SRl Internations!

T
AT AL

SRIi

International
NS [/ 7
= @&

RN P

Resolution for Epistemic Logics

Technical Note 447

August 25, 1991

By:

Kurt Konolige
Senior Computer Scientist

Artificial Intelligence Center
Computing and Engineering Sciences Division

APPROVED FOR UNLIMITED DISTRIBUTION

This research was support by the Office of Naval Research Contract NO0014-
85-C-0251, by subcontract from Stanford University under Defense Ad-
vanced Research Projects Administration Contract No. N00039-84-C-0211,
and by a gift from the System Development Foundation.

333 Ravenswood Ave. = Menlo Park, CA 94025
(415) 326-6200 « TWX: 910-373-2046 » Telex: 334-486



Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
25 AUG 1991 2. REPORT TYPE 00-08-1991 to 00-08-1991
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Resolution for Epistemic L ogics £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

SRI International,333 Ravenswood Avenue,Menlo Park,CA,94025 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THISPAGE 32
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



RESOLUTION FOR EPISTEMIC LOGICS
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Menlo Park, California 94025

Absiract

Quantified modal logics have emerged as useful tools in computer
sclence for reasoning about knowledge and belief of agents and sys-
tems. An important class of these logics have a possible-world se-
mantics from Kripke. In this paper we report on a resolution proof
method for logics of belief that is suitable for automatic reasoning in
commonsense domains. This method is distinguished by its use of an
unrestricted first-order modal language, a “bullet operator” for dealing
with quantified-in variables and skolemization, semantic attachment
methods for analyzing the belief operators, and an efficient implemen-
tation using a slight modification of ordinary first-order resolution.

*This research was supported by the Office of Naval Research Contract N§0014~
85-C-0251, by subcontract from Stanford University under Defense Advanced Re-
search Projects Administration Contract No. N00039-84-C-0211, and by a gift
from the System Development Foundation.



1 Introduction

1.1 B-resolution

Quantified modal logics (QML) have emerged as an important tool for rea-
soning about knowledge and belief in Artificial Intelligence (Al) systems.
The idea of formalizing the basic properties of knowledge and belief in QML
originated with Hintikka [1962], who was interested in the analysis of several
epistemic paradoxes. Subsequently he reformulated the semantics of his work
using Kripke’s notion of relative accessibility between possible worlds [Hin-
tikka, 1971). In the computer science community, McCarthy et. al. [1978],
Sato [1976], Moore [1975], Levesque [1982], Halpern and Moses [1985] and
others have used variations of Hintikka's approach to formalize and reason
about knowledge and belief.

Whether quantified modal logics of this sort are appropriate as epistemic
logics is controversial, both in philosophy and Al The two major objections
are (1) the status of intensional objects in the representation of belief, e.g.,
the concept of the mayor’s wife may not be the same for different agents; and
(2) the assumption that agents are perfect reasoners, so that they know all
the logical consequences of their knowledge. Regarding (1), there have been
some fairly complex arguments about the need for a sophisticated represen-
tation of intensional concepts (see [Creary, 1979]). Regarding (2), several
attempts have been made to modify the possible-world semantics to avoid
this assumption [Levesque, 1984, Fagin and Halpern, 1988], and there are
also other formal approaches which take into account the limited reasoning
power of agents (for example, [Konolige, 1986a]). It is not the purpose of
this paper to comment on the relative merits of these approaches; quantified
modal logics with Kripke semantics are an important research tool for epis-
temic reasoning in computer science at present, and will probably remain so.
Here we will be concerned with proof methods for these logics that could be
used in automatic deduction systems. Surprisingly, until recently there has
been relatively little work in this area, although decision procedures for the
- propositional case have been explored (see Halpern and Moses {1985]).

In this paper we lay the theoretical groundwork leading to the deriva-
tion of a resolution procedure for certain quantified modal logics. We have
. implemented the procedure in a working theorem-prover, and used it in a
successfully in a number of domains, including the benchmark Wise Man



Puzzle, and a natural-language generation system that reasons about plans
and actions {[Appelt and Konolige, 1988]).

The proof method we present is called B-resolution, and is a straightfor-
ward extension of ordinary first-order resolution. Two basic problems must
be dealt with in carrying out this extension. The first is that skolemization,
as ordinarily performed in a first-order setting, does not preserve satisfiability
when applied to a modal language. The solution given here is to introduce
‘a bullet operator on terms, by which means we can have functional terms
embedded within modal contexts refer to entities quantified outside of the
context. The second problem is to find adequate (that is, sound and com-
plete) proof rules for the modal atoms. We do this by the elegant device
of semantic attachment, whereby the arguments of the modal atoms are ex-
tracted and processed in a subsidiary proof structure, and the results reflected
back to the original proof. This method is conceptually appealing because
it involves structures that are representative of the set of beliefs of an agent,
as seen by an objective observer or by other agents. These structures make
intuitive sense in an analysis of the proof under comstruction, and can be
used to control the search for solutions.

B-resolution can be distinguished from other automatic proof-theoretic
methods in several ways. First, it is a direct method, in that the original
modal language is essentially retained (although slightly modified in skolem-
ization, using the bullet operator). In contrast, some automated methods
involve translating into a metalanguage which gets rid of the modal oper-
ators by axiomatizing the possible-worlds semantics. Moore’s original in-
vestigation [Moore, 1980), as well as several recent variations [Jackson and
Reichgelt, 1987, Ohlbach, 1988], are of this nature. The disadvantage of a
metalanguage reformulation is that the translation is conceptually opaque: it
is typically hard to understand the nature of the the proof process in terms of
its original formulation, and the problem of controlling the deduction process
- 1s accordingly exacerbated.

A second characteristic of B-resolution is that it does not require that
the expressiveness of the modal language be restricted. For some cases of
- . restricted quantifying-in, it is possible to find resolution proof procedures
that are similar to those for first-order logic [Farifias del Cerro, 1985]. How-
‘ever, the full use of quantifying-in is important in representing the notion of
“knowing what” an object is.



