
MDVA: A Distance-Vector Multipath Routing
Protocol

Srinivas Vutukury, J.J. Garcia-Luna-Aceves

Abstract—Routing protocols using the Distributed Bellman-Ford (DBF)
algorithm converge very slowly to the correct routes when link costs in-
crease, and in the case when a set of link failures results in a network parti-
tion, DBF simply fails to converge, a problem which is commonly referred to
as the count-to-infinity problem. In this paper, we present the first distance
vector routing algorithm MDVA that uses a set of loop-free invariants to
prevent the count-to-infinity problem. MDVA, in addition, computes mul-
tipaths that are loop-free at every instant. In our earlier work we shows
how such loop-free multipaths can be used in traffic load-balancing and
minimizing delays, which otherwise are impossible to perform in current
single-path routing algorithms [15].

I. INTRODUCTION

Routing protocols construct tables at each node that specify
for each destination the next-hop to use for data packet forward-
ing. It is required that the routing tables computed by them be
free of loops when the network is stable. In dynamic environ-
ments, a more stringent requirement is that the routing tables be
loop-free not only when network is stable but at every instant
because, loops even if temporary can rapidly degrade perfor-
mance. In our recent work [15], we described a load-balancing
routing framework to obtain “near-optimal” delays, a key com-
ponent of which is a fast responsive routing protocol that de-
termines multiple successor choices for packet forwarding such
that the routing graphs implied by the routing tables are free of
loops even during network transitions. By load-balancing traffic
over these multiple next-hop choices, congestion and delays can
be significantly reduced. Our goal in this paper is therefore to
develop a distance-vector routing algorithm that is suitable for
implementing near-optimal routing as described in [15].

Though routing is a very old problem in computer net-
works, most of the solutions to date are unsuitable for load-
balancing and implementing the near-optimal framework men-
tioned above. The widely deployed routing protocol RIP pro-
vides only one next-hop choice for each destination and does
not prevent temporary loops from forming. Cisco’s EIGRP [1]
ensures instantaneous loop-freedom but can provide only a sin-
gle loop-free path to each destination at any given router. The
link-state protocol OSPF offers a router multiple choices for
packet-forwarding only when those choices offer the minimum
distance. When there is fine granularity in link costs metric, as in
the case of optimal routing, there is less likelihood that multiple
paths with equal distance exist between each source-destination
pair, which means the full connectivity of the network is still not
used for load-balancing. Also, OSPF and other algorithms based
on topology-broadcast (e.g., [13], [10]) incur too much commu-
nication overhead when link costs change frequently. Also they

This work was supported in part by the Defense Advanced Research Projects
Agency (DARPA) under grants F30602-97-1-0291 and N66001-00-1-8942.

Srinivas Vutukury is with the Computer Sciences Department and J.J. Garcia-
Luna-Aceves is with the Computer Engineering Department at University of
California, Santa Cruz, USA.

do not provide instantaneous loop-freedom which is desirable
especially when on-line link-cost measurement is used.

Several routing algorithms based on distance vectors have
been proposed in the literature ([7], [8], [9], [11], [16] to name
a few). However, with the exception of DASM[16], all of
them are single-path algorithms. A few routing algorithms
have been proposed that use partial topology information (re-
fer [6], [12] and the references therein) to eliminate the main
limitation of topology-broadcast algorithms; however, these al-
gorithms are not loop-free at every instant. Recently, we intro-
duced MPDA [15], which is the first routing algorithm based
on link-state information that construct multipaths to each des-
tination that are loop-free at every instant. In this paper, we
present a new routing algorithm MDVA (Multipath Distance-
Vector Algorithm), which is the first distance vector algorithm
that uses the loop-free invariants introduced in [15], solves the
count-to-infinity problem and computes multipaths to destina-
tions. We provide formal proofs for the safety and liveness prop-
erties of MDVA, and compare its performance to other routing
algorithms through simulations.

The paper is organized as follows. In Section II we discuss
the main convergence problem facing a typical distance-vector
algorithm and outline a solution that addresses those problems.
Section III describes MDVA and Section IV provides the cor-
rectness proof for the algorithm. A performance comparison
through simulations is provided in Section V. Section VI con-
cludes the paper.

II. OVERVIEW OF THE APPROACH

A. Problem Formulation

A computer network is modelled as a graph
���������
	��

,
where

�
is set of nodes (routers) and

	
is the set of edges

(links). Let
��

be the set of neighbors of node � . The problem
consists of finding the successor set at each router � for each des-
tination � , denoted by �
��� ��
 , so that when router � receives
a packet for destination � , it can forward it to one of the neigh-
bor routers in the successor set �
� . By repeating this process
at every router, the packet is expected to reach the destination.
If the routing graph � � � , a directed subgraph of

�
, is defined

by the directed link set � ����������� � � �"!� �#�$�%�'& , a packet
destined for � follows a path in � � � . Two properties determine
the efficiency of the routing graph constructed by the protocol:
loop-freedom and connectivity. It is required that � � � be free of
loops, at least when the network is stable, because routing loops
degrade network performance. In a dynamic environment, it is
desirable that � � � be loop-free at every instant, i.e., if �
� and
� � � are parameterized by time (, then � � � � (� should be free of
loops at any time (. Observe that if there is at most one element
in each �
� , then � � � is a tree and there is only one path from

