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Foreword

The primary purpose of the Image Understanding (1U) Testbed is to pro-
vide a means for transferring technology from the DARPA-sponsored IU
research program to DMA and to other organizations in the defense cormn-
munity,

The approach taken to achieve this purpose has two components:

(1) The establishment of a uniform environment as compatible as
practical with the environments of research centers at universities
participating in the IU research program. Thus, organizations obtain-
ing copies of the Testbed can receive a continuing Sow of new results
derived from on-going research.

() The acquisition, integration, testing, and evaluation of selected
scene analysis techniques that represent mature examples of generic
areas of research activity. These contributions from participants in
the IU research program will allow organizations with Testbed copies
to begin the immediate exploration of applications of IU technology to
problems in automated cartography and other areas of scene
analysis.

The IU Testbed project was carried out under DARPA contract No.
MDA903-79-C-0599. The views and conclusions contained in this document
are those of the author and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the United States Govern-
ment.

This report describes the PHOENIX segmentation package contributed by
Carnegie-Mellon University and presents an evaluation of its characteris-
tics and features.

Andrew J, Hanson

Testbed Coordinator
Artificial Intellipence Center
SRI Internaticonal
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Abstract

PHOENIX is a computer program for segrnenting images inte homogene-
ous closed regions. It uses histogram analysis, thresholding, and
connected-components analysis to produce a partial segmentation, then
resegments each region-until various stopping criteria are satisfied. Its
major contributicns over other recursive segmenters are a sophisticated
control interface, optional use of more than one histogram-dependent
intensity threshold during tentative segmentation of each region, and
spatial analysis of resulting subregions as a form of "look-ahead” for
choosing between promising spectral features at each step.

PHOENIX was contributed to the DARPA Image Understanding Testbed at
SRI by Carnegie-Mellon University. This report summarizes applications
for which PHOENIX is suited, the history and nature of the algorithm,
details of the Testbed implementation, the manner in which PHOENIX is
invoked and controlled, the type of results that can be expected, and
suggestions for further development. Baseline pararneter sets are glven
for producing reasonable segmentations of typical imagery.
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Section 1

Introduction

PHOENIX is a program for segmenting an image into homogeneous regions. It com-
bines histogram analysis with spatial analysis to find connected regions having uniform
color or other properties. Small noise patches are merged with their surrounding or
neighboring regions. Regions may then be further segmented by the same algorithm.

Many researchers have contributed to this segmentation technique, as documented in
Section 3. The current PHOENIX program was designed by Steven Shafer and Takeo
Kanade at Carnegie-Mellon University (CMU), with much of the programming done by
Duane Williams and Marc Lowe. Drs. Raj Reddy at CMU and Hans-Hellmut Nagel at the
University of Hamburg have guided and supervised much of the development.

The CMU PHOENIX ccde has been adapted for the DARPA Image Understanding Testbed
at SRI International. Many of the testbed support routines provided by CMU were
adapted for the Testbed by Kenneth Laws at SRI. Particular credit is due to Steven
Shafer for the CI driver and related string manipulation routines,; David Smith for the
image access software, and David McKeown, assisted by Steve Clark, Joe Mattis, and
Jerry Denlinger, for the Grinnell display software. All of this software is written in the C
language,

Very few changes were required in the PHOENIX software or in the algorithm itself. The
informaticn in this document should thus be considered supplementary to the material
cited in the references. User documentation provided by CMU [Smith80, Clark81,
McKeown81, Shafer82] forms the basis for some sections of this report.

This decument includes both a users” guide to the PHOENIX segmenter and an evalua-
tion of the algorithm. The initiai portion introduces the segmenter and describes it in
general terms. Section 2 briefly describes the algorithm and the tasks for which it is
appropriate; Section 3 surveys the historical development of these techniques and
presents the current algorithm in detail.

The next portion of this report constitutes a users’ guide. Section 4 describes the
current Testbed implementation and how it differs from the original CMU contribution.
Section § instruets the user in the mechanics of using the PHOENIX software.

The remainder of the report body summarizes the evaluation results. Section 6
describes in detail the meaning of the user-specified parameters, documents the per-
formance that may be expected in various circumstances, and presents the results of
evaluation tests. The groups of parameter values developed in this section are a
significant scientific contribution. Section 7 outlines a number of suggestions for
improving the algorithm and its implementation. Section B8 presents conclusions,
including a brief statement of the special strengths and weaknesses of the PHOENIX
approach.

Appendix A suggests alternate approaches to similar data analysis problems, and
Appendix B gives the details of the connected-component extraction algorithm. An
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extensive reference list provides entry points to the image segmentation literature
cited in the text.



Section 2

Background

This section presents a management view of the PHOENIX program. The segmentation
algorithmn is briefly sketched. Typical applications and potential applications requiring
further development of the algorithm are discussed, and related applications for which
cther algorithms are better suited are noted.

2.1. General Description

PHOENIX is a program for segmenting images into homogeneous connected regions.
An input image typically has red, green, and blue image planes, although mono-
chrome images, gradient and texture planes, and other pixel-criented data may alse
be used. Each of the data planes is called a feafure or feafure plene.

Figure i.1 illustrates the image segmentation process. Segmentation begins with the
entire image considered to be a single region. Phoenix "'fetches’ this region and
attempts to segment it. If it fails, the program halts and waits for further instruec-
tions; if it succeeds, it fetches each of the new regions in turn and attempts to seg-
ment it. A segmentation queue keeps track of the regions that are awaiting further
analysis; a terminal gueue keeps track of those that have been declared terminal
regions.

Having fetched a region, PHOENIX computes a vector of intensity counts (a histo-
gram) for each feature plane. Thresholds (or histogram cutpoints) are selected that
are likely to isolate significant homogeneous regions in the image. A set of thres-
holds for one feature is called an inferval sef because each threshold defines a histo-
gram interval extending from the previous cutpoint te and ineluding the new cne.

The most promising interval sets are passed to a spatial analysis phase that thres-
holds the corresponding feature plane and extracts connected components. Very
small connected patches are considered noise and are merged with surrounding
regions.

The feature and interval sets providing the best segmentation (i.e., the one with the
least noise area) are chosen. FEach of the resulting segments is added to the
knowledge base and segmentation map and is queued for further segmentation using
the same algorithm.

This process halts when the recursive segmentation reaches a preset depth, when all
regions have been segmented as finely as various user-specified parameters permit,
or when the user terminates execution. The segmentation is saved, and may be
reloaded and edited or continued later. The resulting region map and region descrip-
tion file may be used by other programs.
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2.2, Typical Applications

The PHOENIX program may be used in any application requiring that an image be
partitioned into homogeneous regions. This segmentation may be useful in itself, or
may be a precursor to a semantic partitioning that assigns meaningful labels to com-
posite regions,

The initial segmentation by itself is most useful for image coding applications. Since
there are far fewer regions than pixels, it may be efficient to store or transmit an
image as a list of regions. This would be particularly effective in time-sequenced

" imagery, since only those regions that change need to be coded for each frame. The
amount of compression possible depends on scene content and on the acceptable
coding error. One scheme [Yan77] uses run coding to transmit the region map, or
cartoon, and then adds a low-amplitude correction signal to fill in the details.

This same separation of the image signal may be useful in image enbancement.
Enhancement within each region separately can bring out details that are otherwise
obscured by illumination effects. This is similar to separate processing of low-
frequency and high-frequency signal bands, but preserves edge structure better,

Region boundaries located by PHOENIX may be used to measure image blur or the
transfer function of the imaging system. This information can be used in image res-
toration and in estimating scene depth from the amount of blur.

The PHOENIX region descriptions may be used for microscopic particle counting or
for counting of nonoccluded industrial parts. PHOENIX will not distinguish touching
objects, but area measurement (for uniform particles) or shape analysis {e.g.,
[Arcelli7l, Brenner77, Lemkin79, Jain80, RutkowskiB1]) can make this separation.
Simple size and shape descriptors may also be adequate for some medical cell
classification problems. ’

Another application is in macrotexture analysis. Macrotextures are those that have
large primitive elements forming some type of pattern. A checkerboard is a regular
macrotexture; orchards, agricultural fields, and housing developments in aerial
images are less regular; and tree leaves or microscopic mineral domains may be very
irregular. The first step in analyzing such a texture is to identify the primitive ele-
ments, either by template matching or by segmentation [Tomita82].

Segmentation maps may also be useful in registration (i.e., alignment) of two images
[Ratkovic79a-c]. The two maps are first matched, giving an approximate global regis-
tration. The low-amplitude correction signals for each pair of regions are then used
for precise local registration. This seems to be a good way to determine image warp
coefficients, and may also be useful in tracking slowly moving objects in cluttered
backgrounds.

An attempt has been made [Price78, Price78a, Price78b] to use region information
for change detection in complex urban and industrial scenes. Many regions remain
constant from one image to another, but others might move or change form. Region
descriptions in either image that could not be matched (in shape, position, and possi-
bly intensity) were specially flagged for user attention. The method was sophisti-
cated enough to match similar regions at differing positions, but could not determine
whether they were two similar objects or a single one that had moved.

Segmentation’s most promising application, although one where it has yet to prove
its worth, is in general-purpose image understanding [Fischler?9, Faugeras80,
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RubinB0, OhtaB0b]. Segmentation .and linear delineation are considered to be the
first steps in feature extraction, followed by texture analysis, determination of sur-
face orientation, and object recogrition. These research topics will be discussed
below.

2.3. Potential Extensions

The following applications might be feasible if PHOENIX were modified, used in a non-
standard fashion, or integrated into a more sophisticated systern.

Crude region knowledge may be the key to obtaining more precise knowledge: this is
known as planning. Preliminary segmentation (often on a reduced image) can be
used to determine which areas should be examined in more detail. Specialized struec-
ture detectors may then be applied within the regions or along the region boun-
daries. If the analysis is done in real time, higher resolution data may be obtained by
rescanning portions of the original scene. In missile guidance, for instance, higher
resolution imagery becomes available as the missile approaches its target.

Many natural scenes are better described by textured regions than by regions of
homogeneous intensity. PHOENIX can be used to find textured regions if texture
feature planes are provided as input. Many texture measures or transforms have
been suggested [Haralick?3, Carlton?7, Schachter??, Mitchell78, Tanimoto78, Cole-
man79, Schachter?9, LawsB0, LeeB2], but their use in PHOENIX will probably require
more sophisticated feature selection and processing.

If texture-based segments are available, it becomes feasible to classify each region as
to its texture type or materials category (assuming sufficient resolution). Adjacent
regions that receive the same classification may then be merged to produce a better
segmentation. (Note, however, that it may or may not be desirable to merge two
fields that have the same crop type but different plowing directions, or two cloud
patches that may be at different elevations. The merging algorithm needs knowledge
about both the scene domain and the intended application.)