Finally, B-resolution makes extensive use of semantic attachment to a
partial model of an agent’s beliefs. The advantage of these belief sets is
their conceptual match to commonsense reasoning. The disadvantage is that
in a straightforward implementation, they can cause recursive calls to the
theorem prover, each with a large amount of duplicated information. With
proper indexing techniques, however, we can do away with the recursive calls,
while still retaining the conceptual clarity of belief sets.

There are two other direct, full-language proof methods. Abadi and
Manna [1986] give a set of resolution proof rules for nonclausal modal lan-
guages. The disadvantage of their system is that automated reasoning is
inefficient: the many rewrite and deduction rules lead to a very large and
hard-to-control search space. By contrast, the matrix method of Wallen
[1987] is an ingenious extension of first-order matrix methods which relies
on a modified unification procedure to deal with quantified-in variables. The
matrix method appears to be particularly good at eliminating redundancy
in the search space. The only disadvantage of this method is that it does not
produce any intermediate results that can be used either to guide the action
of the proving process, or as a result of a failed proof.

As developed in this paper, the method of B-resolution is limited to the
modal systems K, K4, and K45. For commonsense reasoning about agents’
beliefs, this seems like an appropriate choice of logics. In particular, we
do not want to assume that all of an agent’s beliefs are true, which would
- necessitate using the knowledge analogues T', 54, and 55. In fact, we could
generate resolution rules for these logics, but that would necessitate a much
more complicated technical development.

1.2 Historical note

The method of B-resolution was originally developed for use with a modal
system whose semantics tied directly to the concept of a belief set: a set
of sentences in some language, together with an inference procedure, that
formed the knowledge base of an agent (see Konolige [1986a)). In particular,
I was interested in knowledge bases in which the inference procedure was
incomplete, so that we could investigate belief sets that were not closed
under logical implication, and which thus formed a better model of resource-
bounded agents. In the limit of infinite resources, the knowledge bases turned
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out to have many of the same properties as the standard Kripke semantics
for knowledge and belief, and this paper is the result of carrying over the
B-resolution techniques to the new semantics.

The original formulation of B-resolution is, to my knowledge, the first di-
rect automatic theorem-proving method for a full-language quantified modal
logic, and the first Herbrand theorem analogue for such a logic.

2 Logical preliminaries

2.1 Epistemic logics

We consider three quantified modal logics that are typically used in reasoning
about belief {see Halpern and Moses [1985]): predicate K, K4 (or weak S4),
and K45 {or weak S5). These are the “weak” versions of 54 and S5 because
they do not support the axiom which says that anything known must be
true. The results of this paper could be extended to the strong versions of
54 and 55, but would require additional technical machinery, complicating
the exposition (see Konolige [1986b]).

The language £ of these logics is based on a standard first-order language
Ly containing function terms. To the symbols of £y we add a new single-
~place term operator o (the bullet operator), and a sequence of single-place
modal operators Bj, Bs, .... The following formation rules are also added:

If ¢ is a formula of £, then so is B;¢.

If ¢ is a function term of Lo, then of is a (1)
term of L.

The indices on the modal operators refer to different agents. Informally, B;¢
means that the agent ¢ believes the proposition expressed by ¢.

Both arbitrary nesting of operators and “quantifying in” (i.e., statements
of the form Jz.B;¢(x) or V. B;¢(z)) are allowed in L. The bullet construction
ot (where ¢ is a term not containing any bullet operators) has a special
significance in this respect: see the following section on semantics. A sentence
is a formula that has no free variables, and whose bullet constructions are all
‘under the scope of a modal operator: thus Jz.P(ez) is not a sentence, but
Jx.BiP(z,ea) is. A modal atom is a formula B;¢; if ¢ contains no variables,



it 1s a ground modal atom. A modal literal is either a modal atom or its
negation.

We will use uppercase Greek letters (T', A, etc.) to stand for denumerable
sets of formulas; if ' = 4y,72,..., then B;" abbreviates B;v,, Biys, ..., and
- B;I" abbreviates ~B;y;, =By, .. ..

2.2 Semantics

The semantics of these logics is the standard Kripke possible-worlds model,
with the inclusion of multiple accessibility relations for the different agents.
A frameis a structure (W, R), where W is a set of possible worlds, and Ris a
set of binary relations (R, Rs, ...) on W. A particular logic will often place
restrictions on the type of relation allowed in frames, e.g., in some epistemic
logics (see below) each R; is transitive.

A model consists of a frame, a special world wy € W (the actual or real
world), a domain D; for each world w; € W, and a valuation function V.
At each possible world, V assigns a value to each term and sentence of the
language. For technical reasons, we constrain the domains of each possible
world to be increasing with respect to the accessibility relation, that is, we
have D; C Dy if for any i, w;jR;wi. V obeys first-order truth-recursion rules;
it also obeys particular rules for the modal operators. We give the rules for
the bullet operator, quantifiers, and modal operators here.

Viwset) = V(wo,?)

V(w;,Va.¢) =t iff for all k € D;, V(w;, $(k/z)) =t )
V(w;,3z.¢) =t iff for some k € D;, V(w;, d(kfz)) =1

V(w;, B;¢) =t iff for all wy such that w;Rawy, V(wg, ¢) =1t

The bullet construction has a special semantics. No matter where it occurs
in a formula, et always refers to the actual individual denoted by ¢, so that
for all w € W, V(w, ot) = V(wp, ).
- The quantifier rules specify that quantification is interpreted in a possible
- world solely with respect to the individuals of the domain of that world. The
notation ¢(k/z), where k is an individual, means the predication ¢ evaluated
for x = k, where x is free in ¢. The rule for modal constructions is standard:
" B;¢ is true at a given possible world exactly when ¢ is true in all possible
worlds accessible through R;.



By having different domains at each possible world, we leave open the
possibility that the set of individuals an agent has beliefs about can be dif-
ferent from those in the actual world. The constraint of increasing domains
means that the agent has to be cognizant of at least the real individuals.
This means that the converse Barcan formula

Vz.Lo(z) D BVz.¢(z) (3)
is valid in these logics.

