oF
)

e Sl e
LT NN
rnavo

TN
International
| n ®

LA A,
SN AT

nernaional

AN INDUCTIVE APPROACH
TO FIGURAL PERCEPTION

Technical Note No. 325

September 19, 1984

BY: Stephen T. Barnard, Senior Computer Scientist

Artificial Intelligence Center
Computer Science and Technology Division

SRI Project 5355

The work reported herein was supported by the Defense Advanced
Research Projects Agency under Contract No. MDA903-83-C-0027.

333 Ravenswood Ave. ® Menlo Park, CA 94025
i415) 326-6200 « TWX: 910-373-2046 ¢ Telex: 334-486



Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
19 SEP 1984 2. REPORT TYPE 00-09-1984 to 00-09-1984
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

An Inductive Approach to Figural Perception £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

SRI International,333 Ravenswood Avenue,Menlo Park,CA,94025 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THISPAGE 25
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



Abstract

The problem of interpreting single images of abstract figures is addressed. It
is argued that neither rule-based deductive inference nor model-based matching
are satisfactory computational paradigms for this problem. As an alternative, an
inductive approach consisting of two parts is presented. The first part involves
a scheme, based on differential geometry, for describing the shapes of curves
and surfaces, and for generating these descriptions from images. The second
part of the approach relies on a criterion for deciding which description, among
the candidates allowed by the constraints in the image, is to be preferred. This
eriterion — mintmum entropy — is related to concepts from Gestalt psychol-
ogy, thermodynamics, ‘and information theory. Several examples are given to
illustrate the inductive approach.
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1. Introduction

Images arise when light that encodes structure in the three-dimensional world is pro-
jected onto a photosensitive surface. Some of the information n the light is lost, and the
remainder is transformed by perspective into a pattern that has a complex and ambiguous
formal relationship to the original structure of the world. The human visual system is ca-
pable of inverting this relationship, filling in parts that are missing, arranging parts that
are seen into sensible combinations, and, in short, composing integrated, consistent descrip-
tions of the world, which are almost never in serious error. Furthermore, these descriptions
specify invariant properties of the scene that are independent of the observer (size, shape,
cte.}, while the information used to construct the descriptions — the image — is highly
dependent on the observer’s position, orientation, and imaging system.

How is this possible? What kinds of computational strategies, representations, and
modes of reasoning are appropriate to this problem, and how can they be implemented and
demonstrated on a large class of examples, including images of natural scenes?

Rule-based deductive reasoning — the conventional Al paradigm — does not appear
to be a good approach to perception. Because an image does not logically entail any
particular interpretation, one cannot cast the problem of perception in a simple deductive
model: interpretations are neither true nor false; they are only likely in varying degrees.
Jut our pereeption at any moment is unambiguous. Furthermore, our perception sometimes
jumps to unwarranted conclusions, as we know from many illusions. ?

The logical bhasis of perception is induction. As a mode of reasoning, induction is
completely different from deduction. While deduction proceeds from the general (axioms)
to the particular (propositions), induction proceeds from the particular to the general.
Deduction is primarily a matter of proving theorems, while incuction is one of recognizing
patterns. Deduction is well-understood and more easily automated with computers, which
probably explains its popularity in Al research. The mathematical foundations of incluction,
by contrast, are much less clear. Nevertheless, general principles of inductive reasoning do
exist.

It has been postulated that the uniformity and regularity of the world are necessary
presuppositions of mduction. This is precisely the state of affairs in perception. The
underlying reality (the scene) is not logically deducible from the image, but, in most cases,
a very good gness can be made by finding the simplest possible interpretation.

Specifically, The problem of figural perception is defined as deciding how to assign
three-dimensional properties — size, shape, position, orientation, ete. — to initially two-
dimensional patterns of data, The patterns of interest vary in their degree of complexity.
For example, they might be simply binary contours, such as Figure 1. The sense of realism
in even these simple figures compels one to believe that very general perceptual processes
apply. A somewhat more complex class of patterns is synthetic intensity images, such as
Figure 2, in which a combination of surface, lighting, and projection models produces images
that evoke an even more vivid impression of three-dimensional shape.