Segment maps may aiso be used as input to an object identification or intelligent
cueing system. The system should be capable of recognizing objects composed of
several regions. In some circumstances it may also have to guess at those which are
contained within part of a region and, if possible, use additional processing to
confirm the hypothesis.

2.4. Related Applications

This section describes applications that are similar to PHOENIX segimentation appli-
cations, but differ in some fundamental fashion. While the difficulties with applying
PHOENIX might be overcome, other techniques would often be more appropriate.

Cueing is the initial detection of interesting objects in a scene. While cueing using a
segmentation map may be possible, the effort of computing the map may be far
greater than that required for threshold detection, interest-point or corner detec-
tion, unusual-pattern detection [Haralick75b, Winkler78], statistical classification,
blob detection [Klein77, Deal?9, Tisdale79, DankerB1], prototype matching
[Aggarwal78], or other techniques. Thus PHOENIX should only be used for cueing if
the segmentation is required for other purposes.
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Object recognition is often combined with cueing when only certain objects are of
interest. The problem of locating predictable signatures is best solved with matched
filtering or template matching. A particularly efficient and fiexible template match-
ing method is based on the Rochester generalized Hough transform. (For a review
see [LawsB83].) More general object detection requires image understanding, and seg-
mentation may be a useful preprocessing technique.

Linear delineation is the extraction of image edges, region boundaries, and elongated
features. Region boundaries can be found using PHOENIX, but thin, elongated, or
nonclosed features tend to be missed. A complete image understanding system will
need both region extraction and linear delineation operators [Nevatia77a].
Representative techniques are described in Appendix A.

PHOENIX segments images using a recursive thresholding algorithm. The regions
identified at each step are relatively uniform in one feature, and terminal regions
tend to be uniform in all features. In some domains this method will fail. In extract-
ing an illuminated sphere or cylinder, for instance, the important property is con-
tinuity rather than uniformity. Edge-based linear delineation systems are much |
better at segmenting smoothly-varying imagery.

Image understanding and object recognition require that many sources of knowledge
be applied [Barrow75]. In particular, the system may require knowledge of sensor
characteristics [Garvey78a], 3-D or physical domain knowledge [Fischler79,
Fischler82], illumination and reflectance models [Horn?7], semantic knowledge of
likely adjacencies [Yakimovsky73a, Yakimovsky73b, Feldman74,- Barrow76,
Tenenbaum?78a, Tenenbaum?76b, TenenbaumB0], or models of likely target
configurations [PriceB1]. It is not yet known whether segmentation should be a pre-
curser to such analysis or should be tightly integrated with it.



Section 3

Description

This section presents the history of recursive imé,ge segmentation and a detailed state-
ment of the PHOENIX algorithm. The historical information is intended to clarify the
major issues in recursive segmentation and to provide entry points into the literature.

3.1. Historical Development

Histogram thresholding was an early segmentation technique [Prewitt86]. One or
more histogram cutpeints were chosen near valleys in the intensity histogram.
Connected-components analysis was then used to extract regions entirely darker or
brighter than the corresponding intensity threshold level. There were difficulties,
however; if an image contained many regions with overlapping histogram pealks,
there would then be no obvious or useful thresholds. One solution, used by Chow and
Kaneko [Chow70], was to partition an image into smaller subimages until distinet
peaks appeared or the windows became so small that the histograms degenerated.

The earliest use of recursive region-splitting by histograrm thresholding was for
analysis of black-and-white cell images [Prewitt70]. Connected components were
extracted from the thresholded image and were used for further segmentation. For
other early approaches to segmentation see Appendix A.

Tsuji and Tomita [Tsuji73, Tomita73] at Osaka University used recursive region-
splitting to segment macrotexture images. The shape statistics of the primitive ele-
ments were compiled into histograms. The smoothed histogram with the most dis-
tinet valleys was used for classifying the elements into two or more sets. Connected
components were extracted (with some overlap allowed), and very small regions were
merged with their neighbors, if possible. Boundaries of the regions were computed
and compared with scene models, and those regions not corresponding to known
object types were scheduled for further partitioning.

Robertson et al. [Robertson73] at Purdue University pursued the notion of histogram
thresholding for segmentation of multispectral scenes. They also used recursive seg-
mentation along rectangular boundaries, foreshadowing later developrment of the
quadtree segmentation representation.

Several researchers investigated segmentation of natural textures where primitive
elements could not be extracted. Kasvand [Kasvand74] used a primitive constant
threshoeld with texture measures based on local standard deviation, gradient, second
derivative, and other features. Zucker et al. [Zucker?5] computed response to a
spot detector at every point in a scene and tried to segment the resulting histogram.
Satisfactory results could only be obtained if the spot detector was approximately
matched to the texture coarseness and if nonmaximal suppression was used to
reduce blurring due to the measurement window size. These researchers did not use
recursive segmentation
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Other researchers were attempting to segment celor imagery using multidimensional
histogram analysis. Tenenbaum ef al. [Tenenbaum?4] at Stanford Research Institute
(now SRI) projected the three-dimensional color space onto the chromaticity plane
and segmented on pixel hue. Even with thresholds based on prominent scene objects
[Tenenbaum?75], there were difficulties with overlapping hue distributions in
landscape scenes and with color-coordinated decor in indoor scenes, as well as with
an abundance of small texture regions. Neither texture features nor recursive seg-
mentation were used.

Ohlander [Ohlander?5] at Carnegie-Mellon University adapted the Tsuji algorithm for
color images by computing histograms of three color features (RGB) and six color
transformations (YIQ and HSD). A simple texture feature was also computed to iden-
tify microtexture regions. These features were used for recursive segmentation
within arbitrary region boundaries. At each stage the histogram with the most prom-
inent isolated peak was chosen for segmentation. Pixels related to the peak were
then extracted and represented by a bit mask. (All those with higher or lower
feature values were represented by the complement of the mask over the original
region.) High-resolution, and hence large pictures and long processing times, was
needed to accurately isolate textured regions and locate objects in natural imagery.
Interactive thresholding inside textured areas was also necessary to segment a city
skyline scene.

Schachter ef al, [Schachter?5] at the University of Maryland were also studying
color image segmentation at this time. They chose to store the full three-

. dimensional histogram as a binary tree. They report that a leaf node is needed for
every five or ten pixels in the image. (This would increase if texture measures were
included.) Clusters in the tree were found by a single-linkage (or chained nearest-
neighbor) algorithm. Nonrecursive segmentation was then done by assignment of
pixels to the cluster classes. A similar method was later used for texture segmenta-
tion of monochrome imagery [Schachter77]. :

Kender at CMU analyzed the color transformations used by Tenenbaum and Ohlander;
he concluded that inherent singularities and quantization effects were capable of
introducing false peaks and valleys [Kender78, Kender77]. This effect is particularly
noticeable in the hue feature, but also affects saturation and other normalized
chromaticity coordinates; he recommended that saturation only be used in regions
of high luminance, with hue used only in high saturation as well. (Note that most
natural imagery has low to moderate saturation.) The YIQ transform used in color
television transmission was found to have fewer problems, although its usefulness in
segmentation was not evaluated. Kender also proposed an improved computaticnal
algorithm for hue. )

Mui et al. [Mui76] brought together iterative segmentation and spatial analysis for
the segmentation of blood cell images. An initial threshold segmentation was used to
determine scene parameters and initial histogram cluster centers. Refined clusters
were then found in the '‘color-density'' histogram, and these were mapped back to
the spatial domain. Similar techniques have been used in many medical image-
analysis systems [Aggarwal 77, Cahn77].

A key concept of later segmentation systems is plenning, or heuristic guidance.
Planning was introduced by Kelly [Kelly70] in the recognition of human images. A
reduced image was first used to find the face or bedy outline, then individual features
were sought in higher-resolution imagery. Ad hoc rules were used to identify the
mouth, eyes, pupils, and other facial features. Kelly later applied planning to edge
detection [Kelly71]. Planning, or hierarchical image feature extraction, was also the
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foundation of other pyramid or processing-cone systems [Uhr72, Harlow?3, Han-
son74, Tanimeto75, Klinger78, Levine78, DyerB1].

Price at CMU brought together recursive region-splitting and planning [Price78]. His
PLAN program for segmentation and symbolic matching used a refinement of the
Ohlander algerithm on a reduced image, then applied the same thresholds within a
slightly enlarged mask arega in the full-resoluticn image. This twe-stage approach
reduced segmentation time by a factor of about ten. The color features used were a
modification of Ohiander and Kenders YIQ and HSD, altheugh LANDSAT spectral band
features were also used. Price introduced several texture measures for mocno-
chromatic segmentation and added a spatial smoothing step to remove small holes
from the binary masks. Less human interaction was required during histogram
analysis, region extraction, and database maintenance than for Ohlander’s system.

Aggarwal ef al. [Underwood77, Ali79, SarabiBi] at the University of Texas have used a
different approach for the segmentation of color images. They have mapped the
image data into a three-dimensional intensity and chromaticity histogram. The
bivariate marginal histograms may be displayed for interactive cluster identification,
or a binary tree structure similar to that of Schachter ef al. may be used for
automated cluster identification. A version of the system used discriminant analysis
to detect diseased citrus trees in infrared color imagery. An advantage of the
chromaticity coordinates is that shadow regions in the image may often be easily
identified.

Ohta ef al. have further investigated color transforms for recursive segmentation
[OhtaB0a, OhtaB0b]. They computed color histograms using the Karhunen-Loeve
color transform — an expensive methed because the transform is different for each
region. Ohta found that the transform principal axes tended to cluster around

I, =red + blue + green
Ja=71ed — blue

I3 =2 red — (green + blue)

and recommended that these features be used. (The second and third features may
be negative, so that either an offset is necessary or the segmentation ¢ode must be
able to handle negative pixel values.)

Ohta’s transform is similar to the YIQ system and to the opponent color process
recommended by several authors [Sloan75, Nagin78]. The transform is linear, and
hence avoids the instabilities that Kender found in saturation, hue, and normalized
chromaticity coordinates. Nagin expressed some theoretical reservations about his
own oppeonent features, but concluded that they '‘consistently provided meore
discrimination than the original RGB data."

Nagin also explored the use of ''conservative'’ histogram thresholding (i.e., suppress-
ing doubtful classifications) combined with region growing, and showed how the irnage
segmentation algorithm itself could be used for segmentation of two-dimensional his-
tograms [Nagin77, Nagin78]. Other two-dimensional histogram analysis systems have
been built by Milgram et al. [Milgram?79, MilgramB0] to segment monochrome images
using pixel edge-sirength in addition to intensity.

Meanwhile, work on recursive segmentation has continued at CMU. The current

PHOENIX program is a VAX 11/780 implementation of Shafer and Kanade’s KIWI pro-
gram for the PDP 11/40. A related system named MOOSE [Shafer80] is being studied

10
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at the University of Hamburg for symbolic motion analysis. The algorithm used in
these systems is described below. The use of multiple histogram intervals, spatial
analysis look-ahead, and the interactive control system are major innovations incor-
porated into PHOENIX.