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2001 2. REPORT TYPE

3. DATES COVERED
 00-00-2001 to 00-00-2001

4. TITLE AND SUBTITLE
MDVA: A Distance-Vector Multipath Routing Protocol

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Santa Cruz,Department of Computer
Engineering,Santa Cruz,CA,95064

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

TABLE I

NOTATION

�
Set of nodes in the network��

Set of neighbors of node �

�
� Next-hop choices at � for destination �
� � � Routing graph implied by the �
� of destination �)
� Distance of node � to � as known to �*
+ Cost of link

� � �-,.�)
� + Distance of node
,

to � as reported by
,

to �/0)
� Feasible distance is an estimate of
)
�12)
� Distance to � reported by node � to its neighbors

�)
� Best distance to � through �
�3 ��
� Set of neighbors that are waiting for replies4 � (� A bird’s view of the network at time (5768 � (� Distance of node � to � in
4 � (�9 6: � (� Cost of link

� � �-,.� in 4 � (�

any node to � . On the other hand, if each �
� has more than one
element, then � � � is a directed acyclic graph (DAG), and has
greater connectivity than a simple tree and therefore enabling
traffic load balancing.

B. Solution Strategy

Given that there are potentially many directed acyclic graphs
for a given destination in a graph, a question arises as to which
DAG must be used as a routing graph? The routing graph should
be uniquely defined and it should be easily computable by a dis-
tributed algorithm. The natural choice for routing graph is the
one defined by the shortest paths. Accordingly, MDVA defines
�
� � (�;� � ,<�) +� � (�>=)
� � (�?�-,��@��
A& , where

)
� is the cost of
the shortest path from � to � measured as the sum of the costs
of the links on the path. The routing graph � � � implied by this
set is unique and is called the shortest multipath. To compute)
� , distributed routing algorithms may exchange any informa-
tion (distance-vectors or link-states), as long as they ensure that)
� ’s converge to the correct distances. Convergence is formally
defined as follows. At time (, let

4 � (� denote the topology of
the network as seen by an “omniscient observer”, and let

5�68 � (�
denote the distance of � to � in

4 � (� . (Note that we use bold
font to refer to quantities in

4
.) Assume the network has sta-

ble configuration up to time (. We say that the network has
converged to the correct values at (if

)
� � (��� 5768 � (� for all
� and � . Now, if a sequence of link cost changes occur between
(and (�B and none after (
B , then the routing algorithm is said
to converge if at some time (
C , it satisfies (�B�DE(�C =GF and)
� � (C �H� 5 68 � (C �H� 5 68 � (B � . In addition, during the conver-
gence phase, the algorithm must ensure that � � � ’s are loop-free
at every instant. Note the distinction between

5I68 and
)
� . 5768 is

the correct distance, whereas
)
� is a local variable � and is an

”estimate” of
5768 .)
� must eventually equal

5I68 , if
5768 does not

change further.
In Distributed Bellman-Ford (DBF) algorithm, each node � re-

peatedly executes the equation
)
� �J� � � �)
� +LK *
+ �M,7����
N&

for each destination � , and every time
)
� changes it reports it

to all its neighbors. A known property of DBF is that it always

converges, and converges fast when distance to destinations de-
crease [8]. However, convergence is slow if link-costs increase,
and in the extreme case when link failures result in network par-
titions, DBF never converges. This is the well-known counting-
to-infinity problem [14]. Intuitively, the count-to-infinity prob-
lem results due to “circular” computation of distances; that is, a
node computes its distance to destination using a distance com-
municated by a neighbor, that happens to be the length of the
path that passes through the node itself. The node using such
a distance is unaware of this because nodes only exchange dis-
tance information with no path information.

Circular computation of distances that occur in DBF can be
prevented if distance information is propagated along a DAG
rooted at a destination. The key idea is that given a DAG,
each node computes its distance using distances reported by
the “downstream” nodes and reports its distance to “upstream”
nodes. This method called diffusing computations was first sug-
gested by Dijkstra et al [4] to ensure termination of distributed
computation; a diffusion computation always terminates due to
the acyclic ordering of the nodes. DUAL [5], the algorithm on
which EIGRP [1] is based, uses diffusing computations to solve
the count-to-infinity problem. Several other distance vector al-
gorithms have been proposed that use diffusing computation to
overcome the counting-to-infinity problem of DBF [8], [9], [16].
The algorithm suggested by Jaffe and Moss [8] allows nodes to
participate in multiple diffusing computation of the same desti-
nation and requires use of unbounded counters, for which rea-
son it may not be practical. In contrast, a node in DUAL and
DASM [16] participates in only one diffusing computation for
any destination at any one time and thus requires only a toggle
bit. MDVA presented here follows the later approach.

Two questions arise regarding a diffusing computation:
1. Because there are potentially many DAGs for a given des-

tination, which one should be used for diffusing computa-
tion?