Figures 1 and 2 are synthetic: they were generated with the techniques of computer
graphics [1]. The Bumpy Torus, for example, was created by constructing a smooth, ran-
domized toroidal surface, defining a reflectance function with lambertian and specular com-

'In a striclly logical sense, perception always jumps to unwarranted conclusions.
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Figure 1. Wire Room Figure 2: Bumpy Torus

ponents, defining a lighting model and a viewing position, and, finally, centrally projecting
the intensities of a very fine mesh of surface points onto a synthetic digital image. A depth
buffer was used to handle hidden surface areas. Using synthetic data has two important
methodological advantages: (1) the underlying reality is known to arbitrary precision and
can easily be used to evaluate interpretations, and (2) variables that are dillicult to control
in physical imaging, such as lighting and film response, are easily controlled in a synthetic
regime. Of course, if a theory of figural interpretation is to have practical importance, it
must be applicable to real images. If a computational vision technique works well on very
realistic synthetic images, without relying on special conditions that are known a priors
(such as a specific lighting model), then it will probably work well on comparable real im-
ages. If the technique shows improved performance on images that are subjectively more
realistic, we can be even more confident that it will be valid for real images.

The physical constraints in the problem of figural perception, while obviously impor-
tant, are insullicient: infinitely many possible surfaces could have caused these figures, but
our perception chooses only one. The thesis behind this paper is that a formal geometrical
language, together with general principles of inductive reasoning, can account for at least a
large part of the solution to this underdetermined problem. A geometrical language, com-
bined with physical constraints, provides a space of possible three-dimensional descriptions
or “explanations” of patterns, and inductive reasoning provides a hasis for cloosing among
them.

The inductive approach to figural perception has two critical elements:

o First, there is a representational scheme, based on vector algebra and differential
geometry, that can model the image and all of its possible interpretations. Implicit in
this scheme is a process for generating interpretations (Section 3).

s Secondly, there is an inductive criterion for preferring certain interpretations over

others. This criterion — minimum entropy -- is hased on a formalism originally
developed for statistical mechanics. In the context of figural perception, entropy is
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used as a measure of disorder (Section 4).2

The approach treats perception as a search for the simplest explanation of a body of
data {an image). An interpretation is therefore a re-encoding of an image. Properties and
relations that are explicit or easily computed from the image (pixel values, edges, textural
properties, etc.) become implicit in the re-encoding and may be at least partially recovered
by reprojection. On the other hand, properties and relations that are merely implicit in
the image (scene invariants, such as shape, size, orientation, relative position, reflectivity,
transparency, etc.) are explicit in the re-encoding. The image is unstructured and lengthy:
it contains redundant information. The re-encoding is structured and terse: it contains at
least. as much information as the image, and usually more, but in a compressed form, with
the redundant part removed. Some process not yet fully understood discovers redundancy
in the image and ezxplosts this redundancy to build more concise and well-formed encodings.
In practice, it may not be necessary to actually construct a concise encoding, but merely
to recognize that one is possible.

It is useful to think of an agent that “decodes” the final interpretation and that has
the knowledge and ability of a computer graphics system. The 3D encoding describes the
scene in terms of physically meaningful, invariant properties. The agent can decode it, in
principle, into a “visualization® of the scene by using an abstract model of projection, a
choice of viewpoint and lighting, and specific knowledge of physical principles, such as that
an opaque object occludes what is behind it or that a transparent objcet transmits light.
Therefore, while the interpretation contains no less information than the image, it is in a
form that makes the important invariant properties explicit, and relegates the ones that
depend on viewpoint and lighting to an implicit status.

2. Related Work

Two distinctly different schools of research have addressed the problem of figural per-
ception. The artificial intelligence (Al) approach has focused on computer implementations,
while the perceptual psychology approach has developed primarily theoretical models. The
scientific methods used in the two disciplines are quite different. Vision research in the Al
style generally requires precise computational models of perception: if a theory cannot be
implemented, it is too vague to be of value. Ultimately, the model should be evaluated on
images of real scenes. Vision research in perceptual psychology, by contrast, has sought to
explain human perception as revealed by illusions, psychophysical experiments, and intro-
spection. Perceptual psychology is by far the older school, and Al has horrowed from it
liberally. At the same time, the development of computers has influenced psychologists to
pursue information-processing approaches and to embrace concepts originally developed in
Al [5].

2.1, Al

The deductive approach to figural perception has been explored in the so-called “blocks
world” work (see Mackworth [2] for a summary of this research), culminating in Waltz’s fil-

“While the representational scheme is based on the geometry of curves and surfaces, the reasoning scheme
has far broader generality.



tering technique for constraint satisfaction [3], and Kanade’s generalization to the Origami
world [4]. The results are not encouraging. In addition to the problem of needing a perfect
line drawing to begin with, these systems produced only weak interpretations, not includ-
ing, for example, quantitative estimates of length and orientation. When generalized only
slightly, Waltz’s filtering scheme led to many more ambiguous interpretations.

