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Abstract

Learning to act in a multiagent environment is a challenging problem. Optimal behavior for one
agent depends upon the behavior of the other agents, which are learning as well. Multiagent envi-
ronments are therefore non-stationary, violating the traditional assumption underlying single-agent
learning. In addition, agents in complex tasks may have limitations, such as physical constraints
or designer-imposed approximations of the task that make learning tractable. Limitations prevent
agents from acting optimally, which complicates the already challenging problem. A learning
agent must effectively compensate for its own limitations while exploiting the limitations of the
other agents. My thesis research focuses on these two challenges, namely multiagent learning and
limitations, and includes four main contributions.

First, the thesis introduces the novel concepts of a variable learning rate and the WoLF (Win
or Learn Fast) principle to account for other learning agents. The WoLF principle is capable of
making rational learning algorithms converge to optimal policies, and by doing so achieves two
properties, rationality and convergence, which had not been achieved by previous techniques. The
converging effect of WoLF is proven for a class of matrix games, and demonstrated empirically for
a wide-range of stochastic games.

Second, the thesis contributes an analysis of the effect of limitations on the game-theoretic con-
cept of Nash equilibria. The existence of equilibria is important if multiagent learning techniques,
which often depend on the concept, are to be applied to realistic problems where limitations are
unavoidable. The thesis introduces a general model for the effect of limitations on agent behavior,
which is used to analyze the resulting impact on equilibria. The thesis shows that equilibria do
exist for a few restricted classes of games and limitations, but even well-behaved limitations do not
preserve the existence of equilibria, in general.

Third, the thesis introduces GraWoLF, a general-purpose, scalable, multiagent learning algo-
rithm. GraWoLF combines policy gradient learning techniques with the WoLF variable learning
rate. The effectiveness of the learning algorithm is demonstrated in both a card game with an in-
tractably large state space, and an adversarial robot task. These two tasks are complex and agent
limitations are prevalent in both.

Fourth, the thesis describes the CMDragons robot soccer team strategy for adapting to an un-
known opponent. The strategy uses a notion of plays as coordinated team plans. The selection of
team plans is the decision point for adapting the team to its current opponent, based on the out-
come of previously executed plays. The CMDragons were the first RoboCup robot team to employ
online learning to autonomously alter its behavior during the course of a game.

These four contributions demonstrate that it is possible to effectively learn to act in the presence
of other learning agents in complex domains when agents may have limitations. The introduced
learning techniques are proven effective in a class of small games, and demonstrated empirically
across a wide range of settings that increase in complexity.
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Chapter 1

Introduction

Applications involving or requiring multiple agents (e.g., robot soccer, search and rescue, auto-
mated driving, auctions and electronic commerce, information agents) are becoming commonplace
as physical robots and software agents become more pervasive. This dissertation focuses on the
problem of an agehiearning a successful course of action in domains that involve other external
learning agents.

An agentis the combination of three components: perception, reasoning and action. An agent
receives observations about the state of the environment, and chooses an action from those avail-
able to the agent. The reasoning component is responsible for mapping the received percepts into
a choice of action. Agents commonly have some goal. This may be a desirable state of the envi-
ronment to achieve, or a signal to maximize. This work focusde@amingas part of the agent’s
reasoning component. Learning in agents involves adapting the mapping of observations to actions
through interaction with the environment. Since agents are goal directed, learning seeks to adapt
this mapping from percepts to actions in order to improve the agent’s goal achievement.

Learning has been studied extensively in single-agent tasks where a robot is acting alone in
an unchanging environment. There are a number of advantages of employing learning agents
in these tasks. Learning greatly simplifies the problem of agent programming by removing the
developmental burden of accurate models and optimal reasoning with respect to those models.
Learning also allows a robot to adapt to unforeseen difficulties or changes in the environment. In
multiagent environments, learning in agents is both more important and more difficult.

In multiagent domains, agents are forced to interact with other agents, which may have in-
dependent goals, assumptions, algorithms, and conventions. In order for agents to handle these
environments, they must employ some ability to adapt to the other agents’ behavior. Since the
other agents are also adapting, this presents a very difficult learning problem that violates the basic
stationarity assumption of traditional techniques for behavior learning. Even defining a desirable
policy for the agent is difficult, since it depends on the policies of the other agents, which are also
improving through experience. This thesis contributes and evaluates learning algorithms that learn
in complex domains in the presence of other learning agents.

Realistically, agents havanitationsand so are not always capable of acting optimally. They

1Since this work focuses on the multiagent environments using the framework of stochastic games, we will use the

terms robot, agent, player, and even opponent interchangeably. As this dissertation demonstrates, these techniques are
applicable to both software and physical agents, and for a variety of competitive and non-competitive domains.
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18 CHAPTER 1. INTRODUCTION

may have physical limitations (e.g., broken actuators or partial observability) that make them inca-
pable of certain behavior. They also may be employing approximations or abstractions of the task
in their learning, and so sacrifice optimality in order to learn more quickly. They may not even
be learning at all. Limitations are unavoidable in large and complex environments, and create sce-
narios where the other agents involved may not appear to be acting rationally. Multiagent learning
techniques that are practical must address the possibility of limitations, both their own and others’.
Effective learning agents should be capable of compensating for their own limitations and those
of their teammates, while exploiting limitations in other, possibly adversarial, agents. This thesis
also examines how limitations impact learning, and demonstrates effective learning techniques for
accounting for limitations in agent behavior.

1.1 Obijective

This thesis seeks to answer the question,

Can an agent effectivelgarnto act in the presence other learning agentsh com-
plexdomains when agents may hdimitations?

By learning, we mean the process of an agent changing its behavior through experience to
improve its ability to achieve a goal or accumulate long-term reward. Learning occurs through the
agent’s interaction with the environment: gaining percepts and rewards from the world and taking
actions to affect it.

Learning is complicated by the existenceotifier agentsalso acting in the environment. We
assume these other agents exéernalagents, that is, they are not under the control of the same
agent programmer or designer. They are still likely to have goals of their own and to be learning to
achieve those goals. As external agents, though, we can make few, if any, assumptions about their
goals, algorithms, protocols, assumptions, or capabilities.

Complex domainsare primarily domains with a very large or continuous set of possible con-
figurations. In these domains, the pertinent dynamics of the environment depend on features that
are either continuous or in their joint product are beyond enumeration. Often the complexity actu-
ally comes from the other agents in the domain. For example, in spatial domains the state of the
environment usually includes the state or position of the agents themselves. So, the complexity of
the domain inherently increases with the increase in the number of agents. These domains require
the use of approximations by agents in order to act effectively in the domain.

Finally, limitations are anything that prevent agents from acting optimally. With our definition
of complex domains, limitations are unavoidable. For example, approximation itself limits the
agents from selecting optimal actions. Limitations also affect both our own agent as well as the
other agents in the environment. Learning with limitations implies both accounting for the agents
own inability to act optimally, as well as exploiting limited opponents or compensating for limited
teammates.



1.2. APPROACH 19
1.2 Approach

This thesis question is examined in the context of the framework of stochastic games. Stochastic
games were first studied extensively in the field of game theory, but can be viewed as a general-
ization of Markov decision processes (MDPs). MDPs have served as the foundation of much of
the research in single-agent control learning. Stochastic games subsume both MDPs as well as the
more well-known game theoretic model of matrix games. Like matrix games, stochastic games do
not always have a well-defined notion of optimal behavior for a particular agent. The most com-
mon solution concept in these games is Nash equilibria, intuitively defined as a particular behavior
for all the agents where each agent is acting optimally with respect to the other agents’ behavior.
All stochastic games have at least one Nash equilibria. But, equilibria are only sensible if all the
agents are fully rational, optimal, and unlimited. Since our goal includes learning with limited
agents, we do not make equilibria the explicit goal of learning. We will, though, use it as a tool to
understand the multiagent learning problem.

We approach this thesis question by first examining the issue of multiagent learning in stochas-
tic games when agents are not limited. We then consider how limitations affect the multiagent
learning scenario. We use the techniques developed in the unlimited setting to address the more
challenging problem of learning with limited agents. Our ultimate goal, though, of handling lim-
ited agents influences our approach to multiagent learning even in unlimited settings. Our approach
is to develop techniques that are theoretically justifiable in analyzable and unlimited settings but
scale well to practical and challenging problems.

An important factor in our approach is the strong emphasis on how learning algorithms per-
form in self-play. Our interests are in techniques that are general and applicable to many multiagent
problems, as well as being robust to a variety of learning situations. Therefore we must acknowl-
edge the fact that the other agents’ designers may be equally as innovative, or well-read in the latest
literature. Hence, it is important to consider situations where the other agents are using the same
or similarly advanced techniques. Hence, our analysis, theoretical and empirical, will examine
situations of self-play, while also seeking to examine situations beyond self-play.

The final important point of our approach is our consideration of both competitive and non-
competitive multiagent settings. We seek to avoid making assumptions about the goals or rewards
of the other agents, and do not expect a priori that their behavior is cooperative or adversarial.
Our theoretical and empirical examinations will look at both competitive and non-competitive
domains. This generality, however, will also prevent the work from completely addressing some
specific multiagent environments where stricter assumptions can be made. For example, we do
not focus on the interesting and challenging problem of a team of agents cooperating to globally
maximize a known and common objective. In the team learning task, the issue is one of distributed
computation and learning, as opposed to the issues of strategic decision making and learning,
which is the emphasis of our work.

1.3 Contributions

The key contributions of this dissertation are four-fold.
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Variable learning rate and the WoLF principle for rational and convergent learning. Ratio-

nality and convergence are two properties we introduce as desirable for a multiagent learning algo-
rithm. Previous learning techniques do not simultaneously achieve both properties. We present the
concept of a variable learning rate and the WoLF (“Win or Learn Fast”) principle toward achiev-
ing these properties. We demonstrate that WoLF is both theoretically grounded and evaluate it
empirically in a variety of stochastic games.

Analysis of restricted policy spaces and their effect on equilibria. We introduce a novel and
general model of the effect of limitations on agent behavior. We use this model to analyze the
resulting impact of limitations on the concept of Nash equilibrium. This result not only affects
our own investigation but has far reaching consequences for research on multiagent learning, in
general.

GraWoLF as a general-purpose scalable multiagent learning algorithm. GraWoLF combines

the WoOLF variable learning rate with policy gradient learning techniques. The algorithm directly
addresses the thesis question of effective learning in complex domains with other limited agents.
We introduce the algorithm and show compelling empirical results of its applications in complex
and challenging problems. This includes a robot learning task where learning and evaluation was
done on the robot platform itself. This is the first application of any explicitly designed multiagent
reinforcement learning techniques to domains with intractable or continuous state spaces.

Play-based team strategy for adapting to an unknown opponent. CMDragons is a RoboCup
small-size robot soccer team faced with the challenge of competing against a variety of completely
unknown opponents. We developed and implemented a team strategic architecture built around
the notion of plays as coordinated team plans, with the ability to adapt play selection during the
course of a game. The CMDragons team represents the first use of online learning by a RoboCup
robot team to autonomously alter its behavior during the course of a game, improving its behavior
against its specific opponent. We demonstrate both the effectiveness of learning in the challenging
multiagent domain of robot soccer. We also present this approach as an example of learning being
effectively integrated into a fully implemented system.