Different constraints on R; in a frame yield different versions of epistemic
logic. We consider the following variations:

Logic Restriction on R

K none

K4 transitive

K45 transitive, euclidean

‘These three logics (I{, I{4, [{45) have belief as their intended interpretation.
K is the simplest of these, placing the fewest restrictions on beliefs. K4 and
K45 represent various types of introspective properties. In K4, if one believes
something, one believes one believes it (B;¢ D B;B;¢). K45 has this and the
corresponding negative introspection: if one doesn’t believe something, one
believes one doesn’t believe it (~B;¢ D B;—B;é).

By adding the constraint that the accessibility relation be reflexive, we get
the corresponding knowledge versions of these belief logics (T, S4 and $5)
The distinguishing characteristic here is that knowledge must be true (B;¢ O
#). We will not consider these logics here, partly from the philosophical
reason that they are generally not appropriate for commonsense reasoning
about the beliefs of agents (which may, after all, be false), and partly because
they introduce additional technical problems, especially in the derivation of

B-resolution rules.

If V(w,¢) = t, then we write =% ¢. |=,, ¢ is an abbreviation for =% ¢.
If ¢ is true in all models of a logic A, we write =4 ¢ or simply |= ¢ if the
logic is understood. If a sentence or set of sentences has no model in the
logic A, we call it A-unsatisfiable.



2.3 Substitution

Substitution of terms for quantified-in variables is problematic, since it does
not preserve validity. Consider the following example of an agent’s beliefs.

P(m(c))
- BP(m{c)) (4)
Vz.Pz O BPz

We can construct a model as follows. Let P be the property of being non-
Italian, let m(z) denote the mayor of the city z, and let ¢ denote New York.
Suppose the agent believes the mayor of New York is Fiorello LaGuardia (and
not Ed Koch, the actual mayor); it is easy to confirm that all the sentences
are satisfied.

Now if we substitute m(c) for z in the third sentence, the resulting set is
unsatisfiable. The reason is that, although = must refer to the same individual
in all possible worlds, the substituted expression m(c) need not. So even if a
universal sentence is true in a model, some of its instances can be false.

Our solution to this problem is to redefine the meaning of instance by
~ introducing the bullet operator {e) whenever there is a substitution for vari-
ables inside the context of modal operators. In the above example, substi-
tuting m(c) for z yields

P(m(c)) O BP(em(c)), (5)

which is still satisfied by the original model, since em(c) refers to Ed Koch
even in the context of the belief operator.

We revise the normal substitution rule in the following way. Let ¢¢ stand
for the substitution of a for the free variable z in ¢.

vt _ ) Bi(¢3) iftis not a bullet construction
(B;¢)x - { B,((ﬁi) otherwise. (6)

The substitution rule preserves the truthvalue of a formula B;¢ with free
variable z, if the substituted term ¢ has the same interpretation as z in a
model. To see this, let ¢ refer to some individual k in a model m, that is,
V(wo,t) = k. Now the truthvalue of ¢(k/z) (that is, ¢ with = evaluated as k)
with respect to an arbitrary possible world w is the same as the truthvalue of
$%, because V(w,ot) = V(wg,t) = k. Thus B;p(k/z) and B;¢* must have
the same truthvalue, by the truth-recursion rule of (2). From this, we can
prove the following theorem.



THEOREM 2.1 (SUBSTITUTION) Let V(wo,z) = V{wo,t) in a model m.

Then b (k/2) if Em &3

Proof. 'The proof is by induction on the subformulas of ¢. The
interesting case, B;3, has been discussed above.

3 Herbrand’s theorem

We now prove a Herbrand theorem for the epistemic logics. This theorem
is the key to the subsequent resolution system, because it shows how the
unsatisfiability of a set of sentences can be reduced to that of a finite set of
ground instances. A important notion for our development here is that of a
reduction theorem for a modal logic A. Basically, such a theorem shows how.
to reduce the unsatisfiability of a set of modal literals Z to the unsatisfiability
of a set of senfences W whose modal depth is strictly less than that of Z.
For example, consider the simplest case, the propositional belief logic K
for a single agent. It is easy to prove that the set of modal atoms Z =
{B:T',—~B;A} is K-unsatisfiable if and only if for some § € A the set W =
{T’, =6} is K-unsatisfiable. Hence the unsatisfiability of Z is reducible to the
unsatisfiability of W, and the modal depth of W is at least one less than that
of W.

3.1 Reduction theorems for epistemic logics

We prove reduction theorems for the three epistemic logics. First, we show
that the unsatisfiability of a set of literals can be separated into unsatisfia-
bility of the modal or ordinary literals.

THEOREM 3.1 (SEPARABILITY) Let Z be a set of ground Litevals {E, BiTy,
—B1Aq, Bol'y, ~ B, ...}, where ¥ are ordinary. Z is A-unsatisfiable
if and only if one of the sets

¥
BIPh _'BIAI
BaT'y, =By Ay

is A-unsatisfiable.



Proof.  The if direction is obvious. For the other direction,
assume that Z is A-unsatisfiable, and suppose that each of the
subsets above is satisfiable. Let m’ be the model satisfying the
subset B;T';,—~B;A;; m? has a frame that is appropriate for the
logic A. Let w be a new possible world; for each m’, form the
model (m?)’ by substituting w for we in the original model. Now
let m be a model consisting of the union of all (m?)', and let
= . It is easy to show that m satisfies every subset of Z;
further, whatever frame conditions (transitive, euclidean) held of
the relations of m’, also hold of m. Hence Z is satisfiable, a
contradiction.

The separability condition means that modal atoms with different indices
do not interact with each other, nor with ordinary sentences. This kind of
decoupling is not present in the strong logics S4 and 55, as B;¢ implies the
truth of ¢.

DEFINITION 3.1 The bullet transform of a set of formulas W is a set W*
derived from W by replacing all occurrences ot of the bullet construction
with either en(t) (if ot is under the scope of @ modal operator) or n(t)
(if it is not), where n is a function not occurring in W.

