|

THE RELAX IMAGE RELAXATION SYSTEM:
DESCRIPTION AND EVALUATICN

Technical Note 301

l@inel

O

August 1983

By:
Kenneth I. Laws, Computer Scientist
Grahame B. Smith, Computer Scientist

Artificial Intelligence Center
Computer Science and Technology Division
Program Development by:

Russell C. Smith
Joseph A Pallas

The University of Maryland

nernat

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

| | i SRI Project 1009
The work reported herein was supported by the Defense
Advanced Research Projects Agency under Contract No.
MDAS03-79-C-0588.

rnattonal

"" ®

333 Ravenswood Ave, » Menlo Park, CA 94025
1415) 326-6200 « TWX: 910-373-2046 o Telex: 334-486

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
AUG 1983 2. REPORT TYPE 00-08-1983 to 00-08-1983
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

The Relax Image Realxation System: Description and Evaluation £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

SRI International,333 Ravenswood Avenue,Menlo Park,CA,94025 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THISPAGE 58
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Foreword

The primary purpose of the Image Understanding (1U) Testbed is to pro-
vide a means for transferring technology from the DARPA-sponsored IU
research program to DMA and other organizations in the defense com-
munity.

The approach taken to achieve this purpose has two components:

(1) The establishment of a uniform environment that will be as com-
patible as possible with the environments of research centers at
universities participating in the IU program. Thus, organizations
obtaining copies of the Testbed can receive a flow of new results
derived {from ongoinhg research.

(2) The acquisition, integration, testing, and evaluation of selected
scene analysis techniques that represent mature examples of generic
areas of research activity. These contributions from participants in
the 1U program will allow organizations with Testbed copies to
immediately begin investigating potential applications of IU technol-
ogy to problems in automated cartography and cther areas of scene
analysis.

The TU Testbed project was carried out under DARPA Contract No.
MDAS03-79-C-0599. The views and conclusions contained in this document
are those of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the United States govern-
ment,

This report describes the RELAX relaxation package contributed by the
University of Maryland and presents an evaluation of its characteristics
and features.

Andrew J. Hanson

Testbed Coordinator
Artificial Intelligence Center
SRI International

Abstract

RELAX is a systemn of routines that modifies the probabilities associated
with labels attached to the elements of a two-dimensional array. These
modifications reflect the compatibility of each element’s labels with those
of its neighbors. The initial probability assignrnents are usually derived
from local property values in the neighborhood of each pixel. The final
assignments may be used for object detection or segmentation, or may
be mapped back to image intensities to achieve noise suppression,
enhancement, or segmentation.

The relaxation package was contributed to the ARPA/DMA Image Under-
standing Testbed at SRI by the University of Maryland. This report sum-
marizes applications for which RELAX is suited, the history and nature of
the algorithm, details of the Testbed irmmplementation, the manner in
which RELAX is invoked and controlled, the type of results that can be
expected, and suggestions for further development.

Table of Contents

Foreword .o S TOTORN

ADSITELL ooiiiiinieiiennntnibsirenersssrreteseeersssnsitsbosarsss sessrasessersansth steransss s betbsas arnbesbes sheesbeanbaesibabse ssbenssbd f2beerensasstarsere

1. INtrodUCION L iiiviieiirictoiassriorsies iussscassasnrinanrasersntad st ssnenssassbisnsnnauesss sdsannsasnsnn etieesenstessaaanresaann rereannanas

2.1, General DescTiption i sreensrssssssnsanans crerennrann veretneerennes Crterr s e nerearna s
2.2. Typical Applications e riessness s hr e tet s b e nranas

2.3. Potential Extensions "
2.4. Alternative APpProaches ...

2. Description .oceerease rermtrerensens vesserreranes eraressensns iresseanessnes rabresassiesebsateassanses rarrire et en s raaen reseerrerarsnenas

3.1. Historical Developmertt e rrerreanennas Crabasessne e s e rerserneennan ciberermeenias reraresasans
3.2. Algorithm DeScription vt rersetsies s s tenasbrmra ssas st srnraans
8.2.1. General Approach ...c..cciiurmiiinn reresenenreents s rannarntns et sras e s rannr sas rerimersses e e ass revnraes
3.2.2. Image-to-Probability Mapping ..ot inerissisanimssssmss e e rss s sssssssns
3.2.3. Compatibility Computationcccccoveernens rerrneaneenes rrerenenres reevrerrnsterannrrar rereseeeeen paveraerinnn
3.2.4, Updating Formulas renssinersreeeiinas

5.2. Commandsvcrreereennin RS b bR A1 Ee S S8 heed A4 8eHEENR SR r e8P en e 68 S SO NE R Eenrh b RO R Eey T 4RO EEREE FAaneharas

8. Conclugionsceeees ettt senernann e e abE bR b st pe R arre e RS he ettt baeEAEe e b A aRraarEbe eeresseaanes

Appendix

A. The GPSPAR Relexation Packageccomiimmieicinnn, rerbessiesse sy e annnan e et iatr e s et e s

Relerencesvveveeennn erveresrerarraeniin cerrererienias eeerearsnnnns ertrarranrerseseresa ettt esas baananares eerrerssraeannans reererrrreraeaites

BUBB 8 BEE B

&

&

48

01

Section 1

Introduction

The RELAX package is an interactive system of routines for mapping digital image data
into a probability network, modifying the probabilities to reflect local constraints, and
mapping the information back to the luminance domain. It is currently configured for
image enhancement and object detection, but has many other applications.

Code modules and test data for the RELAX systern were provided by the Computer
Vision Laboratory at the University of Maryland (UM). The UM relaxation routines are
configured as a set of stand-alone programs collectively called GPSPAR: General-
Purpose Software Package for Array Relaxation. This package was originally written in
the C language by Russel C. Smith and Joseph A Pallas at the University of Maryland.

The current RELAX program is a command interpreter that interactively invokes the
GPSPAR routines. This version of RELAX was constructed for the ARPA/DMA Image
Understanding Testbed at SRI Interpational by Kenneth Laws. The underlying com-
+mand interpreter is the CI subroutine provided to the Testbed by Carnegie-Mellon
University (CMU).

Many of the user-interface and image access routines were also contributed by CMU,
Particular credit is due to Steven Shafer for the Cl cornmand interpreter and related
string manipulation routines, to David Smith for the image access sofiware, and to
David McKeown, assisted by Jerry Denlinger, Steve Clark, and Joe Mattis, for the Grin-
nell display software. Kenneth Laws at SRI adapted this C-language software for
Testbed use and interfaced it with the University of Maryland contributions.

No changes were required in the relaxation algorithm itself. The information in this
document should thus be considered supplementary to the material cited in the UM
relerences.

This document includes both a user’'s guide to the RELAX system and an evaluation of
the algorithm. Section 2 explains the nature and use of the system in the context of
typical applications. Section 3 surveys the historical development of the technique and
presents the current algorithms in detail. Section 4 describes the Testbed implemen-
taticn of this package and suggests some possible improvements. Section 5 instructs
the user in the mechanics of using the RELAX software, Section 8 documents the per-
formance that may be expected in various circumstances and presents the results of
evaluation tests. Section 7 outlines a number of suggestions for improving the algo-
rithm. Section B is a very brief surnmary. Appendix A shows how to invoke the RELAX
routines in the manner of the original GPSPAR package submitted by UM.

Section 2

Background

This section presents a managernent view of the RELAX program. The relaxation algo-
rithm is briefly sketched. Typical applications and poteitial applications requiring
turther development of the algerithm are discussed, and related applications for which
other algorithms are better suited are noted.

2.1. General Description

The RELAX package for digital image enhancement and analysis is based on a class of
algorithms for iteratively modifying vectors of probability values associated with the
pixels of a two-dimensional array. This competitive-cooperative relaxation process
strengthens compatible relationships and suppresses incompatible ones.

The RELAX algorithms also illustrate methods of propagating global interpretations
and constraints through a network by lecal updating of the node interpretations.
Such operations show promise for implementation on parallel arrays of processors
and other advanced architectures. .

An extengive literature connects the basic relaxation methods with numerous appli-
cation areas. Much of the literature discusses relaxation on arbitrary graph struc-
tures rather than rectilinear data grids. The RELAX package, however, is aimed
specifically at image-based applications.

The user starts with an array of values or a digital image, typically a luminance image
or the output of an image-processing operator. The value at each pixel (or a set of
values from a neighborhood of each pixel) is converted to a vector of probabilities;
each probability reflects the likelihood that the pixel should be assigned a particular
semantic label. This conversion process depends on the user's goals and the pixel
classes that are relevant to those goals. In some formulations of relaxation, usually
using different rules for adjusting the vectors at each pixel, the vectors can be
regarded as representing fuzzy-set memberships [Zadeh85, Kandel7B] rather than
probabilities. In this report, for simplicity, we shall regard the vectors as probability
vectors and and call the vector-valued image a probability image.

Next the user selects a relaxation method, a neighborhood size, and a set of compati-
bility coefficients. The compatibility coeflicients are typically generated automati-
cally from the initial probability image. This will be discussed in more detail in Sec-
tions 3 and 5.

The user then initiates one or more “relaxation steps,’”” adjusting the probability vec-
tor at each pixel in accordance with the compatibility relationships and the probabil-
ity vectors at each of its neighboring pixels. The definition of ''neighbor' is supplied
by the user; it must be the same for each pixel.

The resulting probability vectors are typically mapped back to the luminance domain

Background

so that the user may observe the effect of the relaxation. This is not strictly neces-
sary; a halting criterion based on the probability domain may be employed. The final
probability image may or may not be mapped back to a lurninance image, depending
on the needs of the user,

Relaxation is a philosophically attractive procedure that seeks a globally consistent
interpretation through local processing. Relaxation is still in the early stages of
development and needs further research to determine the nature and range of its
future applications.

2.2. Typical Applications

The RELAX program may be used in any application requiring noise suppression or
feature reinforcement. The results of an image operation, such as edge detection,
can be 'smoothed'’ and detection reinforced. These effects, useful in themselves,
may be precurscrs to further analysis.

The RELAX package is primarily adapted to specific applications by the mapping
functions that convert luminance images to probability images. Very few such map-
pings are currently available with the package. Those that have been provided are
suitable for the following purposes:

* Requantization—Reduction of the number of gray levels in an image typi-
cally introduces visible false edges in areas of smooth gradient. Relaxation
may be used to pull pixels near the quantization threshold into the next
higher or lower gray level. This will reduce false contours and act as a seg-
mentation technique if the relaxation tends to group pixels that are within
the same imaged object. (Adding a random dither signal to the image
prior to requantization would also reduce false contouring, but would
degrade the image and any subsequent segmentation of it.)

* Histogram Sharpening--There have been several schemes for iteratively
replacing pixel values by some function of neighboring values in order to
sharpen the peaks of the image histogram [Rosenfeld78, Peleg78b,
BhanuB82)]. Repeated applications can be used to merge smaller histogram
peaks into larger ones until only a set number remain. (This differs from
requantization in that the resulting gray levels need not be equally
spaced.) Histogram sharpening is sometimes used as a precursor to image
segmentation or compression.

* Smoothing--Relaxation can be used to smooth image regions to reduce
noise artifacts. The smoothing can be done without blurring region edges
if adjacent regions are mapped fairly well into different a priori labels.
(Edge-preserving smoothing without such conditions requires special-
purpose techniques that test region homogeneity before applying the com-
patibility correction. A median filter works this way.)

* Edge Enhancement-—Relaxation can be used to sharpen region boundaries
while srmoothing the interiors. {Here, too, special-purpose algorithms that
include decision logic might have better success than a linear summation
of compatibility constraints.) Relaxation can also be applied to a gradient
image to enhance extended discontinuities and suppress noise spikes.

Background

* Linear-Feature Enhancernent—This is essentially the same as edge
enhancement, although more sophisticated feature detectors and
classification operators might be involved.

* Detection~It is a small step from enhancing a feature to detecting it
Relaxation can help by reinforcing detection of groups of similar pixels
while suppressing detection of isolated ncise peints. Other methods may
be more advantageous for detecting objects larger or smaller than a few
pixels.