Another line of Al research, which is more relevant to the approach described here,
has sought mefric interpretations of images, as opposed to the weaker, merely descriptive
interpretations characteristic of the blocks world. The first instance of such an approach
was due to Huffman [6], who suggested the concept of dual space, later generalized by
Mackworth [7] to gradient space. Gradient space simply provides a way of representing
with two parameters the orientations of planes. Mackworth connected observed features in
image space (vertices) with contraints in gradient space (i.e., constraints on the orientations
of planes) to disambiguate blocks-world interpretations. Kanade used gradient space to
estimate orientations on the basis of symmetry [8]. That is, image figures that exhibit
skewed symmetry (because of the distortion introduced by projection) are interpreted as
being oriented in a way that is consistent with their true symmetry.

This general approach — identifying an important invariant property in the plane, back-
projecting image features to planes of different orientations, and selecting the orientation
leading to the most well-formed configuration — has been followed by several researchers.
Kender {9] used textural properties, such as the lengths and orientations of line segments;
Ikeuchi [10] and Barnard [11] used angles; Witkin [12] sought the planar orientation that
had the most uniform distribution of directions of contour tangents; Brady and Yuille [13]
maximized the compactness of the backprojected closed contour; and Barnard [11] max-
imized the uniformity of backprojected curvature. The inductive approach can possibly
unify these various criteria into a single principle.

Another area of Al vision research that is relevant to figural perception is the optimal
interpolation of surfaces [14], [15],[16], [17]. The mathematical representation of surfaces and
the optimization methods used in this work have similarities to the approach described here.
The underlying problems are quite different, however. The problem of optimal interpolation
is Lo begin with sparse three-dimensional data (distances and orientations), presumably
derived from stereo, shape-from-shading analysis, etc., and to find a continuous surface
that best fits the data, while optimizing physical properties of the surface (specifically,
potential energy). The problem of figural perception initially provides no three-dimensional
information at all, and is not even well-posed in the sense that the interpolation problem
is. Furtherinore, we choose interpretations according to their simplicity of description, and
not according to a physical property.

2.2. Perceptual Psychology

A popular approach in perceptual psychology has sought to exploit the efficacy of in-
formation theory {18], [19], [20], [21], [22], [23], [24]. Rock calls this the modern version
of Gestalt theory ([5], p. 133), because its aim, just like Gestalt, is to explain perception
in terms of simplicity. While there is not space here to cover all this work, it will be use-
ful to discuss in some detail a recent approach that has some similarities to the approach
presented here.

Buflart, et. al. presented a “coding theory” of perception that was meant to explain



Figure 3: The Interposition !llusion Figure 4: Kanizsa’s Counter Example

the interposition illusion [25]. Most observers see the pattern in Figure 3 as a square on
top of a circle. Coding theory attempts to explain this by asserting that a description in
terms of a square on top of a circle is simpler than any other description that accounts for
the fizure. The authors proceed to develop a coding scheme for these figures that takes
advantage of symmetries and that leads to very concise encodings. The encodings are
sentences in a formal language, with the primitives representing sides, angles, circular arcs,
ancl combinational operators. Some context-sensitive elements are included; for example, a
side can be extended indefinitely until it encounters another contour. The goodness of an
encoding is determined by simply counting the number of symbols it uses.

There are several objections to this theory. First, Kanizsa [26] argues that a pattern
such as Figure 4 is a counter example, because the interpretation without interposition is
simpler than the one with interposition: the circle with two “bites” taken {rom it has two
axes of symmetry, and should, therefore, be more symmetric, and hence simpler, than the
one with only one bite. As will be shown in Section 4.2, this objection is not valid. That a
figure has more axes of symmetry than another does not imply it is simpler.

A second, more serious objection to the coding theory is that it depends on an ad hoc lan-
guage, and there is no compelling reason to adopt this language in preference to any other.
A third objection is that, even given this particular language, mere symbol counting is not
a good way to measure the complexity of an encoding. A fourth objection is that no pro-
ceclure for actually constructing a minimal encoding is presented. The approach presented
helow, when considered as an alternative to the coding theory, meets these objections.

3. A Representational Scheme for Figural Perception

The view of perception as a computational process of building, testing, and selecting
descriptions is arguably the most important contribution of artifical intelligence to percep-
tual psychology. When faced with the task of actually implementing a computational mode}
of perception, one must deal with representational problems that are otherwise too easily
ignored. If perception is description building, what must these descriptions be like? In



Figure 5: The Moving Trihedron

what kind of language should they be expressed?