The bullet transform replaces the bullet operator with a new (ordinary)
one-place function symbol. This is an operation that gets rid of bullet terms
that are not under the scope of a modal operator after stripping away the
operator in a modal atom. For example, the bullet transform of ¢(ea) A

Big(ea) is d(n(a)) A Big(en(a)).

THEOREM 3.2 (REDUCTION) Let Z be a first-order satisfiable set of ground
literals of the form {L, BiI'1,~B1A,, Byl'2,~ByA,, ...}, where ¥ are
ordinary. Let n be the mazimum modal depth of any sentence of Z, and
let Tt and AL be the subsets of T'; and A;, respectively, containing just
those sentences of modal depth less than n. Then Z is A-unsatisfiable
if and only if for some i and some § € A,

(K)  {Ty, -6}
(K4) {Ti,~6, B} is A-unsatisfiable.
(K45) {T:,-6, BT)~B:AL)®
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Proof. By the separability theorem (3.1), we know that Z is
A-unsatisfiable if and only if for some ¢, {BI';,~B;A;} is A-
unsatisfiable. So we need to show that this latter is A-unsatisfiable
if and only if the corresponding condition above holds. We will
show this for K'45; the other cases are similar and simpler.

In the if direction, assume that {I';, 26, B[}, ~B;Al}* is 45-
unsatisfiable, and suppose that { BT, ~B;A;} is {45-satisfied by
the model m. Now consider the world w of m, accessible from
wy via R;, for which some é € A; is false. Form the model m/’
which is the original model m, but chang wy to w, and let the
function n have the valuation V(w,n(z)) = V(wg,x). It is easy
to show that m' has the same frame condition as m, and satisfies
{T:, -6, B;:T'}, = B;Al}*, a contradiction.

In the only if direction, assume that {B;I';, =B;A;} is K45-
unsatisfiable, and suppose that for every é; € A;, the set {T;, -4,
BT, ~B;A}* is satisfied by the model m’. Because these are
separate models, we can arrange that V(w],n(t)) refers to the
same individual in each model. Now we form a model m that
1s the union of mj,. with the addition of a real world wy, such
that weR;w) and wf,’R,-wf, for every j and j', the domain of we is
the intersection of the domains of w{, and V{wo,t) = V(w{, n(t))
for every term t. The model m satisfies the increasing domain
constraint, has a euclidean and transitive frame, and it can be
checked that |, B;I;,-B;A. Hence {BT;,=B;A;} is K45-
satisfiable, a contradiction.

- A propositional example of the reduction:

{-B-B(pAq),~Bp} is K45-unsatisfiable
{B(p A q),~Bp} is [(45-unsatisfiable
{p A gq,—p} is K45-unsatisfiable

The reduction theorem is essential to the proof method to be developed,
since it relates the unsatisfiability of a set of modal literals to the unsatisfia-
bility of their arguments. Looked at in another way, it is a form of semantic
attechment. Instead of manipulating the modal literals, we attach to their
intended meaning, namely, a proposed set of beliefs for an agent, and ask

10



whether such a set is indeed a possible belief set. If it is not, then the modal
literals must be unsatisfiable.

The version of the reduction theorem we have given reduces the modal
depth of the set under consideration by at least one. This is useful in proving
Herbrand’s theorem and various completeness results, but rather less so when
actually implementing a resolution rule. The full form of this theorem uses
B;T'; and —B;A; in place of B;I", and - B;T"}; a virtually identical proof shows
that the theorem still holds.

3.2 Analytic tableaux and Herbrand’s theorem

We arrive at Herbrand’s theorem by analyzing the epistemic logics with
prenex analytic tableaux, a method with close connections to resolution.
Prenex analytic tableaux are defined in Smullyan [1968], and we give a brief
overview here. Let S be a finite set of sentences in prenex form (all quantifiers
precede other operators). A prenex tableau for a finite set S is a sequence of
sentences starting with 5, and containing instances derivable by the rules:
Vr.¢ dx.¢
A oL
In the existential rule, the proviso is that the term ¢ has not vet been intro-
duced in the tableau.

A prenex tableau for an infinite set S can be constructed by intermixing
application of the rules with the introduction of members of S.

A prenex tableau is closed if some finite subset of its ground sentences is
truth-functionally unsatisfiable. It is provable that the (perhaps infinite) set
of sentences of an open prenex tableau are first-order satisfiable. This yields
a version of the Skolem-Herbrand-Gédel theorem for first-order logic: a set
of sentences in prepex form is unsatisfiable if and only if a finite set of its
instances is.

, with proviso.

For an epistemic logic A, prenex form is the same as in first-order logic,
taking modal formulas as unanalyzed predications. Thus YzB3yPzy is in
prenex form; note that quantifiers which are under the scope of modal oper-
ators are not affected. We modify the definition of closed prener tableau to
. be: some finite subset of its ground sentences is A-unsatisfiable.

We now prove the two key theorems of this section: that the tableaux
rules are sound and complete for the epistemic logics.
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THEOREM 3.3 If a sei S of prenex sentences is A-satisfiable, it has no
closed prenex lableaus.

Proof. We prove this by showing that any partially-constructed
consistent tableaux can be consistently extended by the applica-
tion of the rules. Let S’ be a consistent partial tableaux, with m
a model of 5" and 5. There are three operations that can extend
the tableau: add a new member of S, or apply one of the rules.

Because m is a model of 5, adding an element of S still gives
a consistent partial tableau.

Let ¥z.¢ be a sentence of §’. Then for every element k € Dy,
#(k/z) is true in m. Let % be such that V(wq,?) = k; then by
the substitution theorem (2.1) ¢ is also true in m.

Let dz.¢ be a sentence of 5. Then there is some element
k € Dy such that ¢(k/z) is true in m. Let ¢ be a term which does
not occur in any of the sentences of 5’, and let m’ be a model
which is the same as m except that V(wq,1) = k. Then ¢, is true
in m’, and so are all of S* and S.