2. How should a diffusing computation be performed in a dy-
namic environment in which the chosen DAG changes with
time?

The answer to the first question is straightforward: the short-
est multipath � � � is the right choice given that computing � � �
is our final goal. The second question is not as straightforward.
A � � � used for carrying out a diffusing computation can be al-
lowed to change if the following conditions hold: (1) � � � is
acyclic at every instant, and (2) at any instant, if a node reports
a distance through a neighbor

,
in �
� , it must ensure that

,
re-

mains in �
� until the end of the diffusing computation. That
these conditions prevent circular computation of distances can
be infered from the following argument. Assume that a circular
computation occurs at time (involving nodes �NO , ��P , .. � ! . Let
a node ��Q , R�D STD � , compute its distance at (AQUDV(using
the distance reported by �WQYX P , and � O computes its distance us-
ing the distance reported by � ! at (AO . Because � QYX P is held in
the successor set of � Q for RZD@S�D � and �[O holds � ! until the
diffusing computation ends, we have

� O � �
]\� � (P �^�<_ � O � �
]\� � (�
�NP � �
a`� � (Nb �^�<_ �NP � �
a`� � (�

c c c
c c c

� ! X P
� � !� � (!

�^�<_ � ! X P
� � !� � (�

� !
� � O� � (O �^�<_ � !

� � O� � (�
Because the � � � � (� implied by �
� � (� , is acyclic at every in-

stant (, the above relations indicate a contradiction. Therefore,
circular computation is impossible if the above mentioned con-
ditions are enforced. Notice that we intend to propagate the
distances along the shortest-multipath � � � which itself is com-
puted using the distances. This “bootstrap” approach – comput-
ing
)
� using diffusing computation along � � � and simultane-

ously constructing and maintaining � � � – is central to MDVA.
How can we ensure that � � � is always loop-free? To do this

we use a new variable
/0)
� , called the feasible distance, which

is an ‘estimate’ of the distance
)
� in that

/0)
� is equal to
)
�

when the network is in stable state, but to prevent loops during
periods of network transitions, it is allowed to differ temporar-
ily from

)
� . Let
)
� + be the distance of

,
to � as notified to �

by
,

. To ensure loop-freedom at every instant
/0)
� ,)
� + and

�
� must satisfy the Loop-Free Invariant (LFI) conditions intro-
duced in [15]. The LFI conditions capture all previous loop-free
conditions ([5], [16]) in a unified form that simplifies protocol
design. The conditions are

Loop-free Invariant Conditions(LFI) [15]:

/0)
� � (� D) +�
 � (� ,d�7�

(1)

�
� � (�^� � ,H�)
� + � (�L= /0)
� � (�?& (2)

The invariant conditions (1) and (2) state that, for each desti-
nation � , a node � can choose a successor whose distance to � , as
known to � , is less than the distance of node � to � that is known
to its neighbors. Theorem 1 is reproduced here for convenience.

Theorem 1: [15] If the LFI conditions are satisfied at any
time (, then the � � � � (� implied by the successor sets �
� � (� is
loop-free.

For proof of this theorem the reader is refered to [15]. The
above theorem suggests that any distributed routing protocol
(link-state or distance-vector) attempting to find loop-free short-
est multipaths must compute

)
� , /0)
� and �
� such that the
LFI conditions are satisfied, and such that at convergence

)
� �/0)
� � 5d68 = minimum distance from � to � .
III. MULTIPATH DISTANCE-VECTOR ALGORITHM

In essence, MDVA uses DBF to compute
)
� and therefore� � � , while always propagating distances along the � � � to pre-

vent count-to-infinity problem and ensure termination. Each
node maintains a main table that stores

)
� , the successor set
�
� , the feasible distance

/0)
� , the reported distance
1e)
� , and

�)
� , which is the shortest distance possible through the succes-
sor set �
� . The table also stores

3 ��
� � �
� , the set of waiting
neighbors in a diffusing computation. Each node also maintains
a neighbor table for each neighbor

,
that contains

)
� + the dis-
tance of neighbor

,
to � as communicated by

,
. The link table

stores the cost
*
+ of adjacent link to each neighbor

,
. At startup

time, a node initializes all distances in its tables to infinity and
all sets to null. If a link is down its cost is considered infinity.
The distance to unreachable nodes are considered to be infinity.

Nodes executing MDVA exchange information using mes-
sages which can have one or more entries. An entry or distance
vector is of the form [(AfMShg , � , i], where i is the distance of the
node sending the message to destination � and the type is one of
QUERY, UPDATE and REPLY. We assume that messages trans-
mitted over an operational link are received without errors and
in the proper sequence and are processed in the order received.

Nodes invoke the procedure j2kYlYmngYoMo) �Nop(�qZgMm?(shown in
Figure 1 to process distance vectors. An event is the arrival
of a message, the change in cost of an adjacent link, or a
change in status (up/down) of an adjacent link. When an ad-
jacent link becomes available, the node sends an update mes-
sage [UPDATE, � , 12)
�] for each destination � over the link.
When an adjacent link

� � �
�I� fails, the neighbor table asso-
ciated with neighbor

�
is cleared and the cost of the link is

set to infinity, after which, for each destination the procedure
j2kYlYmngYoMo) �Ao�(�qZgrmn(��s<tvuxwzy|{<�����}F~� � � is invoked. Similarly,
when an adjacent link cost to

�
changes,

*

! is set to the new

cost and j2kYlYmngYoMo) �No�(�q0gMm?((UPDATE,
�

,
)
� ! , �) is invoked

for each destination � . When a message is received from neigh-
bor
,

, j2kYlYmngYoMo) �No�(�q>gMm?(� (AfMShg �-,x� i � � � is invoked for each en-
try � (AfMShg � � � i�� of the message.