3.2. Algorithm Descripton

Image segmentation reduces a pixel array to a map or list of significant regions. This
greatly reduces the number of entities to be dealt with while increasing our
knowledge about the image. (The increased knowledge, or information, may be meas-
ured by the reduced number of bits required to code the image. More importantly,
the extracted segments are usually related to objects in the imaged scene.)

It is difficult to talk about the complexity of the segmentation task without discussing
particular techniques, although this has been attempted [GurariB2]. For a survey of
statistical image models for classification and segmentation see [Rosenfeld79].

There are many approaches to image segmentation, and each has its domain of appli-
cability. Edge-based methods attempt to derive closed regions from linear discon-
tinuities. Region-growing methods extend small homogeneous regions by incorporat-
ing neighboring pixels or regions. Region-splitting (or thresholding) methods subdi-
vide initial regions by identifying more homogeneous subregions. All of these tech-
niques are discussed further in Appendix A. The following describes the PHOENIX
algorithm for image segmentation.

3.2.1. General Approach

The PHOENIX algorithm is a region-splitting technique. It has the advantage that a
partial segmentation is meaningful, and only those regions satisfying higher-level
criteria need te be considered for further segmentation. ‘

A scene is assumed to be composed of numerous connected regions, each of which
is approximately uniform in texture and, if untextured, in all of its other pixel pro-
perties. The lurninance image of an untextured scene then resembles a mosaic of
flat-topped “mesas.’” These regions may be related to portions of objects, to whole
cbjects, or to clumps of objects. (We will temporarily ignore shadows, occlusions,
and other complications.)

The segmentation algorithm must identify image regions that correspond to such
scene regions. The job is complicated by imaging blur, spatial and intensity quanti-
zation, and other artifacts of the imaging process. The most serious problems,
however, arise when the scene contains sloped facets [HaralickB80] or continuous
gradients that violate the assumed mesa model.

PHOENIX finds uniform regions by recursively splitting nonuniform ones, beginning
with the whole image, into smaller regions. (See Appendix A for a discussion of
splitting techniques.) The connected components associated with each intensity
slice are then extracted. This process is not necessarily cheap, but there is evi-
dence that it is well-suited to a parallel architecture such as the human visual sys-
tem. Price [Price76] lists counts of machine operations required to perform many
of the recursive segmentation steps. The amount of computation per region is
nearly independent of the number of subregions found, se there is a bonus if the
technique finds many subregions in a single pass.
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One way to locate many regions is to analyze the histograms of many features.
PHOENIX and the Ohlander-type segmenters typically use three independent color
features per pixel, plus one or more texture features. (For monochrome imagery,
only intensity and the texture features are available.) Although joint histogram
analysis is possible, it is of the same order of difficulty as the original image seg-
mentation problem. PHOENIX opts for simplicity by analyzing only the one-
dimensional marginal (or single-feature) histograms, augmented by one-
dimensional histograms of linear or nonlinear feature combinations.

Each pass of the Ohlander/Price algorithm found segments related to a single peak
in a single marginal histogram. The PHOENIX program is able to use multiple histo-
gram intervals to increase the number of regions found in one pass, although typi-
cal cperation uses only one threshold per feature in order toc minimize neise and
segmentation errors.

3.2.2. Color Features

Although color transformations are not strictly a part of the PHOENIX program,
they are fundamental to its theoretical basis and to its typical operation.

Color features are needed when two regions to be distinguished have similar inten-
sity (and texture), but different hue or saturation. Even if the regions are not adja-
cent, their intensity histograms will overlap and prevent discriminaticn. Hue,
saturation, or other color features may be used to break the deadiock.

Color features for image processing research are typically generated by scanning a
color photograph through color filters (e.g., Wratten filters 25, 47B, and 58) to get
red, green, and blue feature planes. Real-time systems often use an electronic
color camera to generate YIQ features, which correspond roughly to perceptual
brightness, eyan vs. orange, and magenta vs. green. (‘I’ stands for in-phase, *Q’ for
guadrature.) The two color systems are equivalent, and we shall henceforth
assume that the primary input is in the RGB coordinates. :

Each color system constitutes a three-dimensicnal color space, that can express
most of the colors perceived by hurnans. (The full detailed spectrum that, e.g.,
astronomers and physicists depend upon has been lost, just as it is in the human
visual system.) A few purples and highly saturated colors are not precisely
representable, the colors recorded with different films or cameras may differ, and
digital quantization lirmits the fineness of color distinctions, but the three-
component representation is adequate for most purposes.

Typical quantization is eight bits per*color axis, or 16.8 million cells for an entire
three-dimensional histogram. Repeated cluster analysis in such a histogram is not
attractive, although nonhistogram methods of multidimensional pattern recogni-
tion are available. The PHOENIX package instead uses an adaptation of the one-
dimensional histogram segmentation developed by Tsuji, Tomita, and Ohiander.

Any one-dimensional histogram is equivalent to a projection of the three-
dimensional data onto a line (or curve) through the color space. If the scene con-
tains many regions, their histogram peaks are likely to overlap and obscure any
useful details in the composite histogram. The overlap is different for projections
at different angles, and it is often possible tco isolate peaks from scme of the
regions by using many different projections.

12
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Several projections, or transformations, were discussed in Section 3.1; many others
are possible, The authors of PHOENIX have generally stayed with Ohlander’s choice
of RGB, YIQ, and HSD (hue, saturation, and mtenstty) projections, although they
note the instabilities of the HSD system near the D axis [Shafer82]. (The HSD sys-
tem is also known as the HSI or IHS system. The symbol D is used here to avoid
confusion with the YIQ system. It comes from densify, a measure of the amount of
silver deposited at a given point in a photographic negative.)

The color transforms are generally computed by the method of Kender [Kender?8,
Kender77]. The YIQ coefficients are

¥ = 0.509F + 1.000G + 0.194F
I = 1.000R — 0.480G ~ 0.540F + M

@ = 0.403R — 1.000G + 0.5878 + M

where M is the highest possible intensity value in the original RGB features, typi-
cally 255. These formulas have been linearly scaled to maintain quantization accu-
racy (via the unit coefficient). The addition of M is simply for convenience in digital
representation. (The Q feature can be negated before adding M to better match the
green gun on a coler menitor.)

The HSD coordinates were introduced by Tenenbaum et al. [Tenenbaum'?é] to
mimic human color perceptiorn. Briefly they are

H = arccos g £—G)+(R-F

-_— _G+ -_— _—

S = m(1 - gMin(E.G.B),

R+G+ 5
D=§R+g+Bz

where m is the maximum desired saturation value. Hue is normalized by subtract-
ing it from 27 if F>G. and some care must be taken in rounding the values near 2m
if the number is quantized. Note that these formulas contain singularities due to
division by zero: Kender recommends detecting these cases and treating them as
special values. See [Kender?6, p. 35] for a computational algorithm.

3.2.3. Texture Features

Only the intensity feature (D or perhaps Y) is available for monochrome imagery.
This is occasionally adequate for segmenting simple scenes with large objects (as in
cell counting [Prewitt70] or some types of industrial inspection), but aerial scenes
usually show so many regions that the composite histogram is unimoedal. Recursive
segmentation can only proceed by using additional texture features or special con-
trol strategies (see Section 3.2.6).

Structural texture features can be used [Tsuji73, TomitaB2], but the PHOENIX pro-
gram is best adapted for statistical texture features that can be measured at each
point. There are many such measures. Ohlander used a simple Sobel-edge ''busy-
ness'' feature to identify textured regions in color imagery. Price used local edge
density, variance, and range to segment aerial and side-looking radar imagery. (He
suggested that local minimum or maximum pixel values could be used to distin-
guish some regions.) Fourier and other spatial transforms are popular [Pavlidis75,
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Tanimoto78]. Local gradient or edge strength could alse be used, although the his-
togram analysis must be more sophisticated [Milgram79, Milgram80].

Ohlander used texture only to remove busy regions from further consideration by
the color segmentation system. Price also used texture this way, but was able to
segment monochrome images using texture features in place of color features.
PHOENIX carries this integration even further by using a2 limited form of look-
ahead: at each step only those features preducing ‘‘clean’’ spatial segmentations
are kept. Thus texture and color features may be used together. (A more intelli-
gent system would understand the nature of each feature plane, and failure of a
color feature to provide compact regions would activate a texture analysis subsys-
tem. This has not yet been tried.)

3.2.4. Histogram Analysis

It was stated earlier that each regicn in a scene is modeled as a uniform patch in
the image. Such a model implies that the histograms should contain only sharp
spikes. A more appropriate model, allowing for some texture and imaging effects,
is that each region produces a noisy Gaussian peak in the histogram,

Methods do exist for decomposing a function into Gaussian peaks. This is known as
the mixture density problem [Wolfe70] and is important in information theory,
statistics, chemistry, and other flelds. Very little of this theory has been applied to
image processing [Chow70, Rosenfeld76b, Postaire81]. PHOENIX is able to use its
spatial knowledge to avoid the difficulties of these methods, although at the cost of
making some errors in thresheold placement. These errors cause the break-up of
some small regions and shifting of region boundaries on others.

Ohlander and Price used a hierarchy of heuristic rules for selecting the most prom-
inent peak within a set of histograms [Ohlander?8, Price?9, Nevatiad82]. The peak
was delimited by two thresholds that defined an intensity interval and its comple-
ment. PHOENIX uses similar heuristics, but concentrates on the valleys (i.e., local
minirna) in the histogram set. Usually a single valley, resulting in one threshold
and two intervals, is selected for each feature. Spatial analysis is then used to
select the best threshold /feature combination. Using only one thresheld per pass
reduces the chance of segmentation errors, although it does increase the number
of passes required.

The PHOENIX histogram analysis uses region growing instead of recursive segmen-
tation. A histogram is first smoothed with an unweighted moving average. It is
then broken into intervals such that each begins just to the right of a valley (i.e., at
the next higher intensity), contains a peak, and ends on the next valley. A valley is
considered to be the right shoulder of its left interval and the left shoulder of its
right interval. The leftmost and rightmost intervals always have exterior shoulders
of zero height. ‘

A series of heuristics is then applied to sereen out noise peaks. Each test is applied
to all the intervals in the histogram (providing there are enough intervals for the
test te be meaningful — two for some tests, three for others). When an interval is
eliminated, it is merged with the neighbor sharing the higher of its twe shoulders.
The screening test is then applied again to the merged interval; previous tests are
not reapplied.

Peak-to-shoulder ratio is tested first. An interval is only retained if the ratic of
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peak height to the higher of its two shoulders, expressed in percent, is at least as
great as the maxmin threshold. (See Section 5.1 for more about this and other
user-supplied thresholds.)

Peak area is then compared to an absolute threshold, absarea, and to the relarea
percentage of the total histogram (or region) area. Only peaks larger than these
thresholds are retained.