3.1, Geometrical Descriptions

The problem of figural perception, is to a large extent, a problem of geometrical descrip-
tion. We seek interpretations in terms of geometrical objects: points, curves, and surfaces.
The description of the special cases of points, straight lines, and planes is relatively straight-
forwared: these objects can be represented with vector algebra [27]. Much more difficult is
the representation of general curves and surfaces.

Differential geometry is the study of geometric figures using the methods of calculus
[28]. Three requirements compel us to use the language of dilferential geometry in our
representational scheme:

o If we are to compare descriptions on the basis of simplicity, we must have canonical
descriptions. The descriptions must be unique.

» The language must be expressive enough to describe the entire range of figural phe-
nomena. It must be complete,

s The descriptions should express intustive and fnvariant figural propertics.

The form of the invariant properties of curves and surfaces embedded in three-dimensional
Fuclidean space is completely known for our purposes.

Any curve x(s) in C? (i.e., any twice-differentiable curve) can be represented with two
invariant local properties, curvature & and torsion r, that are scalar functions of arc length,
s, and that constitute a complete, unique, and invariant representation of the curve. The
relationships are described by the Serret-Frenet equations:

t = «kn
i = —xt+7b {1)
b= -m '



where t, n, and b are, respectively, the tangent, normal, and bi-normal vectors (Figure 5).
The dot operator indicates differentiation with respect to arc length. The important point
is that a description of a curve in terms of curvature and torsion is independent of the choice
of a coordinate system. Barnard and Pentland [29] have studied the interpretation of images
of 3D curves with torsion by using local assumptions of maximally uniform curvature and
constant torsion.

Using the concepts of differential geometry, a surface x{u,v) in C* can also be repre-
sented with invariant local properties. The relationships analogous to the Serret-Frenet
equations are the Gauss-Weingarten equations:

Xy = 1—‘}] Xu + F?l Xy + LN

Nu = ﬂ} Xu + ﬂ;"’ x,_,-
N, = ﬂzl Xy + ﬂ"_? Xy

where N is the unit normal to the surface, and the subscripts ¢ and v indicate partial
cifferentiation. The coefficients Ff:-, I, L, M, and N are determined by the local shape of
the surface. The theory of surfaces is much more elaborate than the theory of curves, as a
comparison of Equations (1) and (2) suggests.

To develop an intuitive understanding of the power of the theory, consider the concepts
of normal curvature, geodesic eurvature, principal curvature, gaussian eurvature, and mean
curvature. The unit normal to a surface, N, at a point P, defines a plane tangent to the
surface at P. Any line through P in this plane locally determines a curve on the surface, and
hence a normal curvature k,. The normal curvature will be a maximum in one direction
and a minimum in the orthogonal direction,* These are called the principal directions,
and the corresponding normal curvatures &; and k., the principal curvatures. The
quantity K" = x ke is called the gaussian curvature, and the quantity # = ;},:(N] + Kao) is
called the mean curvature. Figure 6 illustrates the connection hetween gaussian and mean
curvature and intuitive ideas about the qualitative shapes of surfaces. A curve through P
that connects two points £ and R by the shortest path is called a geodesic, and, when it
is orthogonally projected onto the tangent plane at P, it forms (locally) a straight line, or,
equivalently, a curve of zero curvature. If any curve on the surface through F is projected
onto the tangent plane, the curvature of the resulting planar curve is ealled the geodesic
curvature. Geodesic curvature and gaussian curvature are inirinsic properties of surfaces.

The qualitative shape of surfaces is suggested by local contours, but the precise shape
1s very ambiguous. Perception of figures like the Wire Room (['igure 1) seems to depend
on global judgments. Perception of particular elements of the figure is preceded by, or
depends upon, perception of the figure as a whole — what the Gestalt psychologists called
Prdgnanz. 1t is possible to obtain, for example, estimates of surface normals using local
information [30]. If the “goodness” of the resulting surface description can be estimated, it
should be possible to find a global optimum by variational methods (for example, iterative
improvement methods such as steepest descent, or more sophisticated optimization methods
such as simulated annealing [31]).

3This is not strictly true. The surface may be planar or umbilical at P, in which case r, is uniform.



umbilical

b o
K =giko=£K] = K3

H:Klg_nz:(] H=kKy=~Kn
parabolic elliptic
K=0 K>0
-5
" 2
hyperbolic
K <0

Figure 6: Local Surface Types



Figure 7: Wire-Bead Backprojection

3.2. Generating Hypothetical Descriptions

Fven the simplest image represents an infinity of possible 3D scenes. If continuous
scene space is quantized appropriately, the discrete space of possible scenes is infinite but
denumnerable. The class of methods for generating descriptions of these possibilities is
backprojection. In general, any method that generates three-dimensional descriptions (in
terms of distances, orientations, lighting models, reflectance models, etc.) while maintaining
consistency with the geometrical and physical constraints of the image, is an instance of
backprojection.