Computing distances to each destination can be performed in-
dependently. Hence, in the rest of the description, the working
of the algorithm is described with respect to a particular destina-
tion � . A node can be in ACTIVE or PASSIVE state with respect
to a destination � and is represented by variable o�(N��(Ng
� . A node
is in ACTIVE state when it is engaged in a diffusing computation
and waiting for replies from neighbors. Initially, we assume that
all nodes are in PASSIVEstate. As long as link cost decrease,
MDVA works identically to DBF and the nodes will remain in
PASSIVEstate. This is because the condition on line 9 always
fails and lines 17-24 are always executed. j2kYlYmngYoMo) �Ao�(�q0gMm?(
works in such a way that when in PASSIVE state, the condition)
� � /0)
� � 12)
� ��� � � �)
� +�K *
+ � ,�����
N& always holds,
which can be infered from lines 8 and 23. However, if the dis-
tance to a destination increases, either because an adjacent link
cost changed or a message is received from a neighbor, the con-
dition on line 9 succeeds and the node engages in a diffusing
computation. A diffusing computation is initiated by sending
query messages to all the neighbors with the best distance �)
�
through �
� , and waiting for the neighbors to reply (lines 14-15).
If the increase in distance is due to a query from a successor,
the neighbor is added to

3 ��
� to indicate that it is waiting for a
reply so that a reply can be given when the node transits to PAS-
SIVE state (lines 11-12). When all replies are received, the node
can be sure that the neighbors have incorporated the distances
that the node reported, and is safe to transit to PASSIVE state.
At this point,

/0)
� can be increased and new neighbors can be
added to �
� without violating the LFI conditions.

When in ACTIVE state, if a query message is received from
a neighbor not in �
� , a reply is given immediately. On the
other hand, if the query is from a neighbor

�
in �
� , a test

is made to verify if �)
� increased beyond the previously re-

00. procedure j2kMlYmpgMoMo) �No�(�q0gMm?(� gr(�
��� i � � �
01. ��gr(is the type,

�
is the neighbor, i is the distance, � is the destination

&
02. begin
03. if (� � (��.�Ao � lYi�g��7gr(�%�Z�2� 1e� � then send [REPLY, j, 0] to

�
; endif

04.
)
� !

� i ;
05.

)
�;� � � � �)
� +LK *
+ � ,d�7��
A& ;
06. �)
� � � � � �)
� + K *
+ � ,d� �
� & ;
07. if

� o�(N��(Ng
� � j0�;�"�"��q ��� o�(N��(Ng
� � �;�e����q � � * �zo�(|kYg
S * f2�No�kMgMmngr�[��gri0�xlMk�� � then
08.

/0)
��� � � � �)
� � 12)
� & ;
09. if

�)
�0� 1e)
� � then
10. o�(N��(Ng
� � �e�e����q � ;
11. if

� gr(�J���2� 12� � then
12.

3 ��
� ! �
�

;
13. endif
14.

12)
��� �)
� ;
15. � ,H����
 , send [QUERY, � , 12)
�] to neighbor

,
;

16. else
17. o�(N��(Ng
� � j0�e�"����q � ;
18. foreach

,d�I��

do

19. if
�W,H� 3 ��
� ����,�� � �dgr(�~�Z�0� 12� ��� then send [REPLY, � ,)
�] to

,
;

20. else if (
1e)
��¡�)
� � send [UPDATE, � , 12)
�] to

,
;

21. endif
22. done
23.

12)
� �)
� ;
24.

3 ��
�2�£¢ ;
25. endif
26. else
27. if

� gr(�J�Z�0� 12� � then
28. if

���¤� �
� �7�)
�2� 12)
� � then
3 ��
�e� 3 ��
��¥ � ;

29. else send [REPLY, � , 12)
�] to
�

;
30. endif
31. endif
32. endif
33. �
� � � ,<�)
� + = /0)
� & ;
34. end

Fig. 1. Distance vector processing in MDVA.

ported distance (line 28). If it did not, a reply is sent imme-
diately. However, if �)
� increased, no reply is given and the
query is blocked by adding

�
to
3 ��
� . The replies to neigh-

bors in
3 ��
� are deferred until that time when the node is ready

to transit to PASSIVE state. After receiving all replies, one of
two things can happen: either the ACTIVE phase ends or it
continues. If the distance

)
� increased again after receipt of
all replies, the ACTIVE phase is extended by sending new set
of queries, otherwise the ACTIVE phase ends. In the case the
ACTIVE phase continues, no replies are issued to the pending
queries in

3 ��
� . Otherwise, all replies are given and the node
transits to PASSIVE state satisfying the PASSIVE-state invariant)
� � /0)
� � 12)
� � � � � �)
� + K *
+ � ,d����
A& .

