratio
of theirexpectedcost(Eq.13) to thebaseline° ��� * � + � /

E * � ¶ + E * 	 ���,+� /
E * � ¶ + ��� ¡w- � � E *) +.-&/�¹ º � | ¹9/ �1� � � � � -
 �/A- � -
��

In [8, 10], thenumberof supportablereceiversderived for sender-
andreceiver-initiated,RINA, ring-based,andtree-basedprotocols
areshown to be° ¶ * � + � /

E * � ¶ + E *) + �
A�0� � /�- � ���°�» � * � + � /
E * � ¶ + � / � E *) + �&� � E � /:- � ���°�» � * � + � /
E * � ¶ + �
 E *) + �° � * � + � /
E * � ¶ + 5 � �
 � � -¤/ � �� /�- � � 6° �:� * � + � /
E * � ¶ + � -'/ � E *) + � ¡ �1� - �
A�&�O� � ���

Becausethe exact valueof E *) + is difficult to computefor large
valuesof � , asin [8, 9], weusethefollowing approximation

E *) +�¼®½ � � 	�¾�¿ - 	 � �GIH � � �
where ½ is thevalueof E *I) + for � �À�ÂÁ and 	 Ã is theharmonic
series. When evaluating ° �:� * � + , or ° ��� * � + an exact value for
E *I) + is usedbecausethenumberof receiversis always � � � �/ | .
FromFigure3, it is clearthatonly the tree-basedclassescansup-
portany numberof receiversfor thesameprocessorspeedboundat
eachnode.It is alsoclearthat,in termsof performance,tree-NAPP
protocolsaresuperiorto otherclasses.Of course,ourmodelconsti-
tutesonly a crudeapproximationof theactualbehavior of reliable
multicastprotocols.In theInternet,anACK or a NAK is simplyan-
otherpacket,andthe failure to deliver a given packetcorrectlyto
a receiver is correlatedwith what happensat other receivers,be-
causepacketsaredistributed along multicastrouting trees. Nev-
ertheless,our approximatemodelis still a valuabletool asa first-
ordercomparisonof reliablemulticastprotocolsandproducesre-
sults that shouldbe expected. Becausetree-basedprotocolsdele-
gateresponsibilityfor retransmissionto receiversandbecausethey
employtechniquesapplicableto eithersender- or receiver-initiated
protocolswithin local groups(i.e., a nodeand its children in the

C

re-establishment
needed

...
A

B

data

node
fails

deleted

...hack
...

... ...
. . .

Source

hacks

(i)

... ...
. . .

Source

data
deleted

(ii)

B

A

C

hack

hack

data not
received

...

Figure 4: Packet loss for a subtree due to a hop node
failure.

tree) of the ACK tree only, any mechanismthat canbe usedin a
receiver-initiatedprotocolcanbeadoptedin a tree-basedprotocol,
with theaddedbenefitthat the throughputandnumberof support-
ablereceiversis completelyindependentof thesizeof the receiver
set, regardlessof the likelihood with which packetsare received
correctlyat the receivers. The restof this paperdescribeshow to
constructsharedACK treesin ascalableandfault-tolerantmanner.

4 DEALLOCATING MEMORY
The ACK tree structuregreatly improves throughputover other
classes.However, an inherentweaknessin the basicapproachof
delegatingtheresponsibilityof retransmissionsto groupleadersis
thatthefailureof oneor morehopnodescancauseanentiresubtree
to loseaseriesof packetsduringre-establishmentof thetree.

After nodefailure, applicationscould either(a) terminatethe ses-
sion,(b) continuethesessionwithoutproviding areliableserviceto
nodeswhile they aretemporarilydisconnected,or (c) allow nodesto
rejoinandcatchupwith thesession.For thefirst two cases,changes
in theACK treedo notcreateaproblem,andthecwandmwcanad-
vancetogetherat the sourceandeachhop node. The restof this
sectionconsidersnecessaryextensionsfor the lastcase. Figure4
illustratestheproblemwith anexample.Packetsaremulticastfrom
thesourceto thereceiverset;nodesthathavereceivedthedatacor-
rectly areshaded.Packetsareacknowledgedasthey arereceived,
ratherthanwaiting for theacknowledgmentsfrom children. Node³ , andall othernodesthathavereceivedHACKsfrom all their chil-
dren,deletepackets;however, � fails beforeit is ableto confirm
that all its childrenhave correctlyreceived thedata. If we assume
thatat leastonechild Ä hasnot receivedthedata,thenthereis no
nodewith whomto re-establishcontactthat will definitelyhave a
copyof thedata. Onesolutionto this problemis to buffer the en-
tire sessionin a secondarystore,as is donein RMTP and SRM.
However, thissolutioncanbecomeunscalable.

Ideally, we would like to keep data in a finite secondarystore
only until all current receivers have correctly received the data,
withouthaving any nodekeepingtrackof whoall thereceiversare.
Fortunately, deadlocksdueto receiverfailuresor reconfigurationsof
the ACK treeor theunderlyingmulticastroutingtreecanbeeasily
avoidedin tree-basedprotocolsby introducingaggregateACKsthat

propagatefrom thereceiversupthetreeto thesource.TheACK sent
from anodeto its parentin thetreeconsistsof its own ACK andthe
aggregatedACKs from all its children. Justasin the generictree-
basedprotocol,correctly received datapacketsareacknowledged
usingHACKs. However, packetsarenot deletedat this point, they
are kept in a secondarystore or partition of memory. When a
parentof a leaf nodeconfirmsthat all its childrenhave correctly
receivedthedata,it deletesthedatafrom secondarystoreandsends
an aggregatedACK to its own parent. Hop nodesdo the same
procedure.In termsof our taxonomy, aggregateACKs areusedto
move themwandHACKs(andnegative HACKs) to move thecw.