* Pixel Classification~The source class to which a pixel is assigned may be
adjusted by using the classifications and arrangement of its neighbors.
Iteration of this process can reduce the effect of texture on classification.
The RELAX package supplied by the University of Maryland contained a
demonstration of two-class segmentation by thresholding, using an
infrared image of a military tank. Segmentation by pixel classification into
multiple classes using relaxation is described by Eklundh ef al
[Eklundh80]. The anomaly detection experiments documented in Section 8
are alsc related to pixel classification

2.3. Polential Extensions
) The following applications might be feasible if the RELAX package were modified, used
in a nonstandard fashion, or integrated inte a more sophisticated system.

* (Clustering—Clusters of points in a metric space can be detected by allowing
each point to ""gravitate’’ toward its neighbors. This is the spatial analogue
of histogram sharpening. It requires a graph-based relaxation algorithm
instead of the image-based RELAX updating algorithm.

* Semantic Labeling--Relaxation can be used to derive consistent sets of
names or interpretations for regions in a scene. This also requires a
graph-based relaxation method. A similar application is the identification
of mixed pixels, noise regions, and border slivers in segmented images.

Such applications have been described in numerous papers, and there have been
nurmerous other applications of relaxation techniques to image processing
[Rosenfeld77b, Rosenfeld82, Rosenfeld83].

2.4, Alternative Approaches

This section describes applications that are similar to RELAX applications, but which
differ in some fundarnental fashion. While the difficulties with applying RELAX might
be overcome, other techniques would often be more appropriate.

* Noise Suppression—Despite the applicability of relaxaticn to smoothing, the
updating algorithms in the RELAX pacliage have no underlying model of
image and noise characteristics. Image noise can be more effectively
rermnoved by filtering techniques based on the noise statistics.

4

Background

* Restoration—Similarly, blur and other degradations are best removed by
techniques that model the degradation process. The RELAX package can
be used for limited classes of irmage enhancement, but usually at the cost
of introducing less visible degradations elsewhere.

As a rule, relaxation metheds work best in these applications requiring "'gravita-
tichal'' or "'fiuid fAow' solutions, such as histogram sharpening or image smoeothing,
They might also be useful for enhancement applications that can be cast as “‘reverse
fluid flow'" problems. They generally do not work as well as model-based restoration

or analysis methods when there exist underlying models of the scene and the image
Iormation process.

Section 3

Description

This section presents the history of relaxation for irnage processing and a detailed
statement of the algorithms used in the RELAX package. The historical information is
intended to clarify the major issues in iterative image processing and to guide the
reader to the relevant literature.

3.1. Historical Development

Relaxation methods are iterative procedures designed to seek adequate solutions te
problems that defy analytic analysis. Relaxation advances toward a solution state
(2.g., a fully segmented image) step by step, instead of solving for the optimal fixed-
point solution (as is common in the image restoration literature). Either the user
stops the process or an automatic halting criterion is invoked when the remaining
errors are sufficiently small. The operation is similar to hill climbing, combinatorial
optimization [Kirkpatrick83], or stochastic approximation approaches.

Relaxation methods have long been used in physics and engineering, particularly in
computational fluid dynamics, aerodynamics, and thermodynamics. Systems of ordi-
nary and partial differential equations are commonly solved by approximate numeri-
cal methods. Some finite-element techniques propagate local constraints through a
field in a single pass; other techniques are iterative.

Relaxation techniques may have entered the image-understanding literature through
constraint satisfaction networks used to label line drawings [Guzman68, Waltz72,
Haralick79]. The early procedures assumed all possible labelings for each adjacent
line pair in the scene, then eliminated incompatible label pairs. Convergence was
very rapid, but these methods had no mechanism for handling probabilities or uncer-
tain evidence.

Constraint networks were later generalized to many image-understanding and
expert-system applications [Montanari74, Hart77, Rosenfeld77b], particularly to the
consistent labeling of scene regions [Yakimovsky7?3, Barrow?8, Freuder?6, Fau-
gerasB81]. This movement merged with the development of iterative techniques for
texture segmentation and identification [Troy73], image region growing and merging
[Brice70, Yakimovsky76, Zucker76], image smoothing and enhancement [Davis77a,
Lev?7], histogram modification [Rosenfeld77a], edge detection [Eberlein76,
Schachter?6] linear-feature enhancement [Riseman?7?, Zucker7?, VanderBrug7?7].
curve segmentation [Davis77b], shape matching [Davis77c], and other applications.

The result, generally called relaxation labeling, is a set of iterative probabilistic
approaches that consolidate many applications in the above areas. Probabilistic
labeling, continuous relaxation, and stochastic labeling are other names for these
techniques. All involve the application of local constraints to vary the weights (or
degrees of belief) of semantic labels attached to the nodes of a graph. lteration of
the local adjustments, either in sequence or in parallel, are presumned to drive the

Descripﬁbn

network closer to a global optimum or to a fixed point of the relaxation (i.e., a state
unaffected by further iterations).

The original relaxation labeling algorithm was prepeosed by Hummel, Zucker, and
Rosenfeld at the University of Maryland [Rosenfeld76, Hummel78] and was further
developed by a number of other researchers [Peleg78a, Zucker78a, Zucker78b,
Yamamoto79, HaralickB0, Hummel80, O'Leary80]. This method makes use of additive
updating formulas. A later approach, based on multiplicative updating, was also
developed at the University of Maryland [Kirby80, PelegB0al].

Many researchers have offered evaluation and discussion of the limits of relaxation
processing [KirbyB80, KitchenBC, O'LearyB0, RichardsB0, Feketedi, Diamond82,
Nagin82, HaralickB3]. Faugeras and Berthod have suggested an alternative relaxa-
tion labeling philosophy [FaugerasB0a, FaugerasB0b], and this in turn has been criti-
cized [HummelB0].

The papers cited above generally discuss relaxation in the abstract, although
numerous applications have been developed [Rosenfeld82, Rosenfeld83]. The original
papers on the Hummel-Zucker-Rosenfeld and Peleg methods [Rosenfeld76, PelegB80a]
still constitute a good intreduction to the philosophy of relaxation.

3.2. Algorithm Description

While the RELAX program provides a stand-alone implementation of relaxation, there
are other ways of implementing it. Often the relaxation algorithm is so integrated
with sther techniques that it would be difficult to isolate the ''relaxation part” of a
procedure. Relaxation is a philosophy: no one algorithm embeodies its alternate for-
mulatjons. The two procedures included in the RELAX program (Hummel-Zucker-
Rosenfeld, or HZR, and Peleg) are representative of the algorithms used in most
applications of relaxation.

3.2.1. Geperal Approach

Most image-based relaxation procedures comprise the four stages listed below; in
rare circumstances one of the stages rmay be skipped. The stages are essentially
input, construction of the relaxation cperator, relaxation per se, and cutput. Each
stage significantly influences the effectiveness of the overall relaxation procedure.

The four stages of the relaxaticn process are as [ollows:

* Image-to-Probability Mopping

An operator is applied to the image array to convert the luminance
values (or local property values, eic.} to probability vectors. Bach pixel
is assigned a vector representing an arbitrary set of semantic labels.
Numeric values of the vector elements may be probabilities, likelihoods,
or other measures of belief in the applicability of the corresponding
labels at that image point. 1t is this mapping that adapts the relaxation
paradigm to a specific application. The RELAX package currently con-
tains illustrative mapping functions for image smoothing and edge detec-
tion applications. The user will generally have tc supply new mapping
routines for these or other applicaticns.

Description

* (Compatibility Computation

Coefficients of compatibility between labels on neighboring pixels are
computed, usually, from the weighted frequencies of label adjacencies in
the original probability image. These coefficients essentially define the

. local relaxation operations that will be applied to the probability image.
The RELAX package contains one routine for estimating HZR coefficients
and another for Peleg coefficients; the values may also be supplied manu-
ally.

* FKelaroiion Updating

The compatibility coefficients and updating rule are used to modify the
probability vector at each pixel in turn, The values in each vector are
adjusted by a weighted sum or product of values at neighboring pixels to
enhance compatible combinations and suppress incompatible ones. The
user may call for one or more passes of the relaxation operator through
the probability image; current methods do not have halting criteria to
determine when the updating should terminate.

* Probability-to-/mage Mapping

Relaxation methods may be designed to derive one or more numbers per
pixel; these may be image luminances, edge probabilities, object likeli-
hoods, segmentation maps, or other interpretations. The user must sup-
ply a mapping procedure to convert the multivariate probability image
to this form. H®outines currently in the RELAX package can produce
binary and gray-level luminance images useful for edge or object detec-
tion as well as for image enhancement.

‘We shall now present these stages in detail,

3.2.2. Image-to-Probability Mapping

Luminance images used as input to a relaxation procedure rnust first be converted
into probability image form. The method supplied in the RELAX package imgprb
command is described here. It is a linear mapping of image brightness to a vector
of probability values representing our belief that the pixel belongs in particular
luminance "“level slices.' This mapping might be suitable for image binarization or
requantization, noise suppression, and object detection applications. It is provided
only as an example and as a mechanism for verifying the correct operation of the
relaxation updating software; other mapping functions will be needed for other
applications.

Among the arguments to imygprb are the low and high gray-level values ard the
number of Iabels to use. Pixel values are clipped to lie within the specified range
and are then mapped to vectors of probability values between 0.0 and 1.0. The
mapping function depends on the number of labels, as discussed below.

For binary output, the label probabilities may be thought of as positive and nega-
tive support for the hypothesis that a bright object is the pixel source. These are
represented by two floating-point numbers per pixel, p[0] and p[1], where the
indices represent the two classes or pixel labels. The first value, p.0], represents

Deseriplion

our beliel that the pixel is from a light "'object’” area; the second, p[1]=1. O—p[D]
our belief that it is {from a dark background population. The lowest pixel value in
the specified range thus maps to p[0 % =0.0 and p{1]=1.0; the highest to p[0]=1.0
and p[1]=0.0. Linear interpolation is used for intermediate pixel values.

If the user requests more than {wo labels, the labelzs may be thought of as level
slices and the vector elements as probabilities that a pixel should be assigned to
one of these levels. The lowest pixel value maps to p[0]=1.0, the highest to

p{mazimum label]=1.0. Linear interpolation between the bracketing labels is used
for intermediate pixel values. At most two labels will have nonzero probabilities
with this conversion scheme.

3.2.3. Compatibility Computation

A compatibility coefficient must be specified for each combination of a label at the
central pixel with each label at each neighboring pixel. The values of the
coeflicients depend on the updating method to be used and also, as a rule, on the
initial probability image data.

The neighborhood of a pixel is usually taken to be the set of pixels in a small sur-
rounding square, with the size of the square selectable by the user. Neighborhoods
restricted to only horizontal or vertical neighbors or that include nonadjacent pix-
els are sometimes required; the defnér routine allows such arbitrary neighbor-
hoods to be defined.

Compatibility coeflicients used for the Hummel-Zucker-Rosenfeld relaxation
scheme are different from those used for its Peleg counterpart. In the additive
HZR scheme [Hummel78, Peleg78a, Yamamoto79], coeflicients are negative if the
labels are incompatible, zero if they are independent, and positive if the labels are
compatible. Coefficient values are restricted to the range [—1.0, +1.0]. They typi-
cally range from —0.1 to about 0.5 when computed with the RELAX hcompet routine.

In the multiplicative Peleg scheme [PelegB0a, HaralickB3], all the coefficients are
nonnegative. Coeflicients are less than unity if the labels are incompatible, unity if
they are independent, and greater than unity if the labels are compatible. They
typically range from near zero to about 5.0 when computed with the RELAX pcom-
puf routine.

Compatibility is a loosely defined term, and no definition to date has been entirely
satisfactory [[HaralickBB . The HZR compatibility coeflicients are based on informa-
tion theory [Peleg78a, Yamamoto79)], the corresponding Peleg coeflicients on con-
ditional probabilities [PelegB0a]. Both methods utilize the a priori probabilities of
labels at an arbitrary pixel, as measured in the initial probability image, to esti-
mate the compatibilities.

Suppose we have a graph whose nodes are each to be labeled with one of the possi-
ble labels A, Ag, . . ., Mg, ..., Ag. Further suppose that some measurement asso-
ciated with each node has allowed us to state the e priori probability of that node
being labeled with each of the possible labels. For node i we have p;(A.).
k=1, - m, as the probability that node 1 has label A;.

If we were to label the ith node with the label A, and if the graph showed that the
i1th node and the 7th node are adjacent, then we need to determine whether the
label A, on the ith node is compatibie with the labels on the jth node. We specify

Description
this compatibility with the coefficient rﬁ(?\k.?\{), which states the compatibility of
label A, on the ith node with the label A; on the jth node.