The intervals surviving to this point should be reasonable candidates, and it is rea-
sonably safe to use global histogram descriptors in the test conditions. The
second-highest peak is now found, and peaks less than a percentage, height, of it
are merged. The lowest (interior) valley is then found, and any interval whose right
shoulder is more than absmin times this is merged with its right neighbor. (The
para;neter seems to be misnarmed since the criterion is relative rather than absc-
lute.

A final screening is made to reduce the interval set to intsmax intervals. This is
done by repeatedly merging regions with low peak-to-shoulder ratios untii only
intsmax-1 valleys remain.

A score is also computed for each interval set. This score is the maximum
(apparently MOOSE used the minimum) over all intervais of the function
1000 peak height — higher shouwlder
peak height

This formula assigns the maximurn score to an interval set. containing a peak with
shoulders of zero height.

8.2 5. Spatial Analysis

PHOENIX next chooses features (and corresponding interval sets) for spatial evalua-
tion. The best isetsmaxinterval sets will be chosen, provided that each has a score
of at least absscore and at least relscore percent of the highest interval set score.

Each selected interval set is then tested for segmentation quality. The histogram
cutpoints are applied to the feature plane as intensity thresholds and connected
components are extracted. (See Appendix B for the extraction algorithm.) Apply-
ing the thresholds introduces segmentation noise of three kinds: border placement
errors, small noise pafches that do not correspond to scene objects, and thin necks
connecting patches that should be separated.

Border placement errors occur when the threshold separating two patches is
influenced by histogram contributions from other nonadjacent patches. The effect
can be so severe that small regions are split apart and/or absorbed into neighbor-
ing regions. This can be combated by conservative thresholding [Milgram?79] or by
some type of post-analysis using the statistics of only the two regions involved.
(See [Milgram77] and [Milgram80] for methods of combining edge evidence with
histogram analysis.) PHOENIX currently ignores such errors. .

Price’s PLAN program used a fast (but still time-consuming) spatial smoothing step
to eliminate noise regions and connecting necks. Unfortunately the method also
rounded corners and straightened thin diagonal objects. A more intelligent method
would need to determine which pixels were noise regions or necks and to alter only
those.
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The PHOENIX spatial analysis is able to deal with noise regions, but not with con-
necting necks. (Large regions joined by a neck will usually be split in a later seg-
mentation pass.) PHOENIX calls a subroutine to determine whether a connected
patch is a noise region or a true region. At present this subroutine performs only
en area test, with patches smaller than noise pixels considered to be'noise regions.

After each feature has been evaluated, the one producing the least total noise area
is accepted as the segmentation feature (providing that the noise area is less than
a percentage, retain, of the total region area). The subregions obtained with that
interval set are added to the segmentation record and the next segmentation pass
is scheduled. : ’

3.2.8. Control Strategies

PHOENIX uses a spatial analysis look-ahead to improve the selection of a segmenta-
tion interval set, just as modern chess-playing programs use dynamic evaluation te
validate moves that seem good to a static evaluator. Spatial analysis improves on
selection by the interval set score about 40% of the time [Shafer82], although the
order in which features are selected may have little effect in many of these cases.

Several other high-level control strategies have been proposed to overcome specific
preblems. Ohlander and Price, for instance, used ordering of texture and color
feature sets to guarantee that some features would be tried before others.
PHOENIX has no such ordering because the spatial analysis rejects any inappropri-
ate feature that would cause the breakup of a region. The program developers
recognize, however, that such methods might save computation time or be other-
wise useful; they have added such a facility to a later version of PHOENIX than is
documented here [ShaferB2].

Two methoeds of reducing computation time are planning and focusing. Planning
was discussed in Section 3.1. It involves use of thresholds and region masks derived
from reduced images to speed segmentation of full-resolution images. PHOENIX

does not incorporate planning.

Focusing is the use of interest operators, motion detectors, or higher-level
knowledge to crop the image around objects of interest [ShaferB80). This concen-
trates expensive resources on appropriate tasks, but does run the risk of missing
unexpected objects in the scene. PHOENIX dees not include an automatic focusing
mechanism, but the user may control which regions of the image are to be seg-
mented further. The user may also ‘'prune’ regions where the subregion structure
turns out to be uninteresting.

Another difficult problem is the initiation of action when the original set of features
is insufficient to identify a usable threshold. This often occurs in monochrome seg-
mentation, because the single luminance feature has insufficient degrees of free-
dom for separating the overlapping peaks of many small regions. Texture features
also tend to be unimodal unless the scene contains large areas of distinctive tex-
ture (such as agricultural fields [Keng77a]).

Color features are typically multimodal, making it easy to begin segmentation of
even large scenes. Some possible explanations for this phenomenon are:
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* Co-evolution of natural visual systems and of the environment they
operate in may have produced a teleological segmentation of natural
scenes into colored areas corresponding to functional entities. (Note
that color is nearly always absent in caves and in deep ccean environ-
ments.) Man has continued this trend in the construction and decoration
of technological artifacts. While colored objects are "intended" to con-
trast with their backgrounds, natural textures are more often accidental
or intended for concealment. Further, since our understanding of tex-
ture is poorly developed, the texture measures we are using may have lit-
tle discriminating power to begin with.

* Color is a point property, and can be measured very precisely. Texture
is a local neighborhood property, and cwrent methods of computaticn
inherently blur the scene. If texture is measured over 15x15 windows, a
single pixel from a different texture source contaminates the measured
texture at 224 locations around it. The measurement windows of any two
adjacent pixels have 93% overlap. This tends to smooth the texture histo-
grams. For methods to combat this (by nonmaximal suppression and by
choice of window size) see [Zucker75].

* Perceptual color is a three-dimensional space. Projecting it to a one-
dimensional space (e.g., luminance) often destroys cluster separability;
multiple projections must be used to retain sufficient degrees of free-
dom. Texture space may well have dozens of dimensions, and we have
been measuring it along too few axes for good separability.

* Color features are rmeasured through "leaky' filters that permit some
response to other colors. Consider a picture of a red flower against a
green background. If the color fllters were ideal, the red histogram
would have a single peak representing the flower and the green histo-
gram would have a single peak due to the background. Only by blending
the two histograms, as occurs now with our broad filters, could histogram
analysis find a starting point. Many of our texture measures are
designed to be orthogonal, and it may similarly be necessary to use
linear and nonlinear combinations of texture features to augment their
effectiveness. (Combinations of texture and color may also be possible
[Rosenfelds0].)

* QGrahame Smith of SRI has sugpgested that multiple filtering may also play
a role. Imagery for image understanding research has typically passed
through at least two filtering processes during capture on film and subse-
quent digitization. The combined effect may introduce deeper histogram
valleys than were present in the original scene. Texture measures are
not subject to these influences.

* As Kender has pointed out, quantization and aliasing in digital transfor-
mations introduce false peaks and valleys into an otherwise uniform his-
togram. The effect on natural scepes has not been fully studied, but it is
very likely that hue and perhaps saturation exhibit these effects. Various
noise sources, particularly the picket fepce effect of digital contrast
improvement, may also introduce sharp peaks and valleys into the color
histograms. Texture measures are often computed using floating-point
arithmetiec, and so avoid these effects.

Whatever the reason, luminance and texture features alone are often toc unimodal
to initiate segmentation of a large region. A higher-level control strategy is needed
to get the segmenter off dead center. Once it has broken the image into regions,
there is often enough peak separation to continue to a reasonable segmentation.

17



Description

Price solved this problem using partitioning. . The image was arbitrarily broken inte
smaller sections, and the histogram of each was computed. Each histogram was
treated as the histogram of a feature over the whole image. Thus if a peak was
found in the histogram of one image section, it was used to threshold the entire
image. PHOENIX has no such mechanism, although its spatial analysis step would
make such an action less dangerous.

Ancther, much simpler, heuristic would be to gradually weaken all thresholds until
some histogram became segmentable. In the limit this would require that a feature
threshold be arbitrarily chosen. Although this sounds crude, it may be exactly
what is currently happening in the color domain. If the arbitrary threshold preved
effective, any inappropriate segmentation that it caused could later be undone in
an editing step.

18



Section ‘4

Implementation

This section documents the SR] Testbed implementation of PHOENIX, which is very lit-
tle changed from the original CMU implementation. It is intended as a guide for system
maintainers and for programmers making modifications to the PHOENIX system. The
terms used in this section may be a little cryptic: they are ejther defined elsewhere in
this report or come from the supporting operating systems.

The SRI Testbed uses the EUNICE operating system, which is a Berkeley UNIX! emulator
for VAX computers using DEC’s VMS operating system. EUNICE was developed at SRI to
permit simultaneous access to UNIX and VMS software and system services, and to
implement improvements to UNIX such as significantly faster image 1/0. EUNICE is
now a commercial product maintained by The Woolongong Group in Mountain View, Cali-
fornia.

Some of the directory and flle names were truncated for compatibility with an early
EUNICE environment. (This is no longer necessary, although it may still be desirable
for VMS compatibility.) The main program, subroutines, and help files are in directory
/iu/tb/src/phoenix. Major subdirectories are:

demno - standard parameter sets;
display - display routines;

do - phase control scheduler;
flags - flag parsing routines;

help - help system text files;
include - macro definition files;

ki - command operators; .,

main - PHOENIX main program;
misc - 170 and misc. functions;

new - new region maintenance;
queue - queue maintenance routines;
v - scheduling control functions.

To compile the PHOENIX prograrm, just connect to this directory and type ''make’. You
may type “make -n'" to see what will happen if you do this. Additional options are
documented in the header of the makefile,

Other major functions of the PHOENIX package have been moved to the
/iu/tb/lib/visionlib histlib, interviib, patchlib, and polygnlib directories because these
subroutines may be of use to other programs. There is cwrrently no decumentation on
these routines other than that in the source code headers.

Source code and help files for the C] driver are in /iu/tb/lib/cilib. For extensive docu-
mentation type “man ci’ or run "viroff -man /iu/tb/man/man3/ci.8c”. The CI driver

1UNIX is a Trademark of Bell Laboratories,
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uses command-line parsing routines in cilib/cmuarglib and in /iu/tb/lib/sublib/asklib;
both of these may someday be replaced by the Testbed argument parsing routines in
sublib/arglib.

Other utility routines contributed by CMU have been distributed to
/iu/tb/lib/dsplib/gmrlib, /iu/tb/lib/imglib, and /iu/tb/lib/sublib, and are docu-
mented in /iu/tb/man/man3. Scme of these have been modified or rewritten for the
Testbed environment; the image access code, for instance, reads Testbed image
headers as well as CMU image headers. Output map files are now created with Testbed
headers.

One modification tc PHOENIX was in the manual decision logic of the fetck phase, as
controlled by the *m’ flag. The original code displayed the next region after the user
had made a choice; the Testbed version now displays it before the choice is made.