The following two additionalmechanismsareusedtogetherwith
aggregatedACKs to ensurethat a disconnectednodeor subtreeis
neverallowedto rejointheACK treeafterthesourcehaseraseddata
from memorythattherejoiningnodeor subtreenever received.

First, a nodethatperceivesoneof its childrenasdisconnectedas-
sumesthereceptionof any pendingaggregatedACK from thatchild
andsetsa topology-changenotificationflag in its own aggregated
ACK. Thesettingof theflagispreservedastheaggregatedACK trav-
elsbackto thesource.Theflag instructsthesourceto wait for an
evenlongerperiodof time beforeerasingtheassociateddatafrom
memoryafter receiving all theaggregatedACKsfrom its children.

Second,anorphannodeisgivenafiniteamountof timeto reconnect
to the ACK tree. This time is much shorterthan the time set in
a “connecttimer” at the source. Oncean orphannodetimesout,
it cannotjoin the sessionand catchup without application-level
support. The next sectionprovides more detailson the handling
of orphanswithin thecontext of Lorax.

5 SHARED ACK TREES
For aconcurrentmulticastsession,it is not reasonableto managea
separateACK treefor everysource.To remedythis,Loraxsupports
the proper disseminationof all acknowledgmentsin a multicast
groupalonga singleshared ACK treeof the concurrentmulticast
session. The routing schemeused in Lorax is adaptedfrom a
techniquedevelopedfor the routingof messagesbetweenmultiple
processorelementsdescribedin [24].

Consideran ACK tree createdfor one original source,in which
nodeshave at most � children. The treecanbere-hungasanac-
knowledgmenttreewith any othernodeasthe root, andall nodes
will still have at most � children. This is a well known property
of treesthatallow usto applytheconstant-costresultsof Section3
to any protocolutilizing a shared-treefor concurrentmulticastses-
sions.

Whenan ACK treeis createdfor a single-sourcemulticastsession
with thesourceastherootof thetree,theroutingof aggregateACKs
to theappropriatehopnodetowardsthesourceis simple:eachnode
HACKs to its designatedparent. However, the situation is more
complicatedfor sharedACK trees. The introductionof multiple
sourcesclasheswith the inherentanonymity of the tree: receivers
in the ACK tree lack knowledgeof whereeachsourceis located,
knowledgethat canbe usedto route ACKs to the appropriatehop
nodeleadingto a particularsource. In this paperwe refer to the

actionsa nodetakesto discoverwhichadjacentnodeon theshared
ACK treelies on thepathto a particularsourcenodeon theshared
ACK treeasrouting.

Routing in an anonymousACK treecanbe doneefficiently using
implicit routing, with which each node is labeledbasedon its
position in the tree. All packetsfrom a sourceincludethis label,
from which receivers can infer to which child or parentto route
towardsthatsource.Onesuchlabelingschemeis presentedin [25],
but thealgorithmrequirestheentiretreeto be relabeledwhenany
nodeis addedor deleted.Our adaptationof [24] involvesonly two
nodesfor acompletelynew addition(theaddednodeandits parent),
anddeletionsrequirere-labelingof thesubtreeof thedeletednode
whenpatchedbackinto theACK tree.

First we describetheconstructionof thesharedACK tree,thenthe
labelingandrouting scheme.We thendescribetreemaintenance,
includinghow nodescansplit off childrenandhow nodedeletions
arehandled.

5.1 Ack Tree Construction
Our approachassumestheexistenceof themulticastroutingtree(s)
provided by the underlying multicast routing protocols. In the
Internet,thesetreeswill be built usingsuchprotocolsasDistance
Vector Multicast Routing Protocol (DVMRP) [17], Core Based
Trees(CBT) [19], OrderedCore BasedTrees(OCBT) [20], or
ProtocolIndependentMulticast(PIM) [18].

To constructthe ACK tree, Lorax utilizes a combinationof root-
basedand off-tree schemesto grow the tree. Theseschemesare
basedon thecommonexpandingring search(ERS)techniqueover
the underlyingmulticastrouting tree(s)andmechanismsintended
to limit thecostof eachERS.

The ACK tree is grown from a single root nodeusing either the
sourcemulticastroutingtreeof theroot nodeor thecommonmul-
ticast routing tree of the multicastgroup. The root nodemay be
selectedbeforethe sessionstartsandadvertisedtogetherwith the
multicastaddress,or maybeselectedwhenthesessionbeginsus-
ing anelectionalgorithm.