THEOREM 3.4 If a (perhaps infinite) set S of prenex sentences is A-unsatisfiable,
then there ezists a closed prenex tableau for (some finite subset of ) S.

Proof. The proof is by induction on the modal depth of 5. We
will establish the result for the system K45; the other systems
are similar.

For ordinary sentences, by compactness there exists a finite
unsatisfiable subset, and Smullyan’s result says that the prenex
tableau for this subset closes.

Suppose that for any K45-unsatisfiable S of modal depth n or
less, there is a finite subset of S for which there is a closed prenex
tableau. Let S’ be a K45-unsatisfiable set of modal depth n + 1,
and assume that there is an open prenex tableau for §’. By a the-
orem of Smullyan {p. 118 of [Smullyan, 1968]), we can extend the

" prenex tableau to an ordinary tableau in which there is an open
 branch with a set of literals {Z, BiI'1, = Bi1A1, Bel's, < B2, .. .},
where the ¥ are ordinary literals.

Because this branch is open, ¥ is first-order satisfiable. Hence,
by the reduction theorem (3.2), for some ¢ and some 6 € A,
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the set {I';, -8, B;I'",~B;A'}* is K45-unsatisfiable. This set has
modal depth less than n, and hence some finite subset of it has
a closed prenex tableau. Therefore for some finite subset of 57,
there is a closed prenex tableaun, contradicting the assumption of
an open tableau for 5’

As an obvious corollary, we have the Skolem-Herbrand-Gédel theorem for
A.

COROLLARY 3.5 A setf of sentences in prenex form is A-unsalisfiable if and
only if a finite set of its instances is.

This result is a necessity if we are to develop complete automatic theorem-
proving methods, since almost all of the methods for first-order logic involve
searching the space of instances for an unsatisfiable subset.

4 B-resolution

Using the results of the previous section, we can now give a resolution method
for the epistemic logics, which we call B-resolution.

4.1 Clause form

We develop B-resolution using a clause form for simplicity of analysis, al-
though a more general nonclausal resolution method is also possible.

Converting to clause form is the same as for first-order logic, with modal
atons having different argument structures treated as if they were different
predicate symbols. Thus B;Vz.P(z), B;Pa, and B;3z.P(z) are all considered
to be different nilary predicates. Modal atoms with n free variables are n-
ary predicates, e.g., B;(P(z) A y.P(y)) and B;(Jy.P(y) A P(z)) are different
unary predicates with the free variable z. Variables quantified under the
scope of the modal operator remain unanalyzed or inert in B-resolution, and
do not interact with variables quantified outside the operators.

There are three steps in transforming a set of sentences S into clauses:
(1) S is converted into prenex normal form; (2) existential quantifiers in the
prenex are eliminated through skolemization; and (3) the matrix is put into
conjunctive normal form.
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A sentence can be converted into prenex normal form by the application
of first-order valid transformations. In skolemization, the prenex quantifiers
are reduced by successively replacing each existential quantifier by a new
function. The resulting sentence is unsatisfiable if and only if the original
set is. To show this, we must show that the replacement of each existential
quantifier does not change the unsatisfiability of a prenex sentence.

THEOREM 4.1 Lel s be a sentence of the form Vx.3y.4, where x is « vector
(perhaps empty) of variables. The sentence s is A-unsatisfiable if and
only if &' = ¥x.¢5%) is, where g is a function symbol of arity |x| not
appearing in s.

Proof. let m be a model of s. We want to show that s is
satisfiable. For every vector k of domain elements from Dy, there
is some element k£ of Dy such that f=,, ,‘g;; If gis a |x|-ary
function not appearing in s, then we can construct a model m’
which is the same as m, and additionally has V(wj, g(k)) = &.

By the substitution theorem (2.1), it must be the case that =
k,g(k)
Pxy

for every sequence k, so m’ is a model of s'.

Let m be a model of . We want to show that s is satisfiable.
For every vector k of domain elements from Dy, =, (ﬁ(x))ﬁ. But
V{(wo, g(k)) = k for some element & € Dy, and by the substitution
theorem we have =, ¢(k/y)X for every vector k. But this means

that = (Jy.4)%, and so = 5.
An example of skolemization:
Vzdy.P(z,y) D Bi32.Q(z,y,2) = Pz, f(z)) D Bi3z.Q(z, e f(z),2)

Note that substitution of f(z) for y in the modal context is done with  f(z).

The skolem transform of a set of sentences .S is formed by putting each
element of S into prenex normal form, then eliminating the existential quan-
‘tifiers using functions not appearing in S. The resultant set of sentences is
unsatisfiable if and only the original set is.

To complete the transition to clause form, we put every matrix into con-
junctive normal form. Additionally, we remove the prenex universal quan-
tifiers (assuming them understood), and replace every quantified-in variable
under the scope of a bullet operator. This does not change the value of these
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variables, since they are already interpreted with respect to the real world.
" To continue the example:

Vedy.P(z,y) 3 B3z.Q(z,y,2) = ~Plz,[(2))V B3z.Q(sz,ef(2), )

Note that in clause form we automatically insert a bullet operator before
quantified-in variables (like ), to distinguish them from variables whose
quantifiers are inside the scope of modal operators (like z).

From the discussion above, we have the following theorem.

THEOREM 4.2 A sentence is A-unsatisfiable if and only if its clause form
18.

4.2 B-resolution

Our resolution method is based on Stickel’s total narrow theory resolution
rule [Stickel, 1985], which has the following form. Let £ be a language that
"embeds a theory T, that is, the axioms of T contain a set of predicates P
of £ (but not necessarily all predicates of £). Suppose there is a decision
procedure for determining a set of ground literals W in P to be unsatisfiable
{(according to T'). Then

Ly v 01

Ly v Oy
: (7)

L,V Cy

CivCaV...VC,, when {L;,La,... Ly} is T-unsatisfiable

is a resolution rule that is sound and complete for the theory T'. This rule
includes binary resolution as a special case, where L; and L, are complemen-
tary literals.