SRI has also added a detailed display of the threshold selection heuristics during the
interval phase. This is turned on by the ‘H’ flag, and takes eflect if rundisplay is
specified. Each feature histogram in turn is displayed in white. The thresholds before
a heuristic takes effect are shown in blue; those remaining after the screening are
shown in green. The user types a carriage return to proceed with the next heuristic.
This integrates well with the retry facility for redoing the histogrem or inferval phases.

The original PHOENIX code assumed an upper-left origin for image and graphics
display. CMU provided the conversion macros for changing image display to a lower-
left origin as used on the Testbed. Since Testbed image format is also the inverse of
the CMU format, the macros had the effect of displaying images right side up but in the
lower-left corner of the screen.

Unfortunately the associated graphic displays did not use the ccordinate conversion
macros, and could not easily be made to do so. (Maintaining the original layout would
require that all histograms and text be displayed upside down.) We have moved or
interchanged some of the graphic components instead.

The original code limited rundisplay to images of 111 rows or fewer because of the mul-
tiquadrant display layout. With our altered layout, it was possible to extend this tc 256
rows, although there is still a miner problem with text overwriting the images.

Modifications were needed in two of the threshold selection heuristics. The maxmin
heuristic was rejecting nearly all thresholds if either of the outermost histogram bins
held a large value; this was fixed by defining the cutermost interval minima to be zero
rather than the bin values. The absmin heuristic was rejecting all thresholds at
nonzero bins if the global minimum was zero; this was fixed by clipping the global
minimum to be at least one.

Several heuristic thresholds were permitted to take meaningless values {e.g., relarea >
50 and intsmax = 1). These limits have been tightened. The hsmooth variable was ori-
ginally limited to 20; we have extended it to 100. Several other arbitrary limits have
been extended and default parameter values have been changed to the moderate
values developed in Section 8. Some of the original and new defaults are:

splitmin: 1 > 40
hsmooth: 1 -> 9
maxmin: 20C --> 160
absarea: g0 - 10
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relarea: a - 2
height.: T - 20
absscore: 850 —> 700
relscore: gs - 80

Other minor changes included reducing debugging printout in clrscreen.c, adding
printout of rejected feature set scores as well as accepted ones, changing the colors of
some display elements, and fixing a bug in display of tnonochrome images. We have not
yet removed a restriction against using red, green, or blue feature planes without using
all three as segmenter inputs. .

Several PHOENIX demonstrations have been set up in subdirectories of
/iu/testbed/demo. The chair directory contains the criginal demonstration contri-
buted by CMU: segmentation of an orange chair from a white background. The show$2
command shows the original red, green, and blue feature planes and the hue, satura-
tion, intensity, y, i, and g feature planes computed with SRI's convert program. The
demo command runs the interactive segmentation using only the red, green, and blue
features. You may restore demo.ckp file to see the firished segmentation produced by
shell file ckp.csh [using the original CMU parameter defaults].

The portland directory also has a show$ command and a demo script that loads the
final results for segmentation of the 512x512 portland image using strict and then
moderate heuristics. You may run this seript and then browse using the ‘history’,
‘describe’, ‘display’, and other informational commands. (Use the ** and ‘help * com-
mands to find out what is available.) You may also restore the mild.ckp file to see the
eflect of the mild (permissive) heuristics. This directory also has a skydemo script
designed to show off PHOENIX as a skyline finder: just type ‘*Control-Z’ or ‘exit’ to step
to successive results.

The demo command in the skyline directory is very similar. It shows the results of seg-

menting a reduced bishop image using strict, then moderate, and finally mild heuris-
tics,
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Section 5

Program Documentation

This section constitutes a users’ guide to the PHOENIX package as it is implemented on
the SRI Image Understanding Testbed. As with any reference manual, it has oceasion-
ally been necessary to refer to terms before they are defined and discussed in detail. A
preliminary scan through the section may be helpful on the initial reading. Additional
information is available on-line, as described below.

5.1. Interactive Uzsape

The program requires one or more registered picture files as input. These typically
represent red, green, and blue image planes, and perhaps intensity, hue, saturation,
and other transformations as well. Texture planes ray also be provided; they are not
computed by PHOENLX. The program produces a region map, which is a picture file
having 16-bit region numbers as the pixel values.

The set of input pictures is specified by a template and a -f flag followed by a set of
feature keywords. For example:

phoenix /iu/tb/pics/cheir/4.img - red green blue ...

specifies that the flles 4red.img, 4green.img, and 4blue.img in the directory
/iu/tb/pic/chair are to be used as the input pictures.

Once started, the user typically sets some flag values to control the scheduling pro-
cess and display options, then issues the segment command. This begins segmenta-
tion of the image, which will continue to the halting point specified by the A, B, and C
flags (see below). The user may also interrupt processing with the ‘Control-C’ key,
and may then examine or alter the current status.

Segmentation is normally done by depth level, with all regions at one depth seg-
mented before any of their subregions are processed. The segmentation of a single
region at a single depth constitutes a pass, and consists of a region-dependent
sequence of various phases.

5.1.1. Invocation Options

The following options may be specified on the initial command line. All other com-
mands must be typed in interactively or piped in using a batch seript. (See Section
5.2.)

-2 Echo commands as they are read from a file. If this is not specified,
initialization cormmands will execute invisibly. Interactive script com-
mands invoked with *<’ are not affected by this flag.



Program Documentation

-f teature ..
Feature plane specifications as illustrated above. See [Clark81] for a
full description of the picture naring systern.

-i file

-1 file
Read initialization commands from file before accepting commands
from the terminal. Only one such file may be spec1ﬂed The -I form
exits without accepting terminal input.

-o file

-0 file
This mandatory parameter specifies the output map file. The o form
will create a new file; if it already exists, PHOENIX will ask whether you
want te overwrite it. The -0 form will open an existing map file.

-r region#

-R region#
These two parameters are used with existing (-0) map files to specify
the current (-r} region for further segmentation and the highest (-R)
region number to be updated.

-8 Execute a single segment command and then exit, This is usually com-
bined with initialization commands (see -i) to set ‘flags = ABC’ for con-
tinuous segmentation and perhaps ‘flags = q° to squelch tty output.

5.1.2. Interactive Commands

PHOENIX is implemented using the Cl command interpreter. Type *? for a list of
commands that are available from the C] drlver itself. Most of these have to do with
interactive help facilities.

The following PHOENIX commands can be entered from the keyboard at any stop-
ping point during the session. Arguments that are not specified as part of the com-
mand will be requested.

abort '
Terminate segmentation of the current region. The region is put back
at the head of the segmentation queue.

checkpoint datafile mapfile
Save the current state of the segmentation. Global variables are
stored in dalafile and a copy of the region map is written to mapfile.
Histograms, interval sets, and other temporary data structures are not
saved.

If you specify a nonexistent directory, you are asked whether it should
be created. If either of the specified fileg already exists. you are asked
whether you want to overwrite the file or specify a new cne. Simply
typing a carriage return will abort the command.
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The datafile contains a reference to the mapfile name, so you may not
use operating system commands to rename this file. (You may move
both files to a new directory as long as the same name is used.) The
best way to rename checkpoint files is to restore them and then write
them out again under new names.

clear {sjt] -
Remove all regions from a specified queue. You are asked whether you
really want to do this.

deseribe [type] [identifier]
Describe a data structure. You must specify the type of object and
which one you want. Currently you can ask about regions, histograms,
and interval sets. Regions are identified by number; histograms and
interval sets by feature. You may specify “all’ features if you wish.

display [type] [identifier]
Display an object or data structure. You may display the image, partic-
ular regions, or the current segmentation map overlay. You may also
display the current region histograms or interval sets during phases
when they exist. All of these displays temporarily erase any rundisplay
output.

dqueue {sjt] howmany
Remove houmany regions from the head of a queue,

exit Terminate the PHOENIX session. The region map is properly closed
before exiting.

history [region#]
Print the history of a region. Describes the region’s ancestors, begin-
ning with the earliest.

list {s|t] [howmany] [nth]
List the elements of & queue. Lists howmany elements of the specified
queue, starting with the nth element from the head of the queue if nth
is positive, from the tail if negative. In either case the elements are
listed starting with the one nearest the head of the queue.

prune [region#]
Prune a portion of the segmentation tree. Moves the specified region
back to the head of the segmentation queue, deleting all of its descen-
dents from the region tree and from the output region map. You are
asked whether you really want to do this.

queue is|t] region# [region# ...]
Add regions to a queue. Adds the indicated regions, one at a time, to
the head of the specified queue. They will appear on the queue in
reverse order, i.e., the last one listed will be at the head of the queue.
No check is made for duplicate regions or for segmented regions being
added to the segmentation queue.



Program Documentation

It you accidentally invoke this command (e.g., while trying to guit), just
specify O for the region number.

release
Relinquish the display.

restore datafile
Restore a checkpoint file (which must correspond to the current
image, but may have different feature planes). The state existing when
the checkpoint was.taken is restored, except that actions following the
last collect phase will be forgotten and the display is not restored. You
cannot restore a checkpoint if you are running PHOENIX in a different
directory from when you created the files.

retry phase
Re-execute a previous segmentation phase. This is only valid when in
the middle of segmenting a region. Data structures created since the
previous start of the indicated phase are deleted. Table 4.1 shows the
transitions that are permitted; current states appear on the left and
desired states along the top.

segment
Run the next segmentation phase. The next scheduled phase of seg-
mentation will be executed.

transfer {s[ti howmany
Transfer regions from one queue to the other. Moves howmany ele-
ments from the head of the indicated queue to the head of the other
queue, one at a time. Hence the elements will end up in reversed
order. No check is made for duplicate regions.

Table 4.1. Legal Retry Transitions
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interval -
goodfeatures -
nextfeature -
threshold -
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5.1.3. Execution Phases

Interaction with PHOENIX is normally through the control of the execution phases.
These are ''packets’’ of executable code that together constitute the segment com-
mand. The normal sequence of segmentation phases is illustrated in Figure 5.1.
The user may interrupt the segrnentation at any time, either at scheduled inter-
rupts (see flags A, B, and C) or by using the *Control-C” or ‘delete” keys. Execution
resumes when another segment command is issued.

