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Abstract

From the early days of modern congestion control, ushered in by the development of TCP’s and DECbit’s
congestion control algorithm and by the pioneering theoretical analysis of Chiu and Jain, there has
been widespread agreement that linear additive-increase-multiplicative-decrease (AIMD) control algorithms
should be used. However, the early congestion control design decisions were made in a context where loss
recovery was fairly primitive (e.g. TCP Reno) and often timed-out when more than a few losses occurred
and routers were FIFO drop-tail. In subsequent years, there has been significant improvement in TCP’s
loss recovery algorithms. For instance, TCP SACK can recover from many losses without timing out. In
addition, there have been many proposals for improved router queueing behavior. For example, RED active
queue management and Explicit Congestion Notification (ECN) can tolerate bursty flow behavior. Per-flow
packet scheduling (DRR and Fair Queueing) can provide explicit fairness.
In view of these developments, we seek to answer the following fundamental question in this paper: Does
AIMD remain the sole choice for congestion avoidance and control even in these modern settings? If not,
can other mechanism(s) provide better performance?
We evaluate the four linear congestion control styles – AIMD, AIAD, MIMD, MIAD – in the context of these
various loss recovery and router algorithms. We show that while AIMD is an unambiguous choice for the
traditional setting of Reno-style loss recovery and FIFO drop-tail routers, it fails to provide the best goodput
performance in the more modern settings. Where AIMD fails, AIAD proves to be a reasonable alternative.
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1 Introduction

The first sophisticated transport congestion control algorithms, developed almost simultaneously for DECbit
[1] and TCP [2], employed Additive-Increase Multiplicative-Decrease (AIMD) window adjustment algo-
rithms. A later theoretical study [3] confirmed, in a simple model with synchronous congestion signals and
static bandwidth, that AIMD was the only fair and stable choice among the four linear alternatives AIMD,
AIAD, MIMD and MIAD. In the past decade, due to the tremendous success of TCP congestion control and
to the enduring persuasiveness of [3], the superiority of AIMD has become a widely accepted and deeply
held belief.

As a result, there have been very few research studies advocating, or even exploring, linear schemes other
than AIMD. While there have been many papers on congestion control, most of them investigate algorithmic
issues that fall well within the AIMD paradigm. Of those departing from the AIMD paradigm, the majority
propose either non-linear congestion control algorithms [4] or approaches that differ radically from TCP
[5, 6]. Notable exceptions to this statement are [7] (discussed in Section 5) and [8, 9] (discussed in Section 6)
which propose linear control algorithms other than AIMD.

In this paper, we revisit the question of whether AIMD is indeed the only reasonable choice among
the various linear congestion control schemes. We seek to explore these other options for linear congestion
control and to see if any of them could theoretically serve as a viable option for a modern congestion control
algorithm. As such, we are ignoring all issues of TCP compatibility (or TCP-friendliness) and incremental
deployment.

We ask this question because the early development of TCP congestion control was done in the context
of Reno-style loss recovery and FIFO drop-tail routers. TCP-Reno reacts fairly severely to losses. If a Reno
flow incurs more than a few losses within a given window, it times out and restarts. Thus, in the past, it
was important that the window adjustment algorithm increase its window conservatively to avoid multiple
losses. However, much progress has been made on loss recovery algorithms in the past decade. The more
modern loss recovery recovery schemes, like SACK [10, 11], incur only a gentle penalty from losses since they
can endure many packet drops within a single window without restarting. Hence, there may be less of a
need for conservative window adjustment algorithms.

In addition, the drop and scheduling policies at routers have changed significantly from the early days
of TCP. The need for Active Queue Management (AQM) is widely accepted and the RED algorithm [12]
is widely implemented (although it isn’t clear how widely deployed it is). AQM in general, and RED in
particular, give flows early congestion signals – well before the physical queue is exhausted – and can better
absorb bursts of packets. This reduces the burstiness of the loss patterns and lessens the chance that
TCP needs to time-out and restart. Explicit congestion notification (ECN) [1, 13] goes even further, giving
congestion signals without losses. Thus there is almost no penalty upon loss when TCP SACK is employed
in conjunction with ECN.

In addition to modifying the drop-policies at routers, there have also been calls for routers to adopt per-
flow queueing schemes, like Deficit Round Robin (DRR) [14, 15], that explicitly ensure fairness between flows.
If such schemes became widely deployed (and some ISPs are now deploying routers with this capability), then
one need not require TCP’s window adjustment algorithm to provide fairness. While the days of widespread
deployment of DRR or similar algorithms are, at best, far in the future, in this paper, we evaluate if such a
deployment would allow us to use different window adjustment schemes.

Most flows in the Internet carry only a few packets, and thus the available bandwidth seen by long-lived
flows can fluctuate substantially. Also, the traffic load model might change with time as new applications
arise. Due to these reasons, in this paper we seek to evaluate the performance of the congestion control
algorithms under a wide variety of bandwidth variations, some of which might even appear extreme at first
sight. This is in contrast to most of the past congestion control evaluation and simulation studies that looked
primarily at cases where the available bandwidth was constant.

In this paper, we use simulations in NS-2 [16] to evaluate how the four linear congestion control scheme
would function in the various settings of loss recovery mechanisms and queue management schemes described
above against the backdrop of a variety of bandwidth variations. We focus on the effect that each setting
has on the relative performances of the algorithms.

The primary metric by which we evaluate these various schemes is the goodput (fraction of available
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bandwidth used to transmit distinct data packets) achieved in these various scenarios. In the scenarios with
varying bandwidth, the key to achieving high goodput is the ability to track the available bandwidth, that
is, the ability to keep up with its variations without significantly overshooting or undershooting. We also
evaluate the fairness, delay, and loss rate properties of these congestion control schemes.

Our simulations show that AIMD is the superior design choice in the traditional setting of TCP Reno
loss recovery and FIFO drop-tail routers. However, when we consider the modern developments mentioned
above, AIMD is no longer superior. TCP SACK, active queue management techniques and fair queueing
in routers enable the other linear alternatives to provide comparable and sometimes significantly better
goodput performance. We observe that AIAD is always among the best linear alternatives, and can even
achieve fairness as long as routers are not FIFO drop-tail. Moreover, we show, via analysis and simulations,
that hybrid linear algorithms in which the linear increase and decrease need not be purely additive or purely
multiplicative can alleviate the fairness issues of AIAD and also provide good performance.

The rest of the paper is organized as follows. In Section 2, we compare the tracking ability of the various
window adjustment schemes. In Section 3, we lay the framework used in this paper to compare and contrast
various congestion control algorithms. Section 4 presents the results of our study. In Section 5, we briefly
revisit the issue of fairness of linear congestion control schemes. In Section 6, we present related work.
Finally, Section 7 summarizes the paper.

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100

B
an

dw
id

th
 (

in
 M

bp
s)

Time (in seconds)

AIMD-Best

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100

B
an

dw
id

th
 (

in
 M

bp
s)

Time (in seconds)

AIAD-Best

AIMD AIAD MIMD MIAD
0.97 0.93 0.95 0.61

AIMD AIAD MIMD MIAD
0.52 0.96 0.75 0.82

(a) (b)

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30

B
an

dw
id

th
 (

in
 M

bp
s)

Time (in seconds)

MIAD-Best

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100

B
an

dw
id

th
 (

in
 M

bp
s)

Time (in seconds)

MIMD-Best

AIMD AIAD MIMD MIAD
0.87 0.94 0.90 0.96

AIMD AIAD MIMD MIAD
0.77 0.79 0.89 0.84

(c) (d)

Figure 1: Good cases for each of the four canonical choices. The goodput seen by the various algorithms for
the given variation is shown in the table below each plot. The goodput, measured as the fraction of average
available bandwidth used to transmit unique packets, is a number in [0, 1].

2 Is AIMD Clearly Superior?

Our first question is whether AIMD is clearly superior to the other choices in terms of the goodput achieved.
If it was, then our subsequent analysis would be moot and the entire paper a misguided exercise. However,
as we show in this section, for each of the four algorithms we can find scenarios in which it performs the
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best and the worst among the four algorithms. In fact, this suggests that special care needs to be taken in
deciding which algorithm is the best.

To maximize the usage of the available bandwidth, a congestion control scheme needs to balance between
(1) tracking rapid changes of the available bandwidth, and (2) minimizing packet losses. The faster a sender
modifies its window size, the faster the sender can track changes of the available bandwidth. On the other
hand, fast and large changes of the window size increase the probability of the sender overshooting the
available bandwidth, which may result in a large number of packets being dropped. This has two negative
implications. First, more losses mean that more packets are retransmitted, and thus a higher fraction of the
available bandwidth is devoted to retransmitting old packets. Second, a burst of losses can hurt the loss
recovery algorithm by forcing it to restart.