For the HZR scheme, compatibilities may be calculated from the quantity

wEpi (e)py (N)
Z:Pt(?u:)‘E{l‘P-; (\)

my(eN) = 31

where i ranges over all w nodes of the graph and j specifies the particular neigh-
bor of the ith node. For each node i, the compatibility with its 7th neighbor is then

-1 if (A A) < -1
e N} =1 meN) P -1<r(AN) s +1
+1 it +1 <75 N)

Note that the RELAX package currently uses the same values of the compatibility
coeflicients for all values of i, i.e., for each pixel postion to be updated.

For the Peleg scheme, the compatibilities may be calculated from the quantity

wpe (e Jpy, (M)
rj (hkr)\l) = - =1,
;Pt(k)‘gp-;(h)

where i ranges over all w nodes of the graph and 7 specifies the particular neigh-
bor of the ith node. For each node %, the compatibility with its jth neighbor is then-

Tij(}\k N) = "'j(’\k-}\l)

Note that these Peleg compatibilities are in the range [0,2].

It may sometimes be desirable to use ensemble statistics to compute the compati-
bilities. Only experience with a particular application allows coefficients to be
chosen rather than caiculated by formula.

*

3.2.4. Updaling Formulas
The relaxation updating computations can now be presented in more dstail.

The goal of the relaxation algorithm is to update the values of the probabilities
associated with a node so as to take into account the compatibility of neighboring
labels. A nurnber of different schemes have been proposed to do this updating. The
earliest was the HZR scheme [Rosenfeld78], in which the (¢ +1) update of the proba-
bility values is calculated from the (¢} values by the following rule:

10

Description

For node i.-
pLEOO) =) [1+g(0)] k=1 m
%P{.(‘)(?t)[l“‘qt'm(?\)]
ARA, .
) =1 i’*) Y. (0 =1 ..
QI- (hk) - m 2 Ti] (A-‘:lA)pj (A) k_ll T
7 [X=

where j indexes the m neighbors of node i, and 7 (A, A") is the compatibility
coefficient for node i with label A, and neighboring node 5 with label A'.

The Peleg relaxation scheme [PelegB0Oa], alsc included in this package, uses the
updating rule

pL+I0,) = 1_2 P ()i M) k=1, - m
™7 D O
A=k
0 = 3 A NIBON) k=1 m

.=1

where j indexes the m neighbors of node i. (Actually, a slightly more general form
of the)Peleg scheme is implemented in the RELAX systemn; see Section 5.2 for
details, ,

In both of these schemes, gi(Ac) (or gy (X)) can be thought of as the neighboring
node's assessment (by node j in the case of g;;(A;)) that node i should be labeled
Ae: Pi(A:) is the assessment by node © that its own label should be A.. These two
assessments are combined to produce an updated probability.

Other forms of the updating rule based on optimizing measures that are functions
of terms like the above p's and g's, have been employed [FaugerasB0a,
Faugeras80b, HummelB0]. While the development of these forms rests on a firmer
foundation than that of the rules above, these newer rules alsc have defects
[O'LearyB0, PelegBOb]l. Substantial theoretical work needs to be done to
comprehend the nature of relaxation and to lay the groundwork for eliminating
rule deficiencies in the future.

The foregoing description has been couched in terms of the probability, likelihood,
certainty, or faveorability of assigning a particular label to a nede. It is useful to
think of the associated numeric value as the probability that the node has the
label, but there are theoretical problerns with this interpretation. We shall adept
the convenience of referring to such values as probabilities—but it should be kept in
mind that, strictly speaking, this may not be correct.

Relaxation is an updating rule for improving the initial assipnment of labels by
enforcing cormpatibility with neighboring labels. Unfortunately, compatibility is a
poorly-understood notion. One does not know when a rule will converge, or, if it
does, what its rate of convergence will be {Zucker78a]. Nevertheless, reiaxation
has been successfully applied to a number of different problems. Relaxation

11

Description

captures the ideas that we should be able to label objects so that they are compati-
ble with their neighbors, and that we should be able to do this through local pro-
cessing [Ullman79]. Relaxation requires a solid theoretical base [Hummel?8, Hum-
melB0] to define its domain of applicability.

3.2.5. Probability-to-Image Mapping

When the relaxation system is used for object cueing, the matrix of p{0] values may
be the desired output. In other cases, it may be desirable to map the probability
vectors back to luminance gray levels so that the output can be displayed. This
mapping is typically the inverse of that used to convert a luminance image to pro-
bability form. The RELAX package prbimng routine is the inverse of the imgprb map-
ping described earlier.

Inversion of the image-to-probability mapping is complicated by the fact that the
"probability'’ vectors for a pixel are not always normalized and need not sum to
1.0. The inverse mapping function supplied by the University of Maryland uses
different resolutions of this problem in the two-label and muitilabel cases.

The prbimg routine will convert a two-label probability image to a gray-scale image
whose values quantify the "'strength of belief”” in the p{0] hypothesis represented
by the stronger of the two probabilities. Thus, p[0] values are converted directly to
pixel values; p[1] values, if stronger, are subtracted from 1.0 before conversion to
pixel values. The gray-level interpelation inherent in this procedure produces an
image quantized to an arbitrary number of gray levels, usually 256.

A muitilabel probability image will be converted to a gray-scele image with values
representing the label, or luminance-level slice, with the highest probability. Thus,
a strongest p[mazrimum label] maps to the highest pixel value and a strongest p{0]
maps to the lowest; intermediate labels map to intermediate gray levels. There is
no interpolation between gray levels, so the output image is quantized toc the
number of labels used.

12

Section 4

Implementation

This section documents the SRI Testbed implementation of RELAX. It is intended as a
guide for system maintainers and for programmers modifying the RELAX system. The
terms used in this section are either defined elsewhere in this report or come from the
supporting operating systems. The SRI Testbed uses the EUNICE operating system,
which is a Berkeley UNIX! emulator for VAX computers using DEC’s VMS operating sys-
tem. All of the relaxation software will also run on a pure UNIX system.

The RELAX package is currently compiled as an interactive driver program. The driver
invokes other programs for rost of its work, although it does call subroutines directly
to enable conversion between intensity and probability formats. The computational
algorithm is very little changed from the original University of Maryland version, but
the command interpreter, help system, and supporting image-access and display utili-
ties are all new.

The main program and related files are in directory /iu/tb/src /relaz. Major subdirec-
tories are

culhdrlib - probability image subroutines;
defcom - defcom. source cede;

defnbr - defnbr source code;

demo - shell script for the tank demo;
help - help system text files;

imgprb - itngprb source code;

prbimg - prbimg source code;

relaz - relar main program source code;
relazpor - relazpar source code (used by setup);
src/hummel - hcompat and hrelaz source code;
src/peleg - pcampat and prelar source code,

Compiled versions of these main programs are Kept in Au/tb/bin. The Hummel and
Peleg operators are hot kept in compiled form, since they are intended to be custom-
ized for each application.

Culhdrlib is a library of subroutines for manipulating the floating-point probability files.
(it is expected that someday this function will be absorbed by the Testbed image-
accessing code.)

The imgprb and prbimg programs simply parse their command-line arguments and
pass the information to subroutines. The RELAX driver likewise parses commands
given to it and invokes the same subroutines. These subreutines are currently stored
in directory Aiu/tb Aib Avisionlib, specifically in the relazrlib subdirectory.

1UNTX is a trademark of Bell Leboratories.

13

Implementation

Source code and help files for the CI driver are in #iw/tb /lib /cilib. For extensive docu-
mentation, type '‘man ci'' or run ''viroff -man /iu/tb/man/man3/ci.3¢’”. The CI driver
uses commahnd-line parsing routines in eilib /enuarglib and in
A/t /lib /sublib /asklib; both of these may someday be replaced by the Testbed
argument-parsing routines in sublib /arglib.

Other utility routines contributed by CMU have been distributed to
At /tb /b /dsplib /gmerlib, Au/tb/lib Aimglib, and Atk /lib /sublib, and are docu-
mented for the man system in Au itk /man/man3. Scme of these have been modified
or rewritten for the Testbed environment: the image access code, for instance, reads
Testbed image headers in addition to CMU image headers. Other routines in these
directories were developed at SRI.

To recompile one of the relaxation routines, e.g., imngprd, just connect to the appropri-
ate source directory and type “‘make’’. You may type "make -n"" to see what will hap-
pen if you do this. Additional options are documented in the header of the makefile.
To compile and install the entire system, run the make program in Aiu/tb/src /relaz.
For more flexible maintenance options, see the header sections of the corresponding
rmakefile files.

The hcompat and hrelex programs and their Peleg equivalents are normally compiled
interactively by using the setup command of the RELAX packape. Implementation of
this capability requires that the source file locations of these files be known to the
+RELAX program. This program must therefore be meodified and recompiled any time
the relaxation source files are moved.

RELAX demonstrations have been set up in subdirectories Teloaz and fank of
ZuAestbed/demo. Just connect Lo the appropriate directory and run the dems com-
mand. Afterwards you may want to run the cleanup script stored in that directory to
delete the relaxation output files.

The UM code represents an interesting style of programming and usage. Two points
should be noted:

* Fach routine is compiled as a separate program. Commands are passed to a
command interpreter or to the UNIX shell to invoke the programs in the
proper sequence. One benefit is that any routine can be altered without
recompiling and linking the entire system. {Another possibility, not imple-
mented here, is to pipe the routines together so that each feeds its ocutput to
the next. This would eliminate many of the intermediate files now being
created by the systern.)

* Dne of the steps in a relaxation sequence can be the construction and compi-
lation of a special-purpose relaxation operation. This is currently done by
the setup routine, which uses an include file built by relarper to tailor the
hcompot and hrelox programs {or their Peleg equivalents) to the desired
neighborhood definition. Such operators can run faster than general-
purpese ones that use run-time evaluation of conditionals to control execu-
tion logic.

We have attempted to retain this style of programming while still packaging the relaxa-
tion system in a form similar to that of other major software systems on the Testbed.
We have retained the concept of separate compilation so that the shell script in Appen-
dix A will execute properly on the Testbed. Those who prefer such a system are free to

14

Implementation

malee use of it.

We have also written an interactive driver package, known as RELAX, for invoking the
routines in a more structured environment; this allows for easy incorporation of cus-
tomized syntax, argument defaulting, global status variables, help functions, and other
“intelligent'’ session control features. (Very few such features are now implemented,
but t)'.he possibilities can be seen in other Testbed software using the CI driver mechan-
ism.

Various problems were encountered in integrating the original package with the IU
Testbed and in documenting the result. Sometimes it was easier to change the user
interface slightly than to document an inconsistency. Ameng the changes made in the
original system are the following:

* Naome Changes

The program to convert images to a probability format was originally named
init, and the program to convert them back again was named display. We
have changed these names to imgprb and prbimg, respectively. The main
prograrns now invoke subroutines to do most of the work; we have called

these imgprbsub and prbimgsub.,

* (onversion to Testbhed Formats

The original imgprd and prbimg routines accepted images no wider than 512
pixels. We have removed this restriction. The pixels were also limited to 8
bits, or 256 gray levels. We have extended this range to the 36-bit pixels
currently handled by the Testbed image access software. Testbed images of
unusual pixel lengths, e.g., 3 bits, are supported directly, as opposed to the
UM practice of padding them into B-bit fields with a ‘“'significant bits per
pixel” specification to recover the dynamic range information.

* Generalization to Multiple Labels

The original version of imgprd assumed that only two labels were to be used,
although the rest of the package did accept more than two labels. We have
extended the mapping algorithmm as described in the previous section. The
mapping to multiple labels was chosen to be the inverse of the mapping back
from multiple labels that was already implemented in prbimg.

Prbimg accepted a 'number of labels’” argument, but then ignored it, since
this information could be more reliably obtained from the header of the pro-
bability file. The demonstration shell script supplied with the original pack-
age erroneously omitted this argument in calls to the routine. This has been
fixed by eliminating the interactive argument.

15

Implementation

* Defaulied Arguments

The main programs are able to count the number of arguments passed to
them and to substitute defaults for any missing arguments. We have
retained this capability in the RELAX driver program. The invoked subrou-
tines, however, must be supplied with a full set of arguments. We have
adopted the convention that a negative minimum or maximum range
specification passed to imgprbsub or prbimgsub will denote that the full
dynamic range of the picture file is to be used. The user should specify non-
negative values if stretching and clipping are desired.