1.4 Guide to the Thesis

Here we outline the chapters that follow.

Chapter 2 — A Framework for Multiagent Learning. Inthis chapter we present the general frame-
work of stochastic games as a description of multiagent domains. We arrive at this frame-
work by examining the two simpler frameworks: Markov decision processes for single-agent
domains, and matrix games for state-less multiagent domains. We review the basics of these
frameworks, exploring both results from reinforcement learning and game theory. This chap-
ter forms the foundations upon which the rest of our work is built.
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Chapter 3 — Categorization of Previous Work. We present a novel categorization of the related
work addressing our thesis question of multiagent learning. We examine both game theo-
retic techniques for solving stochastic games, as well as previous algorithms for learning
within the stochastic game framework, drawing connections between the two bodies of liter-
ature. We introduce the typology of equilibria learners and best-response learners as a useful
classification of previous multiagent learning algorithms. This chapter also motivates our
introduction of the WoLF principle for rational and convergent learning in the next chapter.

Chapter 4 — WoLF: Rational and Convergent Learning. We define two desirable properties for
a learning algorithm in a multiagent setting: rationality and convergence. We show that the
previous work discussed in Chapter 3 does not simultaneously achieve these properties. We
then introduce the WoLF variable learning rate as a key contribution of this dissertation. We
prove that WoLF can make a rational learning algorithm known not to converge, converge in
a subclass of matrix games. We then demonstrate the effectiveness of the WoLF principle in

a more practical form in a variety of stochastic games, with enumerable, but relatively large
state spaces.

Chapter 5 — Analyzing Limitations. We examine limitations in the multiagent learning problem.
We present a formal definition for the effect of limitations on agent behavior. We then use
this formalization to investigate the effect of limitations on the concept of equilibria, an
important concept for learning in stochastic games. We show that equilibria do not exist in
general when agents are limited, even with very well-behaved limitations. We do, though,
prove that equilibria do exist for a number of subclasses of games and limitations. We also
demonstrate that a WoLF algorithm can effectively learn and converge to these equilibria
when they exist.

Chapter 6 — GraWoLF: Learning with Limitations. This chapter introduces the GraWoLF al-
gorithm, a general-purpose multiagent learning technique capable of learning in large games
even in the presence of other limited agents. This technique combines policy gradient as-
cent techniques using a policy parameterization with the WoLF principle to learn in complex
domains with other learning agents. We demonstrate the effectiveness of this technique in
two interesting domains, one with an intractably large state space, and the other being a real
robot task with a continuous state space.

Chapter 7 — Team Adaptation. We examine the problem of a team of agents adapting to a par-
ticular adversary. This problem has many similarities to our investigation of learning in
stochastic games, but also has many differences. We describe our CMDragons small-size
robot soccer team, which employed a play-based team architecture that adapted during a
game to the current opponent.

Chapter 8 — Conclusion. We conclude this work with a review of our contributions along with a
consideration of future work in the area of multiagent learning.

All readers should begin with Chapter 2, which provides the mathematical grounding as well
as the foundational background critical to our addressing of the thesis question. Those interested
in the WoLF or GraWoLF contributions should either continue to Chapter 3 to gain perspective on
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previous techniques for multiagent learning, or proceed to Chapter 4. Those interested in under-
standing the challenge limitations pose to the Nash equilibrium concept in stochastic games could
skip these two chapters and go on to Chapter 5. Those interested in the application of WoLF to
complex problems could proceed from Chapter 4 to Chapter 6. Chapter 6 refers to results in Chap-
ter 5, but does not depend critically on ideas from that chapter. Chapter 7 is an independent result

from these previous chapters and could be read at any time, although, the foundations of Chapter
2 may still be helpful to the reader.



Chapter 2

A Framework for Multiagent Learning

Frameworks are models of reality. As such, they are an important foundation for the generation and
evaluation of new ideas. They establish the “rules of the game,” crystallize the core issues, provide
a common basis of study, make intrinsic assumptions visible, provide a general perspective on large
classes of problems, help to categorize the variety of solutions, and allow comparison with other
models of reality. It is with all of these reasons in mind that we begin this work by introducing a
framework for multiagent learning.

Specifically, we consider the framework of stochastic games. Stochastic games are best viewed
as the synthesis of two simpler frameworks: Markov decision processes and matrix games. See
Figure 2.1 for an overview of this synthesis. Markov decision processes have been prominently
explored in the field of reinforcement learning, while matrix games are the foundational concept
of the field of game theory. Markov decision processes are a single agent, multiple state model.
Matrix games, on the other hand, are a multiagent, but single state model. Stochastic games can
be seen as unifying and subsuming these two frameworks, definimgltiagent, multiple state
framework Since stochastic games share concepts with these two separate frameworks, it is useful
to consider them each independently. The separate presentation also helps to crystallize the core
issues in stochastic games as they are distinguished from these simpler models. This chapter, in
addition, outlines the key concepts and results that we make use of later in the work.

We begin in Section 2.1 with a very brief overview of the general model of an agent and
agent learning, which underlies all of the frameworks we discuss. In Section 2.2 we focus on
Markov decision processes. We provide an overview of the model, relevant solution concepts,
and basic theoretical foundations. We then explore some standard learning algorithms as well as
some extensions that use approximation to apply learning to problems with intractably sized state
spaces. This work is very relevant to our consideration of agent limitations in Chapters 5 and 6. In
Section 2.3 we present the framework of matrix games. We discuss the various solution concepts,
a classification of games, and basic theory. Finally, in Section 2.4 we present the stochastic game
framework. In its entirety this Chapter overviews the necessary foundations upon which the rest
of this work is built.

23
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Figure 2.1: Matrix games, Markov decision processes, and stochastic games.
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Figure 2.2: Agent framework: agents are distinguished from their environment and are composed
of perception, reasoning, and action.

2.1 Agent Framework

All agents have three key components: perception, reasoning, and action. These three components
operate within the context of some environment as shown graphically in Figure 2.2. The percepts
an agent receives depends on the environment, and the actions the agent performs, in turn, affects
the environment. The frameworks we describe in this chapter define a specific structure for the
environment: how it is affected by the agent’s actions, how it affects the agent’s percepts, and
whether other agents are involved. With general but careful assumptions about the environment,
agents can effectively reason about appropriate actions to select.

In learning agents, which are the focus of this work, there are two additional factors. First, the
details of the environment are initially unknown. The agent only receives information about the
environment through its interaction, that is, by selecting actions and observing their effects through
its perceptual inputs. Second, there is an additional input signal which is the agent’s reward. This
reward depends on the environment and the agent’s actions. The reasoning portion of the agent is
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Figure 2.3: Multiagent framework: multiple agents all distinguished from their environment and
composed of perception, reasoning, and action.

a learning process that repeatedly interacts with the environment with the goal of maximizing the
rewards it receives over time.

Another common consideration in learning frameworks is the issue of observability. What is
the nature of the agent’s perception? A common assumption and one that we focus on in this work
is that the environment is fully observable. This means that an agent’s perception consists of the
entire relevant state of the environment. Some models relax this assumption by allowing the agent
to receiveobservationghat are contingent upon, but do not uniquely determine, the full state of the
environment. Although, this work focuses on fully observable environments, in our examination
of agent limitations in Section 5 we consider the affect of observability on agent behavior. We
also, in Section 6, show results of learning in a robot problem that violates the fully observable
assumption.

This work is focused on learning the presence of other agent&gure 2.3 depicts this graph-
ically. Instead of a single agent perceiving, reasoning, and acting in an environment, there are
multiple complete agents. These agents also receive perceptions, reason, and act on the environ-
ment. Additionally, they may be learning agents as well, adapting their actions to maximize their
own reward signal over time.

We now look at three formalizations of the agent and multiagent frameworks: Markov deci-
sion processes, matrix games, and stochastic games. Markov decision processes correspond to
the basic agent framework of Figure 2.2. Matrix games consider multiple agents in a single-state
environment, that is rewards to the agents depend solely on the agents’ actions. Stochastic games
correspond to the full multiagent framework depicted in Figure 2.3. Although, ultimately we focus
on the subsuming model of stochastic games, it is very useful to understand the simpler models
(see again Figure 2.1). For completeness, we briefly mention the category that is the intersection,
rather than the union, of matrix games and Markov decision processes. These are single state,
single agent models and are referred t&-asmed bandit problemsThey amount to the problem
of selecting from which of slot machines to receive a stochastic payoff. These problems have
many similarities to Markov decision processes and for further information we recommend Kael-
bling, Littman, and Moore’s reinforcement learning survey (1996). We now explore the models of
Markov decision processes, matrix games, and finally stochastic games, in turn.
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Figure 2.4: Graphical depiction of the Markov decision process (MDP) framework. Not all actions
and transitions are shown.

2.2 Markov Decision Processes

Markov decision processes are the foundation for much of the research in single agent control
learning. AMarkov decision proces@MDP) (Bellman, 1957; Sutton & Barto, 1998) is a tuple,
(8,A,T, R), where,

e S is the set of states,
o Ais the set of actions,
e Tis atransition function§ x A x § — [0, 1], such that,

Vse8Vae A ZT(s,a,s’)—

e andR is a reward function§ x A — R.

This definition is depicted graphically in Figure 2.4. The transition function defines a probability
distribution over next states as a function of the current state and the agent’s action. The reward
function defines the reward received when selecting an action from the given state. The agent
interacts with an MDP by alternating between perception and action. the agent observes the state
at timet, s', and selects an actiari. The agent receives the reward= R(s',a'), and the agent
observes the new staté;"! drawn from the probability distribution specified Gy(s!, a’, s'™).

We use the notation,

to refer to a single trace of execution for a given MDP and selection of actions.

Notice that this is a single agent formalization of the agent framework. The agent’s perceptions
are the current state of the environment from theSs@ithe agent’s reasoning process, or learning
algorithm, processes the observed state and reward and is responsible for selecting an action from
the setA. This closes the loop of agent perception, reasoning, and action.
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Figure 2.5: Single player grid soccer where ag@mselects its actions randomly. The initial state

is shown on the left and an example of the transitions and associated probabilities are given for a
particular state and action on the right. Notice that fifty percent of the Ailm@ction is executed

first, causing it to lose the ball and the game to reset to the initial state. In addit®seiéctH or

E it does not move and sA still loses the ball and returns to the initial state. The other outcomes
all have equal probability.