The canonical congestion control schemes we consider use either multiplicative or additive schemes to
vary the window size. When the available bandwidth increases slowly, an additive increase will likely out-
perform a multiplicative increase since it is fast enough to track the changes and is less likely to overestimate
the available bandwidth. In contrast, a multiplicative increase will likely perform better when bandwidth
increases are large and abrupt. The same reasoning applies to bandwidth decreases and the window decrease
algorithms. Intuitively, this is the reason why no single canonical congestion control scheme would be able
to dominate across a wide range of scenarios. Next, we present results supporting this observation.

Figure 1 shows four patterns of bandwidth variations. We measure the goodput for the four linear
algorithms in these four scenarios.1 The scenarios are chosen such that in each case there is a different
algorithm that achieves the highest throughput. We now describe the results in more detail.

Figure 1(a) shows a saw-tooth bandwidth pattern under which AIMD performs the best. Compared to
AIMD, the window size under MIMD and MIAD increases too fast, while under AIAD decreases too slowly.
As a result these schemes experience more losses, and consequently more retransmissions than AIMD. The
significantly worse goodput of MIAD is due to the fact that MIAD experiences a larger number of timeouts.

Figure 1(b) shows an example in which AIAD performs the best. The reason for this result is somewhat
more subtle. When the available bandwidth drops, AIAD reduces the window size slower than the other
disciplines (except MIAD). While this causes AIAD to lose slightly more packets, the decrease of the window
size is not enough to offset the increase of the window size during the previous high bandwidth period. Thus,
the window size of AIAD increases continuously over multiple high bandwidth periods. Moreover, since the
duration of a low bandwidth period is short, TCP SACK recovers from packet losses without experiencing
retransmission timeouts. In contrast, MIAD and MIMD cannot avoid timeouts as they constantly overshoot
the available bandwidth. Finally, AIMD does not perform well because the window decrease during the low
periods almost offsets the window increase during the high periods.

Compared to the previous experiment, in the scenario presented in Figure 1(c) the high and low periods
are shorter and the high bandwidth value is larger. These changes are enough to give advantage to MIAD
over AIAD. MIAD no longer overshoots when the bandwidth increases, while AIAD suffers from the fact
that it cannot increase the window size fast enough during the high periods.

Figure 1(d) presents a scenario which makes MIMD the winner. This is again a square pattern bandwidth
variation, but the periods are much longer. When the bandwidth decreases, AIAD and MIAD lose too many
packets, and TCP SACK is no longer able to avoid retransmission timeouts. On the other hand, AIMD
cannot exploit the available bandwidth as its window size increases too slowly during the high periods.
This leaves MIMD as the only discipline which can adequately track the abrupt changes of the available
bandwidth.

Not only we are able to construct scenarios that make any of the canonical congestion control schemes a
winner, but we can also construct scenarios that make any of these congestion control schemes a loser. For
instance, AIMD exhibits the worst performance in the experiments presented in Figures 1(b), 1(c) and 1(d)
and MIAD performs the worst in Figure 1(a). For completeness, in Figure 2 we present two traffic scenarios
in which AIAD and MIMD perform the worst. In Figure 2(a), both the additive increase algorithms are
too slow to catch up with the sudden increase of the available bandwidth. Between AIAD and AIMD,
AIAD cannot track the rapid decrease in the available bandwidth as well, and thus it ends up losing more
packets than AIMD. Figure 2(b) shows an example where MIMD performs the worst. In this case, both the
multiplicative increase algorithms overshoot the available bandwidth by significant amounts and time-out

1The simulation details are described in Section 3.3. For these simulations we use drop-tail FIFO routers with TCP SACK.
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Figure 2: Bad cases for AIAD (Figure(a)) and MIMD (Figure (b)). Notice that the y-axes are on different
scales.

often. MIAD performs better than MIMD because the additive decrease allows it to keep substantially
higher number of packets outstanding than MIMD.2

In summary, there is no clear winner or loser among the four canonical congestion control schemes. As
shown in this section, for each congestion control scheme, we can devise a bandwidth variation pattern that
can make that scheme either a winner or a loser. However, the relative performance of the various schemes
is different across scenarios. To better compare the behavior of these congestion control schemes, we develop
an evaluation methodology based on competitive analysis. This is the subject of the next section.

3 Evaluation Methodology

In order to meaningfully compare the algorithms, we make two key guiding assumptions. Our first guiding
assumption is that congestion control algorithms should not be designed for any particular scenario, no
matter how realistic that scenario may be at the time. This is because, the load model in the Internet may
change abruptly as new applications arise or as the nature of the infrastructure changes. Thus, congestion
control algorithms should be evaluated across a wide variety of scenarios. Our second guiding assumption is
that robustness is more important than optimality, that is, we demand that the congestion control algorithm
perform reasonably in most situations and are more concerned with its worst-case performance than its
best-case performance.

To embody these guiding assumptions in a concrete methodology, we borrow an approach similar to that
used in the study of competitive algorithms [17]. Let A be the set of congestion control algorithms that
we wish to compare. For our study, A consists of AIMD, AIAD, MIMD and MIAD. Let E be the set of
possible environments or scenarios that these algorithms might be faced with, where a scenario is a particular
variation in the available bandwidth.

For the particular quantity of interest – be it goodput, fairness, loss, or delay – let sa(e) denote the score
of algorithm a in a given environment e. Let smax(e) = maxa∈A{sa(e)} denote the best score achieved
in scenario e among the algorithms in A. Let da(e) = smax(e) − sa(e); da(e) is a measure, for a given
environment e, of how close a comes to matching the best performance among the algorithms in A. Out of
these per-environment scores we define two aggregate scores. The rank Ca is the worst-case score among
the various environments: Ca = maxe∈E{da(e)}. The rank measures the worst-case performance of the
algorithm, and lower ranks represent more robust algorithms, those that never do particularly poorly. The
other measure is the aggregate value Da of the differences: Da =

∑

e∈E da(e). The lower the values of Da

and Ca are, the better the algorithm a is, for the given metric. Table 1 outlines the notation used in this
section.3

2Although these scenarios look extreme and abrupt, it is possible to construct traffic models (e.g., periodic packet bursts or
periodic outages) that result in variations roughly similar to the ones shown here.

3We could have also defined da(e) =
smax(e)

sa(e)
. We have tried this alternate definition and the results are similar to the one
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Our approach is intended to capture the basic qualitative behavior of these algorithms. However, the
approach does have a few limitations. If a wide enough range of algorithms are not explored, then the scores
da(e) do not really represent the deviations from what a good algorithm does on that environment. They
would only represent the deviations from the particular algorithms in A. If a wide enough set of environments
are not sampled, then similar problems arise. If one focuses on environments that are too extreme, then
these dominate the worst case results and may alter the rankings. Thus, choosing the sets A and E is crucial
to this method, and we now explain our choices.

Notation Description
sa(e) The score of algorithm a in environment e

smax(e) maxa{sa(e)}
da(e) smax(e) − sa(e)
Ca maxa{da(e)}, Rank of an algorithm a

(measuring worst-case performance)

Da

∑

e∈E
da(e)

‖E‖
, metric for average performance

Table 1: Notation

Environment Variation in per-flow available bandwidth (Bt)
1 cons-low (CL) constant at 1Mbps
2 cons-high (CH) constant at 10Mbps
3 sq-low (SQL) 10Mbps→5Mbps→10Mbps. . .,

at regular intervals (5s)
4 sq-high (SQH) 10Mbps→1Mbps→10Mbps. . .,

at regular intervals (5s)
5 rw-low (RWL) Bt+1 ∈ [Bt −∆, Bt + ∆],

B0 = 1Mbps, ∆ = 0.5B0

6 rw-high (RWH) same as above except that B0 = 10Mbps
7 rd-low (RDL) Bt ∈ [0, B0], B0 = 1Mbps
8 rd-high (RDH) Bt ∈ [0, B0], B0 = 10Mbps
9 rw-additive (RWA) Bt+1 ∈ [0, Bt + ∆], B0 = 1Mbps,

∆ = 0.25B0

10 rw-multiplicative (RWM) Bt+1 ∈ [0, µBt], B0 = 1Mbps, µ = 5/3
11 real-cons-low (RCL) Pareto length flows arrive with

Poisson inter-arrival times
12 real-cons-high (RCH) Same as in real-cons-low, except that

the mean inter-arrival time is very low
13 real-sq (RSQ) Mean inter-arrival time varies in a square manner

Table 2: Environments

3.1 Choosing the Set E of Environments

In choosing the components of E, we aim to include enough environments to cover a wide variety of situations
while still keeping the set small enough to be manageable. We deliberately choose some of the environments
to be fairly extreme. The goal for these is not to be realistic, but to test the algorithms under unusually
harsh conditions. We include a few environments that reflect reasonably realistic scenarios. Finally, we
add few other environments that we hope would help reveal key aspects of the algorithms’ behavior. The
resulting composition for the set E is shown in Table 2.