IV. CORRECTNESS PROOFS

To prove the correctness of MDVA consider the following two
mutually exclusive and exhaustive cases: (1) some link costs

change, but the distances to destinations either decrease or re-
main unchanged (2) some link costs increase, resulting in an
increase in distances to some destinations. MDVA works identi-
cal to DBF when distances to destinations only decrease and the
same proof of DBF applies [2]. To state this formally, assume
the network is stable up to time (and all nodes have the correct
distances. At time (, the costs of some links decrease. Since the
distances in the tables are such that

)
� � (��¦ 5d68 � (� , within some
finite time (N§ , (�DU(N§ = F ,

)
� � (N§ �"� 5768 � (� .
MDVA and DBF behave differently, when some link costs

increase such that distances between some source-destination
pairs increase. In this case,

)
� � (�H= 5768 � (� for some � and � .
Both DBF and MDVA first increase

)
� to a value greater than5768 � (� , after which the distances monotonically decrease until
they converge to the correct distances. MDVA and DBF, how-
ever, differ on how they increase the distances. DBF does it step-
by-step in small bounded increments until

)
� ¦ 5768 � (� . How-

ever, when
5 68 � (�#��F , this leads to the count-to-infinity prob-

lem. In contrast, MDVA uses diffusing computations to quickly
raise

)
� so that
)
� ¦ 5d68 � (� , after which it functions similar

to scenario 1 described above, and the distances converge to the
correct values as before. After the end of all diffusing computa-
tions MDVA works just like DBF.

In summary, to show that MDVA terminates, it is sufficient
to show that: (1) the � � � are loop-free at every instant (Theo-
rem 2), (2) every diffusing computation completes within a finite
time (Theorem 3), and (3) there is a finite number of diffusing
computations (Theorem 5). Finally, we show that MDVA con-
verges to correct distances when it terminates in Theorem 5.

Theorem 2: For a given destination � , the � � � constructed
by MDVA is loop-free at every instant.

Proof: The proof is by showing that the LFI conditions
are satisfied during every ACTIVE and PASSIVE phase. Let (-¨
be the time when the

�<©«ª
transition from PASSIVEto ACTIVE

state starts at node � for � . The proof is by induction on (¨ . At
node initialization time ¬ , all distance variables are initialized to
infinite and hence

/0)
� � ¬ � D)
� + � ¬ � , ,d����
 . Assume the LFI
conditions are true up to time (�¨ . Then

/0)
� � (� D)
� + � (� (� � ¬ � (N¨ � c (3)

At any time (, from lines 6, 8, 14 and 23 in the pseudocode in
Figure 1, and because �)
� � (�#¦)
� � (� , if follows that

/0)
� � (� D 12)
� � (� (4)

and therefore, for (�¨�X P and (N¨ , we have

/0)
� � (N¨�X P � D 12)
� � (N¨�X P �?� (5)/0)
� � (¨ � D 12)
� � (¨ � c (6)

Let the queries sent at (�¨ , the start time of the
� ©«ª

ACTIVE phase,
be received at a particular neighbor

,
at (
§ � (N¨ . From Eq. (4)

and the fact that the update messages sent, if any, between (¨�X P
and (¨ specify non-increasing distances, we have

/0)
� � (� D)
� + � (� (� � (¨ � (§ � c (7)

Let (N§ § be the time when all replies are received and ACTIVE

phase ends. During the ACTIVE phase the value of
/0)
� remains

unchanged and no new
12)
� is reported during this period (lines

27-31). Furthermore, during PASSIVE phase, only decreasing
values of

12)
� are reported. Then from Eq. (6) it follows that

/0)
� � (� D)
� + � (� (� � (§ � (§ § � c (8)

At (N§ § , irrespective of whether the node transits to PASSIVE state
or continues in the ACTIVE phase, from Eq. (4) we have

/0)
� � (§ § � D 1e)
� � (§ § � c (9)

In the case that the ACTIVE phase finally ends, we have/0)
� � (� D)
� + � (� for (� � (¨ � (N§ §­� . In the PASSIVE phase,12)
� can only remain constant or decrease until the next AC-
TIVE phase at (N¨¯® P . Therefore, the LFI conditions are satisfied
in the interval � (¨ � (¨�® P � . On the other hand, if the ACTIVE phase
continues, new queries are sent at time (
§ § . Assume all replies for
these queries are received at time (�§ § § . From similar argument as
above, it follows that

/0)
� � (� D)
� + � (� for (� � (N¨ � (N§ § §°� . Thus
irrespective of how long the ACTIVE phase continues, the invari-
ant holds between [(¨ , (¨�® P]. From induction, therefore, the LFI
conditions hold at all times. It then follows from Theorem 1 that
� � � is loop-free at all times.

Theorem 3: Every ACTIVE phase has a finite duration.
Proof: An ACTIVE phase may never end due to either of

the two reasons: deadlock or livelock. First we show a deadlock
cannot occur. A node that transits to ACTIVE state with respect
to a destination sends queries. If the transition is due to a query
from a successor, the node defers the reply to this query until
it receives the replies to its own queries. Because nodes wait
for replies to their queries before replying to a query, there is a
possibility of “circular” waits leading to a deadlock. But, this
is impossible for the following reasons. First, a node in pas-
sive state immediately replies to a query if it does not increase
distance to the destination (lines 19). If the query is from a suc-
cessor that potentially increases �)
� , and the node is ACTIVE

, the query is held until the ACTIVE phase ends (line 28). Be-
cause the � � � ’s are loop-free at every instant (Theorem 2), a
deadlock cannot occur. Thus, a node that issued queries to the
neighbors will eventually receive all the replies and transits to
PASSIVE state.