For the epistemic logic A, the reduction theorem tells us when a set of
literals will be A-unsatisfiable. Hence we can rephrase this rule as follows.
Let T' = {m,72,...} and A = {6, 62, ...} be finite sets of sentences. In the
case of ground clauses, we have the {ollowing ground B-resolution rule:
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By v Oy
B,"‘jg V C'Tg

"‘B,‘(S] V G{
=Biby V Cé

(8)

CivVCyV---VC]VCiV ---, when {BT,-B;A} is A-unsat

For particular epistemic logics, the reduction theorem yields:

(K {I, =6} is K -unsat
(K4) {D,-é,,B:T'}* is K{4-unsat
{K45) {T',-é1,BiI',—~B;A}* is K45-unsat

In this rule, we have listed all of the possibilities for the different epistemic
logics, as given by the reduction theorem. For the simplest case, &, only the
clauses with I' and §; are used. For the more complicated logics, we have
used the full form of the reduction theorem, that is, we include all of B;T
and ~B;A.

From the results of theory resolution, we know that this rule is sound.
If, in addition, we are allowed to infer instances of any clause, then by the
Skolem-Herbrand-Gédel theorem for the epistemic logics, it is also a complete
rule.

THEOREM 4.3 The system consisting of ordinary resolution, ground B-
resolution (8), and an instantiation rule for deriving ground instances
of a clause is complete for the appropriate epistemic logic.

Proof. Let S be a set of sentences of £ in clause form. By the
Skolem-Herbrand-Gdédel theorem for the epistemic system A, we
know that there is a finite set of A-unsatisfiable ground instances
of S; call these §”. S is derivable by the instantiation rule. Since
theory resolution is complete, the ground B-resolution rule, to-
gether with ordinary resolution, is complete with respect to $’.
Note that theory resolution normally requires the inclusion of a
factoring rule for completeness; we can omit it here, because we
are dealing with ground instances.
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4.3 Lifting

The B-resolution rule has been given only for the ground case; these rules
- will be complete if we are allowed to derive instances of any clause. Of course,
this is a very inefficient way to do resolution, which is why unification is such
an important concept. In this respect, a general B-resolution rule will be
more complicated than ordinary binary resolution, because there may be no
“most general” unifier covering all possible ground resolutions. For example,
consider the following two clauses:

B;(P(ea) A P(eb))
~B,P(s2) (9)

There are two substitutions for  which yield a resolvent {a/x and b/z}), but
no most general unifier.

We can implement a B-resolution rule when the modal literals contain -
variables by appealing to unsatisfiability under substitutions for the variables.
Since there is no most general unifier, we may need more than one such
substitution to cover all of the ground cases in which the modal literals
are unsatisfiable. Given this, we can state the general B-resolution rule as
follows.

Bm v G
By, v O

~Bi§,V C!
~B;6,V C}, - (10)

(CivVCyV---VCIVCiV--)8, when every ground
instance of {B;T',=B;A}f is
A-unsatisfiable
The completeness of a resolution system using this rule, factoring, and or-
dinary resolution follows directly from the results of theory resolution. Again,
* we can use the reduction theorem to generate appropriate reduced modal sets
for a particular epistemic logic.

There are still several implementation problems to overcome before arriv-
ing at a practical proof method. The major problem is that the B-resolution
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rule is not really a deduction rule, because it is not effective. A second
problem is to find a means of returning a complete set of substitutions that
make the modal literals unsatisfiable in the general B-resolution rule. The
solution to these problems lies in how we check the unsatisfiability condi-
tions. Suppose, each time we wish to do a B-resolution, we start another
refutation procedure using the indicated sets of sentences. Then we intermix
the execution of deductions in the main refutation proof with execution in
the subsidiary ones being used to check unsatisfiability. If at some point a
subsidiary refutation succeeds, we can construct a resolvent in the main refu-
tation. If in addition we use a subsidiary refutation procedure that allows
{ree variables in the input (essentially doing schematic refutations), then it is
possible to subsume many instances of the application of the resolution rules
in one unsatisfiability check. We present the details of an implementation in
the next section.

5 Implementation

The following problems must be solved to obtain an efficient implementation
of B-resolution.

1. There is no decision procedure for unsatisfiability in the quantified
epistemic logics.

2. Any procedure for determining unsatisfiability must be able to deal
with free variables in the input sentences, and return a complete set of
substitutions under which they are unsatisfiable.

3. The search space for B-resolution is exponential in the number of modal
literals. Consider the following example:

B,'?" \' Al
BipV Ay
—-Biq

A1 VAV A;

‘Only the last three clauses are needed for the resolution; indeed, in-
cluding the first clause will not lead to a proof if 4; cannot eventually
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be resolved away. In order to be complete in general theory resolution
rules must be applied to a minimal set of unsatisfiable literals. If there
are n clauses containing one modal literal each, there are 2" possible
B-resolutions that must be tried.

4. The above search space problem is compounded by the presence of
variables, since a given clause may have to be used twice. For example,
there is a resolution of the clauses

Pzv B,‘POIE
—B;(Pea A Peb) (12)
yielding the resolvent Pa V Pb. However, this requires the first clause
to be used twice in the belief resolution rule (8), as follows:

Pav B;Pea
Pbv B;Peb
~B;(Pea A #b)
Pav Pb

5. If there are several clauses with negative belief literals for the same
agent, we may duplicate our efforts in deciding unsatisfiability each
time. Consider again example (11), and suppose there is another clause
with the negative belief literal ~B;{gAp). A resolution using this clause
and the positive belief clauses exists; however, in finding it we duplicate
the work involved in deciding that {p,p D g, ¢} is unsatisfiable.

6. In the rules for 4 and K45, we must repeat all of the modal literals
B;I' and —=B;A. Since these are used again to produce I'* and —§°*,
there is redundancy as we proceed down in modal depth.