Most of the scenarios are on a simple topology (described later) where the single congested link has
varying available bandwidth. The basic bandwidth variations we consider are described below (we describe
the variation in per-flow available bandwidth):

• Constant: The available bandwidth is constant. We included a cons-low (CL) environment where the
constant bandwidth is low (1Mbps) and a cons-high (CH) environment where the constant bandwidth
is high (10Mbps).

we consider.
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• Square-Wave: The available bandwidth undergoes square wave oscillations, with the bandwidth vari-
ations occurring every 5 seconds. In the sq-low (SQL) scenario, the bandwidth varies between 5Mbps
and 10Mbps. In the sq-high (SQH) scenario, the bandwidth varies between 1Mbps and 10Mbps.

• Random Walk (RWL, RWH): Here the bandwidth varies according to a random walk. If the bandwidth
at time t is Bt then the next bandwidth is chosen uniformly from the interval [Bt −∆, Bt + ∆] where
∆ = 0.5B0. For rw-low (RWL), B0 = 1Mbps and for rw-high (RWH), B0 = 10Mbps.

• Random (RDL, RDH): The bandwidth is chosen uniformly randomly from the interval [0, B0] where
B0 = 1Mbps for rd-low (RDL) and B0 = 10Mbps for rd-high (RDH).

• Additive Random Walk (RWA): For the environment rw-additive (RWA), the available bandwidth is
chosen from an additively constrained interval [18]. That is, the bandwidth at time t + 1 is chosen
uniformly at random from the interval [0, Bt + ∆]. Here, B0 = 1Mbps, ∆ = 0.25.

• Multiplicative Random Walk (RWM): In the environment rw-multiplicative (RWM), the available
bandwidth is picked from a multiplicatively constrained interval [18]. In other words, Bt+1 is chosen
uniformly at random from the interval Bt+1 ∈ [0, µBt]. Here B0 = 1Mbps, µ = 5/3.

• Realistic Cross Traffic: The variation in available bandwidth is determined by pareto-length flows
arriving at the bottleneck router with Poisson inter-arrival times. For the environment real-cons-
low (RCL), the mean inter-arrival time is 0.03s, while for real-cons-high (RCH) it is 0.01s. For the
environment real-sq (RSQ), the mean varies in a square manner between 0.03s and 0.01s, where the
variation in mean occurs every 5 seconds. These scenarios were chosen to reflect realistic load and
cross-traffic models.

In all the cases 1 through 10 listed in Table 2, whenever Bt exceeds the capacity of the link, C, we set it
to C.

3.2 Choosing the Set A of Algorithms

For LC ∈ {AIMD, AIAD, MIMD, MIAD}, letLC(a, b) denote a linear congestion control scheme with an
increase parameter of a and a decrease parameter of b. For example, the window increase and decrease
equations for MIMD(1.5, 0.5) are Wt+1 = 1.5Wt and Wt+1 = 0.5Wt, respectively.

For each of the four linear control schemes, we would like to pick a single set of parameters that provides
reasonable performance across all possible settings of loss recovery schemes, router algorithms and bandwidth
variations. Such a choice would ensure two key properties: (1) the single algorithm in each case (for example,
AIMD(1,0.1)) would best summarize the overall behavior of the entire family of linear control schemes
that the algorithm belongs to (for example, AIMD). (2) the single algorithm would ensure near-optimal
performance across all possible settings.

In addition, while choosing the parameters (a, b) of such a representative algorithm we try to ensure
that the choice does not obscure the core qualities of increase and decrease of each linear control algorithm.
For example, we do not want to pick the decrease parameter of the candidate AIMD algorithm to be very
close to 1, lest it should look similar to an additive decrease. Clearly, this property needs to hold over the
entire range of sizes of the congestion window spanned by the bandwidth variations that the algorithms are
exposed to. Subjectively, we list out the following conditions to be satisfied by the linear control algorithms
over all possible window sizes:

• Additive Increase (AI): The additive increase component should be such that at no instant of time
should the window undergo an increment greater than about 10% the current size. This serves to
distinguish an additive increase form a multiplicative increase.

• Additive Decrease (AD): The additive decrease component should be such that the decrement in the
window should never be more 10%. This serves to differentiate it from a multiplicative decrease.

• Multiplicative Increase (MI): The multiplicative increase component should be large enough so that
the increment in size of the window is larger than 10% always.
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• Multiplicative Decrease (MD): The multiplicative decrease component should be so chosen that the
window decrement is never less than 10%.
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Figure 3: Topology for the simulations. Figure (a) shows the setting for simulations where a CBR source
starting on S1 was used to control the available bandwidth on the link R1−R2. For the simulations involving
realistic traffic patterns, the setting shown in Figure (b) was used.

From the way the bandwidth variations were chosen, it is not hard to see that the lowest window size
to ever undergo an increment is about 12-15 (assuming a round-trip time of 120s. See Section 3.3 below).
Similarly the lowest window size to ever undergo a decrement is about 25-20. Applying the above four
conditions, we get the following permissible values for the parameters, approximately: AI ≤ 3, AD ≤ 3, MI
> 0.1 and MD < 0.9. The results of the comparison between the various candidate alogithms in each of the
four classes – AIMD, AIAD, MIMD, MIAD – are shown in the appendix. Based on these results, we choose
the following four candidate linear control schemes for comparison: AIMD(1,0.8), AIAD(1,3), MIMD(1.125,
0.8) and MIAD(1.125, 3). Henceforth, we shall refer to these schemes as AIMD, AIAD, MIMD and MIAD,
respectively.

3.3 Simulation Set-up

We use simulations in NS-2 to study the above congestion control schemes under the various combinations
of loss recovery and router algorithms and against the environments described above. In each simulation we
have n identical TCP test flows using the particular linear congestion control scheme under investigation,
and we subject them to different variations in the available bandwidth.

The topology used for testing with variations 1 through 10 is shown in Figure 3(a). To implement
variations in the available bandwidth in these scenarios, we choose to keep the bandwidth of the link constant
and introduce CBR-like cross-traffic to consume varying amounts of bandwidth. If the link bandwidth is B
and the cross-traffic consumes Bc then we say that the available bandwidth is Ba = B−Bc. The descriptions
above of the bandwidth variation scenarios can be turned into recipes for how the cross-traffic rate should be
varied. When testing with Drop-Tail and RED router mechanisms (at R1), we employ a single rate controlled
CBR source (between end-points S1 and D1) to realize the bandwidth variations 4. When testing with DRR
schedulers, however, we use a time-varying number of fixed rate CBR sources (between S1 and D1). This is
because, if we have n simultaneous TCP flows being tested, a single CBR source would be limited to at most

1
n+1 th of the available bandwidth at any instant of time when DRR is used, and so the available bandwidth
would not vary as desired. Hence, we vary the number of CBR flows to accurately implement the variation
in available bandwidth. A simple calculation shows that to achieve an available bandwidth of Ba we need
n(C − Ba)/Ba CBR flows, where C is the capacity of the link R1 − R2 and n is the number of test TCP
flows. The test TCP flows are between Si and Di. Also, we randomize the round-trip times slightly to avoid
synchronization effects.

4The CBR source might incur a few losses and hence the available bandwidth might be slightly larger than expected.
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While the topology shown in Figure 3(a) is well suited for tests in which we control available bandwidth
directly, it is not amenable to the implementation of bandwidth variations 11 through 13. We use the
topology shown in Figure 3(b) to implement variations 11 through 13. In what follows, we first describe the
set-up in detail and then explain the reasons for the difference from that of Figure 3(a).

TCP-SACK flows implementing AIMD with pareto-distributed lengths and poisson inter-arrival times
run between nodes S′ and D. These constitute the cross traffic on the link R1-R2. The n test TCP flows
are between nodes Si (i = 1, . . . , n) and D. In addition, we have n “place-holder” long-lived flows between
nodes S′ and D′. The router R0 employs DRR scheduling. The router at R1 implements either DRR or
RIO (explained in greater detail below). The TCP-SACK cross traffic is given priority over the test traffic
at router R1. In addition, the bandwidth between R0 and R1 equals that of link R1-R2.

