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Abstract

We examine the task of matching images of a scene when they are taken from
very different vantage points, when there is considerable scale change, and when
the image orientations are unknown. We use the linear structures in the scene
as the basis of our correspondence procedure. This paper considers the problem
of describing the linear structures in & manner that is invariant relative to the
variations that can occur among images, and discusses 2 method of finding the best

description of the linear structures.



1. Introduction

When the human visual system is presented with two views of a single scene, it
determines the relative viewing positions of the two images and brings the latter into
correspondence. That is, the relationship of each image to the scene is understood
so that both images can be used as information sources for further processing. This
human ability functions well over a wide range of viewing positions and conditions.
It is this ability to place two very different views of a single scene into correspondence

that we address in this paper.

We should draw a distinction between two forms of the image correspondence
task. Traditionally, image registration has been a task undertaken by photogram-
metrists. One application involves registering an image to a map so that new in-
formation, present in the image, may be transferred to the map. Another is the
registration of the two images of a stereo pair so that disparity information can be
extracted. In each of these tasks the two images, (or, in the first instance, the image
and the map), are similar in terms of both their viewing position and their scale.
The techniques used for registering the two images are point-based. A feature point
in one image is matched to the same feature point in the other image. In automated
systems this is achieved by selecting a small window about the feature in one image
and then correlating this window with one in the second image. If there is little
distortion or occlusion, this technique performs well; it has become the basis of

current automated image-registration systems.

The research reported herein was supported by the Defense Advanced Research Projects Agency
under Contract MDA903-83-C-0027 and by the National Aeronautics and Space Administration
under Contract NASA 9-16664. These contracts are monitored by the U.S. Army Engineer
Topographic Laboratory and by the Texas A&M Research Foundation for the Lyndon B. Johnson
Space Center.



The other form of the image correspondence task seeks to find the relationship
among views that differ widely in vantage point, scale, etc. We will refer to this as
the correspondence task, and use registration as the name for the form of the task
outlined above. In correspondence tasks there is significant distortion between the
images, the scale may differ and may not even be constant across a single imagé,
as is the case in oblique aerial imagery, occlusion is common, and the response
of the various sensors to a single feature differs greatly. Feature point matching,
as used in image registration, is prone to error. However, feature point matching
is not the only means of placing images into correspondence. It appears that the
human visual system makes use of nonpoint features, such as linear structures and
extended landmarks. The aspects of our investigation reported here utilize the

linear structures of the images as the prime elements for achieving correspondence.

In classifving the methods that could be employed to find linear structures in
images, we draw a distinction between techniques that use semantic information
and those that do not. H, for example, we apply a road operator to locate some
of the linear structures in an image, that operator has had built into it semantic
knowledge about the appearance of roads. We could proceed in this manner and
build comparable operators for all the scene objects that manifest themselves as
linear structures in images. Alternatively, we could seek to find the linear structures
in an image without “identifying” their nature. In this case, we identify the image
behaviour interpreted by us as a linear structure without knowledge of the world
objects that gave rise to that structure. We choose this latter course because we
wish to establish the correspondence among images without first having to identify

the scene objects.



The correspondence task is carried out in three stages: we must find the linear
structures, we must build their descriptions and, finally, we must match these
descriptions. The details of the first stage is reported in Fischler and Wolf [1].
In this paper we explain how those procedures are employed in the correspondence
task. We present a detailed account of our implementation of the second stage -
pamely, building structure descriptions — along with an outline showing how these

descriptions are to be used in the final matching stage.

2. Finding the Linear Structures

Descriptions of the semantically {ree procedures we use to find linear structures
in images can be found in Fischler and Wolf[1]. In essence, these procedures first
find those pixels whose intensity levels are local maximums and minimums, then
cluster such pixels and identify the minimal spanning tree for each cluster. The
long paths in each of the spanning trees are foﬁnd, whereupon these form the basis
for the linear structure reported by the procedures. The results of applying these
procedures are shown in Figures 1-4. Figure 1 is & natural-color oblique view of
the Eel river in northern California; Figure 2 is a vertical infrared view of the
same scene. Each was scanned through red, green, and blue filters; the results of
the procedures for finding linear structures in each of these separation images are
shown in Figures 3(a),3(c),3(e) and 4(a),4(c),4(e). In addition, the red, green, and
blue separation images were combined into images of hue, saturation, and intensity;
these were also processed to find the linear structures contained in them. The results

are shown in Figures 3(b),3(d),3(f) and 4(b),4(d),4(f).