A livelock is a situation where a node endlessly has back-
to-back ACTIVE phases without ever replying to the pending
queries from the successors. A livelock cannot occur for the
following reasons. An ACTIVE phase transition occurs either
because the link-cost of an adjacent link increases or a query
from a successor is received that increases �)
� . But, we know
that a query from a successor is blocked if it increases �)
� . Be-
cause links can change only a finite number of times and there
is only a finite number of neighbors for each node from which
the node can receive queries, the node can only have finite num-
ber of back to back active phases. A node eventually sends all
pending replies and enters PASSIVE state. A livelock, therefore,
cannot occur.

Theorem 4: A node can have only a finite number of ACTIVE

phases.
Proof: Assume towards a contradiction that there is a node

that does go through an infinite number of PASSIVE to ACTIVE

transitions. An active phase transition occurs either because of a
query from a successor or a link-cost increase of an adjacent
link. Because link costs can change only a finite number of
times, the infinite PASSIVE-ACTIVE phase transitions must have
been triggered by an infinite number of queries from a neigh-
bor. Let that neighbor be

,
. Now, by the same argument,

,
is

sending an infinite number of queries because it is receiving an
infinite number of queries. But this argument cannot be contin-
ued for ever because there is only a finite number of nodes in the
network. Because the reply to the neighbor in the successor set
causing the phase transition is blocked and the routing graphs

are loop-free at every instant (Theorem 2), there must be a node
that transits to ACTIVE state only because of adjacent link cost
changes. This implies that a link must change its cost infinite
number of times — a contradiction of assumption. Therefore, a
node cannot have an infinite number of ACTIVE phases.

Theorem 5: After a finite sequence of link-cost changes in the
network, the distances

)
� converge to the final correct values.
Proof: Assume at time ¬ that every node has correct dis-

tances to all the distances. In other words,
)
� � ¬ ��� 5768 � ¬ � .

Assume that a finite number of link cost changes, link failures
and link recoveries occur in the network between time ¬ and (B
and after (�B no more changes occur. We have to show that at
some time (�C , such that (
BZD±(�C = F , all nodes will converge
to the correct distances. That is

)
� � (�C �"� 5768 � (�B ��� 5768 � (�C � .
From Theorem 3 and 4, it follows that within a finite time

after the last link change, all nodes transit to PASSIVE state and
remain in PASSIVE state thereafter. Therefore, let (
§ be the time
when the last ACTIVE phase ends in the network. We prove the
following.

1.
)
� � (N§ �#¦ 5d68 � (B � for every � and � .

2. Between (N§ and (�C , all
)
� ’s monotonically decrease and

eventually converge to the correct distances
5�68 � (�B � at (�C .

That is
)
� � (�C ��� 5768 � (�B � .

Part 1: Assume towards a contradiction that
)
� � (N§ �²=5 68 � (B � . Let

)
� � (§ ���±� *
+ � (§ � K)
� + � (§ �
� for some
,���³ � �
 .

Assume that
) +� � (N§ ��¦ 5 :8 � (�B � . Also assume that

³
has only

one element. Because
5I68 � (�B � � 9 6: � (�B � K 5 :8 � (�B � we have*
+ � (N§ � K)
� + � (N§ � D 9 6: � (B � K) +� � (N§ � , from which we can in-

fer that either
*
+ � (N§ �e= 9 6: � (B � , or

)
� + � (N§ �e=) +� � (N§ � , or both. If*
+ � (§ �#= 9«6: � (�B � , it implies that the link cost of
� � �-,v� is not yet in-

creased to
9 6: � (�B � via a link-cost change event. When it does, the

condition on line 9 becomes true and an ACTIVE state transition
is triggered. So all ACTIVE phases have not ended. Similarly, if)
� + � (N§ �#=) +� � (N§ � , then there is message in transit, which when
processed by � would trigger a PASSIVE-to-ACTIVE transition.
This means that the ACTIVE phases have not yet ended. A con-
tradiction of the assumption. Therefore, when ACTIVE phases
end
)
� � (N§ ��¦ 5768 � (�B � . When

³
has more than one element,

each element will be removed from the successor set one after
the other without triggering the ACTIVE transition until the last
element, when the ACTIVE state transition finally occurs.

Part 2: After every node becomes PASSIVE at time (
§ , all the
messages in transit can only decrease the distances; otherwise,
that would result in a transition to ACTIVE state. At this stage
MDVA works essentially like DBF and the same proof of DBF
applies here. Each time a distance is decreased, the new distance
is reported. Because distances cannot decrease forever and are
lower bounded by

5I68 � (�B � , the distances will eventually converge
to the correct distances

5 68 � (B � .
V. PERFORMANCE ANALYSIS

The storage complexity is of ´ �
� ��
}�a� �U� � , as each of the��

neighbor tables and the main distance table has a size

of ´ �
� �U� � entries. The computation complexity is the time
taken to process a distance vector and it is easy to see thatS.kYlYmngYoMo) �No�(�q>gMm?(NlMk � c � takes ´ �
� ��
}� � . The time complexity is

0

2

7

8 18

1

3

5

6

17
16

9

15

14

13

11
10

12

4

Fig. 2. Example topology

the time it takes for the network to converge after a set of link-
cost changes in the network and the communication complexity
is the amount of message overhead required for propagating a
set of link-cost changes. In a dynamic environment, the timing
and range of link cost changes occur in complex patterns that are
often determined by the traffic on the network, because of which
obtaining closed form expressions for time and communication
complexity is impossible. An approximate analysis that is pro-
vided in [8] for the case in which communication is synchronous
throughout the network also apply to MDVA.