2.2.1 An Example: Single Player Grid Soccer

Consider the soccer-inspired grid domain with twenty cells and two agkr@sdB. An example

state is shown in Figure 2.5. In the single player definition of the domain, the agent, marked by
A, is in possession of the ball and is trying to score in the left goal. The state is defined by the
non-identical positions of the agent and a defender, maBkéthis defines a state spacge where

|S] = 20 x (20 — 1) = 380. The actions are movements in the four compass directlns; E,

W, and the hold actior. The next state is determined by the selected action of the agent and a
randomly selected action of the defender. The defender’s action is selected from the same set of
four compass directions and the hold action, all with equal probability. The agent’s and defender’s
actions are then executed in random order, where an action to move into the other agent’s location
is handled specially. If the defender tries to move into the agent’s location it does not move. If
the attacker moves into the defender’s location the state is reset to the initial configuration which
is the state shown in Figure 2.5. A reward of 1 is received when the agent enters the goal, i.e.,
selects thee action from the two leftmost, central grid locations. The state, in this case, is then
reset to the initial configuration. For all other cases, the reward is zero. These rules formally define
a stochastic transition functiorl;, and reward functionR. An example of the transitions and
associated probabilities for a single state and action are shown in Figure 2.5.

2.2.2 Solution Concepts

The goal of a learning agent in an MDP is to learn a policy so as to maximize its long-term reward.
The transition functiorf” and reward functiorR are not known in advance, and only samples are
received as the agent selects actions in the environment. A polics/a mapping that defines the
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probability of selecting an action from a particular state. Formallg, S x A — |0, 1], where,

Vs €8 Zﬁ(s,a)zl.

acA

When learning in MDPs, the space of policies considered is often restricted to only deterministic
policies, wherer(s,a) € {0,1}. Since stochastic policies are an important feature of some recent
work in MDPs, which we overview in Section 2.2.3, as well as our work in stochastic games, we
focus on this more general class.

The goal of maximizing long-term reward can be formulated in a number of different ways.
We concentrate on théiscounted rewardbrmulation with some of our results also applying to the
average rewardormulation.

Discounted Reward

In the discounted reward formulation, immediate reward is preferred over future reward. Specifi-
cally, the value of a policyr, at states, with a discount factory € [0, 1), is,

VT(s) = thE{ﬂsO =s,7}, (2.1)
t=0

where E{r!|s® = s, 7} is the expected reward received at timgiven the initial state is and
the agent follows the policy. V™ is called the policy’s state value function. This formulation
is similar to the economic principle of interest and investment, where utility now is traded against
larger future utility. It can also be understood as describing the possibility that the process itself will
terminate after any step with probabiliy after which no additional reward can be accumulated.
Another reason for considering discounted reward is that it simplifies the mathematics.

Using this formulation, the goal of the agent is to learn an optimal patitythat maximizes
discounted future reward at all states,

VaVse§ V™ (s)>V™(s).

A policy’s value function is known to be the unique solution to a recursive equation called the
Bellman equation (Howard, 1960),

V™ (s) = Zﬁ(s, a) <R(s, a) + ’yZT(S, a, s')V“(s')) : (2.2)

acA s'es

The value function for all optimal policies is identical, denotéd, and must satisfy an even
stronger relation called the Bellman optimality equation,

V*(s) = max (R(S, a) + va(s, a, 5’)V*(s’)> : (2.3)

aceA
s'e8

Notice that this must be the case since a suboptimal policy can be improved by changing the
policy to select the action that maximizes the parenthesized expression on the right-hand side of
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Equation 2.2. In essence the Bellman optimality equation requires that the policy’s value already
maximizes this expression. This fact of policy improvement is the basis for a number of learning
algorithms, two of which are examined in the next section. In addition, the optimal value function
also defines an optimal policy. Specifically, the policy that deterministically selects the action that
maximizes the right-hand side of Equation 2.3 is an optimal policy.

Another useful concept is a policy’s state-action value function, also known gsvtdues.
This defines the expected discounted reward of choosing a particular action from a particular state
and then following the policyr. From Equation 2.2 we can write this as,

Q" (s,a) = R(s,a)+72T(3,a,s’)V”(s’). (2.4)

s'es

Similarly, the optimal)-values, denote@*, satisfies,

Q(s,a) = R(s,a)—l—fyZT(s,a,s’)V*(s')

s'es
= R(s,a) +7) T(s,a,5) maxQ*(s',a). (2.5)
s'es

Notice that the policy improvement rule from above now corresponds to changing the policy to
select the action that maximizes @svalue for the current state. By consideri@@gvalues we can

also completely define the space of optimal policies. An optimal policy is any policy that from
states has all of its probability assigned to actions that maxindjzés, a).

Average Reward

An alternative formulation is that aiverage reward Although we focus on discounted reward,
some of our theoretical results in Chapter 5 also apply to the average reward formulation. In this
formulation the value of a policy is its long-term expected reward per time step. Mathematically,
the value of a policyy, at stateg, is,

T
1
V™(s) = lim TE{rtlso =$,m}. (2.6)

T—o0
t=0

A common assumption, which usually accompanies examinations of this reward formulation, is
that the MDP isunichain An MDP is unichain if and only if, for all policies, there exists an
ergodicset of states (i.e., any state in the set can be reached with non-zero probability from any
other state in the set), and all states outside this setarsient(i.e., after some finite point in time

it will never be visited again). This assumption forces the value of a policy to be independent of
the initial state. From any initial state, the policy is guaranteed to end up in the ergodic class, and
any state in the ergodic class must have the same average reward for a given policy.

2.2.3 Reinforcement Learning

Reinforcement learning (RL) is both a field and a class of algorithms concerned with the problem
of learning in MDPs. We build extensively on ideas and algorithms from RL and so we briefly
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describe some basic algorithms here. We also examine a few recent developments for applying
learning to very large MDPs. This will provide both a motivation and a foundation for our consid-
eration of limitations and learning in later chapters.

The crux of most RL techniques is the learning of a value function. As we noted in Sec-
tion 2.2.2, the optimal value function defines an optimal policy. Also, a policy’s value function can
be used to improve that policy. The traditional goal of RL algorithms is to compute the optimal
value function for an unknown and arbitrary MDP. The algorithms select actions and receive ob-
servations of the reward and the next state reached according to the reward function and transition
probabilities. We look at two different algorithms that use these ingptkearning and Sarsayj.

Both of these techniques make use of a similar idea for estimating a value functionteaijsatal
differencing(Sutton & Barto, 1998).

Temporal differencing is the idea of turning Equations 2.4 or 2.5 into assignment operators.
Since we want a value function that satisfies one of those equations, we can simply force the
eqguation to hold by changing the left-hand side to equal the right. Roughly speaking, Q-learning
will do this for Equation 2.5 and Sarsg(will do this for Equation 2.4. In both cases, though,
sinceT is not known, they will use a stochastic estimation procedure based on sample$ from
through experience with the environment. This latter idea is that of temporal differencing. We will
generally use the name temporal differencing to refer to the updating of a value function based on
the current estimate of the value of future states, whether estimation is used or not. In Chapter 3
we will see how the idea of temporal differencing will help unify some of the existing game theory
and reinforcement learning algorithms for stochastic games.

Q-Learning

One of the most basic RL algorithms &learning (Watkins, 1989). The algorithm learns the
optimal state-action value functio®;”, which also defines an optimal policy. In its simplest form,
the learner maintains a table containing its current estimatés ©f a). It observes the current
states and selects the actiom that maximizes)(s, a) with some exploration strategy. Upon
receiving a reward;, and observing the next statg, it updates its table ap-values according to
the following rule,

Qs0) = Qo)+ (49 mxQlEd) - Qo)) @7

wherea € (0, 1) is the learning rate.

Under certain conditions, whepis updated according to this rule, it is guaranteed to converge
to the optimal@*. The specific conditions are (i) every state-action pair is updated an infinite
number of times. And, (i} is appropriately decayed over time; specificallyyjfis the learning
rate used at time¢, then it must satisfy,

(e 9] o0
E o = 00 g al < o,
t=0

Condition (ii) is a standard requirement for stochastic approximation. Condition (i) emphasizes the
importance of the exploration strategy. Throughout this work we assume that suitable exploration
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policies are used (see (Singh, Jaakkola, Littman, & Sz&pes2000a)). One such exploration
policy is e-greedy. With this policy, the action currently estimated to be optimal is selected with
probability 1 — ¢, otherwise, with probability, a random action is chosen. df> 0 approaches

zero over time, then this satisfies Condition (i) with the agent’s actions approaching the optimal
actions.

Sarsa(\)

Sarsa (Rummery & Niranjan, 1994; Sutton & Barto, 1998) is another RL algorithm that learns a
state-action value function. However, instead of learrigt learns@™ for the current policy,

but then selects actions so as to maximize its cuieestimates. As we noted above, this change
of policy, necessarily improves the values of the policy. In its simplest form, it is very similar to
@-learning. It maintains a table @j-values. It observes the current stateand selects action,

a = argmax, Q(s, a), with some exploration strategy. Upon receiving a rewarabserving the

next stateg’, and selecting action,, by the same method, it updates its table according to,

Q(s,a) — Q(s,a) + a(r +~Q(s',ad’) — Q(s, a)), (2.8)

wherea is, again, the learning rate. Under the same condition@-&sarning, this rule is also
guaranteed to converge € (Littman & Szepeséri, 1996).

Since theQ-table now estimates the value of the current pol@y, there is an additional
optimization that can be used to speed this estimation. It is commonly called an eligibility trace.
One way of viewing eligibility traces is that they propagate errorg)ivalue estimates more
quickly through the table. An eligibility trace(s, a), defines the state-action pair’s responsibility
for the current error in Q-values. After observing stateselecting actiong, receiving reward,
observings’ and selecting/, it updates its trace ang-table according to,

1 ifs=sanda=a

0 otherwise (2.9)

VsieSaeA e(s,a) %Aye(é,d)—i-{
Qs,8) — Q3,0) + ac(5,) (r +1Q(s,a') — Q(s,0)), (2.10)

where) € [0, 1] is a parameter controlling the amount of error propagatetlidfzero, notice that
this becomes the basic Sarsa rule\ i§ one, the rule becomes similar to a Monte-Carlo estimation
of the value of the policy. In practice, a value o&trictly between zero and one can often greatly
speed learning. The best choiceXpthough, varies from problem to problem.

Approximation

The above learning algorithms require a table of state-action values. Many problems, though, have
an enormous or continuous state space making state enumeration impossible. Large state spaces
are problematic due to both the required memory of storing a table of values and the vast amounts
of training experience needed to experience the transitions. This critical problem has received vast
treatment in the reinforcement learning literature (for a summary of this work see Chapter 8 in
(Sutton & Barto, 1998) or Section 6 of (Kaelbling et al., 1996)).
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The problem of scalability is also one of the critical problems that motivates the emphasis
of this thesis on learning when agents have limitations. The proposed solutions to this problem
involve approximation and generalization. Approximation is needed to reduce the number of pa-
rameters that need to be optimized. This is the usual tradeoff of learning suboptimal policies in
exchange for more efficient learning. Generalization is needed so that training experience can be
used more efficiently. We present some of the specifics of these techniques and their effect on
the learning problem, specifically from a multiagent perspective, in Chapter 5. We also describe
in detail in Chapter 6 one particular technique, policy gradient ascent (Williams & Baird, 1993;
Sutton, McAllester, Singh, & Mansour, 2000; Baxter & Bartlett, 2000), and use it in constructing
a scalable multiagent learning algorithm.