Perhaps the easiest way to visualize backprojection is with the “wire-bead” model [32]
(Figure 7). Points on the image contour can be backprojected, or placed in 3D space,
anywhere along a line connecting the center of projection and the image point. The wire-
bead moclel maintains the most primitive projective constraints, but does not, for example,
require connected image contours to backproject to connected 3D contours. A problem with
the wire-bead model is that it allows too many degrees of freedom: one for every contour
point.

Another form of backprojection is aimed at generating 3D descriptions in terms of
different planar orientations (Figure 8). Assuming the image contour is the projection of
a more-or-less planar contour in the scene, which is at some indeterminate distance from
the observer, planar backprojection generates scale-invariant descriptions of the possible 3D
contours. In the simplest case such a system has two degrees of freedom: the coordinates of
the unit normal vectors of the planes. Furthermore, if the parameter space is represented
as the gaussian sphere (as opposed to gradient space), the space of possibilities is closed —
an important property when sampling the space at a finite number of points [11].

Another form of backprojection has been used to find the most orthogonal interpreta-
tion of image line segments (see Barnard, [33]). If linear image features can be interpreted
as projections of mutually orthogonal lines in 3D space, buman observers have a strong
tendency to interpret them in this way {34], [35]. The effect is clearly demonstrated in the
familiar Ames Room illusion [36]. Line segments can be backprojected to various combina-
tions of oricntations (one degree of freedom for each segment), and the combination that
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Figure 8: Planar Backprojection

leads to the most orthogonal basis for the vector space of the scene corresponds to the
correct Interpretation.

[t is even possible to extend the concept of backprojection to include illumination and
albedo models. The three forms of geometrical backprojection just described generate dif-
ferent shapes from one viewpoint. In addition to varying shape, one could, in principal,
vary illumination (for example, by adding or moving point sources), or vary albedo, while
satisfying the constraints imposed by the reflectance observed in the image. An image such
as the Bumpy Torus (Fig. 2} could be explained in terms of a single-point-source illumina-
tion, a uniform albedo, and a smoothly curving surface; or it could be explained in terms
of two point sources, implying a shape and/or an albedo that would be very complex. The
choice is clear. The problem of using reflectance constraints effectively — connecting the
sirface shape and albedo to the observed reflectances — is difficult, but there has been
promising recent work in this area [37].

In any realistic language, the number of possible encodings of any particular stimulus
would likely be enormous. The task of enumerating all of them, while possible in principle,
would be hopeless in practice. Information in the primitive encoding, however, may be used
to suggest possible forms of final encodings. For example, “T-junctions” suggest occlusion,
and sets of lines intersecting at a common point suggest parallelism. In this approach the
role of local “cues” is merely to suggest descriptions, but the final interpretation depends
only on the form of the deseriptions and is not required to account for all the cues.

3.3. Levels of Description

Using the formalism of differential geometry, we can, in principle, represent 2D or 3D
figures in a precise, well-founded, intuitive way that is independent of the choice of a coor-
dinate system. Section 4 discusses in detail how the simplicity of figures can be estimated
from descriptions. The method requires further descriptions at different levels of specificity.
We will use the notation developed by Carnap [38].

We assume that a curve or surface has a precise description that captures all aspects of
its shape. For example, in the case of smooth, continuous curves, these descriptions consist

10



of analytic expressions for curvature and torsion. We denote a precise description of this
form by [Pree,

\We can convert precise descriptions to approximate individual descriptions (of which
there are a finite number) by sampling over the parameter space at a certain precision of
measurement. For example, a smooth, continuous curve can be sampled at intervals of arc
to vield a sequence of curvature and torsion measurements (to some precision). Denote an
individual description by D™, let N be the number of samples, and let K be the number of
possible distmct measurements. That is, we divide the measurement space (of, for example,
curvature and torsion} into K cells Q; ( =1,...,K}). *

Finally, we can convert an individual description to a statistical description by counting
the number of elements N; belonging to each cell. In other words, we can construct a
histogram ' from D9, The statistical description gives the frequencies of occurrences of
the various measurements.

Each level of description is implied by its predecessor:

pprec Dind = pst

Individual descriptions that imply the same statistical description are said to be statistically
equivalent. A statistical description represents a disjunction of individual descriptions. The
simplicity measure that will be described in Section 4 is based on the size of this set.