While simulating the environments 11 through 13, we would like to ensure that the TCP flows consti-
tuting the cross-traffic on link R1-R2 are allocated their fair-share of the R1-R2 capacity irrespective of the
congestion control algorithm employed by the test flows. This is ensured by using DRR at router R0 and
using n long-lived place-holder flows between S ′ and D′. The place-holder flows emulate the n test-flows
so that when the pareto-distributed TCP flows enter link R1-R2, their aggregate occupies no more than
the fair-share. However, we also want the TCP flows constituting the cross-traffic to not incur any more
losses beyond link R0-R1 since they already are at their fair-share upon exiting this link. This is ensured
by: (i) using RIO at router R1 and marking the packets belonging to the cross traffic as high priority and
(ii) using TCP-SACK for the cross traffic. When testing with the setting of Drop-tail buffers, we modify the
parameters for the low priority packets at router R0 to implement Drop-tail behavior on packets belonging
to the test flows. When testing with the DRR setting, we use a DRR scheduler, instead of RIO, at router
R1. Notice that the flows belonging to the cross traffic do not incur any additional losses when DRR is
employed at router R1.

4 Results

As we discussed in the Introduction, we use four metrics in evaluating the performance of the different
congestion control schemes:

• goodput: We measure goodput as the fraction of available bandwidth used to transmit unique packets.
The goodput values all lie in [0, 1].

• delay: The queueing delay is measured in milliseconds.

• loss rate: The loss rate is measured in terms of the percentage of packets lost (so a score of 5 indicates
a 5% packet loss).

• fairness: The fairness metric is defined as gmax−gmin

gavg
where gmax, gmin and gavg are the maximum,

minimum and average goodputs of the test flows respectively.5

We present the results by first describing how the rankings change when going from the TCP-Reno with
its severe loss penalty to more gentle loss penalties. We then discuss the impact of different router drop
policies and queueing behavior. While presenting the results, we show both Ca and Da for goodput. This
is because these two aggregate scores show rather different behavior. We only present the values of Da for
fairness, loss, and delay because the ordering of the Da values for these quantities is very similar to the
ordering of the Ca values. For delay and loss, we also show the raw values as the absolute magnitude of
delays and losses cannot be easily inferred from the value of Da.

In all our simulations we have 10 test flows. We have run our simulations with different number of test
flows and the results are qualitatively similar. For reasons of space, we do not show the results for higher
numbers of flows here.

5We have also employed the Chiu-Jain Fairness Index [3] for comparison, and the results are qualitatively identical.
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4.1 The Impact of Loss Recovery Algorithms

As mentioned in Section 1, TCP Reno incurs a severe penalty when recovering from losses; TCP SACK is
more adept at handling losses and therefore incurs a much more gentle penalty. We performed simulations
of the four congestion control algorithms with these two types of loss recovery (TCP Reno and TCP SACK).
We simulated these schemes on the various scenarios; in these tests the routers used FIFO, drop-tail routers
with buffers sized to match the delay-bandwidth product of the network.

4.1.1 TCP Reno Loss Recovery

The results for TCP Reno loss recovery are shown in figure 4. Here, and in subsequent tables, we mark
the algorithms with the best goodput (best values for both Ca and Da) by underlining them. From the
results, AIMD and AIAD deliver roughly similar goodput in all the test environments. On the other hand,
the multiplicative increase (MI) algorithms perform poorly, as indicated by the large values of Da and Ca,
because they often significantly overestimate the available bandwidth and must invoke TCP Reno’s expensive
loss recovery routines.

TCP Reno Goodput Fairness Delay Loss
DROPTAIL Da Ca Da Da Da

AIMD 0.15 0.06 8.12 332 0.11
AIAD 0.02 0.01 15.92 440 3.26
MIMD 3.34 0.54 0.32 21 15.46
MIAD 3.32 0.52 0.56 47 19.72
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Figure 4: FIFO Drop-Tail buffers with TCP Reno loss recovery. The table compares the different algorithms
on the basis of the four metrics. The algorithms achieving the best goodput performance are underlined.
The figure on the bottom shows the raw delays and loss rates. In each column in the figure, the algorithms
are presented in the order AIMD, AIAD, MIMD, MIAD.

AIMD provides better fairness than AIAD, although AIMD is not perfectly fair. In addition, AIMD
suffers the fewest losses, with MIAD suffering the most. AIMD and AIAD have the highest delay values;
this is because the MI algorithms are frequently timed-out, leaving the queue empty.

To summarize, with TCP Reno loss recovery and FIFO drop-tail routers, AIMD and AIAD provide the
best goodput performance. However, AIAD is not as fair.

4.1.2 TCP SACK Loss Recovery

Figure 5 shows the results for TCP SACK loss recovery, again with FIFO drop-tail routers. The absolute
values (which we don’t show in our tables) of the goodputs are significantly higher than with TCP Reno.
As expected, the loss and delay values are higher too. In comparative terms, MIMD achieves high goodput,
and in fact, is marginally better than AIMD and AIAD. However, in terms of delay and loss rate, MIMD
provides the worst performance.

Also, AIMD remains the only algorithm to achieve reasonable levels of fairness. In fact, the gentle loss
recovery of TCP SACK makes the fairness properties of the non-AIMD algorithms worse. This is because
without the timeout-induced restarts invoked by TCP Reno, flows that get more than their fair share can
continue to exploit their advantage for longer periods of time.
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TCP SACK Goodput Fairness Delay Loss
DROPTAIL Da Ca Da Da Da

AIMD 0.25 0.12 0.67 23 0.00
AIAD 0.26 0.12 19.27 99 13.04
MIMD 0.12 0.03 9.72 115 40.70
MIAD 0.65 0.16 24.00 145 60.87
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Figure 5: FIFO Drop-Tail buffers with TCP SACK loss recovery.

To summarize, TCP SACK loss recovery reduces some of the distinguishing factors between the different
schemes. All schemes, except MIAD, provide roughly comparable goodput performance. Moreover, AIMD
provides the highest levels of fairness.

4.1.3 An Aside: The Impact of Multiple Congested Bottleneck Links

The persistent high loss rate of AIAD might raise concerns about the validity of its goodput results in
scenarios with multiple congested bottleneck links. It is possible that a high loss-rate at a congested down-
stream link might affect the goodput of competing flows at up-stream links. To check if this is indeed the
case, we perform a few simulations in which the test flows traverse multiple, congested, distinct bottleneck
links.6 We do not show details of these simulations here.

We observe that even in the situations with multiple congested bottlenecks, AIAD continues to have
identical goodput as AIMD. This is mainly a consequence of AIAD’s ability to keep more packets outstanding
than AIMD at any instant. This ability more than offsets the negative impact of AIAD’s higher loss rate on
its goodput and helps AIAD utilize available bandwidth more effectively than AIMD under most situations.

4.2 The Impact of Router Queuing Behavior (and ECN)

A variety of router configuration settings affect the behavior of end-to-end congestion control schemes. Some
of the important factors here include the drop policy (drop-tail or AQM), early congestion notification
(ECN), fair scheduling (DRR) and buffer sizing. We consider each of these in turn.

4.2.1 Effect of Active Queue Management

A router employing a drop-tail policy does not help senders gauge incipient congestion. The only indication
of congestion, an actual buffer overflow, is drastic and frequently results in burst losses and long queues at
the routers. RED active queue management attempts to provide an earlier and more gradual indication of
congestion to network endpoints.

The objective of the RED style of feedback is to reduce loss rates and delays by managing buffer occupancy
at the router more actively. Thus, when the end-hosts use TCP Reno, having the routers employ RED active
queue management (see Figure 6) does reduce loss rates and delays significantly across all the schemes.
However, RED does not greatly alter the relative goodputs of the four algorithms, with AIMD and AIAD
still achieving the best goodput results, just as with FIFO drop-tail buffers and TCP Reno end-points.

6We simulated a circular topology in which each test flow traverses two bottleneck links. Each of these links is in turn shared
with different competing test flows.
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TCP Reno Goodput Fairness Delay Loss
RED Da Ca Da Da Da

AIMD 0.06 0.02 1.07 102 0.00
AIAD 0.08 0.04 5.22 115 3.94
MIMD 0.75 0.19 0.82 45 6.08
MIAD 1.40 0.30 2.44 55 8.22
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Figure 6: RED gateways with TCP Reno loss recovery.