The phases, in order of normal execution, are listed below. (The descripticns
assurmne that rundisplay has been set to yes; otherwise displays must be requested
using the displey command.) To begin or continue this phase sequence, issue the
segment command. The phases that are then run depend on the control flags
which have been set.

fetch

The next region is fetched from the segmentation queue. {Initially the
entire image is one region.) If the ‘d" flag is set, a description of the
region is printed. The region is expanded by pixel replication and is
displayed above the original irnage (where the region center is marked
by the cursor). If the region has an area less than splitmin pixels, or if
the ‘m’ flag is set and the user declines the region, it is declared termi-
nal and a collect phase is scheduled. Otherwise the region is passed to
the histograom phase. You will not be allowed to resegment a region
that has already been segmented. C

Histogram
A region histogram for each color or feature is computed. Each histo-
gram is smoothed using an unweighted moving average if the hsmooth
variable is set greater than 1.

interval
Each feature histogram is broken into intervals (as described below)
and is displayed with the thresholds marked in red. An interval-set
quality measure is computed for each feature and boxes are drawn
around histograms with acceptable scores. If none was acceptable, the
region is declared terminal and a collect phase is scheduled; otherwise
(if the ‘d’ flag is set) the interval-set score for each feature is printed.

goodfeatures
This initializes the spatial evaluation loop [phases nextfeature to evalu-
ate; see Figure 5.1]. If there are no candidate features, the region is
declared terminal and a collect phase is scheduled.

nextfeature
The next good feature is chosen. If all have been evaluated, a selection
Phase is scheduled.

threshold
The region is thresholded (or level-sliced) using the chosen interval set,
and is displayed with a different intensity for each interval.
Corresponding intensities are indicated on the feature histogram. The
connected components are outlined on the expanded original and
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thresholded region images. (This outlining is separate from the boun-
dary extraction done in the following patch and collect phases.)

patch
Connected components for each intensity interval are extracted.
These components are stored as pafches, which are run-coded
representations together with a few shape descriptors (linear dimen-
sions, area, centroid, number of holes, etc.). Patches in the foreground
(selected intensity) are 4-connected, while the corresponding back-
ground is considered B-connected.

evaluate

Patches are classified as either valid regions or noise regions. At
present this iz determined by comparing the patch area to the noise
threshold, without regard to patch shape. Each noise region is marked
with a dot in both the expanded original image and the thresholded
image. The feature is then evaluated by computing the percentage of
noise area over the whole image. A mezifeafure phase is always
scheduled to lollow this one.

selection
When all features have been evaluated, the one with the least noise area
is selected for segmenting the region. A feature is disqualified if the
noise area exceeds the retain threshold, or if any one of its intervals
failed to produce a valid patch. If no suitable feature is found, the ori-
ginal region is declared terminal; in either case a collecf phase is
scheduled next.

/
collect

If the original region has been declared terminal, it is moved to the
head of the terminal queue. Otherwise the valid patches {(merged with
their contained noise patches) are converted to regions. This involves
computing the polygon boundaries of the new regions, updating the his-
tory list, adding the regions to the segmentation queue, inserting them
in the stored region map, and drawing them on the original image
display. (These outlines accumulate so that the overlay on the original
image always represents the current state of the segmentation. If the
user edits the segmentation history or asks for other displays, the out-
lines may not correspond to the full segmentation.)

This order of execution may be altered in several ways. If an error occurs, e.g., a
memory allocation failure, the same phase will be rescheduled as the next phase.
The user may also interrupt processing and attempt to schedule a previous phase
with the retry command. The system permits some retries and forbids others,
depending on the last completed phase and the next scheduled phase. It will object
if either a fefch phase or the phase you specify is already scheduled next, or if you
try to jump forward in the phase sequence. It will also object if you try to jump into
the middle of a loop; in particular, you may not retry a neztfeature phase,

The segmentation stops when there are no more regions on the segmentation
queue. The user may then (or at any time before) ask for various displays and
informmation, edit the segmentation, or save the current region map and region
description file. A saved state may be relcaded later and processing may continue.
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5.1.4. Status Variables

PHOENIX maintains a set of read-only variables or status guery commands. To
query the value just type the name of the variable. Although the values may not be
set directly, some of them may be changed by other PHOENIX commands.

features
-Features currently being used in segmentation. This is just the list of
names following the -f flag on the initial command line.

images
Picture flles being used in the segmentation.

lastphase
Last segmentation phase completed.

nextphase
Next segmentation phase to be run

phases
A list of all the segmentation phases. The last and pext phases are
designated.

regions
The number and range of existing regions.

time ‘ :
Real time and CPU time spent in each phase and in the entire PHOENIX
run. {Real time for a restored segmentation is not meaningful.)

SBee also the execution flags and control variables documented below.

D.1.5. Execution Flags

Flags (on/off variables) may be used to control execution of the entire program or
of any phase. Local phase flags take precedence over global flag settings.

To find out what flags are set, type flags. You may turn off all flags by typing
Jlags = -* To selectively turn flags on and off, use a command like flags = -45+g,
where the plus sign may be omitted if there is no preceding minus sign. The follow-
ing flags are available:

A (default)
Begin the next non-fefch phase without interrupt. This permits the
current segmentation pass on the current region to run to completion.

B  Permit same-depth fefich phases without interrupt. Segmentation of
the current regions will run to completion, but their children will not
be segmented until the next segment comrnand is given. Flag B is only
meaningful if flag A is set.
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C Permit fetch phases that initiate new levels of segmentation. Segmen-
tation of the entire imaege will run to completion. This is only meaning-
ful if flags A and B are set.

D Enable debug printout. (See also flag G.) This option turns on printout
of storage manapement messages.

G Print display subroutine entry, exit, and debugging messages.

H If rundisplay is turned on, step through a detailed dlsplay of threshold
seler.itlon heuristics during the inferval phase. [This is an SRI addi-
tion.

P  Pause rather than stop on interrupts caused by having flags A. B, or C
turned off. (To continue after a pause, type a carriage return. To con-
tinue after a stop, type seg[ment].)

d Describe fetched regions and feature quality statistics.

g Order regions on the queues globally by area. This overrides the ‘o’

m Request a manual decision on whether to further segment a fetched
region. If rundisplay is active, the region will be displayed. The ‘d’" flag
should usually be set so that there is a further basis for the choice.

o (default)
Order regions by area within each depth If neither this nor the ‘g’ flag
are set, regions are simply added to the tail of the segmentation queue
as they are generated.

g Execute quietly, without normal tty output. This does not affect cutput
due to the *G* or *d” flags, nor echoing of prompts and commands.

v (default)
Autoverbose mode. Run in verbose (as opposed to quiet) mode for
regions with area greater than autoarea. This has precedence over the
‘q” flag, but only takes effect locally during a collect phase and then
permanently during a fefch phase.

To set a local phase flag, use a command of the form during <phase> = -*+AB. 'rms
string will be used to mochfy the flags variable during the specified phase.

To examine the current modifier value, type during <phase>. There is currently no
comrnand to display all of the local flag settings at once.

Resetting (disabling) a '‘during <phase>" option is a little difficult. There is no
comrnand to reset all of the phase modifiers at once. To reset them individually
you should specify "'during <phase> = +",
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5.1.8. Control Variables

The user displays and decision logic used by PHOENIX may be fine tuned by setting
various option variables and thresholds. To turn on the rundisplay option, for
instance, type rundisplay = yes. To ask for the current value, just type rundisplay.
Abbreviations are accepted.

The following affect the feich phase or the PHOENIX session as a whole. Default
values are listed in parentheses.

autoarea (0)
Maximum region area for the autoverbose option {flag v) to select quite
mode.

depth (infinite)
Maxirnum depth of the segmentation tree. Regions at this depth will
not be split further. {This test is currently made at the end of the caol-
lect phase.)

rundisplay (no)
Use a real-time multiquadrant presentation of processing results. This
cannot be used for irnages larger than 128x128,

The original image is displayed in the lower-left quadrant with all region
boundaries overlayed in red and the cursor centered in the current
region. A window containing the current region is expanded by pixel
replication and displayed in the upper-left quadrant. Histograms and
interval sets are displayed along the right side of the screen. During
spatial analysis, the lower-right quadrant contains the selected histo-
gram and the upper-right quadrant displays the thresholded region
window. Patches are outlined in green in both of the expanded win-
dows, and noise regions are marked by blue dots.

splitmin (40)
Minimum area for a region to be automatically considered for splitting.
This is an absolute area, not a percentage of the image area.

A fetched region is first histogrammed, and each feature histogram is smoothed.
This is controlled by

hsmooth (9)
Histogram smoothing window. Smoothing is done with an unweighted
moving average; the outermost bin values are assumed replicated
beyond the ends of the histogram.

The heart of the PHOENIX system is the inferval phase, since histogram segmenta-
tion is the major step in color immage segmentation. The variables that control this
process, along with their default values, are listed below in the order of their appli-
cation
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maxmin (160)
lowest acceptable pealt-to-valley-height ratio expressed as a percen-
tage.

absarea (10)
Minimum area for an interval to be retained.

relarea (2)
Minirmum acceptable percentage of total histogram area.

height (20)
Minimum peak height as a percentage of the second-highest peak. This
test is skipped if there are only two intervals.

absmin (10)
Maximum retained valley height as a multiple of the lowest (or ‘''abso-
lute minimurn'') valley in the histogram. Intervals separated by higher
valleys will be merged. This test is skipped if there are only two inter-
vals.

intsmax (2}
Mavimum number of intervals in each final interval set, The intervals
will be reduced to this number by merging (i.e., eliminating histogram
cutpoints), starting with the highest valley.

Each interval set containing more than one interval is then assigned a score:

peak height — higher shoulder

1000 peak height

Interval sets with low scores are not considered for spatial analysis. Threshelds
used in the spatial evaluation, or goodfeatures to evaluate phases, are:

absscore (700)
Minimurn acceptable interval set score. lLess promising interval sets
will not be selected for spatial evaluation.

relscore (B0)
Minimurn acceptable percentage of the highest set score. Features
with lower interval set scores will not be considered.

isetsmax (3)
Maximum number of interval sets (features) that will be evaluated.

noise (10)
Minimum area of ncise regions. Only regions larger than this are
retained.

The following affect the selection and collect phases:
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retain (20)
Maximum acceptable noise area as a percentage of a region’s total
area. Regions with more noise content will not be retained.

tolerance (0.1)
Tolerance for polygen fitting. This affects only the output description
and has nothing to do with the region-splitting algorithm.

5.2. Batch Execution

The PHOENIX program offers two methods of invoking prestored commands. The first
is the invocation of CI command flies, either interactively or with the < command-line
flag. For example, you might give the cornmand

> <chair.emd
where the file chair.cmd contains the commands

flags = -BC+APdorvw
rundisplay = yes

In this case the PHOENIX program will set the fiags for a moderately interactive ses-
sion with the special rundisplay turned on.

The second method is to drive the entire PHOENIX session from an operating system
script. A UNIX C-shell seript might look like:

§ PHOENIX segmentation system.
# Supply the image name as an argument.

rm -1 $1.map
phoenix /iua/tb/pic/31/.img - red green blue
-0 $1.map -1 $l.cmd <<1
flags = ABCPdovy
depth = 4
rundisplay = no
segment
L]
echo “"Finished."

This seript is designed to run without user interaction or visible displays. It does
print some information during processing, but does not wait for you to look at it.
(You can temporarily halt the processing if your terminal accepts Aold or ~S~@
handshaking commands.)