After joining theIP multicastaddress,all nodesareconsideredoff-
treeexceptfor theroot nodeof theACK tree.Theroot immediately
begins multicasting invitation-to-join messages(INV) using the
underlyingmulticastrouting tree with a time-to-live (TTL) value
of zeroin the IP header, andsetsa timer Å�Æ »�Ç . An off-tree node
thathearsanINV messageunicastsa request(REQ)to beadopted
backto theinviting node.If an inviting nodedoesnot heara REQ
before Å�Æ »:Ç expires, it multicastsa new INV with a larger TTL
valueandresetsÅ�Æ »�Ç to alongertimeout.WhenaREQis received
correctlyat theinviting node,abindmessage(BIND) is sentto the
new child confirmingtheadoption.Oncethenew child receivesthe
BIND, it becomesanon-treenodeandstartsthesameprocessagain
by multicastinganINV. Thisprocessstopsatany on-treenode(i.e.,
a nodethat is “growing the ACK tree”) whenthe nodehasseveral
children,or theTTL field of its INV reachesamaximumvalue.

Note that the maximumTTL of an INV is muchsmallerthanthe
TTL of datapacketsor theTTL neededto cover the entireunder-

lying multicastrouting tree. This root-basedstrategy to createthe
ACK treeis usedto avoid excessive traffic over themulticastrout-
ing tree. In practice,this schemeshouldsuffice to createthe ACK

tree,becausemostif not all membersof a reliablemulticastgroup
will want to participatein the ACK tree (i.e., receive information
reliably).

In the unlikely scenarioin which a large numberof membersof
the reliablemulticastgroupdoesnot want to receive information
reliably, growing the ACK treefrom theroot only mayresultin the
formationof a “frontier” of leaf nodeson the ACK tree that may
not reachnodesinterestedin receiving packetsreliablybut whoare
beyondthemaximumallowedTTL of INVs fromfrontiernodes.To
accountfor thiscase,Lorax includesanoff-treeschemefor off-tree
nodesto reachtheACK tree.

Allowing off-tree nodesto freely multicastuntil they find a par-
entmaycausetheunderlyingmulticastroutingtreeto becomecon-
gestedwith searchmessages.This methodis similar to thesingle-
sourcetreeconstructionmethodpresentedin [6]. Loraxsolvesthis
problemby limiting thescopeof ERSmulticastsneededto reachthe
ACK tree.Morespecifically, consideranoff-treenodethatjoinsthe
multicastsessionandcall it orphannode � . This nodestartsmulti-
castingquery(QRY) messageslooking for a new parentin anERS
fashionafteroneof the following outcomesoccurs:(a) A timeout
expiresafter joining themulticastsessionwithout thereceptionof
an INV messagefrom a nodein the ACK tree,or (b) having sent
its REQanumberof times,a timeoutexpireswithout receiving the
correspondingBIND.

Whenanoff-tree node ¢ � receivesnode � 's QRY, it respondsto �
with aDIF message.Node � mayreceivemultiplesuchreplies,and
canpick any oneof the respondingnodesas its helperin joining
the ACK tree. If � chooses¢ � as its helper, the two nodesthen
periodicallysendnexusmessages(NEXUS)to eachotherverifying
thatthereis anexusfrom � to ¢ � . A nexusis adirectedconnection
from � to ¢ � correspondingto � 's attemptto reachthe ACK tree;it
can be terminatedonly by � or a resourcefailure. Node � need
not multicastmore QRYs as long as its nexus with ¢ � is valid.
Node ¢ � diffusesthe ERS towardsthe ACK tree by multicasting
QRYs accordingto ERS.After a numberof ERSattempts,node¢ � 's searchmayeitherbesuccessfulandreachthe ACK tree,or be
unsuccessful andreachanotheroff-treenode¢ � willing to help. In
the latter case,a nexus from ¢ � to ¢ � is established,and ¢ � helps
diffusingnode� 's ERStowardstheACK tree.

Notethatthechainestablishedby thediffusionof node� 's ERSby
oneor varioushelpersis not partof the ACK tree;it is only usedto
containthespanof theERSmulticastsneededfor theorphannode
to reachthefrontierof theACK tree.

Oncean on-treenodehearsa QRY messagefor the ERSstarted
by node � , it unicastsa responsemessage(RSP)to node � . This
messageindicatesthat the sendingnode is willing to adopt the
orphan � . All on-treenodesarerequiredto respondto any QRY,
andnodesthat endup having morechildrenthanthey canhandle
go throughaprocessof fission, describedsubsequently.

100 101 102 112110 111 120 121 122

1

10 11 12

Figure 5: An example of the labeling scheme.

An orphannodemay receive more than one RSP, in which case
the orphanunicastsa REQ to oneof the on-treenodeswilling to
adoptandtheprocessoutlinedabovecontinues.If theorphannode
alreadystartedanERSto join theACK tree,it alsosendsaterminate
message(TERM) to its helperto erasethenexusit hadestablished
to reachthe ACK tree. Any nodethat is active helpingnode � that
receives a TERM from its incident nexus sendsa TERM on its
outgoingnexus. This processcontinuesuntil the chainstartedby
node� to reachtheACK treeis erased.

A nodedeclaresa nexus built to help orphan � to be invalid after
timing out without receiving a NEXUS from theothernodein the
nexus. In thatcase,thehelpercloserto theorphannode � (or node� itself) startssendingQRYs again(i.e., it attemptsto get a new
helperto reachthe ACK tree)andthenodeto which thenexuswas
incidentsendsaTERM onits outgoingnexusto erasetherestof the
chainof helpers.

Notethatanodemayparticipatein thediffusionof multipleERSs,
eachfor adifferentorphan.Eachsearchis is treatedindependently.
Onceanodeis on-tree,it mustreceivealabelusedin routingof ac-
knowledgments,for restructuringof thetreeduringnodedeletions,
andfor thefissioningof localgroups.