RED significantly improves the fairness of all schemes (AIAD is the worst in this regard, but the difference
is relatively small).7 This increased fairness with RED can be explained as follows: With FIFO drop-
tail routers (and also in the model considered by Chiu and Jain [3]), packet drops are synchronous and
deterministic resulting in all flows experiencing similar loss epochs. RED, on the other hand, randomizes
losses across flows and across time. Thus, RED effectively decouples the loss epochs of the flows. This helps
punish flows with a greater number of packets outstanding at a rate higher than those with fewer packets
outstanding. Hence, RED can achieve long-term fairness.

In summary, with RED routers and TCP Reno loss recovery, AIMD and AIAD provide the best goodput,
and they are both reasonably fair.

TCP SACK Goodput Fairness Delay Loss
RED Da Ca Da Da Da

AIMD 0.41 0.13 1.81 11 0.00
AIAD 0.25 0.10 9.85 39 6.28
MIMD 0.19 0.07 1.41 65 9.97
MIAD 1.64 0.41 16.37 71 22.26
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Figure 7: RED gateways with TCP SACK loss recovery.

When end-hosts use TCP SACK (Figure 7), RED routers cause a more significant shift in performance.
As expected, the loss rates, delays and fairness are worse than with TCP Reno for all algorithms. In terms of
goodput, MIMD provides the best performance with AIAD being not too far behind. The reason for MIMD
and AIAD doing significantly better than AIMD when compared to FIFO drop-tail buffers is because RED
is much more tolerant to bursty traffic patterns. Thus while TCP SACK times-out occasionally with FIFO
drop-tail buffers when aggressive congestion control schemes like MIMD are employed (due to large bursts

7We have checked that this increased fairness persists when one looks at scenarios when the flows have differing RTTs; in
such a case, the algorithms give roughly the same RTT-biased allocations as AIMD.

11



of packet losses), such time-outs are rare in RED. MIAD, however is much more aggressive and times-out
more often, thus providing poor performance.

Thus, with RED routers and TCP SACK loss recovery MIMD and AIAD achieve the highest goodput.
MIMD is reasonably fair while AIAD is slightly unfair. AIMD continues to provide the lowest loss and delay
and the highest fairness.

4.2.2 Effect of Early Congestion Indications

RED routers can provide Explicit Congestion Notification (ECN) by marking a bit in the headers of forwarded
packets to indicate incipient congestion. This marking is a more gentle form of feedback to end-systems since
packets are not lost to providing congestion indications. Consequently, as the simulations below confirm,
with both Reno and SACK loss recovery, the loss rates are significantly reduced (compared to RED and
drop-tail) and delays are slightly increased. However, just as TCP SACK loss recovery exacerbates the
fairness issues with FIFO drop-tail routers, added gentleness due to ECN helps aggressive flows hold onto
additional bandwidth without incurring much penalty. This also results in slightly worse fairness with ECN,
under either form of loss recovery.

TCP Reno Goodput Fairness Delay Loss
ECN Da Ca Da Da Da

AIMD 0.37 0.18 1.33 69 0.38
AIAD 0.30 0.16 3.48 154 0.61
MIMD 0.44 0.10 1.26 83 3.65
MIAD 0.37 0.13 13.49 55 5.23
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Figure 8: ECN with TCP Reno loss recovery.

When hosts employ TCP Reno loss recovery, using ECN (Figure 8) produces a dramatic change with all
algorithms providing identical goodput performance. All algorithms provide identical performance in terms
of goodput and loss rate. MIAD provide poor fairness, while AIAD provide somewhat poor performance in
terms of delay.

Therefore, with TCP-Reno loss recovery and routers employing ECN, all algorithms provide near-identical
performance. Morover, MIAD is the only unfair algorithm.

With TCP SACK loss recovery (Figure 9), the same general conclusions as above, hold along with two key
side effects. Firstly, MIAD and MIMD’s superiority in goodput increases considerably. Secondly, AIAD also
performs as well, and is somewhat better than AIMD in terms of goodput when compared to the TCP-Reno
case presented above.

In summary, with ECN and TCP-SACK end-points, MIAD and MIMD have a moderate goodput ad-
vantage. AIAD also provides good performance (comparable to MIAD and MIMD) in terms of goodput.
However, AIMD, being the least aggressive, shows relatively poor goodput performance.

4.2.3 Effect of Smaller Buffers

In our previous experiments, we configured our routers to have queue sizes roughly equal to the delay-
bandwidth product of the congested link. This rule-of-thumb has been adopted in the Internet to enable
TCP’s AIMD (with the default setting of (1,0.5) to fully utilize the network capacity. We performed simu-
lations with reduced router buffer size (only 10% of the delay-bandwidth product) to see which congestion
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TCP SACK Goodput Fairness Delay Loss
ECN Da Ca Da Da Da

AIMD 0.41 0.18 1.13 21 0.41
AIAD 0.28 0.15 2.45 152 3.80
MIMD 0.13 0.05 7.49 51 7.81
MIAD 0.05 0.02 20.65 78 15.25
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Figure 9: ECN with TCP SACK loss recovery.

control schemes can best cope with small buffers. Due to limited space, we do not include the detailed results
here but merely summarize them. The fairness properties are largely unchanged by the small buffers. The
goodput and loss rates of the MI algorithms, with either form of loss recovery, deteriorate significantly with
reduced buffers due to excessive overshooting. With drop-tail routers, AIAD achieves better goodput than
AIMD, largely because AIMD’s relatively conservative back-off upon drops occasionally leaves the queue
empty. Small buffers have little impact on the results using RED routers since the RED system is designed
to ensure low average queue occupancy. In essence, the use of smaller drop-tail router buffers makes more
gradually adapting schemes such as AIAD look better. With RED, however, the performance ordering does
not change much with smaller buffers.

4.2.4 Effect of DRR

In our evaluation, we consider fairness as an important metric of a congestion control algorithm’s perfor-
mance. However, an alternative approach to providing fairness is to rely on router mechanisms such as
DRR [15]. The question we seek to answer here is: which congestion control algorithms perform well when
routers provide fairness explicitly?

TCP Reno Goodput Fairness Delay Loss
DRR Da Ca Da Da Da

AIMD 0.05 0.02 2.35 168 0.02
AIAD 0.10 0.08 4.20 135 2.18
MIMD 1.37 0.23 1.34 71 14.65
MIAD 1.87 0.28 2.51 78 24.74
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Figure 10: DRR with TCP Reno loss recovery.

In our simulations, we use a DRR scheduler at the bottleneck router to provide instantaneous per-flow
max-min fairness. Figures 10 and 11 show the results with Reno and SACK loss recovery respectively.
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TCP SACK Goodput Fairness Delay Loss
DRR Da Ca Da Da Da

AIMD 0.01 0.00 0.69 128 0.00
AIAD 0.15 0.07 2.28 189 5.33
MIMD 0.77 0.21 5.15 82 36.25
MIAD 1.41 0.29 4.16 44 40.67
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Figure 11: DRR with TCP SACK loss recovery.

Firstly, all the schemes are equally fair. Also, under either form of loss recovery, the less aggressive AI
algorithms provide significantly better goodput performance than the MI algorithms. In addition, the AI
algorithms are similar in terms of delay and loss rate.

Thus, when routers provide fairness explicitly, AI algorithms provide significantly better goodput perfor-
mance than the MI algorithms. All algorithms are equally fair.

4.3 Discussion

If the goal of congestion control is to maximize fairness and minimize loss and delay while still achieving
reasonable levels of goodput, then AIMD is the clear choice no matter what form of loss recovery or router
queueing discipline is employed. In almost every setting AIMD achieved low delays and loss rates and high
levels of fairness.

On the other hand, if the goal of congestion control is to maximize goodput while still achieving reasonable
levels of fairness, loss rates and delay, then the situation is considerably different. Figure 12 may be helpful
in understanding how the various algorithms compare under this goal. For each combination of the loss
recovery algorithm and router algorithm, the table depicts the congestion control algorithms that achieve
the highest goodput. Those algorithms that do not achieve reasonably fair performance are circled.

MIMD ,  AIAD

AIAD    , AIMD

MIAD  , MIMD, AIAD

AIADAIADAIMD ,

AIMDMIMD  ,   AIAD   ,
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 Loss Recovery

AIMD, AIAD

AIMD , AIAD

AIMD , AIAD , MIMD , MIAD

Figure 12: A plot showing the algorithms that achieved the highest goodput in each of the settings considered
in the previous section. The encircled algorithms are unfair.