* Input (lipping

The ?mgprb routine originally stretched imagery to the specified gray-level
range, but did not clip to this range. The mapping to a probability image was
fine if the true irnage range was specified, but would generate probabilities
that were negative or greater than unity for gray levels outside this range.
The resuit of the inverse préimg mapping on such a file was a sawtooth func-
tion. We have corrected this by clipping all probability values to the 0.0-1.0
range.

* Word Size Cnnuers"ian"

The original package was written for a PDP-11 computer, for which the C
language uses 16-bit integers. Cur installation is on a VAX 11/780 that uses
32-bit integers. This difference is irnportant in the writing and reading of
neighborhood and compatibility file headers, since the I/0 statements
specified the number of bytes to be transferred. We have rewritten these
sections to use the C sizeof(} construct, which is guaranteed to be valid on
any type of machine. The relaxation data files, however, cannot be
transferred between machines with different integer sizes unless further
standardization is implemented.

The need for additional changes became apparent during our software evaluation
effort. Many of the needed improvements have to do with the command interpreter or
the package philosephy rather than the relaxation algorithrms. We supggest the follow-
ing implementation changes:

* Initialization Capobilifty

The program should be able to run a startup file. This would allow the user
to customize the package to his own preferences and tasks. Additional flexi-
bility shouid be built into the command driver so that it could take advan-
tage of initial profile information to set default neighbeorhood sizes and file
names. :

16

Implementation

* Hedefinition of Probabilities

The imgprb two-label mapping should be reversed to match its multilabel
mapping interpretation. The prbimg inverse mapping should offer an option
as to whether two-label prebability files will be mapped to gray levels or to a
binary output. Possibly a separate routine should be provided for each map-
ping and inverse mapping function instead of combining many functions in
onhe routine.

* Defcom Improvement

The defcom routine for interactively defining compatibility coefficients is
very tedious to use. It is often easier to construct a file containing the
coefficients and then pipe it into defcom, using the command interpreter's
¢ faecility for acquiring command input directly from a text file. If
coeflicients are provided in this manner and a neighborhocd file is not
specified, an inconsistency arises: the neighborhoeoed size must be included at
the start of the piped coefficients, even though they would nct be needed if
the coefficients were entered interactively. This should be changed so that
the routine reading the coefficients does not expect to read the neighbor-
hood size as well.

* Run-Time Argument Passing

The command interpreter's " <" mechanism for inveking script files should
accept arguments. The UNIX shell languages provide a good model for the
type of argument macro expansion capability that is required.

* Automadic Checkpointing

If automated iteration is ever added to the RELAX package, there should be
some easy method of saving a checkpoint output every few iterations. Relax-
ation is such an expensive technique that a user should net have to start
again from scratch if the system crashes or if processing has gone past the
optimum point and begun to degrade the image.

* File Name Flezibility

Part of the checkpointing problem is due to the current '‘hard-wiring” of the
names prb.img and compat dat into several of the routines. This causes the
hrelnz and prelar routines to overwrite the prb.img file, making it difficult to
repeat an iteration (e.g., with different parameters) or to recover after too
many iterations. It is also difficult to remember exactly which iteration or
processing sequence generated the current prb.img file. Although the
UNIX/EUNICE hierarchical file systemn and the EUNICE multiple file-version
facility alleviate some of these problems, the best soluticn is to allow arbi-
trary file names to be passed to the processing routines. An intelligent sys-
tem for constructing default file names could also be helpful.

17

Implementation

* Subroutine I'mplementation

The RELAX routines are currently implemented as stand-alone main pro-
grams that can also be invoked from the RELAX driver. This differs from the
subroutine-based implementation that is common to all other Testbed
software. Although the main-program approach works, it is difficult to
integrate with the rest of the Testbed. Our directory hierarchies and archiv-
ing techniques are based on libraries of subroutines rather than on clusters
of main programs. It would be simipler to maintain a system that has a uni-

form prograrnming philosophy.

As an exarple, consider the compilation of the Arelmzr routine. Ordinariiy,
each main program in the Testbed is accompanied by a makefile script that
"remembers" all the inelude files and libraries needed in compiling the rou-
tine. If Arelax is to be created by the sefup.csh script provided by UM, the
compilation command must be in that seript. If it is to be created by the
RELAX program, the compilation command must be compiled into that code.
Thus, changes in the structure or location of the include files and libraries
must now be implemented by changes in several types of source code. While
this is not difficult, it is certainly more trouble than updating a single type of
file used consistently throughout the system.

The chief reason for using main programs rather than subroutines is that
optimized relaxation operators are compiled for each specific task. This
exchanges extra compilation timme for reduced execution time-which seems
reasonable, given the length of time currently required to run a relaxation
step.” Separately compiled subroutine modules could be linked inte the
driver package at run time, although this UNIX capability is not easily acces-
sible or commonly used.

The shell languages do provide convenient mechanisms for sequencing pro-
grams, but they are better suited for batch execution than for interactive
use. Furthermore, they are general-purpose and hence lack the fecused
environment, vocabulary, defaults, and help facilities that a dedicated com-
mand driver can offer. Command interpreters can invoke either main pro-
grams or subroutines, but are somewhat easier to write for the subroutine
case.

Another benefit of subroutine-based implementation is control of interpro-
cess communication, Programs invoked by shell scripts can communicate
only via files. {(Communication by means of shell environment variables is
also possible, but not commonly done.) File passing is rather awkward, since
it requires each main program to open, read, and parse every file. It also
tends to clutter the environment with superfiuous files; these can be deleted
by commands at the end of a shell script, but rmust be removed by hand if
the session is interactive or is aborted.

A more traditional subroutine-based programming style would allow com-
mumication by means of global variables and passed arguments as well as
files. Display devices would also be under better control, since the device
status can be remembered and maintained by the driver program, and each
routine need not reallocate or reinitialize the display to be sure of getting a
usable configuration.

In addition, the data files could be opened once, passed around, then clesed

18

Implementation

or deleted. Permanent files need be created only for permanent data, and
the user need not specify the file names as arguments to every routine,

A final advantage of the subroutine approach is that there is less system
overhead. The current approach requires that a UNIX (or EUNICE) process
be created to run each command, since this is the only way to invoke a main
program. The overhead in creating a process is much greater than that of
calling a subroutine, and, in fact, may require several seconds of real time.

* Operafor Libraries

As mentioned above, one advantage of the University of Maryland approach is
the run-time compilation of customized irnage operators in order to reduce
total execution time. The actual speedup achieved in the current RELAX
package is rather small, but the technique could be extended for larger
gains. Perhaps the greatest speedup could be achieved by using replicated
in-line code instead of iterative constructs. For research purposes, of
course, such optimizations are seldom worthwhile.

The run-time compilation of such routines is not a problem. It can be done
as a separate program step, possibly invoked interactively by interrupting a
session (with ~Y), compiling, and then resuming. It can also be done by
using the '"system" subroutine to call the compiler from within another pro-
gram.

Since compilation is an expensive step, it might make sense to keep the
most useful operators in a library of executable files. Nothing in the current
RELAX package prevents this from being done, but neither are there any
features to facilitate it. At the very least, a naming convention sheuld be
devised so that the operator names can be remembered.

* Speedup

The current relaxation updating algorithms are exceedingly slow. (They take
about three CPU minutes for one pass of a 3x3 operator through a
128 x 12B image.) This is probably due to an inefficient scheme for accessing
the fioating-point label probabilities. Further investigation is needed to
determine the requisite time for this type of processing.

19

Section 5

Program Documentation

This section constitutes a user’s guide to the RELAX package as it is implemented on
the SRI Image Understanding Testbed. As with any relerence manual, it has occasion-
ally been necessary to refer to terms before they are defined and discussed in detail.
The first-time reader may find a preliminary scan through the section helpful. Addi-
tional information is available conline, as described below.

b.1. Interactive Usage

There are typically five steps in applying relaxation to an image:

* Compilation of the updating routine

* Irnage-Lo-probability mapping

* Estimation of compatibility coefficients

* Relaxation updating iterations

* Probability-to-image mapping. ‘
Display steps are usually interspersed so that cne can watch the progress of the
enhancement. Other techniques are sometimes required, such as edge detection or

manual entry of neighborhood and compatibility data. All of these processes can be
invoked from within the RELAX package.

The RELAX package currently takes no command-line arguments; just type '‘relax”
and begin an interactive session. The following sample session displays some of the
capabilities of the underlying CI driver language.

relax
RELAX, Versiom 1.0

>

This invokes the program. You need not specify the full directory path name for the
executable file if the path is given in your UNIX .eshre shell startup file. {If you have
no startup file, you may have to specify /fiu/tb/bin/relaz or some other full path
name.) The system then responds and waits for commands.

> ®
defcom pcompat
defnbr pPrbhimg
erase pPrelax
hcompat quit
hrelax setup
impprhb help
insert

20

Program Documentation

An ''"* command lists all available commands. The help command is provided by the
CI driver; all others are specifically related to the relaxation system. Typing ‘help”
will give further information on the CI command interpreter and the help subsystem.

> help

Cormmand nemes, variable names, and help topicsa

may be ebbrevimted to any unique prefix. 3deveral
inatructions may sppear on the same line, scparated
by semicolons. 0Use ~0 to mbort typeout and ~Z

to exit.

cormmmand [arg ...
Execute a2 command with the specified arguments.

foo®*
List commands that begin with "foo".
Use just "*" to list ell]l commands.

foo* =
List the names and values of variables
that begin with "foo”.

variable [peram ...]
Displaey a2 variable value. Some variables
mnylrequire subascripta or parameters.

variable | param ...] = valae
Assign & variable value, The equals sign {=)
mny appear anywhere. .

? topic <or> help topic <or> help * -
Print help message related to topic. If topic
is ambiguous, list the names of matching topica.

push_level
Creates a new level of the CI driver with the same
commands available as there were at the preceding
level. 7The user may execute any combination of
commands before qgquitting.

1 command
‘Fork a shell and execute the UNIX command. I1
no comnand is given, just create an interactive
shell process.

< covmandfile
Read commands from "commandfile”.

comment
Accept & comment line; teke no action.

As an example of the online help facility, we can print out the contents of the
sefup.tzt file in the relaxation systemn help directory.

21

Program Documentation

> help setup
setup [k|ip} nlabels [ncols nrowa]

Setnp is used to ecreate programs for relaxation operations
on images. Both a compatibility operator and a relaxation
operator will be compiled. Either Hummel -Zucker-Rosenfeld
{(h) or Peleg (p) relexation formmlas may be chosen; the
corresponding programsa will be hecompat and hrelax or pcompat
end prelax. The default is "h". You may also specily the
number of clasz labels (default 2) to be uazed and the mize
of the relaxation neighborhood (default 3 x 3).

Eu.nmhg the sefup command with default argurmnents preduces a poram file that is
compiled into the hrelaxr and Acompat programs. The param file is then deleted and
the executable programs are left in the current directory.

> metup
Creating the Hummel-Zucker-Rosenfeld relaxation package ...

Creating the "param” rile ...
Compiling hcompat ...
Compiling hrelax ... ‘
Removing the param file ...
Setup completed.

A UNIX directory listing command shows the new executable programs and a demon-
stration command file that was created previously.

> 1la

hecompat. exe hrelax.exe tank. emd
[continuing]

Here we use the commmand file to run a relaxation sequence. If the file were not in
this directory, RELAX would search for it in directory /éu/th/src/relaz/demo,
RELAX then echos the commands and performs the indicated actions just as if they
had been typed from the terminal.

> <tank.emd

The image is first converted to two-label probability form. It has no pixel values
below 13 or above 49, so stretching and clipping are requested. (This speeds conver-
gence and improves the appearance of the output image.)

: Convert the immge to probability form.
imgprb /iu/tb/pic/tank/bw.img 2 13 49

Next the compatibility coefficients are needed. They are computed from the pixel
relationships in the original image. They could also be entered by hand with the
defnbr and defcom commands. The program echos the hcompeat request, with the
default file names filled in.

> : Compute the compatibility coefficients.
> hecompat
hecompat prb.img compat.dnat

Program Documentation

The original image is now to be reconstructed and displayed in an upper-left area of
the screen. This reconstruction, which shows the input after stretching and clipping,
also serves as a check on the imgprb and prbimg processes.