5.1 Semantic attachment

We now give a procedure implementing B-resolution which treats the prob-
‘lems just mentioned. The key idea is to replace the unsatisfiability condition
of (10} with a recursive call to the theorem-prover, using as input the ar-
guments of the modal atoms. If the recursive call is successful, then the
resolution rule can be applied. Because it is not certain that the call will

19



terminate, processing of the call must be interspersed with otbher activities
of the theorem-proving process. At any given time, the theorem prover must
“time-share” its attention between ordinary binary resolution and multiple
invocations of the semi-decision procedure. Instead of actually starting a
new instantiation of the theorem-prover, we simply add a context to the new
clauses to keep them separate from the ones already present. This method
has the advantage of allowing structure-sharing among clauses at different
modal levels.

In addition, we structure the semi-decision procedure so that it accepts
free variables in formulas, and eventually returns substitutions covering all
proofs that can be found with instantiations of these variables.

The idea of showing validity or unsatisfiability of a predication by means
of a computation that reflects the intended meaning of the predicate is called
semantic attachment (Weyhrauch [1980]). In belief resolution, we compute
the unsatisfiability of a set of modal literals by performing deductions on their
arguments. This process is a generalization of semantic attachment in two
ways. First, we show the unsatisfiability of a set of modal literals, rather than
a single atom. Second, by allowing variables, we are able to perform many
different instances of semantic attachment at once. Without this ability,
belief resolution would not be efficient in the presence of variables, because
we would have to first chose an instantiation of the modal literals without
knowing whether it would lead to a resolution or not.

5.2 An example

~ Here is a short example to illustrate the basic idea. Assume initial clauses:

1. B;Pa

2. -Pb

3. QazV PaxV B;Pezx

4. =B;(Pa A Pey)V Qy
5 =Qb

Note that we have added a bullet operator to each variable under the scope
of a belief atom. Ordinary resolution work as usual, for example, 2 and 3
can be resolved to yield:

2,3:6. QbV B;Peb
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Clause 4 contains a negative belief literal, and we open a new view in an
attempt to resolve it:

4:7. =PaV-Pn(y) <i/1;Qy>

This is a context for agent ¢, the agent of the belief. The clause is derived
from —~(Pa A Pey); note the substitution of the function n for the bullet
operator. The contezt is < 1/1;Qy >. The first part of the context is the
view 2/1. The ¢ refers to the agent for whom the view was constructed; the 1
is a marker to keep this view separate from others for that agent which are
generated by different negative belief literals. The Qy is the remainder: if a
proof 1s found in the context, it will be returned with an appropriate binding
for y as a deduced clause of the original proof.

We can add the arguments of positive belief atoms to the context, as in
clause 1. The context now contains:

1:8. Pa <1>

Clause 8 has the simple context < ¢ >, because it came from a positive belief
literal and there is no remainder. Clauses 7 and 8 can be resolved, yielding:

7,89. ~Pnly) <i/1;Qy>

In performing a resolution, the views of the resolving clauses are checked. If
they match, the resolution goes forward, and a resulting view is computed.
In general, a match occurs if the views are the same, or if they are the
same except one has an index marker and the other does not. Two clauses
with different index markers do not match, because they come from different
negative belief literals and represent different applications of B-resolution.
Clause 6 has a positive belief literal, so we add its argument also:

6:10. Pn(d) <z#;Qb>

The remainder of the original clause (6) containing the positive belief atom
is the remainder of the context. Note that the bullet operator was replaced
with the same function n as in clause 1.

Clauses 9 and 10 resolve, yielding a null clause:

9,10:11. B </1;QbV Qb>
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Note that we have performed the substitution &/y on the remainder as well
as the body of the clause, and that we have amalgamated the remainders.
Now we return QbV Qb (= Qb) as the result, with the null view in its context.

11:12. Qb

Clauses 5 and 12 resolve to give the null clause with the empty view,.com—
pleting the proof.

5.3 Contexts

Formally, a context is an annotation on a clause. A context < v:r > is
composed of a view v and a remainder r. The view is a sequence of agent
indices, each with an optional numerical marker. The remainder is a clause.

We define a resolution procedure in the standard way. Starting with an
initial set of (annotated) clauses, we add clauses to the set by the application
of the rules below. The proof terminates when the null clause, with an empty
annotation, is derived.

The input sentences to a resolution have empty contexts. There are two
- operations which add the arguments of belief literals to a resolution.

Attach a positive belief literal. Let
BiovC <uvyr>
be a clause. Then we can add the clause
¢* <v,i;rvVC >
Attach a negative belief literal. Let
—BipVC <uvr>
be a clause. Then we can add the clause
—¢* <wv,fn;rvC >,
where n is a number not appearing in the any other view.
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_ There is also an operation which takes a null clause and a context, and
adds a clause that is the result of performing a B-resolution.

Returning a remainder. Let
B <v,:4C>
be a null clause. Then we can add the clanse
C <v>
to the resolution.

Finally, we define a resolution rule that subsumes both ordinary and B-
resolution. To do this, we must first define when two views match. In general,
there will be multiple (but finite) ways that views can match, and the match
will depend on which epistemic logic is involved. We give a nondeterministic
procedure M4(v,v’) that returns a match for v and v" with respect to the

logic A, or fails if there is no such match.

Procedure M4(v,v'). A nondeterministic, recursive procedure.

1. v, v both empty return the empty view

2. v or v’ empty, but not both fail

3. v=u,ifn, v =u,i/n return M4(u,v'),i/n

4. v=u,i, v = ifn return Mu(u,u'),2/n

5, v=u,i, v =1 return M4(u,u’),?

6. v=u,z, v =u, i1 return M {u,v'),i,7 K4, K45 only
. v=u,ifn, v =u,i,1 return Ma(u,u’),z,1/n K45 only

All of the conditions in this procedure are meant to be applied nondeter-
ministically, rather than in sequence. The conditions are also meant to apply
if we switch v and v'. Note that the only difference for K4 and K45 is in the
last two conditions, where views at different modal levels are matched.

The resolution operation can now be defined.