When TCP flows incur a large penalty for losses and routers employ packet drops to indicate congestion
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or when routers ensure perfect isolation between flows (scenarios outside the dotted box in Figure 12), the
congestion control schemes of AIMD and AIAD are clearly superior. These schemes have a conservative
increase and as a result a sending rate that is less bursty than MIMD and MIAD. In particular, within
the traditional setting of TCP Reno loss recovery and FIFO drop-tail routers, AIMD achieves the highest
goodput.

However, when the penalty due to losses is minimal either due to flows employing more tolerant loss
recovery schemes or due to routers either using marked packets to indicate congestion (scenarios inside the
dotted box in Figure 12), aggressive congestion control algorithms stand to gain in terms of goodput. In
particular, AIMD being the most conservative, both in its increase and in its decrease, sometimes provides
inferior performance in these settings. One the other hand, schemes with an aggressive increase (MIMD), or
an aggressive decrease (AIAD) or both (MIAD) provide significantly better goodput in this situation.

A key observation that stands out from the above evaluation is the fact that AIAD is among the leading
goodput performers in all the scenarios we have considered. Moreover, AIAD achieves reasonable levels of
fairness as long as the routers are not FIFO drop-tail. This suggests that as we deploy more of either the
modern loss recovery mechanisms or the router queue management schemes, AIAD is definitely a viable
choice for congestion control. In fact, if we could alleviate the fairness issues of AIAD in the FIFO drop-tail
case, it would be the best overall choice in terms of efficiency and fair bandwidth allocation.

So far we have only considered the four pure linear schemes. To address the issue of fairness we now
consider hybrid schemes.

5 Hybrid Congestion Control Algorithms

In this section, we try to address two different issues. First, we ask how we might solve the fairness problems
of AIAD with drop-tail FIFO routers. Second, we ask what are the advantages or disadvantages of hybrid
linear congestion control algorithms; these are algorithms in which the linear increase and decrease need not
be purely additive or purely multiplicative. It turns out that hybrid algorithms are solutions to the AIAD
fairness problem, so we address both issues at once. We start by revisiting the Chiu-Jain [3] analysis and
deriving necessary conditions for fairness.

5.1 Hybrid Algorithms and Fairness

Linear congestion control algorithms are governed by the following update equations:

w(t + 1) =

{

aI + bIw(t) upon success
aD + bDw(t) upon loss

In what follows, we consider a system with synchronous congestion signals and static bandwidth as [3]
does. We argue that, unless bI , bD = 1 (which is true for AIAD) or aI , aD = 0 (which is true for MIMD),
most combinations of the four parameters yield a fair congestion control algorithm.

We assume the system reaches a steady state with a nonzero window size, in which the updates to a
flow’s window would follow a periodic cycle of increases and decreases (it is easy to see from the analysis
below that this excludes MIAD). At the end of each such cycle, the size of the window is identical to that
at the start. For simplicity, we assume that this sequence consists of kI increases followed by kD decreases
(this sequence repeats itself indefinitely in steady state) as shown in figure 5.1. We would like to stress that
our argument applies to more general steady states.

D D D . . . . DI I I . . . . ID D D . . . . D I I I . . . . I D . .. . I

k k k k
D I D I

Figure 13: A window update sequence in steady state.
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Using the fact that after sequence of k linear increases, a window of size w0 becomes aI

(
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Iw0

and that after a sequence of k linear decreases it becomes aD
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Dw0, we obtain the following

equation for the window in steady state:
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If the algorithm were completely multiplicative (aI , aD = 0), then α = 0, implying that βw = w; since we
assume w 6= 0 this means that β = 1 and so any value of w is allowable. This means that not all flows need
to have the same window size. On the other hand, if the algorithm were completely additive (bI , bD = 1),
then β = 1 and α = 0, again allowing any value of w.

For the other cases, unless the parameter values were precisely tuned, we have β 6= 1 and α 6= 0 and so
there is a single steady-state value of w to which all flows would converge. What this means is that we can
use hybrid algorithms to achieve fairness. We present two such algorithms in the next section.8

5.2 Two Hybrid Algorithms
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Figure 14: Figure showing the performance of hybrid algorithms. In each column, the algorithms are
presented in the order AIMD, AIAD, AIMAD and MAIMD. We choose the setting with TCP SACK loss
recovery and FIFO drop-tail routers, because AIAD had the worst fairness in this scenario.

In the Introduction, we mentioned that there were very few papers that proposed linear control schemes
that were different from AIMD. One of the notable exceptions is [7], which argues against purely linear
increase and proposes using a hybrid increase with both multiplicative and additive terms. In [7], the
particular parameter values are aI = 1, bI = 1.1 and bD = 0.5 (In the evaluation below, we use bD = 0.8
since we found this to be a marginally better choice than bD = 0.5). We call this the MAIMD linear control
scheme, and note that it is a slight perturbation of the standard AIMD(1, 0.5) with a small multiplicative
component.

8Chiu and Jain [3] establish the following conditions for convergence to fairness:

(I) aD = 0 and 0 ≤ bD < 1

(II) aI > 0, bI ≥ 1

Though these conditions are sufficient, they are not necessary. Hence, contrary to their conclusions, our analysis allows an
additive component in decrease.
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On the other hand, our previous results suggest that AIAD is, apart from fairness issues, a desirable
candidate for linear congestion control. We propose an AIMAD control algorithm which adds only a bit of
multiplicative decrease: aI = 1, aD = −1 and bD = 0.9 (Notice that the multiplicative component allows
for an aggressive additive decrease). We now examine the salient features as well as the drawbacks of these
schemes. As an example, we present the results for TCP SACK loss recovery with FIFO drop-tail routers
in Figure 14.

AIMAD achieves significantly better fairness than AIAD in most of the environments with FIFO drop-
tail routers and TCP SACK loss recovery. This improvement in fairness does not come at the cost of worse
goodput. In addition, AIMAD, as expected, has lower loss rates and lower delays than AIAD. Note also that
AIMAD, provides fairness comparative to AIMD. In addition, AIMAD’s delay and loss rates are not higher
than those of AIMD.

Similarly, MAIMD (with FIFO drop-tail routers and TCP SACK loss recovery) improves the worst-case
performance of AIMD and has reasonable goodput when compared with AIMD in all the environments.
However, due to its aggressive increase, the loss rate and fairness are not as good as those of AIMD.
Specifically, the fairness of MAIMD is slightly worse in environments where the raw link capacity is very
high.9 Finally, the delays of AIMD and MAIMD are similar.

In general, we observe that AIMAD performs at least as well as AIAD with respect to all the four metrics
in every situation discussed in this paper. On the other hand, MAIMD’s goodput performance is comparable
to AIMD’s only when used with TCP SACK loss recovery. This is true across all the router configurations
that we consider. Due to space constraints, we do not present the detailed results here.

6 Related Work

In the past, there have been few research studies exploring linear alternatives to TCP’s congestion control
algorithms. Of these, two separate studies that bear similarity to our work are [8] and [9].

In [8], the authors present a study of the tracking abilities of various congestion control algorithms in
networks that provide fairness explicitly. In this study, the increase component of the congestion control
algorithms can be additive, multiplicative or non-linear. The decrease component is chosen to be multi-
plicative. The paper shows via analysis that in such a fair network, MIMD is more responsive to congestion
notifications than the other schemes, including AIMD. Thus [8] concludes that MIMD can track changes
in bandwidth more effectively. This work differs from ours in two key aspects: firstly, additive decrease
schemes are outside the purview of the analysis in [8]; secondly, the impact of loss recovery is not factored
into the analysis. As a result, the conclusions in [8] are different, qualitatively, from our observations about
the impact of fair-queueing.10 (presented in Section 4.2.4): We have shown that while under Reno-style
loss recovery AI schemes are clearly dominant, under SACK-style loss recovery all algorithms except MIAD
provide identical goodput performance.

In contrast, [9] employs simulations to study the relative performance of AIMD and AILD, where, AILD
has the same linear increase as AIMD, but the decrease is defined by the following equation: wt+1 = wt−βf ,
where β is a constant and f is the loss ratio. Also, the available bandwidth is kept constant. The authors
observe that in networks that use RED-like gateways, AILD is both efficient and fair and outperforms AIMD.
However, the definition of linear decrease adopted in this study does not produce a linear control scheme (in
the sense we’ve defined in our paper) since the drop rate f is a nonlinear function of the aggregate load.