: Display the (stretched) origimnal

>

> erase
> prbimg
> insert

outputl. img
outputO, img 100 348

image.

Now eight relaxation steps are to be run. Each will produce an output image; these
images will be displayed along with the original ina 3 x 3 pattern

> : Display eight relaxation steps.

»> hrelax
hrelax

prbimg
insert

vv

> hrelax
hrelax

prbimg
insert

vv

> hrelex
hrelax

prbimg
insert

vV

> hrelax
hrelax

pPrbimg
insert

vV

> hrelax
hrelax

prbimg
insert

vv

> hrelax
hrelax

prbimg
inaert

vV

> hrelax
hrelax

pPrbimg
insert

vv

> hrelax
hrelax

> prbimg
> insert

prb.img compat.dat

outputl. img
ountputl.img 224 348

prb.img compat.dat

output2. img
output2. img 348 348

prb.img compat.dat

output3. img
output3. img 100 224

prb.img compat.dat

output4. img
output4. img 224 224

Prb.img compat.dat

outputi. img
outputS. img 348 224

prb.img compat.dat

output8. img
outputB. img 100 100

prb.img compat.dat

output?. img
output?. img 224 100

prb.img compat.dat

output8. img
outputB. img 348 100

End of command file.

The quit command is now given to return the user to the operating-system level.

23

5.2. Commands

The following commands are currently available within the RELAX system:

defcom compatfile relaxtype nlabels [neighborfile]
Defcom is an interactive program used to install manually computed com-
patibility coefficients for each neighbor of a point. The arguments specify
the file to which the coefficients are to be written, whether a Hummel-
Zucker-Rosenfeld ("'h’") or Peleg ("'p’’) relaxation is desired, the number of
labels in the relaxation process, and, optionally, a file that specifies a non-
standard neighborhood.

defnbr neighborfile ncols nrows
Defnbr is an interactive program used to define a nonstandard neighbor-
heood for each point. The ‘'neighborfile’’ argument specifies the file to
which the neighborhcod definition is to be written. The number of columns
and rows that contain the neighborhood must also be specified. The pro-
gram will ask which is to be considered the center point and whether each
neighbor is to be considered as part of the neighborhocd.

erage
Erase the display. Note that the display is not allocated or locked, so it will
remain clear only if no one else transmits data to it.

hcompat prbfile compatfile [neighborfile]
Computes the Hummel-Zucker-Rosenfeld compatibility coefficients for the
robability file (default prd.irmg) and stores them in a cornpatibility file
?compat dat). You may specify a neighborhood file as created by defnbr.

The hcompat prograrn must have been compiled previously: see sefup. If
you would like to specify the compatibility coefficients by hand, see
de fcom.

hrelax prbfile compatfile {neighborfile]
Performs one Hummel-Zucker-Rosenfeld relaxation operation on a proba-
bility file (default prd.img), using compatibility coefficients in compatfile
(compat.dat). You may specify a neighborhood file as created by defnbr.

The hArelar program must have been compiled previously: see sefup.

-imgprb inimg nlabels minval maxval
Convert an image to a probability fermat with the specified number of
labels. The image will be clipped (stretched) using minval and maxval as
the outer gray-level limits: omit these or specify -1 if the full input range is
to be used. The file prb.img will be produced as output. At present it is a
floating-point data file, not a true picture file.

insert picname mincol minrow
Insert the picture into the display at the specified lower-left pixel pesition.

Program Documentation

pcompat prbfile compatfile {neighborfile]
Computes the Peleg compatibility ccefficients for the probability file
(default prb.img) and stores them in a compatibility file (comnpat.dat). You
may specify a neighborheod file as created by defnbr.

The pcompot program must have been compiled previously: see sefup. If
you would like to specify the compatibility coefficients by hand, see
defeom.

prbimg outname minval maxval
Convert a probability file to a luminance image format with the specified
output range. Omit minval and maxval, or specify -1 to use the full (8-bit)
dynamic range of the output image. The input flle is assumned to be
prb.img.

prelax prbfile compatfile [n neighborfile] [8 nsets sizel ...]
Performs one Peleg relaxation operation on a probability file (default
prb.img), using compatibility coefficients in compatfile (compat.dat). You
may specify a neighborhood file as created by defnbr; precede it with the
letter n. :

You may also specify the grouping of label values into sets. Previously, in
Secticn 3.2, we stated the Peleg updating rule as

B0 = =T 2O)0)
T TTOTEN
A=)y

where the denominator is the sum over the set of all labels. Actually, this
sum can be limited to a set of labels, rather than summing over all labels.
The sum is carried out over the set to which the label A, belongs.

1w P O)

[t +1) =
S 1% 2BMNedO0)
ATy

Label sets are specified by the command option [s nsets sizel ...], where
nsets specifies the number of different sets and sizel, size®, ..., the number
of labels in each set. The sets must consists of consecutive labels, e.g., {3 3
2 4 3] specifies that there are 3 sets of labels; the first set contains the 2
labels D, and 1; the second set labels 2, 3, 4, and 5; and the third set labels
8, 7. and B.

Although the added flexibility of this label set grouping is available, its use
is not recormmended. The numbers computed by this method are ne

longer probabilities and the behavior of the process cannot be predicted?.

The prelaz program must have been compiled previously: see setup.

1Azrie] Rosenfeld, personal communication, 1983.

Program Documentation

quit n
Quit the current level of the CI driver. At the top level this will leave
RELAX. The argument n may be provided to quit more than one level
Specify -1 or some large number to abort all levels of the driver and exit
from the program.

setup {hlp] nlabels [ncols nrows]

Setup is used to create programs for relaxation operations on images.
Both a compatibility operator and a relaxation operator will be compiled.
Either Hummel-Zucker-Rosenfeld (h) or Peleg (p) relaxation formulas may
be chosen; the corresponding programs will be hcompuat and hrelax or
pcompal and prelaxr. The default is "h”. You may also specify the number
of class labels (defauit 2) to be used and the size of the relaxation neigh-
borhood (default 3 x 3),

5.3. Batch Execution

The RELAX program offers two methods of invoking prestored commands. The first is
the interactive invocation of CI command files, as illustrated earlier. The second is to
drive the entire RELAX session frorm an operating-system script. A UNIX shell script
invoked by, e.g., "runrelax picture.impg 10 195", might look like the following:

Thia is file "fnnrelux".

#
#
Argument 31 ix .the gray-level image.
Arguments $2 and $3 are the optional low and
high clipping valnes.

relax <<I

: Hake 3 x 8 neighborhood, two label,

: HZR coefficient computation and
relaxation programs.

setup h 2

: Display the original image, $1.
erase
insert %1 100 348

Tranasform the picture into a probabiliatie image.
imgprb %1 prb.img 2 %2 33

: Compute the compatibility coefficients.
hcompat prb.img compat.dat

Apply the relaxation operator.
hrelax prb.img compat.dat

: Diasplay the smoothed image.

prbimg prb.img outputl.img
insert omntputl.img 224 348
!

echo "Finisghed."”

Note that the shell substitution mechanism can be used. This is an advantage over
interactive use, in which no substitution of variables is currently implemented.

Program Documentation

To save the typed terminal output, you should pipe the standard output into a file.
The UNIX method for doing this is to add >session.log to the relax command within
the script or to the UNIX command line that invokes the script. You may also use the
UNIX script or tee commands to route the typed output simultaneously to a file and
to your terminal.- (UNIX output buffering generally prevents you from interacting
with a program while the script is being created. The EUNICE operating system does
not have this limitation.)

The actual submission of this shell script is described in the UNIX programmer's
manual. You should run it in foreground mode if you want to interact with the pro-
gram. If you run it in background mode, be sure to pipe the output into a log file so
that it won't appear on your terminal. You can monitor the log fiie during execution,
using the cat or tail -f [formerly ¢re] cornmands to make sure everything is running
smoothly, although the UNIX buffering mechanism prevents you from monitoring in
real time. You can also halt the process or reconnect it to your terminal if you wish.

Section 6

Evaluation

This section documents the performance of the Hummel-Zucker-Rosenfeld and Peleg
relaxation algorithms on a variety of imagery and in several scene analysis tasks.
Although we have chosen realistic tasks, cur goal was not the full exploration of relaxa-
tion technigues for these applications. Rather, we have chosen tasks with simple map-
ping functions to and from the probability domain so that we could better assess the
actions of the probability-updating functions.

We could devise objective performance measures for particular tasks [FeketeBi], but
the relationship of such measures to subjective scene analysis performance would be
difficult to quantify. Linear-feature extraction, for instance, must be rated differently
when we desire only prominent features (e.g., for stereo image matching) or closed
boundaries of regions than when we desire extraction of all detectable discontinuities.

.We could also compute performance measures for restoration of images to which we
have added blur or noise, but we would need models of the imagery and degradations
occurring in realistic scenarios. If such models were available, other methods of image
restoration would almost certainly be more effective than heuristic relaxation. Furth-
ermore, any comparison of relaxation output with ground truth would necessarily
depend on the function used for mapping the initial image to the probability domain.

We have therefore chosen a subjective evaluation procedure, We compare the relaxa-
tion output with the probability input after each has been mapped back to the lurni-
nance -domain. This type of comparison is valid for almost any task. It measures
whether the relaxation operation has made the image more useful for the intended
application,

The particular scene analysis tasks we have selected are discussed below. For any task
and type of imagery. we still must choose the

* Image-to-probability and inverse mappings

* Size (and shape) of the compatibility neighborhood

* Method of computing compatibility coeflicients

* Relaxation scheme (HZR or Peleg)

* Number of relaxation iterations.

We shall explore these choices in the following subsections and then summarize our
conclusions.

8.1. Task Selection

The RELAX package supplied by the University of Maryland contained a demonstra-
tion of noise suppression on an infrared image of a military tank. The nature of the
image, a single bright tank centered against a dark background, made this also a
demonstration of object detection and of segmentation in a noisy immage. We have

28

Evaluation

used this image (and the implied tasks) extensively in learning to run the RELAX
package and to understand its functioning. Two other test tasks we have selected are
edge linking and anomaly detection.

Edge linking is the ephancement of linear features in an image by strengthening con-
nected edge elements and suppressing isclated or conflicting ones. A set of edge
operators is first passed over the image; they return, for each pixel, the probabilities
that scene edges at various orientations are present. (We shall treat no-edge as a
label also.) The relaxation stage strengthens the probabilities of edge labels that link
"nose to tail" with the edges at neighboring pixels while suppressing other edge pair
orientations. _

Anomaly detection is the identification or enhancement of isolated blobs against a
fairly uniform background. An image operator first classifies pixels as either back-
ground or anomalous according to the statistics of the background and the gray level
of each pixel. Relaxation then reinforces the classification of a pixel if its neighbor-
ing pixels are similarly classified. This two-label operation may also be viewed as a
noise-suppression application.

8.2. Edge Linking

The first step in edge linking is to calculate the initial probabilities that scene edges
at various orientations pass through each pixel. ' We convolve the image with four
Sobel-type masks that detect northwest, north, northeast, and east edges. Because
we consider opposing gradient directions (or contrasts) to be equivalent, there are
four orientations rather than eight.

The 3 x 3 convolution operators are:

c 2 1 1 0 -1 1 2 0 1 2 1
-2 0 2 2 0 -2 2 0 =2 0 0 O
-1 -2 0 1 0 =1 0 2 -1 -1 -8 -1
northwest north northeast east

Five labels are then attached to each pixel: no-edge, northwest, north, northeast,
and easf. The probabilities for each of these labels are calculated from the outputs
of the four convolution operators, Op (dir). For label north, the probability at a par-
ticular pixel is calculated as

Op(morth) max Op(dir)

Prob (north) = — -
Y Op(dir) max Op(dir)
all gir

and similarly for Prob (northwest), Prob (northeast), and Prob(east). The first term
relates the Op(north) response to the response of the other edge operators; the
second compares the operaltor response at that pixel with responses over the entire
image.

The probability of no-edge is calculated as

29

Evaluation

max Op(dir)

grugg Op (dir)

Together these probabilities constitute the initial probability image. Sirnilar
schemes have been reported in the literature [Riseman?7, Zucker?7].