5.2 Labeling and Routing
The algorithm used in Lorax for routing HACKs and aggregate
ACKs is basedon the following simplescheme:if a sourceis not
in a receiver's subtree,then HACKs shouldbe sentto the parent;
otherwise,the HACK shouldbe sent to the child who headsthe
appropriatesubtree.

Somecommondefinitionsareusedfor ourformaldescriptionof the
protocol. As aninitial framework, we representthenetworkasan
undirectedgraph È �É�!Ê B � � , where Ê is the finite setof nodes,
and � �ËÊÍÌ0Ê is the set of edgesrepresentingthe (currently
operational)bi-directionallinks betweennodes. We requireeach
nodeÎ L È to haveauniquenameª�� Î�� (e.g.,anIP hostaddress).

Let ÅÐÏÐÈ be the ACK tree over which acknowledgmentsare
routed. The protocol assignsa uniqueinteger label Ñ � Î�� to each
node Î suchthat all nodesdescendent from Î contain Ñ � ÎÒ� asthe
prefix of their respective labels.Figure6 describesthehierarchical
labelingalgorithm,where Ó is the concatenationoperator. When
the labelingalgorithmterminates,every nodein the ACK treehas
a uniquelabel, illustratedin Figure5. This label is usedby the
ACK routingalgorithmalsoshown in Figure6. Basically, a receiver
mustcheckif thesourceis in its subtree.If it is, thenthe labelof

LABEL (graphG)
Constructa tree ÔMÕ�Ö from × rooted

at somenode y , asabove;
label ØÚÙvyµÛ `0u ;
Call LABEL-SUBTREE(y ,T,1);

LABEL -SUBTREE (noder, treeT, integer Ü),
Let Ý `MÞ ;
For eachchild ß of _ do:

label ØàÙàß�Û ` Üná�Ý ;
Let Ý ` Ýãâ u ;
Call LABEL-SUBTREE(ß ,T, ØÚÙvß�Û);

ROUTE -PACKET (treeT, noden, nodes,packetp)
If ä ØÚÙÚå¥Û,ä«æ1ä ØÚÙvyµÛ,ä

Then routethepacketto theparentof å ;
Else comparethefirst ä ØÚÙÚå¥Û,ä low orderbits

of ØàÙçå.Û and ØÚÙvyµÛ ;
If theyarenotequal

Then routethepacketto the
parentof å ;

Else thenext èêéIëFì � P:í explicitly
statesto which child of å thepacket
shouldberouted.

Figure 6: Algorithms for ACK tree labeling and routing
of ACKs.

the receiver nodewill be a prefix of the label of the sourcenode.
The ACK routingalgorithmroutespacket¢ acknowledgingsourceî

's datato theproperhopnodefor receiver � . Let
� Ñ � Î�� � denotethe

cardinalityof thelabelof nodeÎ , i.e.,thenumberof bits it contains.
Eachsourcenodeincludesits label in all packetsit transmits.It is
trivial for eachreceiver to storethe label in the table containing
retransmissioninformation(e.g.,thelastsequencenumberreceived
correctly).If atany point thesourceis assignedanew label,it must
bemulticastto all thereceivers.

On average,nodescloser to the root of the tree have to com-
pare fewer bits than leaf nodes. The cardinality of the la-
bel grows well with an increasing receiver set. Each level
addsan additional � G9ï�ð � ��� bits, and a tree of ª receivers has� G9ï�ð 3 ª � levels. The numberof bits neededis thereforeexactly� G9ï�ð � ��� � G9ï�ð 3 ª � � G9ï�ð � ª . Consequently, if 32 bits wereusedin
thepacketheadersfor this label,thenatreecouldhandle
 ¾ � nodes.

5.3 Tree Maintenance
5.3.1 Group Fission Theanalysisof Section3 assumesacon-
stant � which boundsthedegreeof eachnodein thetree. In prac-
tice, thevalueof � canbechosenindependentlyat eachnode;i.e.,
somemachinesaremorecapablethanothers.For reasonableper-
formance,nodesshouldnotset � solow thatonly a few nodescan
be supportedaschildren,and � shouldnot besetany higherthan
thenodescansupportefficiently.

It is clear, then,thatanalgorithmis neededto keepthenumberof
childrenat or below � at eachnode;we refer to this processas
fission. Arbitrarily assigninga new parentto childrenwould not
preserve groupingwell, and so we proposeagainusing the ERS
heuristic for fissioning a group. An easyheuristic is to simply
disconnectextra children and let them ask nodesin other local

groupsfor adoption;however, this maycreateunscalableamounts
of work atsomenodes.

Our fissionalgorithmrequiresthatparentnodeskeeptrackof how
many additionalnodesits currentchildrenmaytake.This informa-
tion is easilyincludedperiodicallyin HACKs,or aspartof aNAPP
algorithm. The parentnodesendsan adoptmessage(ADOPT) to
the child with themostfree space.The ADOPT forcestheadopt-
ing nodeto multicastto all thenodesin its local groupin the ACK

treea request-for-childrenmessage(RFC).Thenodesthatrespond
first with a QRY messagearecurrentlycloserandaresentanRSP
messageby theadoptingnodeandthefissionis completed.From
here,thelabelingalgorithmmustberun on thenew subtreesof the
adoptingnodes.