2.2.4 The Markov Assumption

Markov decision processes are called such since they satisiahieov AssumptionBasically,
this requires that the next state and reward to the agent is fully specified by the current state and
agent’s action. We can state this property formally.

Definition 1 A decision process Markovianif and only if, the sequence of states € 8), actions
(a' € A), and rewards ' € R), satisfies

Pr {st =s,rt=rls"tat L ,so,ao} = Pr {st =s,rl = r]stfl,atfl} ,

that s, if the next state depends only on the previous state and agent’s action, and not on the history
of states and actions.
An agent’s selection of actionshgarkovianif and only if,

Pr{a =als’, s a7t 8% a’) = Pr{d =a|s'},

that is, if the agent’s next action depends only on the current state. Sometimes we refer to a
Markovian policy asstationarysince the policy does not change with respect to time.

The MDP framework and our definition of a policy, by construction, are Markovian. When we
explore the multiagent framework of stochastic games later in this chapter, this property comes
into question.

2.3 Matrix Games

Matrix games were first examined in the field of game theory to specifically model strategic inter-
actions of many decision makers.matrix gameor strategic gamg¢von Neumann & Morgenstern,
1944; Osborne & Rubinstein, 1994) is a tupte A, ., R1...), where,

e 1 is the number of players,
e A, is the set of actions available to playigandA is the joint action spacd; x ... x A,),
e andR; is player:’s payoff function,A — R.
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The players select actions from their available set and receive a payoff that depealkithen
players’ actions. These are often called matrix games, sinc&ttienctions can be written as
n-dimensional matrices. The actions then correspond to specifying the value of a particular di-
mension, and the joint actions correspond to particular entries in the reward matrices. Since we
are interested in learning, we will focus on agents repeatedly playing the same matrix game. In
game theory, this is calledrapeated gameSince this thesis focuses on learning and, therefore,

is not interested in the one-shot playing of a matrix game, we will use both terms to mean agents
repeatedly playing and learning a matrix game.

As in MDPs, the agents in a repeated game have an explicit action set. Unlike MDPs, though,
the environment has no state and so the agents’ only perception is the actions of the other agents,
or maybe just their own reward. The agents must reason or learn through experience how to select
their action to maximize their observed reward.

2.3.1 Examples

Table 2.1 contains a number of example matrix games. The games (a)—(e) are two player games,
i.,e. n = 2, and (f) is a three player game, i.e. = 3. The table only specifies the games’

R; matrices and not the individual players’ action sets, which unless otherwise defined are just
assumed to be indices into the reward matrices. Also, in two player games, the player specifying
the row index is always player 1, and the column player always player 2.

Matching pennies (a) and rock-paper-scissors (b) are two children’s games that can be captured
as matrix games. In matching pennies the players’ actions are “Hddylah@ “Tails” (T). Player
one takes a dollar from player two if their choices match, and gives a dollar if their choices differ.
Rock-paper-scissors is a similar game with each player having three actions: “R)ckPéper”
(P), and “Scissors”$). The rules specify that “Rock” loses to “Paper”, “Paper” loses to “Scissors”,
and “Scissors” loses to “Rock”. Otherwise the game is a tie. The winner, if there is one, takes a
dollar form the loser.

The coordination game (c) and Bach—or—Stravinsky (d) are completely different games. In
the coordination game, both players simply desire to agree on their action choice, but have no
preferences between them. In Bach—or-Stravinsky two friends are deciding independently what
concert to attend. Player 1 prefers Bach, while player 2 prefers Stravinsky, but both prefer to be
together over being apart.

In Colonel Blotto (e) (Gintis, 2000), two generals are allocating armies between two battle-
fields. The first general has four armies, while the second only has three. The general with the
most armies at a battlefield gets one victory point, plus the number of opponent armies defeated.
Ties give no points to either general. Each action, i.e., row or column, corresponds to the possible
allocation of its armies to the two battlefields.

Finally, three player matching pennies (f) adds an additional player to the matching pennies
game. Player 1 gets one dollar for matching player 2. Player 2 gets one dollar for matching player
3, and player 3 gets one dollar foot matching player 1. The three dimensional tensor shown in
the Table is somewhat challenging to follow. Player 1 selects the row index, player 2 selects the
column index, and player 3 selects the left or right column of matrices.
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R P S
H T R 0 —1 1
R _ H 1 -1 R = P 1 0 -1
L= 1 -1 1 S\-1 1 o0
R - H (-1 1 R 0 1 -1
> T 1 —1 R, = P | -1 0 1
S 1 -1 0
(a) Matching Pennies (b) Rock—Paper—Scissors
HT B S
H 10 B 2 0
Rl_T(01) Rl_s<01>
H 10 B 10
RQ:T(Ol) RZ:S(oz>
(c) Coordination Game (d) Bach—or—Stravinsky
3-0 2-1 1-2 0-3
4-0 4 2 1 O
3-1 1 3 0 -1
R, = 22 —2 2 2 =2
1-3 —1 0 3 1
0-4 0 1 2 4
4-0 -4 -2 -1 0
3-1 -1 -3 0 1
Ry, = 2-2 2 -2 =2 2
1-3 1 0 -3 -1
0-4 0o -1 -2 —4
(e) Colonel Blotto
HT HT
H 10 H 10

o O

—_ =
~

meem) = § (1)) meem = 9

(f) Three Player Matching Pennies

O =

S =
N——

Table 2.1: Examples of matrix games.
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2.3.2 Solution Concepts

The goal of a learning agent in a matrix game is to learn a strategy that maximizes its reward.
A pure strategyis one that deterministically selects a single action. However, pure strategies in
matrix games can often be exploited. For example, consider matching pennies in Table 2.1(a). If
the player plays either action deterministically then the other player can guarantee to win a dollar
by playing the appropriate action.rixed strategyor playeri, o;(a; € A;), specifies a probability
distribution over actions. These are the strategies we focus on. We teseefer to one particular
player’s strategy, and to refer to a strategy for all of the players, called jomt strategy We

extend the reward functiot®;, to be defined over mixed strategies as well,

Ri(0) =) Ri(a)TT,0i(a).

acA

We also use _; to refer to a joint strategy for all of the players except playéifinally, we will use
the notation(o;, o_;) to refer to the joint strategy where playigiollows o; while the other players
follow their policy fromo_;.

In MDPs a solution is defined as the policy with the highest value according to some reward
formulation, such as discounted reward. In matrix games, no single optimal strategy exists. A
strategy can only be evaluated if the other players’ strategies are known. This can be illustrated in
the matching pennies game (Table 2.1 (a)). In this game, if player 2 is going tblptagn player
1's optimal strategy is to plai, but if player 2 is going to play, then player 1's optimal strategy
is to playT. In this game, there is no strategy, pure or mixed, that is optimal independent of the
opponent. What does exist is an oppone@ependensolution, or set of solutions. This is called a
best-response

Definition 2 For a matrix game, théest-response functidior playeri, BR;(c_;), is the set of
all strategies that are optimal given the other player(s) play the joint strategy Formally,
of € BR/(o_;) ifand only if,

Vo; € PD(A;) Ri({0],0-:)) > Ri({(0i,0-4)),

where PD(4;) is the set of all probability distributions over the sét, i.e., the set of all mixed
strategies for playet.

The major advancement that has driven much of the development of matrix games and game theory
is the notion of a best-response equilibriunNash equilibrium(Nash, Jr., 1950).

Definition 3 A Nash equilibriums a collection of strategies for all players;, with
o; € BR;(0_;).

So, no player can do better by changing strategies given that the other players continue to follow
the equilibrium strategy.

What makes the notion of equilibrium compelling is that all matrix games have a Nash equilibrium,
although there may be more than one.
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2.3.3 Types of Matrix Games

Matrix games can be usefully classified according to the structure of their payoff functions. Two
common classes of games &@am gameandzero-sum games$n team games (e.g., coordination

game in Table 2.1(c)) all agents have the same payoff function, so a joint action in the best interest
of one agent is in the best interest of all the agents. In zero-sum games, there are two agents, and
one’s reward is always the negative of the other (fe.c AR, (a) + Ry(a) = 0).! The games (a),

(b), and (e) in Table 2.1(a) are examples of such a game. Thegemaral-sum games used to

refer to all types of games, although often means only non-zero-sum games. Notice that games (d)
and (f) from Table 2.1 are neither team games nor zero-sum, despite looking very similar to a team
game and zero-sum game, respectively.

One appealing feature of zero-sum games is that they contain a unique Nash equflibhisn.
equilibria corresponds to the game’s minimax solution, or the mixed strategy that maximizes the
worst-case expected reward. This equilibrium can be found as the solution to a linear program.
The linear program hasi, | parameters, one for each actierig; € A,). These parameters are
the player’s probability distribution over actions, and so the linear program is,

Maximize:  min o(ar)R1({ay, az))
az€As2
a1 €A1

Subject to: Z o(ay) =1
a1 €A

O'(CL1> Z 0 Val S .Al.

The solution to this linear program is player 1's equilibrium strategy. Player 2’s strategy could be

similarly solved. In both matching pennies and rock-paper-scissors there is a unique equilibrium
corresponding to both players selecting their actions with equal probability. In Colonel Blotto the

equilibrium is also unique but is more complex:

4,14 1 44 1
op=(-,0,-,0,= oy =(—, =, =, — ).
! 9°7 979 2 1879797 18

For zero-sum games, an equilibrium can be computed efficiently as the solution to the above
linear program. However, finding equilibria in two-player general-sum games requires a more dif-
ficult quadratic programming solution (Mangasarian & Stone, 1964). Beyond two-players things
are even more difficult. McKelvey and McLennan (1996) survey a variety of techniques for com-
puting equilibria in matrix games, includingplayer general-sum matrix games.

This is the general case, though. In team games, where all players receive identical rewards, the
joint action that maximizes one player’s reward maximizes all players’ rewards, and is therefore a
Nash equilibrium. For example, in the coordination game, both players selecting the same action
are two equilibria. In Bach—or—Stravinsky, although not strictly a team game, these same joint

n the class of zero-sum games we also includecalistant-sum gamesince this constant can be subtracted
from all the rewards turning the game into a zero-sum game. These games have identical properties to their zero-sum
counterparts.

2There can actually be multiple equilibria, but they all have equal payoffs and are interchangeable (Osborne &
Rubinstein, 1994). That is, ifo1, 02) and (¢}, 0}) are Nash equilibria, thefo,0%) and (o1, 02) are also Nash
equilibria, andvi R;({(c1,02)) = R; ({0}, 05)).
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strategies are again equilibria, although each player would prefer one equilibrium over the other.
In the final game, three player matching pennies, although it is not strictly zero-sum, the minimax
optimal solution where all players select actions with equal probability is the unique equilibrium.

The formal complexity of constructing a Nash equilibrium for a general matrix game is an
open problem. However, a number of related questions, such as identifying whether equilibria
with certain properties exist, is in fact known to be NP-Hard (Gilboa & Zemel, 1989; Conitzer
& Sandholm, 2003b). These results question the possible general efficiency of any equilibrium
learning algorithms, both for matrix games and for stochastic games. From a practical perspective,
this could limit the rate of convergence of equilibrium learning algorithms in their worst-case. This
fact, though, will not come into play in our analysis.