- Resolution. Let
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LvC <uovr>
L'vg <o >

be two annotated clauses, let & be a most general unifier of the com-
plementary literals L and L/, and let M4(v,v’) = u. Then

(Cvae <u,(rvr)d>
is a resolvent of the original clauses.

These rules faithfully implement the B-resolution rule and ordinary res-
olution. When used in conjunction with factoring, they form a complete
method for the epistemic logics.

5.4 Controlling the search space

The implementation problems mentioned at the beginning of this section
are to a great extent alleviated by the mechanism of contexts and semantic
attachment.

1. The attachment rules split each possible B-resolution into a sequence
' of effective steps. These steps may be interspersed with other activities
of the theorem-prover, including ordinary resolution.

2. The use of remainders in a context allows a schematic proof within
views, so that free variables in the input can be tolerated. Separate
proofs are found whenever there is no unifying instance of the input
variables that allows a single schematic proof. Consider again example
(9). Applying the attachment rules, we get:

1. B;(P{ea) A P(eb))

2. -B;P(ez)
2:3. -Pn(z) <ifl1>
1:4. Pn{a) <i>
1:5. Pn(b) <i>

There are two proofs, one with a/z and one with b/z.
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3. We do not need to separately consider all possible combinations of
modal literals that could lead to B-resolvents. The structure of the
contexts takes care of this: only the remainders of those clauses that
participated in the proof are returned in the result. Consider again
example (11). We add all of the positive and negative belief literals in
their proper contexts. The resolution looks like this:

1. B{'f‘ vV Al
2. B,'pV AQ
3. BipDyg)Vv Az
14, _1B,'q
1:5. r <1;A4; >
2:6. p <13 A2 >
37, —-pVyg <1;A3 >
6,7:8. ¢ <23 A2V Az >
4:9. —gq <ifl>
8,9:10. N <t/l; A2 V Az >
10:11. Ag \'% A3

Two resolutions have yielded the null clause in context ¢/1, returning
the result A V As. Although the belief literal of the clause [S]r Vv A4,
was used fo generate a new clause, it was never used in the proof.

4. Although several instances of the same clause may be needed to form
a B-resolvent, we need only add its belief literal once to the view.
Consider again example (12). By attaching the two belief literals, and
performing two resolutions in the view {i/1;, we get:

1. Pz V B;Pezx
2. =B;(Pea A Peb)
1:3. Pn(x) <t Pz >
2:4. =Pnfa)V-Pn(b) <ifl>
3,4:5 - Pn(b) < 1/1; Pa >
3,5:6 | <1ifl;PaV Pb>
6:7 PaV Pb

This is a particularly nice result, since the necessity of using multiple
copies of a clause in resolution gives rise to nasty control problems.
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5. We have eliminated the redundancies caused by performing the same
deductions on the arguments of positive belief literals in different resolu-
tions. The interesting point to note here is that we need attach a belief
literal only once, and it will participate in all possible B-resolutions.
The context acts as a deductive testbed in which we try to show differ-
ent combinations of belief and nonbelief are inconsistent for the agent.

5.5 Heuristic control

We have investigated several refinements of the rules that do not maintain
completeness, but may be useful heuristic methods for controlling the size of
the search space.

The first is to limit the depth of recursion of contexts. In a particular
problem domain we can often judge whether or not it is useful to reason
about agents reasoning about agents reasoning about agents ...and so on.
By refusing to open contexts that are embedded beyond a certain depth,
we can control inferences about nested reasoning. More fine-grained control
is also possible, if we know that certain types of nested reasoning will be
more useful than others. For example, if introspective reasoning (an agent
reasoning about his or her own beliefs) is not required then we can refuse to
open any context for an agent z that that contains multiple occurrences of ¢
in its view. '

A second method of control is to integrate the rules into a set-of-support
strategy. The most obvious method is to open a view only for negative belief
literals in the set of support. The rationale is that we often have a large
number of facts about an agent’s beliefs, and we are trying to prove from
these that the agent has some other belief. A negative literal —B;¢ will
appear in the set of support when we are trying to prove that agent 2 has
the belief ¢.

Unlike in ordinary resolution, this set-of-support strategy is not complete
- because it does not permit inferences about lack of belief. For example, we
cannot infer —B;p from Bi(p O ¢) and ~B;q, because there are no negative
* belief literals in the set of support.
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5.6 A theorem-prover

The context rules for all the epistemic logics have been implemented using
a nonclausal connection-graph theorem prover developed by Stickel [1985].
In addition, we have incorporated theories of common belief, and a simple
modal form of the situation calculus {McCarthy and Hayes {1979]) as a logic
of time. We have derived an automatic proof of the Wise Man puzzle that
llustrates these ideas, showing the interaction between belief, action, and
time. The proof is conceptually simple and easy to follow. Recently, we have
added a nonmonotonic component to the prover, and used it to axiomatize a
theory of speech acts (see Appelt and Konolige (1988]). The prover functions
efficiently in this fairly complex axiomatic domain.

6 Discussion

We are interested in general methods for finding resolution proof procedures
for epistemic logics that are useful for commonsense reasoning. As this paper
shows, one such method is to prove a reduction theorem for the logic. The
nature of the reduction is apparent in the resolution rules, where unsatisfi-
ability of a set of modal literals is reexpressed in terms of unsatisfiability of
their arguments. We believe that such resolution methods are a natural and
conceptually transparent means of finding refutations. A large part of the
advantage comes from being able to strip off the modal operator and perform
deductions on its arguments.

For the epistemic logics, reduction theorems are available. It is not clear
that reduction theorems will always be provable for a modal logic. For ex-
ample, if we add a common knowledge operator to an epistemic logic (see
Halpern and Moses [1984]), the resulting system is much more complicated,
and it is an open question as to whether a reduction theorem exists.

Temporal logics are another important class of modal systems. Abadi
and Manna [1986] and Farifias-del-Cerro {1985] have both defined resolution
systems for propositional temporal logics, and Abadi and Manna have ex-
tended theirs to the quantified case. It would be interesting to try to use
the techniques of this paper to formulate an alternative resolution system for
temporal logic, and compare it to the others.
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