The questionremainsof how many new childrento forceonto the
adoptingnode.Initially it is advantageousto justreducethenumber
of nodesto slightly below � . If threefissionshappencloseto each
other, measuredby a timer Å�ñ ^�ò m W V , aheuristicis to requirethatthe
third fissionreducethe numberof nodesdown to half � , andthe
timer is reset.Thisdrasticfissioningis motivatedby thefact that if
many fissionshappenin suchashortperiodof time,thenthetreeis
mostlikely in a periodof growth, andneedsto beexpanded.Each
additionalfissionwithin the Å ñ ^�ò m W V periodalsoseparateshalf the
childrenandresetsthetimer. Whennofissionshappenwithin afullÅ ñ ^�ò m W V period,thenodeinitializesto smallfissionsagain.

5.3.2 Deletions We usethesamealgorithmfor accidentaland
intentionaldeletionof nodesfrom the ACK tree;only theinitiating
conditionsaredifferent.Thealgorithmis motivatedby theneedfor
a fast distributed algorithmthat would not force all disconnected
nodesto bechildrenof oneparent,causingfission.Weassumethat
all childrenof a deletednodeareoperatingcloseto their � limit,
andcannottakeon � morechildren.

To describea simple methodof restructuringthe ACK tree, we
presentthe following relation. Define “at leastas old as”, with
operator“ J ” for two children Î Bµó of a commonparent: Î is at
leastasold as ó if integervaluesÑ � Î���J1Ñ � ó � .
Thealgorithmis simpleandstartswhentheparentnodemulticasts
a deletionmessage(DEL) to the membersof its local group, or
whenanodedetectsthatit is anorphan.Sinceall nodeshavelabels
beforethedeletionstarts,all even-labelednodesbecomethechild
of thenext lowest(that is, next eldest)even-labelednode.All odd-
labelednodesbecomethechild of next lowest(even-)labelednode.
Sinceall nodeshave a list of their siblings,unicastQRYs aresent
directly to thepropernode,andanRSPis expectedin response(A
BIND is notrequired).If new parentsdonot respond,thenthenode
joins theACK treeasif it wereanew node.

While this algorithmis completing,theeldestnodestartsmulticas-
ting QRYs to all nodesin the multicastgroupusing the groups's
multicastaddress.Notethataslongasthis nodedoesnot join with
descendents,the partial orderingof the tree is preserved. In sup-
port of this,wealsorequirethatnodesretaintheir labeluntil anew
parentis found. The reasonis that the eldestnodemay join with
a disconnectednodepreviously in its subtree.A loop is formedif

thatdisconnectednodethenre-joinswith anodein theeldestnode's
subtreeô beforeit canbe relabeled.As long thedisconnectednode
retainstheold label,this scenariocannothappen.

Becauseall othermaintenancein the treeis ERS-heuristic-driven,
it is likely that the new parentsareclosein thenetworktopology.
However, this is not guaranteed,and a nodemay wish to keepa
counterof how many timesits parenthasbeendeleted;it canthen
rejoin the ACK treeasa new nodewhena certainvaluehasbeen
exceeded.

Whentherootof theACK treebecomesdisconnectedfrom thetree,
theeldestchild becomesthenew root.

5.3.3 Orphans If a nodehaslost contactwith its parentfor a
time Å ò�^ � V S # , long enoughsothat thecauseis clearlynot conges-
tion, it considersitself an orphan,andwill have to rejoin the ACK

treeby initiating themethoddescribedabove. Clearly, all descen-
dentsof theorphanednodedo not have to rejoin the ACK tree,but
mustberelabeledwith theorphanednode'snew prefix.

When a node is orphanedit may chooseto enactthe secondary
acknowledgmentprotocoldescribedin Section4. Theonly thingan
orphanmustdo is contacteachsourcein the ACK tree,instructing
themthatthenodemightbeorphaned,andto notdeletedatauntil it
receivesanew parent.If thereareenoughsources,theorphanmay
choosefor efficiency to multicast this information. A nodemay
chooseto contactsourcesat time Åõ� Sg^�S # ò �êö K Å ò�^ � V S # to besure
theholdmessagereachesthesourcein enoughtime. If thesources
arefollowing the secondaryprotocol, thennormally they will not
deletedatauntil the secondACK is received from all children,or
a certainvery long timeout Å ¨ ò�÷F^�ø[ù hasbeenreached.In practice,
nothingis guaranteed,but if Å ¨ ò�÷«^�ø!ù is muchlongerthan Å ò�^ � V S #
weexpecttheprotocolto work.

Showing that Lorax is loop-free is simple, becausethe relation
“ J ” is reflexive, transitive, andanti-symmetricandis alsoapartial
ordering.Let Î { ó denotethatx is theparentof ó becausethere
existsanedgein thetree Å betweenÎ and ó . Assumethatat some
time during theoperationof Lorax, thereis a pathof nodesin the
ACK treesuchthat ½ { � {Ëúgúgú¥{üûý{ ½ , and ½�þ� � þ� û . Lorax
requiresthat ÎJ ó if Î is theparentof ó , thenit mustbetruethatÎ�J ó . It follows thatboth ½ J û and û J ½ mustbetrue.Theonly
way in which this canbetrue is if ½ � û , which is acontradiction,
andit follows thatLorax producesloop-freeroutingof ACKsat all
times.