Fligure 1. Oblique Natural-Color Image of the Eel River

Figure 2. Vertical Infrared Image of the Eel River

These separation images differ appreciably in their linear structure. Certainly
no one separation image can be selected as providing a complete delineation of

the river. The philosophy we adopt is to view the original image from as many
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Figure 3. Linear Structure in the Oblique Image
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Figure 4. Linear Structure in the Vertical Image

perspectives as possible, obtaining the linear structures as seen from each of these.
That is, we look for structures in hue, in the green spectral band, and so on. Of
course, the hue image is derived from the red, green, and blue images, and contains
only redundant information, but this presentation of the information may show

structure that was masked in other presentations. In this sense, the additional
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Figure 5. Linear Structure in the Composite Oblique Image
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Figure 8. Linear Structure in the Composite Vertical Image

perspectives provide new information on which the linear-structure finders can
act. The results of combining the linear structures extracted in all the various
perspectives are shown in Figures 3(h) and 4(h). Clearly, some of this structure
comes from shading effects rather than from physical structure in the scene. We

need to separate the real physical structure from all else.
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Figure 7. Structure Descriptions

Figures 3(h) and 4{(h) were obtained by adding the binary images produced by
the linear-structure finders. Consequently, in the combined image the values are
greater than one at those pixel positions where linear structure was seen in more
than one separation image. We treat this combined produce as a new “grey-level”
image and, once again, apply the linear-structure finders. The results obtained from
applying these procedures to Figures 3(h) and 4(h} are depicted in Figures 5(b) and
B6(b). Figures 5(a) and 6(2) show an intermediate result before we cull short struc-
tures. For each of the structures in Figures 5(b) and 6(b), we calculate the average
“intensity”, that is the average number of original separation images exhibiting that
linear structure. Figures 5(c¢),5(d),5(e),5(f),5(g),5(h) and 6(c),8(d),6(e),8(1),6(g),6(h)
reveal which segments would remain if we thresholded the “intensity” values at 1,

1.5, 2, 2.5, 3, and 3.5, respectively.

We build a description of the linear structures from one of these images. The

image we use will depend on the final matching procedure. If we wish to attempt
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to first match the “strongest” structures we use the image resulting from 2 high
threshold. On the other hand, if we wish to match the complete structure, the
unthresholded image would appear to be more appropriate. In the next section,
where we discuss the nature of the structure description, we use as examples
the foregoing two extremes. In the case of the oblique image, we have used the
“intensity” image at a threshold of 3.5 (Figure 7a), while for the other case, the

vertical infrared image, we employ the unthresholded image (Figure 7b).

3. Déscribing the Linear Structures

The means used to describe a linear structure is not independent of the use to
which this description will be put. A description that makes it possible to reproduce
the structure is different from one that is sufficient to recognize it. As matching is
our goal, we want a description that is general enough to be unaffected by noise in
the data, but specific enough to distinguish among structures that the human visual
system would classify as different. To the extent feasible, the description must be
invariant with respect to the variations that can occur in the data. Specifically, we

want the deseription to be independent of orientation, scale, and vantage point.

Our matching process will compare graphs of symbolic descriptions. We will use
as little metric information as possible. Consequently, the descriptions we employ
are symbolic ones, the primitive entities in each of which have qualities that are
themselves symbolic. For example, a primitive may be a straight-line segment whose
properties, such as an intersection angle (with some other primitive), have values

acule, near-colinear, etc. rather than a value in degrees.
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The primitives we have chosen to use are straight-line segments, ares of circles,
and model-less, that is, data we prefer to describe as indescribable, data for which
the data set itself is the most apt description. The choice of these few primitives
stems from the observation that human description of linear structures seems to be
based on curves and straight lines — moreover on whether adjoining curves curve
the same or opposite ways and whether adjoining pieces of the structure intersect
in particular ways. It is also a fact that humans find certain parts of the structure

too difficult to describe, and assign them some generic term like “wiggles”.