Prob(no-edge) = 1 —

The next step is to calculate the compatibility coefficients. We have generally used
the RELAX package hcompal and pcompat routines for that purpose. Our aim was to
evaluate fully automated relaxation rather than to develop optimal compatibility
matrices for this one application; the former is the usual approach in the relaxation
literature.

Figures 1-13 illustrate the results of our edge-linking efforts. Each figure consists of
sixteen pictures. The upper-left picture is the original image. The other three pic-
tures across the top of the figure and the leftmost picture on the second row are the
northwest , north, northeest, and east edge maps. In these images, black represents
zero probability of an edge, white a unity probability.

The remaining pictures are binary images. The second from the left in the second
row is the inverse mapping of the original probability image. It is produced from the
four edge maps by displaying, for each pixel, the label with the highest probability;
no-sdge maps to black while all other labels map to white. The remaining ten pic-
tures are obtained by successive iterations of the relaxation procedure. They
represent the results of 1, 2, ..., 10 iterations of relaxation. Figure 2 is the exception:
the ten pictures are the results of 10, 20, ..., 100 iterations. N

Figures 1 and 2 illustrate a fairly typical relaxation application. The first few itera-
tions of relaxation show a strong edge-linking effect. Later iterations seermn to do lit-
tle except smooth or biur the enhanced structures. This dual nature of relaxation
has been analyzed by Richards [RichardsB0]. Figure 3 shows that the Peleg relaxa-
tion scheme exhibits essentially the same behavior.

Figure 4 illustrates the HZR method on aerial imagery. The improvement in the
displayed output is rather dramatic, although it may be partially due to the method
of output mapping.

Figures 5 and 6 illustrate the effect of larger neighborhoods. The 7 % 7 neighborhood
increases edge spreading for the HZR method and decreases it for the Peleg method.
Computation time is much greater for large neighborhoods, of course.

Figure 7 shows that strong edge structure does not guarantee effective compatibility
coefficients if the edges appear equally in many orientations and relationships. This
is opposite to the effect of most enhancement operators.

Figure B shows the result of “enhancing"” the edges in an image that has no percep-
tual edge structure. The procedure for computing compatibility coefficients regis-
ters any regularities in the.image, not just strong respenses from the edge detectors.
This, combined with the relaxation blurring effect, gives a surprisingly good noise-
suppression or object detection operator.

Figures 9 through 12 show that the exact values of the compatibility coefficients are
not critical. Figure 9 was made with coefficients rounded to one decimal place, Fig-
ure 10 with these same numbers doubled. (Doubling the coefficients will have no
eflect on Peleg relaxation.) Figure 11 was generated using compatibility coefficients

30

Evaluation

derived from the image in Figure 12; Figure 12 was likewise generated using cormpati-
bility coefficients derived from the image in Figure 11. In each case the tampering
had relatively little effect.

Figure 13 shows what happened when we supplied the coefficients by hand to see if a
careful choice of the values could produce faster relaxation effects. Although these
coefficients were intuitively derived, they perform very badly. For a pixel and the
neighbor above it, the coeflicients we used for the Hummel-Zucker-Rosenfeld scheme
are

Coef f (north, northwest) = 0.50
Coef f (north, north) = 1.00
Coef f (north, northeast) = 0.50
Coef f (north, east) = -0.50
Coef f (north, no-edge) = -0.25
Coef f (northeast, northwest) = —0.50
Coef f (northeast, northeast) = —0.75
Coef f (northeast, east) = -0.50
Coef f (northeast, no-edge) = 0.50
Coef f (east, east) = -0.75
Coef f (east, no-edge) = 0.75
For a pixel and its northeast neighbor we used
Coef f (north, northwest) = -0.50
Coef f (narth, north) = 0.25
Coet f (north, northeast) = 0.25
Coef f (north, east) = =0.25
Coef f (north, nu-edge) = D.50
Coef f (northeast, northwest) = —~0.5

(The other required compatibility coefficients can be derived from these by using
symmetry considerations.) We alsc tried variations of the above, e.g., reversing the
signs of some coeflicients; there were no significant changes in results. The lesson
seems to be that manual selection of coeflicients is exceedingly difficult. A better
pelicy is to generate coefficients using Acompat or peompat and to modify the values
only slightly.

6.3. Anomaly Detection

Anocrnaly detection is a two-label problem: each pixel is part either of the background
or of an ancomaly. We assume that the background comprises the rmajority of the
image- and.-that it can be -modeled as a constant gray level plus Gaussian noise.
Ancrnalies are regions that diverge significantly from this model. The relaxation pro-
cess should strengthen the probability of an anomaly label for dark or light groups of
pixels while suppressing the anomaly label for isclated pixels that are equally bright.

The background is modeled by the mean gray level and standard deviation for the

whole image. Then, for each pixel in turn, we calculate the deviation of the pixel
value from the background value (i.e., from the image mean). The probability that

31

Evaluation

the pixel is a background pixel is then taken to be the probability that a deviation
this large or larger can occur by chance. The probability that the pixel is part of an
anomaly is taken to be 1.0 minus this value.

It is somewhat easier to present the mathematical forrulas in the reverse crder. Let
us suppose that a pixel is ¢ standard deviations from the image mean. We calculate
the probability of the label anomaly as

_=z2
e 2 dz,

¢
_ 1
Prob (anomaly) _-!;\fz—rr

FProb (background) = 1—Prob (anomaly).

These initial probabilities are used to calculate the compatibility coefficients by
means of the hecompat or peormpat routine. They also serve as input to the relaxation
process. After a number of relaxation iterations, the pixels for which the anomaly
label has the higher probability are displayed as white points in a binary image.

Figures 14-16 are the results of our eflorts at anomaly detection. Each figure is a
pair of images that document the results for one example. The four pictures in the
top image, from left to right, are the

* Original scene, .

* Anomaly probabilities mapped to gray levels 0 to 255.

* Binary image formed by inverse mapping the twe-label probability image
with the priimg routine, :

* Binary result of one iteration of relaxation.

The bottom image shows, from left to right, the results of 2 through 5 iterations of
relaxation.

Figure 14 begins with the original gray-level image of a composite road scene. Figure
15 is similar, but derived from a version of the road scene that has been ""cleaned' to
remove the background road profile and make the vehicles {anomalies) more dis-
tinct. (This technique is part of the SRI road tracker [Quam?78].} Figure 16 is the
Peleg method applied to the cleaned road scene, In each case, relaxation enhances
the background noise structure until it swamps the anomaly signal.

The lesson from this sequence is that a good initial image does not guarantee a good
result. The compatibility ccefficients derived by hcowmpat or pcompal do not neces-
' sarily encode our own notions of imape "structure.” Relaxation-based anomaly detec-
tion may be feasible, but not by using the straight-forward approach attempted here.

6.4. Summary

For any task and type of imagery. the user must choose the
* Image-to-probability and inverse mappings
* Size (and shape) of the compatibility neighborhood
* Method of computing compatibility coefficients

Evaluation

* Relaxation scheme, HZR or Peleg
* Number of relaxation iterations.

We can now give some guidance on these matters as well as on the question of
whether to use relaxation at all.

We have presented some simple image-to-probability and inverse mappings. Each
mapping is designed for a specific application, and the success of relaxation process-
ing depends critically on the quality of the initial mapping. While we can say little
about the initial imagery or the mapping function, we can suggest scme constraints
on their combination—the probability image.

The probability image is the source of both the compatibility coefficients and the

relaxation output. Any repetitive structure in this image will be reflected in the

coefficients and enhanced in the output image. It is therefore essential that the pro-
" bability image have the following characteristics:

* The signal, or desired characteristics, should dominate the noise.

* The signal must be spatially correlated within the chosen neighborhocd;
the noise, however, should be uncorrelated.

* The signal must contain some spatial relationships and not others; the
noise should contain all relationships equally.

Relaxation will be successful to the extent that these conditions are met.

The user should specify a neighborhood just large enough to guarantee the above
conditions. An application with large contiguous regions, such as land use
classification, might benefit from the necise immunity of a large neighborhood. Gen-
erally, though, a 3 x 3 neighborhood is the best choice. If the signal does not dom-
inate the noise locally, it is unlikely to dominate it within larger neighborhoods. If it
does dominate on the average, relaxation provides a mechanism for propagating the
signal a short distance into those regions where the signal is weak. Larger neighbor-
hoeods would increase penetration distance, but at the cost of greatly increasing the
computation time.

Different compatibility coefficients are needed by different relaxation methods, but
the user is faced with similar choices in computing thern. They may be computed
separately for each image, jointly for an ensemble of images, or thecretically for
some image model. The same set of constraints applies: the sampled or modeled
population must have biased second-order statistics rather than an equiprobable
selection of spatial relationships. This typically prohibits training on an ensemble of
randomly oriented images.

The RELAX hcompat and pcompal routines look for combinations of neighboring
labels that oceur more (or less) frequently than that expected if the label assign-
ments were statistically independent. These estimates are calculated under the
essumption that the image is a homogeneous data set, ignoring the fact that the
structure in one part of the image may be significantly different from that of other
parts. It has been suggested that this disadvantage may be alleviated by carrying
out the calculation 6ver windows of the image [NaginB2]. However, the problem of
estirnating coefficients from small samples worsens as the sample size decreases. If
we have many labels, a large neighborheod, and a small sampling area, the number of
samples with similar pixel configurations will be small and the estimated compatibil-
ity coefficients will be unreliable.

An alternative method for obtaining compatibility coefficients is for the user to

33

Evaluation

estimate them. For many labels and a large neighborhoed, manual entry of the
coeflicients is a daunting task. Mocreover, except for obvicus cases of compatibility, it
is difficult to arrive at good coefficient values by guessing. Figure 13 shows the hope-
less results we obtained when we guessed what we believed to be reasonable values
for the coefficients. A major difficulty was our reluctance to allow independent labe]
combinations., Generally we assigned values that forced combinations to be either
compatible or incompatible rather than independent. If manually entered values of
the coefficients are to be used, we suggest considering those the package can provide
as a guide to assigning reascnable values; slight modifications may then be beneficial.

Which relaxation scheme should be used? It does not seem to matter. One method
sometimes does a litile better than the other, but both work or fail together. The
principal distinction we observed was that the relaxation smoothing effect could be
reduced for the Peleg method by using a larger neighborhood.

The last question that needs to be answered is how many iterations of relaxation
should be performed. There appear to be two aspects to the relaxation process. The
first three or four iterations often show moderate enhancement, while later ones are
often dominated by blurring. Little change occurs after ten iterations. Only by look-
ing at the output can one ascertain the optimum halting point, but approximately
Iour iterations seems to be a goed rule of thumb.

Relaxation is essentially an enhancement operator, with the structure to be
enhanced derived from the image rather than from any model of either the imagery
or the application. What is the cost of this sighal enhancement? One iteration of
relaxation, using a 3 x 3 neighborhood over a 128 x 128 image, took approximately
three CPU minutes on a VAX 11/780—a considerable cost if image smoothing is the
desired result. These costs increase linearly with the nurnber of image pixels, the
number of pixels in the neighborhood, and the number of iterations.

Evaluation

Figure 1. HZR relaxation using a 3 x 3 neighborhood and hcompef compatibility
coefficients. See text for explanation of the figure format. Edge linking during the
first iterations is supplanted by blurring or spreading.

Figure 2. Further iterations of the example shown in Figure 1. lterations 10, 20, ...,
100 are shown. These additional iterations only spread the edges.

Evaluation

Figure 3. Peleg relaxation using a 3 x 3 neighborhood and pcompai compatibility
coefficients. Results are similar to those obtained using the HZR scherne. See Figure
1 for comparison.

.

Figure 4. An aerial image with HZR relaxation using a 3 x 3 neighborhood and hcom-
pat compatibility coefficients. Relaxation exiracts structure from noisy edge data.

Evaluation

Figure 5. HZR relaxation using a 7 X 7 neighborhood and hcompat compatibility
coefficients. The use of a larger neighborhood in the HZR relaxation scheme gen-
erally increases edge spreading.

Figpure 6. Peleg relaxation using a 7 % 7 neighborhood and pcompat compatibility
coefficients. The larger neighborhood reduces the edge spread instead of increasing
it.

a7

Evaluation

Figure 7. A printed-circuit board image with HZR relaxation using a 3 X 3 neighbor-
hood and hcomput compatibility coefficients. Both this example and Figure 1 have
sharp edges, but this example lacks bias in the edge orientations.