4. Why are Some Interpretations Preferred?

This approach to figural perception begins with 2D image descriptions that are disor-
dered, or in which the implicit order is hidden, and, through backprojection, proceeds to
construct consistent 3D descriptions that may be more ordered. In other words, it works
from complex descriptions to simple ones. If 3D descriptions of very simple, highly ordered
form are found, they are chosen as the best interpretations. The logical justification for
selecting simple descriptions over complex ones is essentially the principle of Occam’s Razor.

We can draw a loose analogy with a famous problem of physics. Statistical mechanics
provides an explanation, based on probabilistic reasoning, of the behavior of irreversible
thermodynamic processes, and, in particular, of the Second Law of Thermodynamies, which
states that the entropy of a closed system must increase. In simple terms, closed systems
invariably evolve from ordered states to less ordered ones. Boltzman [39] and Gibbs [40]
invented the mathematical formalisms of statistical mechanics to account for this. The
important insight was to identify entropy, which had hitherto been defined only in terms
of macroscopic physical measurements, with probabilistic descriptions of the microscopic
states of thermodynamic systems. They were able to show that, because the number of
disordered states is vastly greater than the number of ordered ones, the probability of the
system moving into a disordered state is extremely high. More recently, Prigogine [41]
has further developed the thermodynamic concepts of structure and disorder of complex
systems.

In a seminal paper that began the field of information theory, Shannon used the concept
of entropy as a measure of information [42]. At first, this seemed to be a completely different
concept than thermodynamic entropy, but Brillouin showed that they were closely connected

1A finitization of this sort happens when a discrete image is created.

11



and consistent [43], [44]. Jaynes showed that the thermodynamic concept could be derived
from Shannon’s measure [45], [46].

4.1. A Model of Structure and Information

The property that we use for selecting preferred descriptions is minimum entropy.

Entropy is defined for statistical descriptions, for individual descriptions by implication,
and for precise descriptions under some system of finitization. Using the notation developed
in Section 3.3, assume we have a statistical description D" with cell numbers Ny, ..., Nf.
The number of statistically equivalent individual descriptions D™ with these cell numbers
is given by

N
Nyl Ng!”

The minimum value of z occurs when all elements belong to the same cell {the homo-

(D) = (3)

geneous case}:

Zmin=1.

The maximum occurs when all cell numbers are as nearly equal as possible (the maxi-
mally heterogeucous case). Assuming that & is divisible by K

Nt
Zmaz = (%)!ﬂ' .

A system with a statistical description of large z is more disordered than one with small
z. This is because the statistical description of large z can be realized in relatively many
ways, and it gives us relatively little information about the underlying precise description.
On the other hand, if a statistical description has small z, there are few possible individual
descriptions. This observation is the heart of the minimum-entropy principle for figural
perception.

Various sources define entropy in different ways. Shannon, for example, uses the formula:

K
H=-) pilnp;, {4)

=

which can be related to 2, the number of statistically e¢uivalent individual descriptions con-
sistent with a D, as follows. We take the probabilities p; to be the observed probabilities
in a statistical description:

pi=N;[N .

Applying Stirling’s formula to (3), we obtain

K
Inz~—N Epjlnp_,- , for large N.
i=1

Therefore, from (4),
Inz

fIRﬁT. (5)
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The important point is that entropy is always defined as a linear function of the logarithm
of z, even though the details may differ from source to source. The base chosen for the
logarithm will affect the units in which entropy is measured, of course, but, since we will
only be concerned with comparisons of values, we can use any convenient base and treat
entropy as a pure number. ‘

The following definition, given by Carnap, has some useful properties:

S(D*)=Inz-NInK . (6)

If & varies but the relative probabilities p; do not change, then S is proportional to N.
Furthermore, if each cell is divided into a fixed number g of new cells with equal cell numbers
N;/q, then S remains unchanged. These properties are computationally attractive because
they allow entropies calculated for statistical descriptions with different N and A to be
compared, which outweighs the minor inconvenience that S < 0.

The concept of entropy is notoriously opaque to intuition. The essential point is that
a description will have high entropy when its elements oceur with more-or-less the same
probability, and it will have low entropy when a few measurements have much higher prob-
abilities than all others. Shannon’s measure, H, can be interpreted as the average amount
of information per symbol in a description. An encoding is said to be efficient if its symbols
occur with equal probability, and therefore carry equal amounts of information, or, equiva-
fently, if the encoded description has maximum entropy. Shannon’s original motivation was
to discover how to use fixed-bandwidth communication channels most efficiently, and he
was therefore led to the concept of entropy as a measure of the efficiency of coding schemes.