To the best of our knowledge, our study is the first to compare all linear congestion control schemes
under a wide variety of router configurations, different loss recovery schemes and a wide range of variations
in available bandwidth.

There have been other studies on congestion control algorithms which propose slowly adaptive alternatives
to congestion control that are TCP-friendly and provide identical throughput as the current TCP under
a given steady state loss rate. For example, [4] proposes non-linear slowly-adaptive window adjustment

9When the alternate router configurations are considered, MAIMD’s fairness is very similar to that of AIMD under either
form of loss recovery.

10Notice, from the appendix, that MIMD(1.125, 0.5) provides performance similar to AIMD and AIAD when DRR and
TCP-SACK are employed. Thus our results do not negate those presented in [8]. Our results only show that MIMD is not the
absolute best choice.
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algorithms and [6] proposes rate-based schemes for congestion control. The issues pertaining to the dynamic
behavior of such schemes have been partially addressed in [19]. Though the work presented in our paper
does not consider such non-linear algorithms and rate-based schemes, we hope it provides sufficient intuition
as to how these schemes should be evaluated in the long run.

7 Summary

This paper was an attempt to revisit the original design decision to focus exclusively on AIMD linear con-
gestion control. We examined the impact of modern developments in loss recovery and in router algorithms
on the choice of the linear congestion control scheme. We tested the four basic linear congestion control
algorithms in a wide variety of settings.

We affirm that in the traditional context of TCP Reno loss recovery and FIFO drop-tail routers, AIMD
is clearly an aptly made choice. However the same cannot be said when we include these more modern
developments. AIMD is no longer a compelling choice for congestion control with the other congestion
control algorithms providing better performance than AIMD by varying degrees. In particular, we have
shown that AIAD is a reasonable alternative choice for a modern congestion control scheme. In fact, AIAD
also provides reasonable fairness as long as routers do not employ FIFO drop-tail queueing. Adding a small
multiplicative component to the additive decrease of AIAD is enough to ensure that fairness is guaranteed,
even when FIFO drop-tail buffers are employed, without compromising goodput.
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TCP Reno + DROPTAIL
AIMD AIAD MIMD MIAD

Alg Da Ca Alg Da Ca Alg Da Ca Alg Da Ca

(1, 0.5) 0.19 0.06 (1, 1) 0.10 0.03 (1.125, 0.5) 0.75 0.10 (1.125, 1) 0.27 0.08

(1, 0.65) 0.06 0.02 (1, 2) 0.05 0.02 (1.125, 0.65) 0.36 0.10 (1.125, 2) 0.15 0.05
(1, 0.8) 0.07 0.03 (1, 3) 0.06 0.03 (1.125, 0.8) 0.17 0.06 (1.125, 3) 0.09 0.03

(2, 0.5) 0.83 0.20 (2, 1) 0.56 0.19 (1.19, 0.5) 1.30 0.17 (1.19, 1) 0.68 0.11
(2, 0.65) 0.56 0.15 (2, 2) 0.62 0.21 (1.19, 0.65) 0.61 0.10 (1.19, 2) 0.51 0.09
(2, 0.8) 0.56 0.22 (2, 3) 0.59 0.22 (1.19, 0.8) 0.82 0.19 (1.19, 3) 0.58 0.11
(3, 0.5) 1.87 0.31 (3, 1) 1.11 0.25 (1.25, 0.5) 1.30 0.20 (1.25, 1) 1.30 0.25
(3, 0.65) 1.49 0.29 (3, 2) 1.15 0.25 (1.25, 0.65) 1.37 0.29 (1.25, 2) 1.33 0.37
(3, 0.8) 1.28 0.26 (3, 3) 1.17 0.27 (1.25, 0.8) 0.96 0.14 (1.25, 3) 1.31 0.31

TCP SACK + DROPTAIL
AIMD AIAD MIMD MIAD

Alg Da Ca Alg Da Ca Alg Da Ca Alg Da Ca

(1, 0.5) 0.26 0.12 (1, 1) 0.50 0.11 (1.125, 0.5) 0.21 0.12 (1.125, 1) 1.56 0.34

(1, 0.65) 0.16 0.11 (1, 2) 0.47 0.11 (1.125, 0.65) 0.16 0.11 (1.125, 2) 0.76 0.26
(1, 0.8) 0.25 0.13 (1, 3) 0.52 0.12 (1.125, 0.8) 0.38 0.12 (1.125, 3) 0.96 0.26

(2, 0.5) 0.11 0.04 (2, 1) 0.41 0.11 (1.19, 0.5) 0.25 0.12 (1.19, 1) 2.03 0.58
(2, 0.65) 0.16 0.04 (2, 2) 0.44 0.11 (1.19, 0.65) 0.17 0.11 (1.19, 2) 1.19 0.30
(2, 0.8) 0.10 0.03 (2, 3) 0.39 0.11 (1.19, 0.8) 0.55 0.21 (1.19, 3) 1.29 0.32
(3, 0.5) 0.13 0.02 (3, 1) 0.31 0.11 (1.25, 0.5) 0.36 0.12 (1.25, 1) 2.07 0.57
(3, 0.65) 0.07 0.01 (3, 2) 0.15 0.11 (1.25, 0.65) 0.14 0.11 (1.25, 2) 1.17 0.35
(3, 0.8) 0.03 0.01 (3, 3) 0.35 0.11 (1.25, 0.8) 0.55 0.16 (1.25, 3) 0.91 0.28

TCP Reno + RED
AIMD AIAD MIMD MIAD

Alg Da Ca Alg Da Ca Alg Da Ca Alg Da Ca

(1, 0.5) 0.60 0.15 (1, 1) 0.32 0.06 (1.125, 0.5) 0.21 0.06 (1.125, 1) 0.25 0.06

(1, 0.65) 0.59 0.15 (1, 2) 0.29 0.08 (1.125, 0.65) 0.13 0.05 (1.125, 2) 0.23 0.07
(1, 0.8) 0.38 0.12 (1, 3) 0.14 0.08 (1.125, 0.8) 0.06 0.04 (1.125, 3) 0.12 0.05

(2, 0.5) 0.50 0.09 (2, 1) 0.39 0.09 (1.19, 0.5) 0.56 0.08 (1.19, 1) 0.92 0.13
(2, 0.65) 0.26 0.06 (2, 2) 0.41 0.08 (1.19, 0.65) 0.44 0.09 (1.19, 2) 0.78 0.10
(2, 0.8) 0.29 0.07 (2, 3) 0.31 0.10 (1.19, 0.8) 0.63 0.14 (1.19, 3) 0.70 0.10
(3, 0.5) 0.47 0.06 (3, 1) 0.76 0.12 (1.25, 0.5) 0.93 0.13 (1.25, 1) 1.51 0.16
(3, 0.65) 0.31 0.04 (3, 2) 0.58 0.11 (1.25, 0.65) 0.91 0.16 (1.25, 2) 1.43 0.15
(3, 0.8) 0.27 0.06 (3, 3) 0.45 0.08 (1.25, 0.8) 0.94 0.16 (1.25, 3) 1.16 0.14

Based on the guidelines presented in Section 3 for the choice of the parameters, we evaluate: AI ∈ {1, 2, 3},
AD ∈ {1, 2, 3}, MI ∈ {1.125, 0.19, 0.25} and MD ∈ {0.5, 0.65, 0.8}. This results in 9 instantiations of each of
the four linear control schemes. The instantiations in each set are compared with each other compared in
scenarios with the different combinations of loss recovery schemes and buffering mechanisms that we discuss
in this paper against the backdrop of bandwidth variations that we employed. We use the same method as
that outlined in Section 3 to compare the 9 instantiations in each of the four classes.