Figure B. A noisy tank image with HZR relaxation using a 3 X 3 neighborhood and
hcompat compatibility coefficients. Although the edge-detection methed is inap-
propriate here, it works quite well for smoothing or object detection.

38

Evaluation

Figure 8. HZR relaxation using a 3 x 3 neighborhood and hcompat compatibility
« coefficients rounded to one decimal place. Comparison with Figure 1 shows that
exact values of the coefficients are not important.

Figure 10. HZR relaxation using a 3 X 3 neighborhood and hcormpat compatibility
coefficients that are twice those for Figure 9. Only the relative values of the compati-
bility coefficients are important.

39

Evaluation

Figure 11. HZR relaxation using a 3 x 3 HZR and compatibility coefficients derived
« from the aerial scene in Figure 12. Useful compatibilities may be derived from dis-
similar imagery.

Figure 12. HZIR relaxation using a 3 X 3 neighborhood and compatibility coefficients
derived from the chair scene in Figure 11. Uselul compatibilities may be derived
from dissimilar irnagery.

Evaluation

Figure 13. HZR relaxation using a 3 X 3 neighborheood and manually selected compa;
. tibility ceoefficients; see text for details. Although these coefficients were intuitively
determined, they perform very badly.

41

Evaluation

H
#
- .
) &
.
t g
H L]
-

Figure 14. Anomaly detection by HZR relaxation using a 3 X 3 neighborhood and
hecompat compatibility coefficients. Top image: the original scene, the anomaly pro-
babilities, and binary cutputs of iterations 0 and 1. Bottom image: iterations 2
through 5. Spatially correlated noise is enhanced along with the signal.

Evaluation

Figure 15. Anomaly detection by HZR relaxation using a 3 X 3 neighborhood and
hcompatl compatibility coefficients. These results are obtained from a "'cleaned’” ver-
sion of the eoriginal scene used in Figure 14.

FEvaluation

Figure 16. Anomaly detection by Peleg relaxation using a 3 X 3 neighborhood and
pecompet compatibility coefficients. Comparison with Figure 15 shows that HZR and
Peleg methods produce sirmilar results.

Section 7

Suggested Improvements

The process of evaluation has turned up several ways to improve or extend the current
RELAX implementation, Comnments about existing features have been made at the
appropriate junctures throughout this document. The following are additional sugges-
tions for substantial medifications or needed research.

* Improved Coefficient Entry and Editing

Manual entry of compatibility coefflcients is currently very awkward, and
cnce entered the coefficients cannot be displayed or altered. The Testbed
view program was developed to display files of coefficients, but a more flexi-
ble display-and-editing capability is needed within the relaxation package
itself,

One way to reduce the burden on the user is to use symmetry or other con-
straints to reduce the number of coefficients that must be typed in. Another
is to allow entry of important individual coefficients, with all others default-
ing to the central value (0.0 or 1.0). (This approach could be extended to the
relaxation updating formula, with only important terms actually being
entered into the computation.} In any case, a coefficient query and correc-
tion capability would be very useful.

* FEnsemble Coefficient Extraction

The current hcompal and pcompol routines extract compatibility
coefficients from one probability image. There may be applications for which
average coefficients from an ensembie of similar images are desired. A sim-
ple program could be written to extract coefficients from such an ensemble,
or to combine coefficient matrices derived from individual images,

* Supervised learning

Relaxation enhancement is often unpredictable when the compatibility
coefficients are derived from noisy images. One could argue that ''cleaned”
or “ground truth” images should be used for deriving the coefficients. This
would -build- -signal - statistics™ into -the compatibility -coefficients' directly
instead of depending on desired signals to dominate the noise in the initial
probability image. The result should be faster convergence and better signal
enhancement {Peleg78a, EklundhB0].

Suggested Improvements

* Adaptive Coefficients

Since relaxation can be used to enhance signals and suppress noise, it may
be useful for producing cleaned images for the estimation of compatibility
coefficients. In the limit, new coefficients could be extracted during (or
after) each application of relaxation updating. This would either produce
faster enhancement or faster degradation of the image.

* [Jse of Decision Logic

The Hummel-Zucker-Rosenfeld or Peleg updating formulas in the RELAX
package may be well suited for enhancement and smoocthing applications.
Many other uses of iterative image modification would require nonlinear
decision logic in the updating algorithrns. The decision logic might malke use
of the image histopgram, the statistics of objects already found in the image,
or other global information.

* [se of Joint Neighborhood Constraints

The current probability updating formulas use only pairwise relationships to

. compute a new pixel label probability., Other types of iterative image opera-
tors often look for patterns in the neighborhood as a whole. There may be
relaxation applications for which joint neighborhood relationships must simi-
larly be modeled. See Peleg [PelegB0a] for a discussion of the conditional
independence assurnption.

* Adaptive Neighborhood Definition

A particular use of joint neighborhood constraints and decision logic is to
decide, for each neighborhood, which pixels belong to the same region as the
central pixel. Only those pixels would be used in updating the central-pixel
label probabilities. This should speed convergence in segmentation applica-
tions.

* Halting Criferia

The RELAX package currently offers no way to ascertain how many iterations
of relaxation updating are sufficient for any given task. We have suggested
that three or four iterations are usually optimum for enhancement applica-
tions, but there are no image-dependent rules for determining when
improvement has stopped and blurring has taken over. More research is
necessary in this area. See Fekete ef al. [FeketeB1] for an approach based
on examining the rates of change and the entropies of the probability vec-
tors at each iteration.

Sugpested Improvements

* Further Kesearch

We have attempted to evaluate relaxation as a technique rather than make
an exhaustive study of its application to a particular task. If relaxation
seems promising for a specific task, however, such a thorough evaluation
may be required. As relaxation techniques are still in their infaney, further
research is needed to determine where and how they may be best applied.

47

Section 8

Conclusions

Relaxation is a procedure for enhancing the signal, or features, found in an image by an
imperfect enhancement, detection, or classification operator. It is a very general tech-
nique and has been used in a variety of image-processing applications.

The approach works when a label at one image pixel is constrained by neighboring
labels. The relaxation procedure discovers and expleits these relationships to produce
a more consistent labeling, Where an initial label is strongly believed, it tends to be
unchanged by relaxation updating. Where it is uncertain, relaxation tends to pro-
pagate either the neighborhood information or its own biases into the classification.
This results in either enhancement or smoothing, depending on the nature of the com-
patibility coefficients.

There are three basic components to relaxation: mapping the original irmage to a pro-
.bability domain. estimating the compatibility coefficients, and applying the updating
formula. The updating formulas in the RELAX package are simple, standard, and nearly
equivalent, so that only the first two components are of concern.

Each application domain requires a different mapping to the probability image format.
The mapping should be such that (1) the desired signal dominates other image com-
ponents; (2) the signal is locally correlated and occurs in only certain neighboring
combinations; (3) the noise is locally uncorrelated and appears in all possible combina-
tions.

Compatibility coefficients can be provided by hand, although they are exceedingly
difficult to derive for most applications. The automated coefficient extraction routines
in the RELAX package work well if the mapping constraints above are met, but produce
surprising results otherwise. If the noise or unwanted signal in an image is spatially
correlated, it will be enhanced. If the desired signal takes on all possible local relaticon-
ships, it will not be enhanced. Enhancement using image-based compatibility
coefficients can improve on a good initial image, but will not redeem an incompetent
detection operator.

Relaxation metheds for solving ''gravitational'' or ''fluid flow" problems such as histo-
gram sharpening, requantization, image smoothing, and classification-rnap improve-
ment have been reported in the literature. Relaxation can be used for model-
independent enhancement, but is often more costly and less effective than model-
based enhancemment or restoration when appropriate models are available.

The RELAX package provides a mechanism for exploring the relaxation philesophy in
image-based applications. Relaxation techniques are still in an early stage of develop-
ment, and mere research is needed into both theoretical foundations and domains of
applicability.

Appendix A

The GPSPAR Relaxation Package

This appendix documents the control language used by the original University of Mary-
land contribution to the Testbed, the GPSPAR relaxation package. This is a set of
stand-alone programs that may be invoked in sequence, either interactively or using a
UNIX shell script.

The capabilities and user interfaces of the GPSPAR programs are essentially identical
to those documented for the interactive RELAX driver. (We have changed the names of
some of the programs during integration into the Testbed; for instance prbimg was ori-
ginally known as display. The shell seript is just another method of invoking these pro-
grams. A sample script is shown below.

i

o -
-5

a8 program will do everything a person sitting
a terminal would do to:

Set up compatiﬁility coceffiecient creation and
relaxation programs using the Hummel-Zucker-Roaenfeld
formulas,)

Crecate a two label probabilistie image Ifrom the
gray level "tank” picture (or other image) umsing
the problem-specifie program " imgprb-,

Compute the compatibility coefficients from this
image using the program "heompat” that was produced
by "metup”.

Perform eight iterations of relaxation using "hrelax”
as well as converting each resulting probabilistie
image into a gray level image, output.img, using the
"prbimg"” program.

in Niu Min i M S M By 2 M N N N N N B N B B

Erase the smscreen.
erase

Hake 3 x 3 neighborhood, two label, HZR coefficient
computation and relaxation programs.

esh /iu/tb/bin/setup.csh h 2

Transform the picture into a probabilistic image.
21 is the image name, 22 and 33 are the optional
low and high pixel range specifications.
i

if (Sfargv < 1) then

imgprb /iu/stb/pic/tank/bw.img prb.img 2 13 49
elae

imgprb 31 prb.img 2 32 33
endif

49

Recreate o gray level image from this. This first
"output” imapge will have gone through essentially
the same ateps as the other new pgray level images
to be created. The output is stretched to fill
B-bit pixels.

i M M M M

prbimg prb.img outputl.img
show outputD.img -t 100 348

Compute the compatibility coefficients from the
probabilistic image.
hcompat prb.img compat.dat -

Perform eight iterations of relaxation on the image.
¥ After eazch iteration display a gray level image
§ representation. .

hrelax prb.img compat.dat

Prbimg prb.img outputl.img
show outputl.img -i -t 224 348

hrelax prb.img compant.dat

prbimg prb.img output2.img
show output2.img -i -t 348 348

hrelax prb.img compat.dat

prbimg prb.img outputl3.img
show output3d.img -i -t 100 224

hrelax prb.img compnt.dnt

prbimg prb.img output4.img
show output4.img -i -t 224 224

hrelax prb.img compat.dat

prbimg prb.img outpot5.img
show outputS.img -1 -t 348 224

hrelax prb.img compat.dat

prbimg prb.img outputB.img
show output8.img -i -t 100 100

hrelax prb.img compat.dat

prbimg prb.img output?.img
show ootput7.img -i -t 224 100

hrelax prb.img compat.dat
prbimg prb.img outpoiB.img
show outputB.img -1 -t 348 100

¥ done
echo "Finished."”

50

References

[Barrow?s] H.G. Barrow and J.M. Tenenbaum, HSYS: 4 System for Reasoning about Scenss, Technical
Note 121, Artificial Intelligence Center, Stanford Research Istitute, Menlo Park, Califar-
nia, April 1876.

[BhanuB2] B. Bhanu and O.D. Faugeras, "Segmentation of Imeges Having Unimodal Distributions,”
Patiern Analysis and Mechine mntelligence, Vol. PAMI4, No. 4, pp. 408-418, July 1882,

[Brice70] C.R. Brice and C.L. Fennema, "Scene Analysis Using Regions,” Arfificial nielligence, Vol. 1,
No. 3, pp. 205-228, Fall 1670,

[Davist7a] L.S. Davis and A. Rosenfeld, Noise Qleaning by lterated Local Averaying, Technical Report
TR-520, Computer Science Center, University of Maryland, College Park, April 1977.

[DavisT7b] L.S. Davis and A. Rosenfeld, “Curve Segmentation by Relaxation Labeling,” IEEE Trans. on
Computers, Yol. C-28, No. 11, pp. 1053-1057, November 1877.

[Davis77e] L.S. Davis, "Shape Matching Using Relaxation Techniques,” Proc. IEEE Conf. on Paitern
. Recognition and Image Processing, Troy, New York, pp. 191-197, June 8-8, 1877.