The redundancy of a description is defined as:

H
R=1- . 7
Hona )
or, in terms of Carnap’s definition,
R=1- S+ NhhK (8)

Spmaz + NInK °

Note that R is in the interval [0, 1], and that R = 0 for an efficient encoding. An encoding
with entropy significantly lower than the maximum possible value, however, will contain
a degree of redundancy. Finding minimum-entropy interpretations is equivalent to finding
maximally redundant ones. Redundancy is thereby discovered and can then be exploited to
build more concise descriptions.

4.2. Some Examples

In this section a few simple examples of the inductive approach will be presented. The
minimum entropy criterion will be applied to smooth, continuous, planar {zero-torsion)
curves. We will show how various transformations affect the measured disorder of the
curves.

Figures 9 to 12 show several curves created with cubic b-splines [47], which, in this
case, comprise the precise descriptions of the figures. A cubic b-spline represents a smooth,
continuous curve with a finite control polygon, which essentially determines the coefficients
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(a) (b) (c)

§=-520 §=-835 §=-789

O

(f)
5 =-784 S = —667 S =-586
Figure 9: Entropy under Change in Amplitude and Symmetry

of a cuhic piecewise polynomial and which can, therefore, be used as an interpolation
function [48]. An example of a control polygon is shown in Figure 11k.

To make individual descriptions, the splines are sampled at a predetermined number N
of cqually spaced points (500 in all these examples), and curvature is determined analyvtically
from the spline function. 3 A precision of measurement is then chosen (the parameter K,
which was equal to 200 in all the examples).®

The first example (Figure 9) shows what happens to the entropy of an initially circular
figure as its symmetry is broken, first into a series of three increasingly noncircular figures
with one axis of symmetry ((a) through (c)), and then into a series of figures of the same
aniplitude as the first three, but with two axes of symmetry. Notice that, for a given
svmmetry, entropy increases monotonically with amplitude. Also, a two-fold symmetric
figure has higher entropy, and, therefore, is less simple than a one-fold symmetric figure
of comparable amplitude (e.g., compare (c) to (f)). This observation shows that Kanizsa’s
objection to coding theory mentioned in Section 2.2 does not apply to this method. More
axes of symmetry do not imply more simplicity. Quite the contrary.

The next example (Figure 10) is another case of symmetry change. All the figures have
the same amplitude and only differ by the number of lobes. Entropy monotonically increases
with the number of lobes, or, in other words, figures with few axes of symmetry are judged
to he simpler than comparable figures with many axes of symmetry. This behavior is quite
surprising, because there is no explicit notion of symmetry built into the minimum-entropy

*If the precise spline function is not known a prior, curvature may be estimated by fitting circles to triplets
of adjacent samples of the given figure. In either case, we can also relax the requirement that samples
be equally spaced by keeping, as part of the description, the sequence of arc-length segments between
unequally spaced samples. Entropy would then be computed using a two-part statistical description: one
part for curvatures, and cne for arc length.

SBefore computing individual descriptions for a given set of curves, the interval of admissible measuremnents
must also be fixed. If the bounds are set as tight as possible (i.e., to the zctual minimum and maximum of
all curvatures of the set of curves), the measurements will be as accurate as possible for a given K. The
same bounds were used in all the examples.
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(2) (b) (c)
5 = —767 5 = —642 5 = —600

i L

() (e) (f)
S = —542 S5 = —454 5 = —402

Figure 10: Entropy under Change in Symmetry

model.

If we begin with a highly ordered curve and then introduce random changes, we would
expect the curve to become more disordered: entropy should increase. Figure 11 shows
that this is indeed the case. The eight vertices of the polygon used to generate an initially
circular curve were perturbed by adding zero-mean gaussian noise. A sequence of curves was
created by iterating this process. Each curve has undergone twice as many iterations as its
predecessor. [intropy increases with the number of iterations — not monotonically, because
of the random nature of the experiment (iteration (g) had lower entropy than iteration (f}),
but as a statistical trend.

The final example (Figure 12) shows how the minimum-entropy principle can be used to
select 3D interpretations. The curve in Figure 9¢ was rotated in azimuth and elevation and
then projected in perspective. The resulting curve, shown in Figure 12a, was backprojected
onto several hypothetical planes, which are indicated by tilted circles in the other figures.
Just as in the previous examples, individual and statistical descriptions were computed for
cach of the backprojected figures, and their entropies were determined. As expected, the
best interpretation has the lowest entropy, because it corresponds to the interpreted curve
that is most regular.