Selection of the description primitives is only half the task of description
building. We need to be able to divide the linear structure into parts and assign
a primitive to each. Usually the task of dividing the linear structure into parts
and describing each of these parts has been handled as two relatively independent
processes in which partitioning has preceded parts description. The difficulty with
this approach is that some characterization of the breakpoints between parts has to
be found. Generally, this characterization is based only on local properties of the
linear structure, even though neighborhood information or local inhibition may be
employed so as to benefit from more broadly based information. In this respect, the
task of describing a structure in terms of its primitive parts appears to have been
replaced by the more difficult undertaking of describing breakpoints. OQur concern
is to find the “best” description without first having to find the “best™ subdivision.
Furthermore, we would like “best” to be defined in terms of a global criterion rather

than local properties of the structure.

The adi'antage of defining best in terms of a local criterion is that many can-

didates for the definition of “best” spring to mind. The disadvantage of defining
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“best” in a global sense is the lack not only of likely definitions, but also of
computationally effective algorithms for finding this optimal solution. However,
a description that views the data from a “gestalt” perspective seems more likely to
be independent of image orientation, scale, and vantage point than one that applies
local data measures to define the optimal description. We define best description, as
the one that minimizes the number of symbols needed to encode the linear structure

in terms of our description primitives.

4. Minimal Encoding

The need to match data to description primitives is a central aspect of decision
theory and pervades artificial intelligence research. It is a human's ability to
abstract data in terms of descriptive models that distinguishes human information
processing from its electronic namesake. Effective data abstraction is a balance
between two competing requirements. On the one hand a descriptive model must
fit the data adequately, while, on the other, the descriptive model must not be
needlessly complex. The criterion we use to select among competing descriptions is
based on the work of Georgeff and Wallace [2], in which the description considered

“best” is the one that can be encoded in the fewest symbols.

Suppose we wish to send data to some receiver so that he can recreate the
data to some preselected level of resolution. The sender and receiver have agreed
on a language for this communication that consists of a set of primitive elements.
What is the most efficient encoding of the data; which message has the minimal

encoding length? Consider the example of sending a message that describes a linear
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structure. The latter can be thought of as a list of £ and y coordinates. Let
us further supposé that the language of communication contains three primitives:
straight-line-segments, arcs-of-circles, and model-less-segments. Is it more efficient
to send the data as a single model—less-segment primitive, that is, as a list of (z,y)
coordinates, or might it be more efficient to describe the data by one or more of the
other primitives, specifying sufficient information to describe how the actual data
differ from the primitives?

The message can be viewed as a list
((MI:DI)1 (M21D2)) "') r

where Af is the specification of the primitive, D the specification of the data in
terms of the selected primitive M. Let us consider an example. Suppose we have
a data set that approximates a straight-line segment. We could communicate this
by specifying a straight-line-segment primitive M, where M consists of a code for
the straight-line-segment primitive and parameters that specify the actual straight
line segment. These parameters might be the endpoints of the line. We also need
to specify the actual data in terms of this primitive M. The data specification D
might, for each data point, specify its coordinates as a distance along the line (from
its centre) and the perpendicular distance from the point to the line.

As the expected distances from the points to the line are small, we shall choose
an encoding of these distances so that the more probable of these, the smaller
distances, are encoded in fewer symbols (or bits) than those that are less likely. In
the actual examples we shall describe later, we assumed a Gaussian distribution for

these perpendicular distances and we encoded optimally for that distribution. The
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optimal encoding length is just the negative logarithm of the probability, i.e., the
function denoted as “information” in information theory.