2.4 Stochastic Games

Stochastic games are a superset of MDPs and matrix games, including both multiple agents and
multiple states (see Figure 2.1). They were first examined in the field of game theory and now
more recently in the field of reinforcement learning.s#dchastic gaméShapley, 1953; Filar &
Vrieze, 1997) is a tuplén, S, A, ., T, R1..,.), where,

e 1 is the number of players,

e 3§ is the set of states,

e A, is the set of actions available to playigandA is the joint action spacd; x ... x A,),
e T is the transition function$ x A x 8§ — [0, 1], such that,

Vse8Vaec A ZT(S,@,S/):I,

s'es

e andR; is the reward function for théh agents x A — R.

This is shown graphically in Figure 2.6. Essentially, stochastic games can be thought of as
an extension of MDPs to multiple agents, and have occasionally been referred to as multiagent
MDPs (Boutilier, 1996) and competitive MDPs (Filar & Vrieze, 1997). Instead of a single agent,
there are multiple agents whogent action determines the next state and rewards to the agents.
Also, notice that each agent has its own independent reward function.

Stochastic games can equally be thought of as an extension of the concept of matrix games to
multiple states. Each stochastic game has a matrix game associated with each state. The immediate
payoffs at a particular state are determined by the matrix enfties ). After selecting actions
and receiving their rewards from the matrix game, the players are transitioned to another state and
associated matrix game, which is determined by their joint action. Therefore, stochastic games
contain as subsets of the framework: MDPs (whena 1) and repeated games (whgf} = 1).

3If § is continuous then the following summation, along with other summationsSowethis chapter, should be
replaced by an integral. Likewise,Jf; is continuous then the use of summations over action sets should be replaced
by an integral.
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as
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ai (|- . .'\_RiZ(%?_CE)j.—:T “\\\\ \\\@

Figure 2.6: Graphical depiction of the stochastic game framework. Not all actions and transitions
are shown.

2.4.1 Examples

Since MDPs and repeated games are both included in the framework of stochastic games, we have
already given some examples of stochastic games. The single player grid soccer as well as all the
matrix games in Table 2.1 are also examples of stochastic games. We introduce three specifically
multiple state and multiple agent domains to further illustrate the model of stochastic games. These

same games are also used in empirical results later in this work.

Grid Soccer

The first example is the full two player version of the example MDP described in Section 2.2.1.
This version of grid soccer was first examined by Littman (1994). There are two players, marked
A andB, that occupy non-identical locations from among the twenty grid cells. In addition, one
player is in possession of the ball. This defines a state spashere|S| = 20x (20—1) x2 = 760.

Each player independently selects among the actidnS; E, W, and the hold actiorH. As in the

single player definition, these actions are then executed in random order. If an action causes the
agent possessing the ball to enter its opponent’s location, then the possession changes. Entering
the other player’s location otherwise has no effect. The player receives a rewiafdrantering

the goal with possession of the ball, and the other player receives a rewatd After a goal, the

game is reset to one of the two initial states, where the players locations are shown in Figure 2.7
and possession is determined randomly. Notice that in the two-player definition, the next state is
determined by the joint action of the players. An example of possible transitions and associated
probabilities are shown in Figure 2.7. From any state and joint action, there are at most two possible
next states, which are determined by the order of execution of the actions.

Grid Navigation

A non-competitive example of a stochastic game is Hu’s grid navigation domain (Hu, 1999) shown
in Figure 2.8. The agents start in two corners and are trying to reach the goal square on the
opposite wall. They receive a reward bfor an action that enters this location, and a reward of

0 otherwise. The players have the four compass actionsN, &, E, andW), which are in most

cases deterministic. If the two players attempt to move to the same square, both moves fail. To
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(O] B, | (O]
05 05
INITIAL STATE /
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Figure 2.7: Two player grid soccer. The initial states are shown on the left, where possession is
determined randomly. An example transition from a particular statgantaction is shown on

the right. The outcome depends on the order that the actions are execétiscadfion is executed

first, it collides withB and loses the ball and th&moves south. Otherwis& moves south first

andA then moves west maintaining possession. Each outcome is equally likely.

S2 S1

Figure 2.8: Grid navigation game. The dashed walls represent the transitions that are uncertain,
i.e., trying to cross the walls will fail with probability/2.

make the game interesting and force the players to interact, from the initial starting position the
North action is uncertain, and it moves the player North with probalfilily Hence, the optimal

path for each agent is to move laterally on the first move and then move North to the goal, but if
both players move laterally then the actions fail. So the players must coordinate their actions.

Goofspiel

Goofspiel (or The Game of Pure Strategy) was invented by Merrill Flood while at Princeton (Flood,
1985). The game has numerous variations, but here we focus on the simple two-plagedt,
version. Each player receives a suit of cards numbg&tadoughn, a third suit of cards is shuffled

and placed face down as the deck. For each round, the next card is flipped over from the deck,
and the two players secretly select a card. They are revealed simultaneously and the player with
the highest card wins the card from the deck, which is worth its number in points. If the players
choose the same valued card, then neither player gets any points. Regardless of the winner of the
round, both players discard their chosen card. This is repeated until the deck and players hands are
exhausted. The winner is the player with the most points. The standard version of the game uses
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n | VALUE(det) VALUE(random)| |S] |S x Al  SIZEOF(r or Q)
4 -2 —2.5 692 15150 ~ 59KB
8 —20 —10.5 3x 108 1 x107 ~ 47MB
13 —65 —28 1 x 10" 7 x 10t ~ 2.5TB

Table 2.2: Facts about goofspiel. The table shows the number of states and state-actions, and the
size of a stochastic policy ap table for goofspiel depending on the number of cards,The

VALUE columns list the worst-case value of the best deterministic policy and the random policy
respectively.

all thirteen cards in a suit(= 13), but smaller versions can also be considered.

This game can be described using the stochastic game model. The state is the current cards in
the players’ hands and deck along with the upturned card. The actions for a player are the cards in
the player’s hand. The transitions follow the rules as described, with an immediate reward going
to the player who won the upturned card. Since the game has a finite end and we are interested in
maximizing total reward, we use the discounted reward framework and set the discount fiactor
be 1. We discuss reward formulations in the next section.

This game has numerous interesting properties. First, notice that this game is zero-sum, and
as with many zero-sum games any deterministic strategy can be soundly defeated. In this game,
a deterministic strategy can be defeated by simply choosing the card valued one higher than the
player’s deterministically chosen card. The defeating strategy will win every card except one,
and so the deterministic strategy will lose by at least sixty-five (, ,,7 — 13 = 65). On the
other hand, randomly selecting actions is a reasonably good policy in comparison. The defeating
strategy for the random policy is to select the card matching the value of the upturned card (Ross,
1971). The random strategy, in this case, would have an expected loss of twenty-eight points.
These values along with the same worst-case values for other sizes of the game are summarized in
Table 2.2.

The third property is related to the tractability of solving the game. Notice that the number
of states and state-action pairs grow exponentially with the number of cards. With the standard
sized gamep = 13, the state space is so large that just storing one player’s policy-table
would require approximately 2.5 terabytes of memory. Gathering data on all of the state-action
transitions would require ove0'® playings of the ganfe Table 2.2 shows the number of states
and state-action pairs as well as the policy size for three different values of

This game epitomizes the need for approximation and generalization techniques as we dis-
cussed for the single-agent learning problem in Section 2.2.3. We return to this game in Chapter 6,
where we present compelling results of learning in this challenging setting.

4Examining the number of states at each round, we find that it grows until the midpoint of the game is reached and
then it contracts. Each game can only visit one state and action for each round, so the number of games must be at
least the number of state-action pairs in the largest round. In the 13 card game, tiefeal®'? state-action pairs
in round 7, thus requiring at least that many games to experience each transition. Of course, if the other player is not
cooperating in the exhaustive search of the state space, many more games must be played.
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2.4.2 Solution Concepts

Stochastic games borrow solution concepts from both MDPs and matrix games. Like MDPs, the
goal for playeti in a stochastic game is to learn a policy that maximizes long-term reward. A policy
for playeri, 7; is @ mapping that defines the probability of selecting an action from a particular
state. Formallyr; € § x A — [0, 1], where,

Vs €8 Zﬁ(s,a)zl.

acA

Since deterministic strategies can be exploited in matrix games, deterministic policies can also be
exploited in stochastic games. Therefore, we cannot restricted ourselves to deterministic policies as
is common with the study of MDPs. Throughout this work, we consider the full space of stochastic
policies. We user; to refer to a policy for playei. We user to refer to a joint policy for all the
players, withr; being player’s policy within that joint policy. We use the notatidh; to be the

set of all possible stochastic policies available to playendIl = II; x ... x II,, to be the set

of joint policies of all the players. We also use the notatianto refer to a particular joint policy

of all of the players except playeérandll_; to refer to the set of such joint policies. Finally, the
notation(r;, 7_;) refers to the joint policy where playéfollows 7; while the other players follow

their policy fromz_;.

Reward Formulations

The reward formulations of discounted reward and average reward also can be applied to stochastic
games to quantify the value of a policy. In the discounted reward framework, the value of the joint
policy 7 to player: at states, with discount factory, is,

Vi (s) = Z'ytE{rﬂsO =s,7}, (2.11)
=0

where E{r!|s" = s, 7} is the expected reward to playereceived at time given the initial state

is s and the agents follow the joint policy. Notice that this is nearly identical to Equation 2.1 for
MDPs, except that each agent has a separate value function and it depends on the joint policy of
the agents. Similarly, the average reward formulation in stochastic games is defined as,

T
1
Vi (s) = Tlglgoz TE{THSO =s,m}. (2.12)

t=0

As with MDPs, we can also defir@-values for a given player for a particular joint policy. For
the discounted reward framework, this corresponds to,

Q7 (s,a) = Ri(s,a) + ”yZT(s, a, sV (s').
s'ed

As with MDPs, it will often be much easier for learning algorithms to focugewalues instead
of state values.
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Best Response and Equilibria

Notice that a policy for a player can only be evaluated in the context of all the player’s policies.
This is the same difficulty faced by matrix games and the same solution concepts can be applied
from matrix games. Since the set of stochastic games also contains all matrix games, we know
that there is no optimal policy independent of the policies of the other players. The concept of
best-response, though, can be defined.

Definition 4 For a stochastic game, theest-response functidior playeri, BR;(7_;), is the set
of all policies that are optimal given the other player(s) play the joint poficy. Formally, 7} €
BR;(7_;) if and only if,

Vr, €I Vs € 8 A ’“>(s) > VT (),

7

We can also define the concept of a best-response equilibrium or Nash equilibrium.

Definition 5 For a stochastic game, Bash equilibriumis a collection of policies, one for each
player,r;, such that,
T € BRZ<7T,z)

So, no player can do better by changing policies given that the other players continue to follow the
equilibrium policy.