4.3. Discussion

The minimum-entropy principle for figural perception expresses a preference for figures
that are sfmplestin a certain sense. The measure of simplicity — negative entropy — can be
interpreted in several ways, using metaphors of physics, information theory, and inductive
reasoning.

Stmplicity iz the obverse of disorder, which is measured by entropy. Closed physical
systems dissolve into disorder; which is to say, they undergo irreversible thermodynamic
change. Perceptual systems are not closed, of course. They can freely exchange energy
with their supporting systems, and thereby evolve into more ordered states. In a sense,
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= —1110 = —048 = =774 —774
= —639 = —681 5 = —597
[ (k)
= —523 S = —483 A control polygon

Figure 11: Entropy under Random Perturbation

(a) | b) (c)
§ = —509 5 =-580

(d) & | e) \ (f)
= —550 = -513 5 = -583

The preferred interpretation

Figure 12: Entropy under Backprojection



the minimum-entropy concept treats perception as the conceptual reversal of physically
irreversible processes. Prigogine has developed the concept of entropy exchange to analyze
the behavior of open systems [41].

In communication theory, the entropy of a message source is determined by the proba-
bilities of the messages it sends. If there are many more-or-less equally probable messages
(high entropy), the receiver is initially in a condition of high uncertainty; if there are rela-
tively few, highly probable messages (low entropy), the receiver has less uncertainty. After
receiving the message, the receiver gains an amount of information equal to the uncertainty
that is resolved. There are two ways of measuring the amount of information in a message:
(2) reduce the message to the shortest possible encoding (i.e., a nonredundant encoding)
and then count the number of symbols, or (b) estimate the entropy directly from observed
frequencies using Equation (6) and apply Formula (8). The coding theory discussed in
Section 2 uses the first method, while the minimum entropy approach uses the second.
The advantage to the second method is that it eliminates the need to actually construct a
nonredundant encoding — a task that may require considerable cleverness. If we have two
individual descriptions with distinet statistical descriptions (but with the same N, K, and
bounds), and if one description has lower entropy than the other, then it is more redundant
and can, in principle, be encoded with fewer symbols.

The entropic model of complexity, uncertainty, and disorder has profoundly influenced
the mathematical foundations of inductive reasoning [19], [38], [50). The first principle in
this foundation has been called the principle of insufficient reason; namely, if there is in-
suffictent reason to believe that several possibilities have different probabilities, one should
behave as though they were equally probable. Using entropy as a measure of disorder or
as a measure of information follows this principle for the following reason. Given a statis-
tical description, all statistically equivalent individual descriptions are treated as equally

probable:
1

P(DPM) = —— .
(D) =
If we must choose from a variety of plausible interpretations with different statistical de-
scriptions (e.g., as determined by backprojection), we choose the one leading to the most

probable individual descriptions; that is, the one with the lowest entropy.

5. Conclusions

The inductive approach suggests a new direction for compntational vision. We must
face thie fact that perception is not veridical and that deductive methods are therefore not
appropriate for general-purpose vision. At the same time, approaches that rely on matching
specific prior models are unsatisfactory, because they cannot explain the perception of ab-
stract figures of which we have no prior experience, knowledge, or expectation. Recent work
toward theories involving a so-called 2.5D sketch (see [51]), when consicered as an expla-
nation of figural perception, suffers from the same defect as the deductive approach: there
is, in general, insufficient information in a single image to construct iconie, viewer-centered
representations of physical surface properties. Relatively direct modes of perception, such
as stereo and optic flow, may yield to this approach, but the interpretation of single images
‘will not. Even stereo and optic flow require heuristic assumptions, such as the rigidity
constraint, that are closely related to the information-thcoretic concept of simplicity.
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Induction seems to be a natural paradigm for human intelligence. By observing events,
one recognizes correlations, and infers symmetry, causality, family resemblances, and other
refationships. To be sure, the inferences may be wrong, but that’s too bad. People make
mistakes. In fact, one of the weaknesses of deduction is that it does not permit one to draw
conclusions that may be in error (assuming the axioms are correct), but that represent the
best conclusions under the circumstances.

Only a very small part of a full inductive theory of intelligence is presented in this
paper, and several important questions remain to be addressed. For example, one can
imagine hierarchies of descriptions, embedded in successively more concise, more global,
and more idiosyncratic encoding schemes. To give a trivial example, a curve in the shape of
the United States could be encoded as a sequence of are lengths and curvatures, but it could
also be encoded — much more concisely — as a reference to a known shape. How might
these hierarchies of descriptions be structured, and how can eflicient encoding schemes be
lecarned through experience?
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