We use simulations to compare the control overhead and con-
vergence time of MDVA with that of DBF, MPDA [15] and
topology broadcast (TOPB). The main purpose of these simu-
lations is to give some qualitative explanation for the behavior
of MDVA. The reason for choosing DBF and TOPB is that DBF
is based on vectors of distances and does not use diffusing com-
putations, while TOPB represents an ideal upper bound on per-
formance of the widely used routing protocols OSPF and IS-IS.
The reason for choosing MPDA is that it has been shown to
be very efficient compared to TOPB, in terms of communica-
tion overhead. MDVA achieves loop-freedom through diffusing
computations that, in some cases, may span the whole network.
In contrast, MPDA uses only neighbor-to-neighborsynchroniza-
tion. It is interesting to see how convergence times and control
message overheads are effected by the synchronization mecha-
nisms. A comparison of several algorithms that does not include
MPDA and MDVA is given in [3].

Simulations are performed on the topology shown in Fig.(2).
The simulator used is an event-driven real-time simulator called
CPT P .

We assume the computation time to be negligible compared
to the communication times. The bandwidth and propagation
delays of each link are 5MB and 100 µ s respectively. In back-
bone networks, links and nodes are highly reliable and change
status much less frequently than link costs which are a function
of the traffic on the link. This is particularly true in near-optimal
routing of [15], in which the link costs are periodically mea-
sured and reported. For this reason, in this paper we focus on
comparing the algorithms in scenarios when multiple link-cost
changes occur.

In each experiment, all links are initially set at unit cost and
then each link cost is changed by amounts determined by the
¶
We thank Nokia Wireless Routers for allowing us using the C++ Protocol

Toolkit

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 0.5 1 1.5 2 2.5 3 3.5 4

M
ill

is
ec

on
ds

Link-cost Increase Factor K

Comparison of Convergence Times

’DBF’
’MDVA’
’MPDA’
’TOPB’

Fig. 3. Average convergence times. ·>¸�¹ , ºe¸I» .

25

30

35

40

45

50

55

60

65

70

0 0.5 1 1.5 2 2.5 3 3.5 4

K
ilo

by
te

s

Link-cost Increase Factor: K

Comparison of Control Message Overhead

’DBF’
’MDVA’
’MPDA’
’TOPB’

Fig. 4. Average message overhead. ·2¸�¹ , º0¸I» .

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0 0.5 1 1.5 2 2.5 3 3.5 4

M
ill

is
ec

on
ds

Link-cost Increase Factor: K

Comparison of Convergence Times

’DBF’
’MDVA’
’MPDA’
’TOPB’

Fig. 5. Average convergence times. ·>¸�¼�½r¾¿¹ , ºe¸�¼�½r¾ À .

formula Á , KTÂ k , where k is a uniform random value in [0,
1]. The parameters of the experiment Á and Â are real values
while

,
is a positive integer. After setting the new link costs,

the convergence times and message overheads are measured for
each routing algorithm. For each experiment with specific Á ,

,
and Â , several trials are made using different random values for
k . The averages and probability distributions obtained for each
metric and for each set of trials are compared.

Fig. 3 and Fig. 4 show the average convergence time and av-
erage message load, measured over several trials, when the links
costs are increased from initial unit cost to a cost using the for-
mula Á , K Â k with Á � R � Â �EÃ and

,@� ¬ � R �}Äz��Å . As can

10

15

20

25

30

35

40

0 0.5 1 1.5 2 2.5 3 3.5 4

K
ilo

by
te

s

Link-cost Increase Factor: K

Comparison of Control Message Overhead

’DBF’
’MDVA’
’MPDA’
’TOPB’

Fig. 6. Average message overhead. ·>¸�¼�½r¾¿¹ , º0¸�¼�½r¾ À .

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1000 1200 1400 1600 1800 2000 2200 2400

P
ro

ba
bi

lit
y

Convergence Time (ms)

Probability Distribution Function

’DBF’
’MDVA’
’MPDA’
’TOPB’

Fig. 7. PDF of convergence times. ·>¸�¹ , º0¸7» , Æ�¸�¹ .

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 25 30 35 40 45 50 55 60 65

P
ro

ba
bi

lit
y

Message overload (Kb)

Probability Distribution Function

’DBF’
’MDVA’
’MPDA’
’TOPB’

Fig. 8. PDF of message overhead. ·>¸�¹ , º2¸7» , Æ�¸�¹ .

be observed in Fig. 3 the average convergence times are best
for MDVA. As can be seen in Fig. 4, the average message loads
are also low and only MPDA has lower message overhead. Fig-
ures 5 and 6 show the averages when link costs decrease. Ob-
serve that DBF and MDVA perform identically as can be seen
in the figures.