Recall that when picking the best candidate, we do not seek to separately choose the potentially distinct
best candidates in each setting. Instead, we look for a uniform choice of parameters that has reasonable
performance across all settings. This way we can pick one instantiation that: (1) summarizes the overall
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TCP SACK + RED
AIMD AIAD MIMD MIAD

Alg Da Ca Alg Da Ca Alg Da Ca Alg Da Ca

(1, 0.5) 0.68 0.16 (1, 1) 0.36 0.11 (1.125, 0.5) 0.52 0.09 (1.125, 1) 0.34 0.10

(1, 0.65) 0.47 0.14 (1, 2) 0.28 0.11 (1.125, 0.65) 0.20 0.04 (1.125, 2) 0.33 0.08
(1, 0.8) 0.32 0.11 (1, 3) 0.30 0.10 (1.125, 0.8) 0.01 0.01 (1.125, 3) 0.15 0.05

(2, 0.5) 0.42 0.09 (2, 1) 0.31 0.09 (1.19, 0.5) 0.58 0.11 (1.19, 1) 0.82 0.16
(2, 0.65) 0.30 0.08 (2, 2) 0.20 0.05 (1.19, 0.65) 0.26 0.05 (1.19, 2) 0.64 0.19
(2, 0.8) 0.06 0.03 (2, 3) 0.06 0.02 (1.19, 0.8) 0.09 0.28 (1.19, 3) 0.50 0.16
(3, 0.5) 0.36 0.07 (3, 1) 0.49 0.11 (1.25, 0.5) 0.11 0.61 (1.25, 1) 0.96 0.21
(3, 0.65) 0.26 0.07 (3, 2) 0.29 0.09 (1.25, 0.65) 0.33 0.08 (1.25, 2) 0.75 0.19
(3, 0.8) 0.01 0.01 (3, 3) 0.10 0.04 (1.25, 0.8) 0.66 0.16 (1.25, 3) 0.68 0.17

performance of the family of linear control schemes well (2) ensure near-optimal performance in a variety
settings.

Next, we present the full set of results for each of the eight scenarios discussed in this paper (Droptail,
RED, DRR and ECN router mechanisms with each of Reno and SACK-style loss recovery). We present the
values of Ca and Da for the goodput each instantiation since goodput is our primary metric of comparison.
We do not show the results for fairness, delay or loss, as the algorithms are not significantly different in
terms of these metrics.

It is not hard to see that the instantiation we pick for each scheme (shown in bold font, underlined)
shows reasonably good performs across all the scenarios. For all the other candidate instantiations, there is
at least one scenario resulting in very poor performance and others resulting in sub-optimal performance.

Thus our final choices are – AIMD(1, 0.8), AIAD(1, 3), MIMD(1.125, 0.8) and MIAD(1.125, 3).

TCP Reno + DRR
AIMD AIAD MIMD MIAD

Alg Da Ca Alg Da Ca Alg Da Ca Alg Da Ca

(1, 0.5) 0.17 0.06 (1, 1) 0.20 0.05 (1.125, 0.5) 0.15 0.04 (1.125, 1) 0.20 0.07

(1, 0.65) 0.31 0.10 (1, 2) 0.15 0.06 (1.125, 0.65) 0.13 0.04 (1.125, 2) 0.22 0.08
(1, 0.8) 0.21 0.12 (1, 3) 0.12 0.08 (1.125, 0.8) 0.22 0.09 (1.125, 3) 0.12 0.03

(2, 0.5) 0.17 0.03 (2, 1) 0.30 0.07 (1.19, 0.5) 0.78 0.11 (1.19, 1) 0.1.04 0.15
(2, 0.65) 0.17 0.03 (2, 2) 0.24 0.05 (1.19, 0.65) 0.69 0.10 (1.19, 2) 0.84 0.11
(2, 0.8) 0.18 0.04 (2, 3) 0.17 0.04 (1.19, 0.8) 0.76 0.16 (1.19, 3) 0.92 0.14
(3, 0.5) 0.21 0.04 (3, 1) 0.33 0.06 (1.25, 0.5) 0.93 0.15 (1.25, 1) 1.54 0.20
(3, 0.65) 0.19 0.03 (3, 2) 0.26 0.04 (1.25, 0.65) 0.92 0.15 (1.25, 2) 1.42 0.18
(3, 0.8) 0.28 0.05 (3, 3) 0.23 0.04 (1.25, 0.8) 1.24 0.24 (1.25, 3) 1.34 0.16

TCP SACK + DRR
AIMD AIAD MIMD MIAD

Alg Da Ca Alg Da Ca Alg Da Ca Alg Da Ca

(1, 0.5) 0.11 0.05 (1, 1) 0.07 0.02 (1.125, 0.5) 0.02 0.01 (1.125, 1) 0.14 0.03

(1, 0.65) 0.15 0.07 (1, 2) 0.07 0.03 (1.125, 0.65) 0.09 0.03 (1.125, 2) 0.20 0.06
(1, 0.8) 0.12 0.06 (1, 3) 0.06 0.03 (1.125, 0.8) 0.60 0.14 (1.125, 3) 0.08 0.04

(2, 0.5) 0.08 0.02 (2, 1) 0.14 0.03 (1.19, 0.5) 0.08 0.03 (1.19, 1) 0.58 0.11
(2, 0.65) 0.16 0.09 (2, 2) 0.07 0.02 (1.19, 0.65) 0.57 0.28 (1.19, 2) 0.51 0.14
(2, 0.8) 0.09 0.02 (2, 3) 0.11 0.04 (1.19, 0.8) 1.51 0.35 (1.19, 3) 0.49 0.14
(3, 0.5) 0.08 0.04 (3, 1) 0.14 0.04 (1.25, 0.5) 1.02 0.27 (1.25, 1) 0.90 0.17
(3, 0.65) 0.09 0.03 (3, 2) 0.14 0.04 (1.25, 0.65) 1.41 0.36 (1.25, 2) 0.82 0.20
(3, 0.8) 0.03 0.01 (3, 3) 0.09 0.03 (1.25, 0.8) 1.64 0.40 (1.25, 3) 0.90 0.18
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TCP Reno + ECN
AIMD AIAD MIMD MIAD

Alg Da Ca Alg Da Ca Alg Da Ca Alg Da Ca

(1, 0.5) 0.73 0.15 (1, 1) 0.43 0.12 (1.125, 0.5) 0.90 0.13 (1.125, 1) 0.81 0.15

(1, 0.65) 0.49 0.15 (1, 2) 0.35 0.12 (1.125, 0.65) 0.44 0.07 (1.125, 2) 0.18 0.06
(1, 0.8) 0.28 0.12 (1, 3) 0.44 0.15 (1.125, 0.8) 0.08 0.02 (1.125, 3) 0.06 0.02

(2, 0.5) 0.48 0.09 (2, 1) 0.37 0.06 (1.19, 0.5) 1.00 0.13 (1.19, 1) 1.65 0.27
(2, 0.65) 0.25 0.06 (2, 2) 0.25 0.05 (1.19, 0.65) 0.59 0.09 (1.19, 2) 1.03 0.22
(2, 0.8) 0.15 0.05 (2, 3) 0.09 0.05 (1.19, 0.8) 0.20 0.07 (1.19, 3) 0.62 0.10
(3, 0.5) 0.41 0.08 (3, 1) 0.81 0.16 (1.25, 0.5) 0.75 0.13 (1.25, 1) 1.93 0.35
(3, 0.65) 0.20 0.04 (3, 2) 0.28 0.07 (1.25, 0.65) 0.31 0.06 (1.25, 2) 1.87 0.30
(3, 0.8) 0.11 0.03 (3, 3) 0.16 0.04 (1.25, 0.8) 0.14 0.05 (1.25, 3) 1.43 0.28

TCP SACK + ECN
AIMD AIAD MIMD MIAD

Alg Da Ca Alg Da Ca Alg Da Ca Alg Da Ca

(1, 0.5) 0.75 0.18 (1, 1) 0.41 0.12 (1.125, 0.5) 0.77 0.13 (1.125, 1) 0.14 0.06

(1, 0.65) 0.49 0.14 (1, 2) 0.28 0.13 (1.125, 0.65) 0.36 0.07 (1.125, 2) 0.11 0.04
(1, 0.8) 0.36 0.13 (1, 3) 0.39 0.13 (1.125, 0.8) 0.11 0.03 (1.125, 3) 0.07 0.02

(2, 0.5) 0.51 0.10 (2, 1) 0.15 0.06 (1.19, 0.5) 0.78 0.13 (1.19, 1) 0.33 0.09
(2, 0.65) 0.27 0.05 (2, 2) 0.11 0.04 (1.19, 0.65) 0.38 0.06 (1.19, 2) 0.07 0.01
(2, 0.8) 0.14 0.04 (2, 3) 0.15 0.04 (1.19, 0.8) 0.13 0.06 (1.19, 3) 0.08 0.01
(3, 0.5) 0.46 0.08 (3, 1) 0.05 0.02 (1.25, 0.5) 0.75 0.13 (1.25, 1) 0.32 0.04
(3, 0.65) 0.21 0.05 (3, 2) 0.10 0.04 (1.25, 0.65) 0.30 0.06 (1.25, 2) 0.24 0.06
(3, 0.8) 0.01 0.01 (3, 3) 0.17 0.11 (1.25, 0.8) 0.01 0.00 (1.25, 3) 0.05 0.01
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