To save the typed terminal output you should pipe the standard output to a file. The
UNIX method for doing this is to add >session.log to the phoenix command within the
script or to the UNIX command line that invokes the script. You may also use the
UNIX script or tee commands to route the typed ocutput te a file and to your terminal.

The actual submission of this shell script is described in the UNIX Programmer’s
Manual. You should run it in foreground mode if you want to interact with the pro-
gram. If you run it in background mode, be sure to pipe the cutput to a log file so
that it won’t appear on your terminal. You can monitor the log file during execution
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(using the caf or frail -f commands) to make sure everything is running smoothly,
although the log file will typically run somewhat behind the actual prograrn execu-
tion. You can also halt the process or reconnect it to your terminal if you wish.



Section 6

Evaluation

This section documents the performance of the PHOENIX program in test runs on a
variety of imagery. Ruies are given for setting various scene-dependent parameters,
and performance characteristics are evaluated. The section ends with an application
of PHOENIX to the problem of skyline delineation

6.1. Parameter Settings

PHOENIX is a mdderately complex system with numerous execution options and 14
user-settable variables that control the segmentation process itself. We will describe
the eflects of each option alone and in combination with others.

In addition, we will describe the threshold variable settings for ‘'mild”, "moderate’,
and 'strict'’ sereening of potential feature thresholds. These correspond to permis-
sive, moderate, and cauticus segmentations. These three categories reduce the 14
variables to a manageable single parameter.

Alsc listed are the minimum and maxitnum legal values for the SRI version of
PHOENIX; the '"disabled'’ value turns off a heuristic_completely, and a "drastic’’ value
makes it so strict that very few histogram cutpoeints will get through.

We recommend that PHOENIX command files be vsed as a mechanism for quickly
~ loading sets of commands. We have used files named strict.cmd, moderate.cmd, and
mild.cmd in directory /iu/tb/src/phoenix to store the corresponding 14 threshold
settings (with the exception that intsmax is always set to 2). Files named run.cmd,
tst.cmd, and display.cmd store commonly used flag settings and control variables.
Fach user shouid develop such command files for the tasks he commonly performs.
(PHOENIX should also permit a directory search path to be specified so that standard
files could be used or selectively overridden. The underlying CI driver supports this.)

Flags

The flag mechanism controls the amount of interaction between the user and the sys-
tem. Scme flags tell the scheduler whether to proceed autoenomously or to stop and
ask for commands; others control verbose printout and debugging messages. Several
sets of flags (e.g., *ABC’ or ‘go’) might be better represented by single variables than
by interacting flags, but the flag mechanism is useful for allowing ''during <phase>"
control.

These control options are reasonably straightforward, which flags you should set
depends upon what you want to do. They do not affect the segmentation algorithm,
so there is no danger of setting them "incorrectly.”
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The ‘m,” ‘g.,” and ‘o’ flags come closest to affecting the segmentation process. The
‘m’ flag allows you to override the splitmin heuristic and decide manually whether
each region should be spiit further. This is a valuable option, although a time-
consuming one. There is also a need for a more general facility that would accept
arbitrary selection criteria for transferring regions from one queue to another.
(Although specific tests can be added to the current C-based driver, it would be much
easier to implement such screening in a LISP-based driver language.)

The *g” and ‘o’ flags control the order in which newly-created regions are added to
the segmentation queue. If flag g is set, the regions are ordered globally by size. If
‘o’ is set (and ‘g’ is not) the regions are ordered by size within each segmentation
depth. If neither is set, new regions are simply added sequentially to the tail of the
queue. (There is no provision for resorting the queue when you switch from one to
another of these options. Either this should be implemented or the queues should be
unordered with selection done during the fetch phase.)

Global ordering by size is useful for interactive sessions. The segmenter begins with
the largest region and keeps whittling off small subregions until the large region is
homogeneous. Then it picks the largest subregion and does the same. With this
method there is enough continuity so that you can keep track of what is happening.
It would also be good for cueing applications where it is important to find small
“blips'* quickly.

Depth ordering by size is more useful for automatic segmentation. It has the pro-
perty that an interrupted session provides a good partial segmentation into regions
of similar prominence. If run to completion, the segmentation is identical te that
produced with global ordering. |

Global ordering by size is equivalent to a depth-first search through the segmentation
tree, whereas the other two options (depth ordering by size and sequential ordering)
are breadth-first searches. There is a need for more flexible best-first ordering,
where the sorting criterion could be based on region shape, color, position, or other
properties.

A final note: we suggest that the command ‘‘flags = A" should reset all flags other
than A, instead of adding A to the current flag list. The "'flags = -*+A" syntax could
then be used to reset all the "'during <phase>'’ flags as well as the global flags.

Rundisplay {no)

Rundisplay can take cnly two values: ‘yes” or ‘no.” It contrels the special interactive
display that is useful fér exploring the system and for debugging. It is so useful, in
fact, that any preduction version of the system should be extended to include some
type of rundisplay even for images larger than 256x258.

Rundisplay allows the logic flow to be followed step by step. This has been extended
by SRI (via the ‘H’ flag) to include the action of each heuristic cutpoint screening. It
could be extended even further to include separate display of heuristics that are
currently combined, such as the absarea and relarea or abscore and relscore pro-
cedures. On the whole, though, the current facility is excellent.
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Antoarea {0)

Autocarea controls the size of region for which verbose printout is used if the ‘v’ flag is
set. Normally this variable will be left at its default value of zero. This has no effect
on the segmentation algorithrn.

Depth (infinite)
Disabled: LNF JAlso disabled by flag “g-.]
Hild: 20
Hoderate: 10
Striet: 4
Drastic: 1

Depth is active when depth ordering of the segmentation queue is used. It prevents
segmentations of regions lower than the specified depth in the segmentation tree.
{Larger numnbers refer to lower depths.}) The depth limit can be used to restrict pro-
cessing time, although this could be better achieved with the splittoin threshold or
with an actual threshold on time spent.

It is difficult to see how this parameter can be used effectively. Recursive segmenta-
tion depth is not a property of a regicn, but of the region and its context. A strict
depth limit will cause differing segmentations of a region when differing orders of
features are used to extract it from its background. We therefore recommend that
this variable always be disabled or left at the mild setting.

Spﬁhnﬁl(ﬂn
Dizabled: 1
Hild: 20
Hoderate: 40
Striet: 200
Draatiec: INF

Splitmin is the conly control, other than using depth or direct manipulation of the
segmentation queue, for which fetched regions are to be segmented further. Any
region smaller than splitmin is declared termiral and is moved to the terminal, or
‘t,” queue. (This is useful for examining all regions. Just set splitmin to a very large
number, turn on rundisplay, optionally set the ‘d’ flag, and begin segmentation. Each
region will be displayed and described before it is rejected.)

The heuristic thresholds given above seem reascnable, but splitmin should really be
determined by the size of target or cbject facets being sought. It should be at least
twice the absarea and noise thresholds.

A second heuristic might be used to limit regions to a specified fraction of the image
area, thus permitting consistent segmentation acress different imaging resolutions.
In fact, a more general screening facility could be implemented (particularly in a
LISP-based driver) for selecting regions by shape, color, position, orientation, or
other characteristie. :
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Hsmooth (9)
Diaabled: 1
Hild: 5
Hoderate: 2]
Striect: 25
Drastic: 100

Hsmooth is the width of the averaging window used to smooth each feature histo-
gram. (Any spatial smoothing of the feature planes themselves is outside the pro-
vince of PHOENIX. Such smoothing combats the breakup of textured regions.) Histo-
gram smoothing eliminates many false cutpoints that are due to texture, digitization
effects, or color transformations. It also improves the reliability of several other
heuristics, as described below, The amount of smoothing required is often quite
large because PHOENIX has difficulty distinguishing even small notches from broad
valleys between peaks.

Histogram smoothing is done with an unweighted moving average computed by repli-
cating the outermost bin values to plus and minus infinity. This is simple to imple-
ment, but may intreduce artificial peaks when used on small regions with scattered
histogram values. A center-weighted moving average would have better filter charac-
teristies,

This smoothing turns out to be very important — and different values are required at
different times. Strict smoothing can be used on peaks that are well separated. This
simplifies the task of later heuristics, although cutpoint placement is not critical in
such cases. Strict smoothing would be useful for properly splitting peaks that over-
lap slightly, but would cause the maxmin heuristics to discard the cutpoint alto-
gether; moderate or even mild smoothing must be substituted. Mild smoothing is
also required for finding small regions within large ones, but is insufficient for seg-
menting the noisy histogram of a small region.

The problem is that PHOENIX does not use explicit models of histogram peaks. It
considers only very simple statistics of histogram intervals, such as apex and
shoulder heights. It has no notion of valley width: all heuristics treat a single-bin
notch as being identical to a very wide valley. Histogram smoothing is the only
mechanism in PHOENIX for making such a distinction, and it is insufficient for the
task.

Although modeling of histogram peaks and valleys is the best solution, some improve-
ment could still be made in the histogramn smoothing mechanism. A smoothed histo-
gram should augment the original, not replace it. Each heuristic should be able to
apply the smoothing that it requires. Then mild smoothing could be used for selec-
tion of the initial cutpoints and strict smoothing could be used for positioning of a
final cutpoint. ‘

Maxmin (180)
Disabled: 100
Hild: 130
Hoderate: 180
Striect: 300
Drastic: 10000

Maxmin is the minimum acceptable ratio of apex height to higher shoulder. Any
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interval failing this test is merged with the neighbor on the side of the higher
shoulder. The test is then repeated on the combined interval. The overall effect on a
set of cutpoints is to eliminate those that are on the sides or tops of major peaks.

The original version of PHOENIX had difficulty if an apex abutted either end of the his-
togram. The outer shoulder height was taken to be the apex height, and the interval
would fail the maxmin test. Further, the merged interval would inherit this shouider
height and would also fail the test. This process continued until all intervals had been
rejected. We have fixed this in the SRI version by assigning an outer shoulder height
of zero to the cutermost intervals; this represents the bin height at plus or minus
infinity. )

Maxmin is a powerful heuristic, With strict smoothing and all other heuristics dis-
abled, maxmin alone is able to produce reasonable segmentations. It is even more
powerful when combined with the area heuristies. With rnild or moderate smoothing,
maxmin passes clusters of cutpoints in the noise regions between major peaks. This
is fine if the clusters can be thinned by the absarea and relarea heuristics, but a poor
selection may be made if they are left for the intsmax heuristic.

The problem here is that PHOENIX has no "‘quality’ score for histogram valleys. It
assurnes that cutpoint bin height is an adequate measure, whereas width and depth
relative to the neighboring peaks are also important. PHOENIX can only incorporate
such knowledge by smoothing the histogram, and the amount of smoothing required
depends on how separated the peaks are.

Absarea (10)
Disabled: 1
Mild: 5
Hoderate: 10
Strict: 100
Drastie: INF

Absarea is the minimum histogram area that a usable interval may contain. It shouid
usually be set to the same value as the noise threshold. (Perhaps the two thresholds
should be combined.)