2.4.3 Types of Stochastic Games

The same classification for matrix games can be used with stochastic gegagsgameare ones

where all the agents have the same reward funceno-sum gameare two-player games where

one player’s reward is always the negative of the other’s. gemkral-sum gameasfer to all types

of reward structures. In addition, stochastic games can also be classified based on their transition
function. Asingle-controller stochastic gams a game where transition probabilities depend on

the state and the action of only one of the players. Formally, this corresponds to,

Vs,s' € §Va,a € A ay =a) = T(s,a,8)=T(s,d,s).

Similarly, in no-control stochastic gamggo player’s action affects the transition probabilities.
Formally,
Vs, s’ € §Va,d € A T(s,a,s")=T(s,d,s).

Like matrix games, zero-sum stochastic games have a unique Nash equilibrium, although find-
ing this equilibrium is no longer as trivial. We examine techniques for solving stochastic games in
Chapter 3.

2.4.4 The Markov Assumption

The Markov assumption from Markov decision processes still holds in stochastic games but it has
a different form.
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Definition 6 A multiagent decision problem Idarkovianif and only if, the sequence of states
(s* € 8), joint actions ¢' € A), and rewards (! € R) satisfies

S U G | 0 01 _ R S B R |
Pr{s-s,ri—rﬂs ,a ,...,s,a}—Pr{S—s,ri—Ms ,a },

that is, if the next state and rewards depend only on the previous statdlaridhe agents’ actions,
but not on the history of states and actions.

From the game’s perspective, stochastic games are Markovian, but from a single agent’s per-
spective, the process is not Markovian. Specifically, the transition probabilities associated with
a single agent’s action from a state are not stationary and change over time as the other agents’
action choices change. These choices are likely influenced by the past history of play, and so the
history of play influences the future transition probabilities when revisiting a state. Therefore, from
a single agent’s perspective, the environment no longer appears stationary or Markovian.

This is one of the key challenges of learning in multiagent environments. The Markov assump-
tion and the stationarity property are critical to single-agent reinforcement learning research. This
violation of basic assumptions requires new techniques to be developed to learn effective policies
in stochastic games.

2.4.5 Relationship to Matrix Games and MDPs

In addition to subsuming MDPs and matrix games, stochastic games have further connections to
these simpler frameworks. Consider fixing stationary policies for all but one of the agents. The
resulting decision process for the remaining agent is a Markov decision process. The MDP’s states
and the player’s action set are the same as in the original stochastic game. The transition function
is composed of the stochastic game’s transition function with the other players’ policies. Formally,
let 7" be the stochastic game transition function ang € I1_; be a fixed policy for all the other
agents, then the MDP transition functidnis,

T(s,a; ) = Z 7_i(s,a_)T (s, (ai,a_;),s").

a_;€EA_;

So, if the other agents are stationary and not learning, the problem simply reduces to the problem
of learning to act in an MDP.

There is also a connection between matrix games and stochastic games. A Nash equilibrium
policy in a stochastic game can be reduced to Nash equilibrium strategies in a set of associated
state-specific matrix games. These matrix games are defined ly-tadues of the particular
equilibrium policy. Formally, letr* be a Nash equilibrium for a stochastic game. The joint strategy
where playet plays action:; with probability 7} (s, a;) is a Nash equilibrium for the matrix game
where R;(a) = Q™ (s,a). This fact can be seen by observing thatrifdid not define a Nash
equilibrium of the matrix game defined gy (s, -), then some player could play a different action
at states to improve its strategy in that matrix game. This would also improve the value of the
player’s overall policy and so the joint policy is not an equilibrium of the overall stochastic game,
proving the fact by contradiction. This relationship of stochastic game equilibria to equilibria in
the game’s state-wise matrices will be a useful fact for devising learning algorithms, as we will see
in Chapter 3.
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2.4.6 Behavioral Policies

In our presentation of repeated games and stochastic games we have restricted our attention to
Markovian policies, i.e., policies whose action distributions depend only on the current state. This
was intentional as this work will exclusively examine the learning of Markovian policies. However,
these policies are a subset of a larger class of policies, chéiédvioral policies Behavioral
policies depend not only on the current state but also on the complete history of past states and
joint actions.

Let H,. : (8 x .A)* be the set of all possible histories of lengdtlof past states and associated
joint actions. Then, leti = U°,H;, be the union of possible finite length histories. A behavioral
policy for playeri, is a mappingr; : H x 8§ x A; — [0, 1], where,

VheH VseS Zﬂ(h,s,a)zl.

acA

Markovian policies are contained within this set as policies satisfying,
Vhi,ho € H Vsed 7(h1,s,a) = w(he, s, a).

One could also consider the setieMarkov policies, where the policy has the same distribution
over actions for any histories that agree on the tastiate and joint-action pairs. As with Markov
policies, a notion of value for joint policies can also be defined for behavioral policies, using either
a discounted or average reward formulation.

Repeated Games

Behavioral policies have been studied mostly in the framework of repeated games, where they are
called behavioral strategies (Osborne & Rubinstein, 1994). Since repeated games have a single
state, a behavioral strategy is a mapping from histories to the probability of selecting a particular
action. Itis a well-studied phenomenon in game theory that in repeated games there exist additional
Nash equilibria when considering the space of behavioral strategies. These additional equilibria
can also be strictly better than all Nash equilibria involving just Markovian strategies.

The canonical example of this is in the prisoner’s dilemma. The game is shown in Table 2.3.
Notice that the only Nash equilibrium of the game is the pure strategies where both players choose
actionD. In the repeated game with behavioral strategies, other equilibria exist. In particular,
consider thdit-for-Tat strategy, which is a 1-Markov behavioral strategy. The strategy @ays
the first playing, and afterward plays the same action its opponent played on the previous playing.
For discounted reward with a suitably high valueyobr for average reward, Tit-for-Tat by both
players is a Nash equilibrium. Also, it nets both players an average reward of 3, as opposed to the
Markovian equilibrium where both receive a reward of 1.

Folk Theorems

There are a collection of theorems referred to as folk theorems, since their originator is unknown,
that generalize the idea of Tit-for-Tat (Osborne & Rubinstein, 1994). The essence of these results is
that under a variety of reward formulations, for astyictly enforceableandfeasibleset of payoffs
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Table 2.3: The prisoner’s dilemma matrix game.

to the players, there exist equilibrium behavioral strategies that achieve these payoffs. Strictly
enforceable means all players receive a payoff larger than their minimax optimal value (i.e., the
value of the game if it were zero-sum). Feasible means the payoffs equal a convex combination of
the payoffs associated with the joint actions of the game. The proofs involve constrnicigey
strategiedhat play a particular sequence of joint actions (whose average or discounted value equals
the target value), and punishing any deviance by the other player from this sequence by playing the
strategy that forces them to get their minimax value. Since following along with the trigger gets a
higher value, the other player has no incentive to deviate and be punished.

The power of the folk theorems is that certain communally beneficial play, such as both players
choosingC in the prisoner’s dilemma, can be justified as an equilibrium. The problem with the folk
theorems is that any feasible and enforceable payoffs to the players can be justified as achievable
by some behavioral strategy Nash equilibrium. In addition, from the perspective of prescribing a
particular behavior, these equilibria really depend on an announcement of strategy. That is, the
other player needs to know the specific trigger strategy being played in order to comply. In our
learning paradigm there is no announcement and the game is unknown, and so requires exploration.
It's not clear that these trigger strategies, or their subgame perfect variants (Osborne & Rubinstein,
1994), would operate well in these circumstances.

Our Focus on Markov Policies

As we have mentioned, this work will focus on Markovian policies. Although there are specific
situations where behavioral policies can offer a strictly superior equilibrium solution, such as in
prisoner’s dilemma, they also add a number of complications. First, many games, such as zero-
sum games, receive no benefit from the use of behavioral policies. Second, as the folk theorems
demonstrate, there are an infinite number of equilibria in the space of behavioral strategies, with
little justification for one over the other. Finally, behavioral polices severely increase the complex-
ity of the learning problem. If one considers the number of states for an agent as distinguishable
choice points, then the number of these grow exponentially asithe-Markov policies increases.

For example, consider the grid navigation game in Section 2.4.1. The number of choice points for
this game grows from 73 for 0-Markov policies, to 84,264 for 1-Markov polices, to approximately
108 for 2-Markov policies. In this domain, the history of very recent actions is probably not even
particularly helpful. A more helpful class of behavioral policies would be ones that could make
decisions contingent upon the last joint action selected in every state. Such a class of polices would
need to define actions for well oved'™ states.

Obviously a line has to be drawn on the space of policies considered in order for learning to
be tractable. Investigations in domains similar to prisoner’s dilemma will want to examine a larger
class of policies, such @sMarkov. Sandholm and Crites (1996) did just that when exploring
reinforcement learning algorithms in iterated prisoner’s dilemma. In the present work, we simply
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draw that line around Markovian policies. Although not a focus of this work, we believe many
of the techniques described in this thesis still should have applicability in learning more general
classes of policies.

2.5 Summary

In this chapter we presented the framework of stochastic games as a general model of multiagent
interaction. We also described the subsumed frameworks of Markov decision processes, studied in
the reinforcement learning community, and matrix games, studied in the field of game theory. We
presented examples of problems using these models, including problems that will be the testbed
for empirical experiments later in this work. We also introduced the key solution concepts and al-
gorithms for MDPs: discounted and average reward, value functions, optimal policies, and simple
reinforcement learning techniques. We presented an overview of the key solution concepts in ma-
trix games: best-responses and Nash equilibria. Finally, we showed how stochastic games merges
these two frameworks combining the challenges of learning to maximize reward over time with
the strategic problems of multiple interacting agents. In the next chapter, we examine techniques
for finding solutions and learning within the framework of stochastic games.



Chapter 3

Categorization of Previous Work

In this chapter we explore previous work on solving and learning in stochastic games. We also
review work on agent limitations, focusing primarily on handling limitations within the context of
decision making.

We begin by examining algorithms feolvingstochastic games, which amounts to finding a
Nash equilibrium for the game. These algorithms were developed within the field of game theory,
and therefore do not concern themselves with mechanisms for learning to play an equilibrium. We
present these algorithms because equilibria is an important concept for the learning paradigm, and
they also have strong connections to individual learning algorithms.

We then explore the variety of algorithms fi@arningin stochastic games. We separate the
algorithms into two classes: equilibrium learners and best-response learners. These algorithms
differ on the specifics of what they are explicitly seeking to optimize. We make heavy use of
this distinction in Chapter 4 when we introduce desirable properties of learning algorithms. We
also discuss the algorithms’ connections to their game theoretic counterparts for solving stochastic
games.

Finally, we examine previous work in handling agent limitations in a decision making context.

3.1 Finding Equilibria

The first algorithm presented for finding a Nash equilibrium in a stochastic game was due to Shap-
ley (1953) along with his statement of the stochastic game framework. The algorithm solved zero-
sum games using an iterative dynamic programming process. Since then, numerous techniques
have been proposed. Before we examine a few of these methods, we look at the basic assumptions
and goals motivating these algorithms.

Game theory is concerned with Nash equilibria primarily as a predictive concept. That is,
individually rational and knowledgeable agents will only play Nash equilibria. Finding equilibria
is then important for the purpose of predicting behavior. The algorithms from game theory have
some very strong assumptions.