6 COMPARISON WITH RELATED WORK
As we have summarizedin our taxonomyof Section2, there is
a growing body of work on reliablemulticastprotocolsfor inter-
networks.Our resultsin Section3 clearly indicatethat tree-based
protocolsarethefirst choicein termsof performance,with RINA
protocolsbeingthesecond.Not surprisingly, RINA andtree-based
protocolsarethetwo prominentapproachesfor theimplementation
of reliablemulticastingtoday.

The main motivation for RINA protocolsis that usingNAKs frees
the senderfrom having to processevery ACK from eachreceiver.
Two additionaladvantagesare that the sourceis not supposedto

know the receiver setandandthe receiverspacethesource.How-
ever, RINA protocolssuffer from anumberof limitations.

First, the RINA protocolsthat have beenproposedto date (e.g.,
SRM [11] andLBRM [12]) have no mechanismfor the sourceto
know whenit cansafelyreleasedatafrom memory[10]. LBRM
usesa hierarchyof log servers that storeinformation indefinitely
andreceiversrecoverby contactingalogserver. Usinglogserversis
feasibleonly for applicationsthatcanafford theserversandleaves
many issuesunresolved. If a single server is used,performance
can degradedue to the load at the server; if multiple serversare
used,mechanismsmust still be implementedto ensurethat such
servers have consistentinformation. On the other hand, SRM
simply requiresthatdataneededfor retransmissionberebuilt from
theapplication.Sincetheapplicationis never informedwhendata
hasbeensuccessfullydeliveredto all receivers,all datais storedat
all sources(andatall willing receivers)for thelengthof thesession.

Second,if error recovery in a RINA protocol dependssolely on
timeoutsat the receivers,end-to-enddelayscanbecomearbitrarily
large. For example,SRM requiresevery receiver to multicastpe-
riodic “sessionmessages”specifyingthehighestsequencenumber
acceptedfromasourceandatime-stampusedby thereceiversto es-
timatethedelayfrom thesource.Thesequencenumberin asession
messageis in effectanACK to thelastpacketfrom thesource,anda
receivercankeep“polling” thesourceperiodicallytoensurethatthe
sourceeventuallydeliversmissingpacketsnot caughtby the NAK

scheme.Thisclearlylimits thescalabilityof SRM,becausetheper-
sistenceof sessionmessagesforceseverynodeto know thereceiver
set.

Third, NAKs and retransmissionsmust be multicast to the entire
multicastgroupto allow suppressionof NAKs. TheNAK-avoidance
was designedfor a limited scope,suchas a LAN, or the small
numberof Internetnodesthat canbe expectedin a local groupof
an ACK tree. This is becausethe basicNAK-avoidancealgorithm
requiresthattimersbesetbasedonupdatesmulticastby everynode.
As the numberof nodesincreases,eachnodemustdo increasing
amountof work! Even worse,nodesthat areon congestedlinks,
LANs or regions may constantlybotherthe rest of the multicast
groupby multicastingNAKs.

On the otherhand,tree-basedprotocolseliminatethe ACK implo-
sionproblemandfreethesourcefrom having to know thereceiver
set,providemaximumend-to-enddelaysthatarebounded,andop-
eratesolelyonmessagesexchangedin localgroups(betweenanode
and its children in the ACK tree). As we show in Section3, the
amountof work requiredateachnodefor tree-NAPPprotocolsdoes
not increasewith thenumberof groupmembers,i.e.,thethroughput
of suchprotocolsis not dependenton the numberof groupmem-
bers.

Theonly two concernsregardingthepracticalityof tree-basedpro-
tocolsarewhetherfinite memorycanbeusedandtheeffort needed
to build andmaintaina “reasonable”structurefor theACK treethat
canbemodifiedin a dynamicandscalablemanner. Our approach
addressesall prior concernswith tree-basedprotocols. We have
shown in section4how tomaketree-basedprotocolswork correctly

3 4 5 6

0.9

0.92

0.94

0.96

0.98

1

Branching factor

%
 O

pt
im

al

Figure 7: Optimality with 95% confidence intervals
shown as vertical lines.

with finite memory. Second,Lorax is thefirst protocolthatprovides
a sharedACK treefor efficient useamongmultiple sourcesandre-
ceiversin a concurrentmulticastsession,andtheACK treeis main-
taineddynamicallyin thepresenceof changesto thereceiver setor
theunderlyingmulticastroutingtree.

7 QUALITY OF ACK TREES
Throughoutthis paperwe have describedtheconstructionof ACK

treesmakingnoassumptionsregardingthestructureof theunderly-
ing multicastroutingtree(s).However, thereis muchto be gained
by usingasharedmulticastroutingtreesuchascreatedby CBT or
OCBT. With suchanunderlyingroutingtree,packetsaremulticast
from eachsourceto the receivers throughthe samestructure;re-
ceiverscloserto the sourcereceive packetsbeforereceiversdown
thetreedo,andthereis a correlationof packetlossat nodeshang-
ing from themulticastroutingsubtreeof a router. Themorethese
relationshipsarepreserved in the ACK tree,thebetterthe ACK tree
performs,becauselatenciesandretransmissionswithin eachlocal
groupof the ACK tree have a direct correspondencewith delays,
congestion,anderrorsthatoccurin theroutingtree.