If we have a small number of data points fewer symbols may be needed to
communicate the data as a list of points; if, however, there is a large number of
data points that exhibit behaviour consistent with a primitive, it will probably be
cheaper to encode this data set as the primitive and then specify the data in terms
of that primitive. Of course we are not just comparing the encoding of all the data
with either one primitive or another. It might be more efficient to encode the data
as a few primitives, with each primitive “explaining” a different part of the data.
The encoding we select is the one that is globally best in explaining all the data.

A way of viewing the message form outlined above,
((MliDl)! (M2:D2): ) 1

is to look upon A as the overhead of introducing another primitive while D
represents the quality of the fit between the data and the primitiv_e. Of course, since
different primitives have different M's, M also weights each primitive's efficiency
for encoding data. In comparing message length we are balancing the complexity
introduced by adding an extra primitive to the description of the data against the
quality of fit between the assembled primitives and the data values.

Although the above discussion focused on encoding messages for communica-
tion, we use minimal encoding length as the criterion for finding the best description
of a linear structure — without any interest on our part in actually transmitting the
data. This of course means that we only have to decide how many symbols would

be used if we were to encode the linear structure in a particular manner rather
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than actually doing the encoding. We can use the results of information theory to
determine the optimal encoding length without even having to understand what
the optimal encoding scheme is. That is, information theory gives us an operator,
or a measure, that we can apply to a description to determine how many symbols
we would need if we were to encode it optimally, without any consideration of the

actual encoding scheme and without the need to do the encoding.

Let us consider our application, encoding linear structures in terms of three
primitives: straight-line-segments, arcs-of-circles, amd model-less-segments. We will
assume that the data are specified on a NxM grid, and that the noise in the data will
induce a Gaussian distribution of the data points around the generating primitive.
Given that all grid points are equally likely, the cost in bits of encoding a grid point
is logIN + logM, (log is to ihe base 2). Now consider the three alternative ways of
encoding r data points (using one primitive only).

Model-less-segment:

We need a code to specify that the primitive being used is the model-less-
segment. As there are only three primitives, and we assume that they are all equally
likely, it costs log3 bits to specify the code. Specification of the data in terms of
this primitive will require in turn that we specify r grid coordinates, that is, a cost
of r{logN + logM) bits.

Straight-line-segment:

We can specify the straight-line-segment primitive by specifying the endpoints
of the line segment. This costs 2(logN + logM) bits. In addition, the cost of
specifying the code for this primitive is log3. To specify the data in terms of

this primitive we will, for each data point, specify a distance along the line and
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the perpendicular distance from the point to the line. I the line segment is of
length / (in grid units) then, to specify r distances, if we assume that all distances
are equally likely, will cost rlogl! bits. If it is also assumed that the data points
have a Gaussian distribution about the primitive model, the cost of specifying r
perpendicular distances is

1 =42
Z —Iog( eu*) '
rpts Vero

where d is the perpendicular distance from the point to the line, and o the standard

deviation associated with the distribution. When the above expression is expanded,
the sum over the d’s is just the sum of the residuals squared that is calculated when
the line is fitted to the data by least-squares methods.

Arcs-of-circles:

We specify the arcs-of-circles primitive by specifying the endpoints of the arc
and one other point on the arc. This costs 3{(logN + logMf) bits, while the cost of |
specifying the code for this primitive is log3 bits. To specify the data we use the
same scheme as we did for the straight-line-segment primitive,

Using these costing functions and a search algorithm that examines the various
ways for partitioning a linear structure into primitives, we find the best description

of that structure.

5. Results

The results of using the foregoing procedure on some of the linear segments
found in Figures 1 and 2, (and shown in Figures 7(a) and 7(b)), are depicted in the

remaining panes of Figure 7. From Figures 7(a) and 7(b) we have selected some
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linear structures. The selected structures, which form the main course of the Eel
river, are shown in Figures 7(c) and 7(d). Our interest is in determining whether the
description built from one image is the same as that from the other. Of course, in
the final version of the structure builder we would need to handle all the segments
simultaneously, but this will necessitate considerable improvement in the search

algorithm to keep computational costs down to a reasonable level.