1. The game(n, 8, A;, T, R;), is fully known.

2. The goal is to compute the value of a Nash equilibrium, i.e., the expected discounted (or
average) reward for all the players of playing an equilibrium.

47
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1. Initialize V arbitrarily.
2. Repeat,

(a) For each state; € 8, compute the matrix,

R(s,a)+

Gs(V) = |Gaca : Y owesT(s,a,s)V(s)

(b) For each state; € S, updatel/,

V(s) < Value [G4(V)] .

Table 3.1: Shapley’s value-iteration algorithm for finding equilibria in zero-sum stochastic games.

3. No concern is given to how this behavior might arise in actual multiagent interactions.

Learning algorithms, which we discuss later, reject most of these assumptions. Many of the
learning algorithms, though, have a strong similarity to one of these “counterpart” methods from
game theory. We note the similarities with these algorithms when we explore the specific learning
algorithms. In addition, some of these algorithms also have a temporal differencing flavor, which
we introduced in Chapter 2 in the context of solving MDPs. This connection provides further
insight into the relationship between multiagent and single-agent techniques.

All of these algorithms use the concept of a value function over stefés). Most of the tech-
niques focus on zero-sum stochastic games, so there is a unique Nash equilibrium value function.
The goal of these algorithms is to converge to this “optimal” value funclions).

We first explore Shapley’s original iterative algorithm for zero-sum games, and then examine
two other iterative techniques: Pollatschek and Avi-ltzhak, and Van der Wal. We then examine
how the game can be solved as a linear program. Finally, we look at fictitious play, that involves
“playing” the stochastic game to find a solution.

3.1.1 Shapley

Shapley’s algorithm (1953) for computing a Nash equilibrium in a zero-sum stochastic game was
a direct result of his existence proof of equilibria in these games. The algorithm is shown in
Table 3.1. The algorithm uses a temporal differencing technique to backup values of next states
into a simple matrix game;/;(V'). The value functiod/ is then updated by solving the matrix

game for a Nash equilibrium value at each state. Since the stochastic game is zero-sum, these
intermediate matrix games are also zero-sum, and therefore have a unique value.

Notice the algorithm is nearly identical to value iteration for MDPs, with thexX” operator
replaced by the Value” operator. The algorithm also shows that equilibria in stochastic games
are solutions to Bellman-like equations. The algorithm’s value fundti@monverges td’* which
satisfies the following equations,

Vse§ V*(s) = Value[Gs(V7™)]. (3.1)
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1. Initialize V arbitrarily.

2. Repeat,

T — Vse§ Solve; [Gs(V)]
V(s) « E {Z V'rilso = 3>7Ti} :

Table 3.2: Pollatschek & Avi-ltzhak’s policy-iteration algorithm for finding equilibria in zero-sum
stochastic games. The functich is the same as presented in Table 3.1.

The crucial fact in proving convergence bfis to show that the value function mapping in
Step 2 of Table 3.1 is a contraction mapping under the max-normPLebe the value function
resulting from applying Step 2 to the functidh Formally, P is a contraction mapping under the
max norm if and only if,

[|PV — PV |lmax < Y|V = V|| max- (3.2)

SinceV* satisfies Equation 3.1 thenl’* = V*. Itis fairly easy to see that this condition is enough
to show that repeated applications of Step 2 resulig’sndecreasing distance 0%, resulting in
convergence.

3.1.2 Pollatschek & Avi-ltzhak

Just as Shapley’s algorithm is an extension of value iteration to stochastic games, Pollatschek &
Avi-ltzhak (Pollatschek & Avi-ltzhak, 1969) introduced an extension of policy iteration (Howard,
1960). The algorithm is shown in Table 3.2. Each player selects the equilibrium policy according
to the current value function, making use of the same temporal differencing n@(iX,), as in
Shapley’s algorithm. The value function is then updated based on the actual rewards of following
these policies.

Like Shapley’s algorithm, this algorithm also computes the equilibrium value function, from
which can be derived the equilibrium policies. This algorithm, though, is only guaranteed to con-
verge if the transition functiory, and discount factory, satisfies a certain property. In particular,

v < 1/3, or the following holds,

: 1—

max maxT(s,a,s) —minT(s,a,s) | < ——.

sES es acA acA Y
s'e

This amounts to a limit on the overall effect the players’ actions can have on the transition function.
For example, the extreme of no-control stochastic games satisfies this property.

A similar algorithm by Hoffman & Karp (Hoffman & Karp, 1966) which alternates the policy
learning, rather than it occurring simultaneously, avoids the added assumption. Obviously, this
requires control over when the other agents in the environment are learning, and so limits the
usefulness of the technique from our learning perspective.
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1. Initialize V arbitrarily.
2. Repeat,
(a) Compute an optimal policy for player two,

Ty — Vs €8 Solve; [Gs(V)].

(b) Repeat) times,Vs € §,

V(s) < max (S, as) (R(s, (ay,az)) + va(s, (ay, as) ,s’)V(s')) :

s'e8

Table 3.3: Van der Wal’s class of algorithms depending on the value of the parainetdit{oco}.
If A = 1 then the algorithm is equivalent to Shapley’s algorithm in Table 3.A. # oo then the
algorithm is the Hoffman and Karp variant of Pollatschek & Avi-ltzhak’s algorithm in Table 3.2.

3.1.3 Van der Wal

The similarity of Shapley’s algorithm to value iteration, and the Pollatschek and Avi-ltzhak al-
gorithm to policy iteration, suggests a mixture of the two techniques might be possible. This is
precisely the family of algorithms explored by Van der Wal (Van der Wal, 1977) using a inte-
ger parameteA € N U {oco}. This parameter determines the number of steps of lookahead in
computing the new value function. Theserves a similar purpose to the parameterized temporal
differencing algorithms, such as Sarsaf |0, 1]), providing a continuum between a pure policy
iteration approach, and a pure value iteration approach.

Like Shapley and Hoffman and Karp, converges td/*, and equilibrium policies can be
constructed for both players by solvigg (V*).

3.1.4 Linear and Nonlinear Programming

As we discussed in Section 2.3.3, equilibria can be computed for zero-sum matrix games by solving
a particularly constructed linear program. For two-player general-sum matrix games, an equilib-
rium can be found as a solution to a nonlinear program with a quadratic objective function and
linear constraints (Mangasarian & Stone, 1964).

General mathematical programming techniques can also be extended to stochastic games. For
zero-sum stochastic games, the objective functions and constraints remain linear. For two-player
general-sum stochastic games, the solution now requires solving a nonlinear complementarity
problem. Filar and Vrieze (Filar & Vrieze, 1997) give a thorough treatment of mathematical
programming in stochastic games, both for zero-sum and general-sum. Although, these are highly
efficient methods for finding equilibria in known games, they do not fit well with the learning
assumptions of incremental experience.
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3.1.5 Fictitious Play

The final algorithm for finding equilibria in a known stochastic game is the technique of fictitious
play. This was first proposed as a technique for finding equilibria in matrix games (Brown, 1949;
Robinson, 1951) and was later extended to stochastic games (Vrieze, 1987). Fictitious play is also
the algorithm that most easily fits into a learning paradigm. The stochastic game version of the
algorithm is shown in Table 3.4.

Fictitious play assumes opponents play stationary strategies. The algorithm maintains informa-
tion about the average estimated sum of future discounted rewards. This is computed by maintain-
ing a total of the estimated future discounted reward that would have been received if that action
was always selected from that stafg(s, a)*. The algorithm then deterministically selects the ac-
tion for each player that would have done the best in the past, accordingsta:). The estimated
sum of future discounted rewards is computed using a simple temporal differencing backup.

1. Initialize Q;(s € 8, a; € A;) according to specific constraints, ahe- 0.
2. Repeat for each state e S,

(@) Leta; = argmax, ¢ 4 Qi(s, a;).
(b) UpdateQ;(s,a;), Vs € 8§Va, € A;

Qi(s,a.) «— Qi(s,a.) + R(s, (a_;,a.)) +~ (Z T(s,a, 3’)V(S/)>
s'e8
where,
V(s) = max M

a; €EA; t

©) t—t+1.

Table 3.4: Fictitious play for two-player, zero-sum stochastic games using a model.

The algorithm has a number of nice properties. It is capable of finding equilibria in both
zero-sum games and some classes of general-sum games, in particular iterated dominance solvable
games (Fudenberg & Levine, 1999). These are games where a repeated process of eliminating
strictly dominated actions leaves only a single policy for both players, which must be a Nash
equilibrium (Osborne & Rubinstein, 1994).

The algorithm is also very amenable to a more explicit agent setting. We can easily separate
the algorithm into separate processes, one for each agent, where each agent selects its action that
maximizes its owr); (s, a;), observes the action selected by the other agent and upggldtes; ).

If both players are following fictitious play then this is equivalent to the described algorithm.

1Although not strictly a Q-value in the sense of Q-learning, it still serves to measure the relative value of selecting
various actions from various states.
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Matrix Game n Temporal | | Stochastic Game

Solver Differencing | Solver

MG + TD = Solving
LP TD(0) Shapley
LP TD(1) Pollatschek & Avi-ltzhak

Hoffman & Karp
LP TD()\) Van der Wal
FP TD(0) Fictitious Play
LP: linear programming FP: fictitious play

QP: quadratic programming

Table 3.5: Summary of algorithms for solving stochastic games. Each contains a matrix game
solving component and a temporal differencing component. “Solving” algorithms assume the
transition and reward function are known.

Its drawback is that for zero-sum games, it can dimigtan equilibrium policy, without actually
playing according to that policy. One obvious reason for this drawback is that the algorithm is
deterministic, and cannot play stochastic policies. Since many zero-sum games do not have pure
policy equilibria, it cannot play according to any equilibrium policy. There is an approximation to
fictitious play for matrix games called smooth fictitious play (Fudenberg & Levine, 1999), which
is capable of playing mixed equilibrium. This variation, though, has yet to be generalized to
stochastic games.

3.1.6 Summary

With the exception of the mathematical programming methods, these algorithms have a similar
structure. They all have a matrix game solving component combined with a temporal differenc-
ing component. This decomposition is summarized in Table 3.5. We now examine algorithms
that learn a policy through observations of the game’s transitions and rewards. Some of direct
extensions of the equilibrium finding algorithms to conform to the basic learning assumptions.

3.2 Learning Algorithms

The focus of algorithms from game theory is to compute the value to the players, and possibly as-
sociated policies, of a Nash equilibrium for the stochastic game. Reinforcement learning presents
a different paradigm where the goal isl&arn through interaction rather thaolvefor an equi-

librium. In this paradigm, it is generally assumed that the game being played, specificatig

R; are not known but must be observed through experience. Agents are required to select actions
in the environment in order to gain observationsohnd R;. The second distinguishing charac-
teristic is that these algorithms focus on the behavior of a single agent, and seek to learn a policy
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specifically for that agent. The play for other agents, especially in zero-sum games, is not under
the agent’s control. There is still a great degree of variation in whether the algorithms are required
to observe the actions selected by the other agents or the other agent’s rewards.