We definean ACK treeasoptimal if, for all pathsin theunderlying
multicastroutingtreethatstartfrom therouteradjacentto a parent
nodein the ACK treeandterminateat a routeradjacentto its child
nodein theACK tree,any receiversadjacentto arouterlying onthat
pathnecessarilyarechildrenof the sameparentnodein the ACK

tree. Unfortunately, obtaininganoptimalACK treemaybeat odds
with thenumberof childrenin theACK treethatany givenhostcan
supportin practice.

To gaininsighton theoptimality of the ACK treesbuilt with Lorax,
we performedanumberof simulations.� A singleroutingtreewas
createdusingasimulationof CBT runningontopof theDistributed
BellmanFord algorithmin anetworkof 25 nodes.Theroutingtree
hasits core(root) at node10, andeachroutingnodein sucha tree
hasa maximumdegreeof 6. A nodeof the ACK treewasattached� We thankRooftopCommunicationsCorporationfor donatingthe C++ Protocol
Toolkit.

to eachroutingnode,andeachsuchnodewasselectedastherootof
theACK tree.For eachplacementof theACK treeroot,eachnodeof
theACK treewasallowedto haveamaximumdegreeof 3, 4, 5, and
6, andLoraxwasrun to obtainthecorrespondingACK treein each
of the100cases.For eachACK treeobtainedby Lorax,wecounted
thenumberof nodesin theACK treethatadhereto ourdefinitionof
ACK treeoptimality. An ACK treenodeadheresto our optimality
principle if its router is a descendant(on the routing tree) of the
routerof its ACK treeparent.

The resultsfrom this simulationexperiment indicate that Lorax
tendsto build anACK treethatis optimumaccordingto our defini-
tion. Loraxalwaysbuilt optimumACK treeswhennodesin theACK

treecansupportup to 6 neighbors,andfor the restof the casesit
builds ACK treeswith morethan90%of theirnodesadheringto the
optimalityprinciple.Thesimulationresultsaregraphedin Figure7.
Thetypeof topologiesconsideredin [11] to analyzeSRM's perfor-
mancecorrespondto the casein which Lorax producesoptimum
ACK trees,and Lorax with a tree-NAPP protocol shouldprovide
performancebetterthanor at leastequalto the bestperformance
thatcanbeexpectedfrom SRM.

As the nodedegreeneededfor an optimum ACK treeexceedsthe
maximumdegreethat canbe supportedby nodesin the ACK tree,
thestructureof theacktreedeviatesfrom theroutingtreestructure.
This correspondsto the casein which receivers of the multicast
grouparesparselydistributedover a routingtree.

8 CONCLUSION
We have establishedthat tree-NAPP protocolshave betterperfor-
mancethanall other classesof reliablemulticastprotocolsusing
a maximumthroughputmodel. We have alsopresentedsolutions
to severalopenquestionsconcerningtheimplementationof shared
ACK trees. Preservingreliability during restructuringof the ACK

tree is easily guaranteedusing aggregatedacknowledgmentsthat
propagatefrom eachleaf towardsthe source. It is not necessary
to useaggregateACKs in conjunctionwith a tree-basedcongestion
window scheme. It is possibleto usea (shared)tree for deallo-
cating memoryand an unstructuredreceiver-initiated schemefor
retransmissionrequests.This classof tree-basedreceiver-initiated
NAK-avoidance(TRINA) protocolscanbe viewedasan extension
to RINA protocolslike SRM and LBRM so that packetscan be
deletedsafely. Our futurework continuesto defineinstancesof this
new subclassof protocols.

Lorax maintainsscalableoperationwith multiple sourcesby con-
structingand maintaininga sharedACK tree. Overheadtraffic is
containedduringinitial ACK treeconstructionby growing the ACK

treefrom a known root. Impatientnodesarequieteddown andal-
lowedto join theACK treeby meansof expandedring searchesthat
arenarrow in scope.Hierarchicallabelingof eachnodemakesim-
plicit routing of acknowledgmentssimpleandpreservesloop-free
routing of suchacknowledgments over the ACK tree at all times.
For thecasein which a sharedmulticastroutingtreeis usedat the
networklayer, the ACK treesbuilt with Loraxmirrorsthemulticast
routingtree.

Although our empirical evidenceshows that Lorax createsACK

treesthat are reasonablycloseto an underlyingsharedmulticast
routing tree,changesin routing tablesandgroupmembershipcan
makethetwo treesdiffer from oneanotherover time. Furthermore,
moreefficientmechanismscouldbeadoptedin Lorax if hostswere
allowedto know moreaboutthestructureof theunderlyingmulti-
castroutingtrees.Our work continuesto addresstheopportunities
presentedby thehierarchicallabelingof routers,namelytheability
to provideadirected-multicastserviceoveranexistingIP-multicast
routingtree. With a smallchangein theprotocolsnow beingpro-
posedfor thecreationof multicastroutingtrees,Loraxcanmakein-
telligentchoiceswhenconstructingandmaintainingthe ACK tree.
Multicast routing protocolssuchasCBT andOCBT cancreatea
singletreefrom which an arbitraryroot nodecaneasilybe picked
(e.g.,oneof thecores)to startthelabelingalgorithm.It is trivial to
incorporatethelabelingschemepresentedin Section5.2 into these
multicastrouting protocols. Forthcomingpublicationsdefinethis
servicemoreformally andtheassociatedprotocols,andaddressthe
dynamicsof Lorax in largemulticastgroups.