Figures 7(e) and 7(f) show the primitives returned. The arc of circles are shown
as full circles to improve readability. In Figures 7(g) and 7(h) the primitives have
been overlaid on the data to show the quality of fit. In assessing these results,
one should keep the purpose of this description in mind. We want to extract a
description of the linear structure in terms of lines and curves, in terms of the
manner in which parts intersect (acute angles, near-colinearity, etc.), in terms of
relative curvature (tight curves, gentle curves, and the like), and in terms of the
sequencing of parts in the structure. Given that the two images are viewed from very
different vantage points, that the scale is quite different (not even constant in one
image), that one image was taken in the infrared band and one in the visible band,
that the images were taken one-and-a-half years apart during different seasons,
and that no semantic information was used in the processing, the closeness of the
resulting descriptions is noteworthy. This points to the usefulness of processing
the data in the above manner; namely, the method of finding the linear structures;
the primitives used to encode the structure; and the encoding-length measure as a

criterion for best description.

Figure 7 shows the results obtained with real data. Similar results have been
obtained in experiments that employ other real data sets. Justification of the

15
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Figure 8. Encoding of Synthetic Data

melhod, however, requires further extensive experimentation. To better understand
the behavior of the description builder we include an example using synthetic data.
The data points are shown in Figures 8(a) and 8(b). In Figure 8(b) one extra data
point has been added to those shown in Figure 8(a). The resulting descriptions are
shown in Figures &(c) and 8(d) and overlaid on the data in Figures 8(e) and 8(f).
The addition of one critical point alters the description, an effect not unknown in
the human visual system. The resulting descriptions seem to match those perceived
by humans when they are presented with Figures 8(a) and 8(b). While we could not
claim that minimal encoding is the criterion used by the human visual system for
description building, we note that this criterion conforms to the type of behavior
we would want to achieve if we were modeling the visual system. Of course, if the

resultant description is sensitive to every addition or deletion of a data point it is of
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little use. In general, the minimal-encoding-length description appears to be stable

with respect to data changes, except when “critical” points are added or deleted.

6. Matching the Descriptions

If the description we obtain from the description builder characterizes the
data and is invariant with respect to orientation, scale, and vantage point, the
burden of matching descriptions is lightened considerably. It is our intent to match
descriptions at the symbolic level, to represent the descriptions found by minimal
encoding as graphs of symbolic entities, and to match those graphs on the basis
of their structure. Of course, it is unlikely that the graphs derived from different
images will match perfectly. Nevertheless, from a prospective match we can find
correspondences in the original images, and calculate the camera transformation

between the images.

This procedure allows data in one image to be transformed into the other. It
means that we can transform a linear structure found in one image into the other
image. For those parts of the graph where there is a mismatch we can ask the
question: how would the linear structure that is associated with the mismatch be
encoded if it were first transformed into the other image and then encoded? In this
manner we can attempt to explain the graph mismatches. If we cannot explain the
mismatches we should consider another match of the graphs. Through this process
of hypothesis and verification, we seek to avoid acceptance of a transformation that

does not explain “all” the data.
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7. Conclusion

Having found the linear structures in an image, we are faced with two major
tasks before we can use these structures to find the correspondence between different
images of a scene. We need to be able to describe these structures in a way that is
independent of the variations that can occur between the images, and we need to
he able to match these descriptions to find the relationship between the images.

In considering structure description we show that the usual technique of divid-
ing the structure into parts and then describing the latter can be replaced by a
procedure that finds the “best” description of the data on the basis of a global
view of that data. This technique simultaneously divides the structure into parts
and describes them. “Best” is defined as the cheapest encoding of the data when
we consider the trade-off between the quality of explanation of the data and the
complexity of that explanation.

This approach produces a description of linear structures that appears rela-
tively insensitive to the vantage point, scale, and orientation of the original images.
It may prove to be a description that enables easy matching, and hence an effective

approach to solving the problem of image-to-image correspondence.
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