We distinguish between to two broad classes of learning algorithms, with very different explicit
goals. Equilibrium learners explicitly seek to estimate and converge to their policy in one of the
game’s Nash equilibria. Best-response learners seek to directly learn and play a best-response to
the other players’ policies. Although, not explicitly related to equilibria, best-response learners
have a strong connection to equilibria, which we explore further in Chapter 4 when we consider
rationality as a property of learning algorithms. These two classes of algorithms are then followed
by a brief discussion.

3.2.1 Equilibrium Learners

Equilibrium learners seek to learn and play a Nash equilibrium of the stochastic game. Since
an equilibrium is actually a joint policy, they actually seek to play their component of some Nash
equilibrium. For zero-sum games this insures optimal worst-case performance, and also guarantees
convergence to a Nash equilibrium against other equilibrium-playing opponents. For general-
sum games there is the difficulty of multiple equilibria creating an equilibrium selection problem.
This problem is ignored by most algorithms, assuming that there is either a unique equilibrium or
there is some other mechanism for solving the equilibrium selection problem. As with zero-sum
games, playing against other equilibrium-playing agents insures that the policies convergence to
the game’s unique (or selected) equilibrium.

There has been a line of research over the past decade in regards to the development of equilib-
rium learning algorithms, as well as determining their conditions for convergence. We review the
continuing development of these techniques. It is useful, though, to note that all of the algorithms
have a nearly identical structure. This is shown in Table 3.6. The algorithms differ mainly on the
final line of Step 2(b) by using different definitions of thelue operator.

Minimax-Q

Littman (1994) extended the traditional Q-Learning algorithm for MDPs to zero-sum stochastic
games. The notion of@ function is extended to maintain the valugaht actions, and the backup
operation computes the value of states differently. Instead of usingiine,c 4 4,” operator in Step

2(b) of Table 3.6, it computes the unique equilibrium value of the matrix game defined ky the
values at the current state. This is the meaning of ¥dude” operator in the table. Th&alue
operator is efficiently computed using the linear program from Section 2.3.3 for solving zero-sum
matrix games. It is interesting to note that this is basically the off-policy reinforcement learning

equivalent of Shapley’s “value iteration” algorithm.

This algorithm does, in fact, converge to the stochastic game’s equilibrium solution, assuming
the other agent executes all of its actions infinitely often (Littman & SzepesiR96). This is
true even if the other agent does not converge to the equilibrium, and so providgp@ment-
independenmethod for learning an equilibrium solution.
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1. Initialize Q(s € 8,a € A) arbitrarily, and setv to be the learning rate.
2. Repeat,

(a) From states select actior:; that solves the matrix gamd @(s, a),c.4], With some
exploration.

(b) Observing joint-actiom, rewardr, and next state’,

Q(s,a) — (1= a)Q(s,a) + a(r + V()

where,

V(s) = Value < [Q(s,a)a@q] ) .

Table 3.6: Equilibria Learning algorithm. The differences between Minimax-Q, Nash-Q, FFQ,
and CE-Q are in th&alue function and the&) values. Minimax-Q uses the linear programming
solution for zero-sum games, Nash-Q uses the quadratic programming solution for general-sum
games, FFQ and CE-Q use specialized linear programming solutions. Al€p viédees in Nash-

Q and CE-Q are actually a vector of expected rewards, one entry for each player.

Nash-Q

Hu & Wellman (1998) extended the Minimax-Q algorithm to two-player general-sum stochastic
games. The algorithm is structurally identical and is also shown in Table 3.6. The extension
requires that each agent maintéjrnvalues for all of the agents. Also, the linear programming so-
lution used to find the equilibrium of zero-sum games is replaced with the quadratic programming
solution for finding an equilibrium in two-player general-sum games.

This algorithm is the first to address the complex problem of general-sum stochastic games.
But the algorithm requires a number of very limiting assumptions. The most restrictive of which
limits the structure o#ll the intermediate matrix games faced while learning, i.e., defined by the
valuesQ(s,a € A). Specifically, all of these intermediate games must have a single equilibrium.
In addition, the equilibrium in all of these intermediate games must be a global optimum, or the
equilibrium in all of these intermediate games must be a saddle point. A global optimum is a joint
action that maximizes each agent’s payoff. A saddle point equilibrium is essentially an adversarial
equilibrium. If a player deviates, it not only gets a lower payoff (the equilibrium criterion), but the
other player necessarily gets a higher, or equal, payoff. This is a non-trivial restriction since it is
not possible to predict whether the assumption remains satisfied while learning.

Convergence Difficulties. The general convergence difficulties of Nash-Q can actually be at-
tributed to the fact that value iteration with general-sum games is not a contraction mapping under
the max-norm (Bowling, 2000). Remember from Section 3.1.1 th& a contraction mapping

if the value function)/, is guaranteed on each applicationf/oto move closer td’* by a factor

of v. We consider the backu,, for which Step 2(b) of Table 3.6 is a stochastic approximation.
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Figure 3.1: Counterexample to Nash-Q being, in general, a contraction mapping. The diagram
shows a three state stochastic game, including the Nash equilibrium v@luesl] transitions are
deterministic and are independent of the actions selected. The only choice available to the agents
is in states;, where the corresponding matrix game has a unique Nash equilibrium where both
players choose their second action.

(0,0)

Specifically, for two players this is,

PQ(s,a) = (Ri(s,a), Ra(s,a)) + va(s,ms’) Value < [Q(S’,a’)a/eA} ) .

s'€8

Consider the stochastic game with three states shown in Figure 3.1ssthteys transitions
to states; with rewards 0. State, is a2 x 2 game with all actions causing the game to transition to
a states,, where no further rewards can be received. The rewards are shown above each transition,
with commas separating the rewards to each player.

Remember that Nash-Q maintaing)avalue for each player. This is represented in ¢he
values by a comma separating the values to player 1 and player 2. Consider the fold@wing
function,

Q(s0,7) = (v.7)

Q(s1,)) = ( 1-¢l )
= 11 1— 21— 2

Qs2,-) = (0,0).

The matrix game corresponding@ s, ) has a unique Nash equilibrium where both players choose
their first action. Notice thatQ — Q*||max = €. If P is a contraction mapping then after applying
P the values should be closerd®. The actual values faP(Q are,

PQ(so,:) = (v(1+€),7v(1+¢)

1,1 1—2¢1+¢€
P = (heroa imeize))
PQ(52>') = <0>O>

Notice that]| PQ) — PQ*||max = 27€, Which is greater thaaif v > 0.5. Hence with the max norm,
P is not a contraction mapping.
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This fact demonstrates that it is not just the non-uniqueness of equilibria in general-sum games
that makes convergence difficult. In the above example, all of the matrix games have a single
equilibrium, but the Nash-Q mapping is still not a contraction mapping. This is the reason Nash-
Q’s additional restrictions on the structure of all intermediate matrix games is necessary, and also
brings the general applicability of Nash-Q into question.

Friend-or-Foe-Q

Littman’s Friend-or-Foe-Q (FFQ) (2001) is an equilibrium learner that extends Minimax-Q to in-
clude a small class of general-sum games. Motivated by the assumptions of Nash-Q, which re-
quired that either the game be effectively zero-sum, so each intermediate game has a saddle point
equilibrium, or the game was a team game, so each intermediate game has a global optimum. This
extension handles both of these classes of games, as well as others, that do not by themselves fit
under the Nash-Q assumptions.

The algorithm, in essence, assumes there are two competing teams of agents in the stochastic
game. So, from one agent’s perspective, every other agent is either a friend or a foe. Knowing the
labeling, or inferring the labeling from observed rewards, the agent can alter the Minimax-Q value
computation to account for these labels.

The Value computation uses the basic zero-sum linear program, but performs the program over
the joint actions of all the agents that are on the same team. The result is a joint action for one
team that maximizes their minimum reward received over all joint actions of the other team. The
action for the agent is then their component in this equilibrium joint action. Like Minimax-Q,
FFQ is guaranteed to converge to their policy in an equilibrium for the stochastic game. Although,
since cooperative games may have multiple equilibria where policies are not interchangeable, in
practice this algorithm can suffer from an equilibrium selection problem. With an agreed upon
team convention or arbiter for the equilibrium selection problem, then the team can be guaranteed
to be playing according to the same joint policy equilibrium.

CE-Q

The final equilibrium learning technique is Greenwald & Hall's Correlated-Q (CE-Q) (2002) that
seeks to learn to play according to an equilibrium by using the broader classrefated equi-

libria. Nash equilibria are independent stochastic distributions over player’s actions. Correlated
equilibria allow for stochastic distributions over joint actions, where players do no randomize in-
dependently. A correlated joint policy is a mapping from states and joint actions to probabilities.
Formally,7 € (8 x A) — [0, 1], where,

Vs €8 Zﬁ(s,a)zl.

acA

To play according to a correlated policy, players must have access to a shared randomizer. This
may be a central arbitrator that informs each player of the action they are to execute in order to
follow the correlated policy.

A correlated joint policy is an equilibrium if and only if, for each playgreach states, and
each actiong;, the following holds. Let_;(a_;|a;) be the conditional probability that the other
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agents select joint actian_;, given agents are following the correlated joint policyand agent
is playing actiorz;. Then, for alla;, the following must be true,

Z o_i(a_ila;)Q" (s, {a;, a_;)) > Z o_i(a_ila;)Q" (s, {a;, a_y)).

a_;€EA_; a_;€EA_;

In other words, given the knowledge about the other player’s distribution gained from one agent’s
own prescribed action, that agent gains no increase in expected payoff by playing an action differ-
ent from its prescribed action.

All Nash equilibria are correlated equilibria, so this is a more general solution concept. In
addition, for matrix games, correlated equilibria are far easier to find and involve solving a linear
program, even in the case of general-sum games.

CE-Q is the straightforward replacement of i&ue function in Table 3.6 with a method to
compute the value of some correlated equilibrium. Like the Nash equilibrium, though, this concept
is not unique and so the agents must use some central arbitrator to insure they all select the same
equilibrium when computing the value of a state. This technique is more efficient than Nash-Q,
since it does not require the complex quadratic programming Nash equilibrium solver. On the
other hand, it requires some agreed upon equilibrium selection and shared randomizer in learning
and execution, respectively. Greenwald & Hall do point out that there are recent algorithms for
independent agent’s empirical play to converge to a correlated equilibria in a repeated game. These
online techniques may also be able to remove the need for a central arbitrator to act as a shared
randomizer.

Learning in Team Games

Although, not the focus of this work, there has also been recent work on the problem of learn-
ing to play in a team stochastic game, where all agents have an identical reward function. The
challenge of learning to play a Nash equilibrium in these games is not difficult in practice. Even
single-agent learning techniques can achieve this goal (Claus & Boutilier, 1998). However, the
team game assumption opens up the possibility of stronger guarantees. In particular, Wang and
Sandholm’s (2002) Optimal Adaptive Learning is guaranteed to converge in self-playdptthe

mal Nash equilibrium in any team stochastic game. That is, the play converges to strategies that
achieve the highest possible payoffs, thus avoiding all suboptimal Nash equilibria, which other al