[Diemond82] M.D. Diamond, N. Narasimhemurthi, and 5. Genapathy, "A Systematic Approach to Continu-
oys Graph Labeling with Application to Computer Vision,"” Proc. National Conf. on
Artificial nlelligence, Pittsburgh, Pennsylvania, pp. 50-34, August 18-20, 1882,

[Eberlein78] R.B. Eberlein, "An [terative Gradient Edge Detection Technique,” Computer Graphics and
Image Processing, Vol. 5, No. 2, pp. 249-253, 1678,

[E}undhs0] 1.0. EKlundh, H. Yamamsoto, and A. Rosenfeld, "A Relaxation Method for Multispectral Pixel
Classification,” [EEE Trans. on Paltern Analysis and Machine Infelligence, Vol. PAMI-2,
No. 1, pp. 72-75, January 1880,

[FaugerasB0a] 0.D. Faugeras and M Berthod, "Scene Labeling: An Optimization Approach,” IEEE Conf.
on Patiern Recognition and Image Processing, Chicago, Mineis, pp. 318-326, August 88,
1679, Also in Pattern Kecognilion, Vol. 12, No. 5, pp. 339-347, 1980.

[FaugerasBOb] O.D. Faugeras, “An Optimization Approach for Using Contextual Information in Computer
Vigian,” Proc. Ist Annual National Gonf. on Arfificial ntelligence, Stanford, California, pp.
58-80, August 18-21, 1980,

[FaugerasB1] O.D. Faugeras and K. Price, "Semantic Deacription of Aerial Imeges Using Stochastic
Lebeling," IEEE Trans. on Puitern Anal. gnd Machine Mntelligence, Vol. PAMI-3, No. 8, pp.
833842, November 1661.

[FeketeB1] G. Fekete, 1.0. Eklundh, and A. Roserdeld, “Relaxation: Eveluation and Applications," IEEE
Trans. on Patlern Analysis and Hachine Intelligence, Vol. PAMI-3, No. 4, pp. 458468, July
1881.

[Freuder?8] E.C. Freuder, A Computer System for Tisual Recognilion Using Active Knouledge, Techni-
cal Report AI-TR-345, Artificial Intelligence Laboratory, Massachussetts Institute of Tech-
nology, Cambridge, Massachussetts, June 1978,

[GuzmanB8] A. Guzman-Arenas, (ompuier Recognition of Three-dimensional (hjects in a Visual Sceng,

Technical Report AI-TR-228 (MAC-TR-58), Artificial [ntelligence Laboratory, Massachussetts
Institute of Technology, Cambridge, Massechussetts, {AD-862-200), Decemnber 1968,

o1

[Harelick70]

[Haralickso]

[Haralicka3]

[Hart77]
[Hummel78]

[HummelB8o]

[Kandel78]

[Kirby8o]

R.M. Heralick and L.G. Shapiro, "The Consistent Labeling Problem: Part 1, IEEE Truns. on
Fattern Analysis end Machine ntelligence, Val, PAMI-1, No. 2, pp. 173-184, April 1679,

R.M. Haralick, 1.C. Mchammed, and S.W. Zucker, "Compatibilities and the Fixed Points of
Arithmetic Relaxation Processes,” (bmputer Craphics and /mage Processing, Yol. 13, No.
3. pp. 242-258, July 1980.

R.M. Haralick, "An Interpretation for Probabilistic Relazation,” Cbmputer Yision, Graphics,
and mage Processing, Vol. 22, No. 3, pp. 3868-385, June 1883.

P.E. Hart and R.O. Duda, PROSPECTOR—-A Computer-Based Consuliction Sysiem Jfor
Mingral Erploration, Technical Note 155, Artificial ntelligenice Center, SRI International,
Menlo Park, Californie, October 1877.

R.A. Hummel and A. Rosenfeld, "Relaxntion Processes for Scene Labeling,” JEEE Trans. on
Systems, Man, and Cybsrnetics, Val. SUC-8, No. 10, pp. 765-768, October 1978,

R.A. Hummel and 8.W. Zucker, "On the Foundaticns of Relazation Labeling Processes,”
Techriical Report TR-80-7, Computer Vision end Graphics Laboratory, MeGill University,
Hontreal, July 1980. Summarized in Proc. Sth ;i. Jal. Oomf. on Paltern Recognition,
Miami Beach, Florida, pp. 50-53, December 1-4, 1880.

A. Kandel and W.I. Byatt, "Fuzzy Sets, Fuzzy Algebra, and Fuzzy Statistics,” Proc. IEEE,
Vol. 88, No. 12, pp. 1819-1639, December 1578.

R.L. Kirby, "A Product Rule Relaxation Method,"” Computer Graphics and Jmage Process-
ing, Vol. 13, No. 2, pp. 158-189, june 1980.

-[IGrkpatrich?] 8. Kirlepatrick, C.D. Gelatt, Jr., and M.P. Vecchi, "Optimization by Simulated Annesl-

[Kitchen80]

[Lev7?]

ing,” Science, Vol, 226, No. 4598, pp. 871-680, May 13, 1883,

L. Kitchen, "Relaxation Applied to Matching Quartitative Relationsl Structures,” IEEE
Trans. on Systems, Man, and Cybernetics, Val, SMC-10, No. 2, pp. 86-101, February 1880.

Alev, 8.W. Zucker, and A. Rosenfeld, "Iterative Enhancement of Noisy Imeges” IEEE
Trans. on Systems, Men, and Oyberneatics, Val. 7, No. B, pp. 435442, June 1877,

{Montanari74] U. Hontanari, "Netwarks of Constraints: Fundamental Properties and Applications to Pic-

[Naging2]

[0'Leary80]

[Peleg7Ba]

[Peleg?8b]
[PelegBOe]
[PelegBob]

[Quem?s]

ture Processing,” Information Sciencas, Vol. 7, pp. 85-132, 18974,

P.A. Nagin, A.R. Hanson, and E.M. Riseman, "Studies in Global and Local Histogram-guided
Relaxation Algarithms,” IEEE Trans. on Pattern Analysis und Machine ntelligsnce, Vol.
PAMI-4, No. 3, pp. 263-277, Hay 1982.

D.P. O'Leary and S Peleg, Analysis of Relaration Processes: The Two-node, Twolabel Cuse,
Computer Vision Laboratory Techmical Report TR-867, University of Maryland, College
Perk, November 1860.

3. Peleg and A. Rosenteld, "Determining Compatibility Coefficients for Curve Enhencement
Relazation Processes,” IEEE Trans. on Systems, Han, and Cybernetics, Vol. SHC-8, No. 7,
Pp. 548-555, Tuly 1978,

S. Peleg, "lterative Histogram Modification, 2, IEEE Trans. on Systemns, Mon, and Cyber-
netics, Vol. SHC-8, No. 7, pp. 555-558, July 1878,

3. Peleg, "A New Probabilistic Relaxation Scheme,” /EEE Trans. on Paiiern Analysis end
Machina Inielligence, Val. PAMI-2, No. 4, pp. 362-389, July 1880.

S. Peleg, "Monitoring Relaxation Algorithms Using Labeling Evaluations,” Proc. Sth Int. Jnt.
Conf. on Pattern Recognition, Miamd Beach, Fleride, pp. 54-57, December 1-4, 1980.

L.H. Quam, Foad Tracking and Arwmaly Detection in Aerial Imagery, Technical Note 158,
Artificial Intelligence Center, SRI International, Menlo Park, California, Merch 1678.

[RichardsB0] J.A. Richards, D.A. Landgrebe, end P.H. Swain, "Overcoming Accuracy Deterioration in
Pixel Relaxation Labeling,” Proc. Sth Int. Jnt, (bnf. on Paoltern Kecognition, Miami Beach,
Florida, pp. 81-85, December 1-4, 1880.

[Riseman?7?] E.M. Risernan and M.A. Arbib, "Computational Techniques in the Visual Segmentation of
Static Scenes,” Compuier Qraphics and /mage Processing, Vol. 8, No. 8, pp. 221-278, June
1877. :

[Rosenteld78] A. Rosenfeld, R.A. Hummel, and S.W. Zucker, "Scene Labeling by Relaxation Operations,”
IEEE Tvuns, on Systems, Mon, und Cybernetics, Vol. SMUC-6, No. 6, pp. 420~433, June 18786.

[Rosenfeld772] A. Rosenfeld and L8, Davis, Jterative Histogram Modification, Technical Report TR-518,
Computer Science Center, University of Maryland, College Park, April 1877,

[Rosenfeld77b] A. Rosenteld, "Tterative Methods in Image Anelysis,” Proc. IEEE Cbnf. on Pgitern
Recognifion and Image Processing, Troy, New York, pp. 14-18, June &8, 1877,

[Rosenfeld78] A. Rosenfeld and L.S. Davis, "lierative Histogram Modification,” JEEE Truns. on Systems,
Mgn, and Cybernstics, Vol. SMC-8, No. 4, pp. 300-302, April 1878.

[Rosenfeld82] A. Rosenfeld, "Picture Processing: 1881, (hmputer Oraphics and Image Processing, Vol,
18, No. 1, pp. 35-75 (esp. p. 59), Hay 1982,

[Rosenfeld83] A. Rosenfeld, "Picture Processing: 1082," Compruter Vision, Graphics and /muge Process-
nyg, Vol. 22, No. 3, pp. 338-387 (esp. pp. 3858-369), June 1883,

[Schachter78] B.R. Schachter, A. Lev, 5.W. Zucker, and A. Reosenfeld, An Application of Relazalion
Methods to FEdge Reinforcement, Techmical Report TR-478, Computer Science Center,
. University of Maryland, Callege Park, August 1978,

[TroyTa] E.B. Troy, E.S. Deutsch, and A. Rosenfeld, "Gray-Level Marmipulation Experiments for Tex-
ture Analysis,”" IEEE Truns. on Systems, Hon, ond Cybernetics, Vol, SMC-3, No. 1, pp. 81-
98, January 1973. .

[Ulrmen?8] S. Ulmen, "Relaxation and Constrained Optimization by Local Processes,” Compuler
Graphics and Image Processing, Vol. 10, No. 2, pp. 115-125, June 1678,

[VanderBrug77] G.J. VanderBrug, “Experiments in [terative Enhancement of Linear Features,” Com-
puler Graphics and Jmage Processing, Vol. 8, No. 4, pp. 25-42, April 1877,

[Waltz72] D.L. Waltz, Generuting Semantic Descriptions from Drauwings of Scenes with Shadous,
Ph.D. Dissertation, Technical Report A[-TR-271, Artificial Intelligence Laboratory, bMas-
sachussetts Institute of Technology, Cambridge, Massachussetts, (AD-754-08C), August
1872.

[Yamamoto78] H. Yamamoto, "A Method of Deriving Compat.ibilif.y Coefficients for Relazation Opera-
tors,” Computer Graphics and Image Processing, Vol. 10, No. 3, pp. 256-271, July 1878,

[YekimovskyT3] Y. Yakimovsky and J.A. Feldman, "A Semantic Besed Decision Theory Region Anslyzer,”
Proc. 3rd Int. Jnt. (onf. on Artificial Intelligence, pp. 580-58B, August 1973.

[Yelkimovsky78] Y. Yekimovsky, “Boundary and Object Detection in Real World Images,” J. ACH, Vol. 23,
No. 4, pp. 586-818, October 1878.

[Zedeh85] L.A. Zadeh, "Fuzzy Sets,” Iaform. Control, Vol. B, pp. 338-353, 1885.

[Zucker78] S.W. Zucker, “"Region Growing: Childhood and Adolescence,” Cornputer Graphics and Image
Processing, Vol. 5, No. 3, pp. 382-388, September 1978,

[Zucker7?] S.W. Zucker, RA. Hummel, and A. Rosenfeld, “An Application of Relaxation Labeling to Line
and Curve Enhancement,” /EEE Truns. on Comgputers, Vol. C-28, No. 4, pp. 384-403 (end
522-920), April 1977.

[Zucker78a] S.W. Zucker, E.V. Krishnamurthy, and R.L. Haar, "Relaxation Processes for Scene Labeling:
Convergence, Speed, and Stability,” JEEE Trans. on Systems, Man, and Cybernetics, Vol.
SMC-8, No. 1, pp. 41-48, January 1978,

[Zucker78b] S.W. Zucker and J.L. Hohmnmed. "Analysis of Probabilistic Relaxation Labeling Processes,
Proc. IEEE Conf. on Puaftern Recognition and Image Processing, Chicago, Dlinois, pp.

307-312, May 31 - June 2, 1978,