(Positive) ACKNOWLEDGMENTS
We would like to thank Clay Shieldsfor his generoushelp with
the C++ ProtocolToolkit, as well as for allowing us to usehis
implementationof the CBT protocol in our simulations. This
work wassupportedin partby theOffice of Naval Researchunder
GrantN00014-94-1-0688,andby theDefenseAdvancedResearch
ProjectsAgency (DARPA) underGrantF19628-96-C-0038.

REFERENCES
1. S. Deering,“RFC-1112:Hostextensionfor ip multicasting.”

RequestFor Comments,August1989.

2. S. Ramakrishnanand B. N. Jain, “A negative acknowledg-
ment with periodic polling protocol for multicastover lan,”
in Proc.IEEE Infocom, pp.502–511,March1987.

3. J.-M. ChangandN. F. Maxemchuk,“Reliablebroadcastpro-
tocols,” ACM Transactionson ComputerSystems, vol. 2,
pp.251–273,August1984.

4. S.Paul,K. K. Sabnani,andD. K. Kristol, “Multicast transport
protocolsfor high speednetworks,” in InternationalConfer-
enceon NetworkProtocols, pp.4–14,1994.

5. J. C. Lin andS. Paul, “RMTP: A reliablemulticasttransport
protocol,” in Proc. IEEE Infocom, pp. 1414–1425,March
1996.

6. R. Yavatkar, J. Griffioen, andM. Sudan,“A reliabledissem-
inationprotocolfor interactive collaborative applications,” in
Proc.ACM Multimedia, pp.333–44,1995.

7. B. Whetten,S. Kaplan,andT. Montgomery, “A high perfor-
mance totally ordered
multicastprotocol.” Available from research.ivv.nasa.gov by
ftp /pub/doc/RMP/RMP dagstuhl.ps, August1994.

8. S. Pingali, D. Towsley, and J. F. Kurose,“A comparisonof
sender-initiatedandreceiver-initiatedreliablemulticastproto-
cols,” in PerformanceEvaluationReview, vol. 22, pp. 221–
230,May 1994.

9. S.Pingali,ProtocolandReal-TimeSchedulingIssuesfor Mul-
timediaApplications. PhDthesis,Universityof Massachusetts
Amherst,September1994.

10. B. N. Levine and J.J. Garcia-Luna-Aceves, “A comparison
of known classesof reliable multicast protocols,” in Proc.
IEEE InternationalConferenceon NetworkProtocols, Octo-
ber1996.

11. S.Floyd,V. Jacobson,S.McCanne,C.-G.Liu, andL. Zhang,
“A reliablemulticastframework for light-weightsessionsand
application level framing,” in Proc. ACM SIGCOMM'95.,
pp.342–356,August1995.

12. H. Holbrook,S. K. Singhal,andD. R. Cheriton,“Log-based
receiver-reliable multicastfor distributed interactive simula-
tion,” in Proc. ACM SIGCOMM'95, pp. 328–341,August
1995.

13. W. T. Strayer, B. Dempsey, andA. Weaver, XTP: TheXpress
Transfer Protocol. Addison-Wesley Publishing Company,
1992.

14. A. KoifmanandS. Zabele,“RAMP: A reliableadaptivemul-
ticastprotocol,” in IEEE Infocom'96, pp. 1442–1451,March
1996.

15. M. Grossglauser, “Optimal deterministictimeouts for reli-
ablescalablemulticast,” in IEEEInfocom'96, pp.1425–1441,
March1996.

16. Y. Ofek and B. Yener, “Reliable concurrentmulticast from
burstysources,” in IEEE Infocom'96, pp. 1433–1441,March
1996.

17. S. DeeringandD. Cheriton,“Multicast routing in datagram
inter-networks and extended lans,” ACM Transactionson
ComputerSystems, vol. 8, pp.85–110,May 1990.

18. S. Deering, D. Estrin, D. Farinacci, V. Jacobson,and oth-
ers., “An architecturefor wide-areamulticast routing,” in
Proc.ACM SIGCOMM'94, pp.126–135,1994.

19. T. Ballardie,P. Francis,andJ. Crowcroft, “Core basedtrees
(CBT): An architecturefor scalableinter-domain multicast
routing,” in Proc. ACM SIGCOMM'93, pp. 85–95,October
1993.

20. C. Shields,“Orderedcorebasedtrees,” Master's thesis,Uni-
versity of California — SantaCruz, SantaCruz, California,
June1996.

21. Dr. Seuss,TheLorax. RandomHouse,1971.

22. JonB. Postel,ed.,“RFC-793:Transmissioncontrolprotocol.”
RequestFor Comments,September1981.

23. D. D. Clark,M. L. Lambert,andL. Zhang,“NETBLT: A high
throughputtransportprotocol,” in Proc.ACM SIGCOMM'93,
pp.353–359,Aug. 1987.

24. D. Summerville, J. Delgado-Frias,and S. Vassiliadis, “A
high performancepatternassociativeobliviousrouterfor tree
topologies,” in Proc.EighthInternationalParallel Processing
Symposium, pp.541–545,April 1994.

25. N. SantoroandR. Khatib, “Labeling and implicit routing in
networks,” TheComputerJournal, vol. 28,pp.5–8,February
1985.