Fig. 7 and Fig. 8 show the complete distribution for conver-
gence times and message overhead for the case

,�� R � Á �
R � Â �±Ã . Observe that the distributions are quite uniform com-
pared to DBF. When

,
is increase to 5 from 1, the convergence

times and message overheads of MDVA, as shown in Fig. 9 and
Fig. 10, have not changed much, but the performance of DBF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

800 1000 1200 1400 1600 1800 2000 2200 2400 2600

P
ro

ba
bi

lit
y

Convergence Time (ms)

Probability Distribution Function

’DBF’
’MDVA’
’MPDA’
’TOPB’

Fig. 9. PDF of convergence times. ·>¸I» , º0¸7» , Æ�¸�¹ .

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 25 30 35 40 45 50 55 60 65 70 75

P
ro

ba
bi

lit
y

Control Message Overhead (Kb)

Probability Distribution Function

’DBF’
’MDVA’
’MPDA’
’TOPB’

Fig. 10. PDF of message overhead. ·>¸7» , ºe¸I» , ÆL¸�¹ .

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

700 800 900 1000 1100 1200 1300 1400

P
ro

ba
bi

ity

Convergence Time (ms)

Probability Distribution Function

’DBF’
’MDVA’
’MPDA’
’TOPB’

Fig. 11. PDF of convergence times. ·>¸7½ , ºe¸�¼�½r¾ À .

has degraded considerably. This is because of the counting-to-
infinity problem, which is does not occur in MDVA.

Fig. 11 and Fig. 12 show the convergence time and mes-
sage overhead distribution when link costs decrease (Á � ¬ ,Â �VÇ ¬ c Å). (Note that we make sure that link costs do not be-
come negative.) Observe that the performance of MDVA and
DBF are much the same which is because MDVA essentially
functions like DBF when distances to destinations decrease.
From these simulations it appears that MDVA is a good choice
if low convergence times are desired at the expense of high mes-
sage overload while MPDA is preferable if low message over-
head is desirable over convergence times.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 15 20 25 30 35 40

P
ro

ba
bi

lit
y

Message Overload (Kb)

Probability Distribution Function

’DBF’
’MDVA’
’MPDA’
’TOPB’

Fig. 12. PDF of message overhead. ·>¸I½ , º0¸�¼�½r¾ À .

VI. SUMMARY

This paper presented a new distributed distance-vector rout-
ing algorithm, MDVA, which is free from the count-to-infinity
problem, provides multiple next-hop choices for each destina-
tion, and the routing graphs implied by them are always loop-
free. The novelty of the algorithm lies in its design around a set
of loop-free invariant conditions which ensures instantaneous
loop-freedom and correct termination of the protocol. Formal
proofs are presented to show MDVA’s convergence, correctness
and loop-freedom. Through simulation we have compared it to
some currently used routing protocols.

REFERENCES

[1] R. Albrightson, J.J. Garcia-Luna-Aceves, and J. Boyle. EIGRP-A Fast
Routing Protocol Based on Distance Vectors. Proc. Networld/Interop 94,
May 1994.

[2] D. Bersekas and R. Gallager. Data networks. 2nd ed. Prentice-Hall, pages
404–410, 1992.

[3] I. Matta et. al. Transient and Steady-State Performance of Routing Pro-
tocols: Distance Vectors vs. Link State. Journal of Internetworking: Re-
search and Experience, 6:59–87, 1995.

[4] E.W.Dijkstra and C.S.Scholten. Termination Detection for Diffusing Com-
putations. Information Processing Letters, 11:1–4, August 1980.

[5] J.J. Garcia-Luna-Aceves. Loop-Free Routing Using Diffusing Computa-
tions. IEEE/ACM Trans. Networking, 1:130–141, February 1993.

[6] J.J. Garcia-Luna-Aceves and J. Behrens. Distributed, scalable routing
based on vectors of link states. IEEE Journal on Selected Areas in Com-
munications, October 1995.

[7] P. A. Humblet. Another Adaptive Distributed Shortest Path Algorithm.
IEEE Trans. Commun., 39:995–1003, June 91.

[8] J. M. Jaffe and F. H. Moss. A Responsive Distributed Routing Algo-
rithm for Computer Networks. IEEE Trans. Commun., 30:1758–1762,
July 1982.

[9] P. M. Merlin and A. Segall. A Failsafe Distributed Routing Protocol. IEEE
Trans. Commun., 27:1280–1287, September 1979.

[10] R. Perlman. Fault-tolerant broadcast of routing information. Computer
Networks and ISDN, 7, 1983.

[11] B. Rajagopalan and M. Faiman. A Responsive Distributed Shortest-Path
Routing Algorithm with Autonomous Systems. Internetworking: Re-
search and Experience, 2:51–69, March 1991.

[12] S. Roy and J.J. Garcia-Luna-Aceves. Using Minimal Source Trees for
On-Demand Routing in Ad Hoc Networks. INFOCOM 2001, 2001.

[13] J. Spinelli and R. Gallager. Event Driven Topology Broadcast without
Sequence Numbers. IEEE Trans. Commun., 37:468–474, 1989.

[14] A. Tanenbaum. Computer networks. 3rd ed. Prentice-Hall, pages 357–
358, 1996.

[15] S. Vutukury and J.J. Garcia-Luna-Aceves. A Simple Approximation to
Minimum Delay Routing. Proc. of ACM SIGCOMM, Sept. 1999.

[16] W. T. Zaumen and J.J. Garcia-Luna-Aceves. Loop-Free Multipath Rout-
ing Using Generalized Diffusing Computations. Proc. IEEE INFOCOM,
March 1998.