This threshoeld is tied to the pixel resolution, and so will cause differing effects in
images of differing rescolution. The value really depends on the size of objects you are
trying to find, and on the number of pieces that such an object might be broken inte
by texture characteristies.

Relarea (2)

Disabled: 0
Hild: 1
Hoderate: 2
Btriet: 0

0

b 3
Drastic: 5 [30 ia very strict.]

Relarea is the minimum percentage of the histogram area that a usable interval may
contain. This intended to eliminate noise peaks (PHOENIX has no explicit model of
histogram noise statistics) and to conserve processing time by skipping doubtful
intervals.
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This is a questionable heuristic since the effect on a particular interval depends on
the total area in peaks that may be quite distant. Small peaks are best skipped if
larger ones are available in any feature, but there are times when segmentation must
be done on the small peaks or not at all. If CPU time is not a problem, it is best to
pass these small intervals on to other heuristics and to spatial analySLs

Abzarea and relarea should both be reduced slightly to allow for PHOENIX's tendency
to clip the tails of major peaks. (This is due to the lack of a statistical or semantic
model for histogram peaks. A potch in the tail of a major peak is treated the same as
a wide valley, and the area heuristics often merge the clipped tail to the wrong side.)
Small thresholds for the area heuristics allow multiple cutpoints to survive for
screening by the later heuristics.

He-ight (20)

Disabled: ]
Hild: 10
Moderate: 20
Striet: 20
Drastie: 100

Height is the minimum acceptable apex height as a percentage of the second highest
apex. (The test is skipped if there are fewer than three intervals.) Cutpoints
between the highest histogram peaks are favored over those isolating low or noise
peaks.

This is a questionable heuristie, for much the same reasons as relarea. It is difficult
to choose a reasonable value because peak height is much less important than the
separation between peaks. Further, the effect on a particular interval can depend
upon distant peaks in the same histogram.

The eflect can seem mysterious when the second-highest apex is not readily
apparent. With mild smoothing the second-highest apex is often part of the main his-
togram peak separated by a small notch. The height heuristic then tends to elim-
inate all cutpoints that are not similar notches high on major peaks. A strict max-
min threshold can combat this by pushing secondary apexes down the side of the
main peak. Strict smoothing can also be used to eliminate the notches, although the
amount of smoothing needed varies with the histogram characteristiecs. The simplest
solution is to simply disable this heuristic or use a very low threshold.

Absmin (10)
Dizabled: 1000
Hild: 30
Hoderate: 10
S8trict: 2
Drazatiec: 1

Absmin screens cutpoints rather than interval statistics. It is the lowest acceptable
multiple of the minimum cutpoint bin height. (The test is skipped if there are less
than three intervals.) An interval is rejected if either shoulder is not at least absmin
times the height of the lowest cutpoint bin in the histogram. Unfortunately the name
of the heuristic does not make this clear.
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The use of a multiplication factor (or ratio) as a threshold entails some difficulties.
Unless strict smoothing is used, the global minimum is often zero. All cutpoints with
nonzero bin heights are then rejected, and frequently only the global minimum itself
will survive, There was no setting of absmin that would disable this behavior. We
have therefore modified the ratio test in the SRI version so that the denominator is
always at least one.

The heuristic is still unstable near zero, but is tolerable and perhaps even useful for
large regions. A mild or moderate threshold tends to pass clusters of cuts in the val-
leys unless they have been thinned by the preceding area heuristics. A strict thres-
hold performs surprisingly well all by itself; with strict smoothing there will be only
one cutpoint in a valley, and with mild smoothing there is often a noise notch deep
enough to eliminate the other cutpoints,

For small regions (under 100 pixels) this heuristic is useless. Cutpoints for these his-
tograms are nearly always at zero height, so this heuristic cannot choose between
them.

Intsmax (2)

Disabled: 100
Mild:
Hoderate:
Striet:
Draatic:

Intsmax is the maximum number of intervals permitted in the final interval set for a
feature. If more intervals reach this point, the one with the highest maxmin ratio
{apex to higher shoulder) is merged with the neighbor on the higher-shoulder side.
This process continues until the desired number is reached.

The eflect depends on the number and nature of cutpoints passed by the previous
heuristics. It tends to favor cutpoints in valleys because small arnounts of neise pro-
duce high maxmin ratios. This behavior is reasonable, although for mild srnoothing it
favors noise notches over the centers of broad valleys. (Actually PHOENIX has no
notion of the center of a valley. If given a flat valley, it will put the cutpoint on the
leftmost bin. Only noise notches or high smoothing will pull the cutpeint to the
center.) Intsmax may also pass a cluster of cutpoints in one valley in preference to
cutpoints scattered through many valleys. The area heuristics may be used to comn-
bat this.

Multiple cutpoints can be investigated either in one segmentation phase of many
intervals or in many phases of two intervals each The former saves considerable
computation, but gives poor results for reasons described in the noise section. It is
best to set intsmax to two unless there is need to conserve computational resources.
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Absscore (700)
Dimabled: o
Hild: 800
Hoderate: 700
Striet: 830
Drastie: 1000

Absscore is the lowest interval set score that will be passed to the threshold phase.
The score is currently just the maximum over the interval set of all the apex minus
higher shoulder to higher shoulder ratios, which is equivalent to the maxrnin ratio.

This heuristic partiaily duplicates the screening performed by the maxmin thres-
hold, and should be coordinated with that value. The conversion formulas for the
component ratios are
100000

in

interval score = 1000 —

in = 100000 .
1000 — interval score’

It would be simpler if the maxmin ratio were used throughout.

Unfortunately this simple score is poorly suited to choosing a good interval set: one
that will generate a segmentation with very few noise regions. Noise regions are a
symptom of the worst threshold for an interval set, whereas this formula uses the
best threshold. The minimum over the interval set would thus be more appropriate,
although an area-weighted average might be better.

An even better score would consider peak and/or valley shapes. The current score is
a very weak model, as can be seen for the case of an interval that contain several
small histogram peaks: the raticed apex and shoulder heights may belong to different
peaks. The current score is also useless on small regions {e.g., 100 pixels) since the
cutpoints usually have zero height and every interval set has a perfect score of 1000.

Disabled: 0
Hild: 65
Moderate: 80
Strict: a5
Drastie: 100 [Single best score i=m verified.]

Relzcore is the least percentage of the highest interval set score that will be passed
to the threshold phase. This is intended to eliminate poor features when better cnes
are available, but is less effective for this than the isetsmax heuristic.

The difficulty arises because a very small peak separated by zeros will have a perfect
score of 1000. (This becomes more likely with small regions or mild heuristics.)
Other features will then be rejected if not within relscore of 1000, so that relscore is
acting much like absscore. If the small peak is finally rejected by spatial analysis,
the region is declared terminal and the other features are never tried. To prevent
this, either use strict area heuristics or a very mild relscore of approximately one-
tenth absscore.
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Isetsmax (3)

Disabled: 100
Hild:
Hoderate:
Strict:
Drastiec:

= 03 LA Ch

[Single best zcore ia verified.]

Isetsmax is the maximum number of interval sets (features) to be passed to the
threshold phase. If more than this have survived screening, the isetsnax with the
highest scores will be chosen. Rejected features will get a second chance in later
PHOENIX passes only if one of the chesen features succeeds in segrmenting the region.

Noise (10)
Dizabled: 0 JAlways szsegment on first feature.]
Hild: 5
Hoderate: 10
Striet: 50
Draatie: 10000

Noise is the size of the largest area that is to be considered noise. This heuristic is
applied after thresholding and connected-component extraction. Patches larger
than noise pixels will be retained; others will be merged with surrounding regions.
Note the similarity of this behavior with that of rejecting a cutpoint with the absarea
threshold.

This is a very difficult threshold to set because the size of noise regions is dependent
on the task, the object, and the image resclution. It might be worthwhile to add a
relative noise heuristic that would judge the patch area in relation to the original
region area. This capability is partially available through the relarea heuristic.

Even better would be a noise score or set of region-rejection heuristics that would
consider boundary shape, contrast with surrounding regions, local noise statistics,
and task-dependent semantic information.

Retain (20)
Disabled: 100
Hild: 40
Hoderate: 20
Striet: 4
Drantie: (1]

Retain is the maximum percentage of the criginal region area that may consist of.
merged noise regions. If the total noise area exceeds this, the feature will be
rejected. It will aiso be rejected if any interval produces cnly noise patches, regard-
less of the noise percentage. After all interval sets have been tested, the one with the
least noise area is selected for final conversion of patches toc new regions. If two
regions are tied, the first is chosen arbitrarily. (This is the only place where the
input order of the features makes a difference.)

This heuristic is not intelligent enough for the burden placed upon it. It should be
favoring large, compact areas (or other target shapes) as well as noiseless ones. At
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present it is quite happy with a trivial segmentation of a tiny region vs. all the rest.
This is fine for cueing applications, but poor for general use.

Use of multiple cutpoints (i.e., maxints greater than 2) introduces additional noise
and increases the likelihood that. some interval will fail to produce a good patch.
PHOENIX is unable to recover from this by deleting one cutpoint at a time or by
retaining the good patches and discarding the rest.

One solution is to add relative noise heuristics as well as this absolute one. Noise
could be expressed as a percentage of patch area: any patch containing teo much
neise would be rejected. It could alsc be expressed as a percentage of interval area.
Either of these would integrate well with retention of all patches or intervals that are
useful, without regard to the success of the feature as a whole.

Even better would be a set of regiocn-acceptance heuristics that would consider boun-
dary shape, contrast with surrounding regions, local noise statistics, and task-
dependent semantic information. Such heuristics would be easiest to implement in a
LISP-based driver. :

B8.2. Performance Statistics

To further evaluate PHOENIX, it is necessary to choose a task domain. We have
selected skyline delineation. This is the problem of determining the skyline in an
image that includes both ground and sky.

It should be noted that this problem is not always well defined. Images of cloud-
shrouded mountain peaks or of fog rolling in over a mountain range present
difficulties. There is also the case of a distant horizon seen over a nearby crest: the
near skyline may be the one of operational importance.

We have chosen a range of images for testing. Portland shows a city skyline against a
cloudy sky. Mouniain is a distant mountain against a nearly clear sky. Hishop con-
tains a near skyline and a distant one that merges with a cloudy sky; it is difficult for
untrained observers to segment. All of these images were reduced to 128x128 to save
execution time and to permit use of the rundisplay option.

An early test with the portiend image at full 512x512 resolution was disappeinting. It
was done with red, green, and blue input feature planes and with the original default
threshold settings. (In particular, hsmooth was 1 and height was 70. Maxmin was
also set to 100 in order to get the segmentation started.) The resulting segmentation
was erratic, locating many small details while missing several obvious regions. In
particular one white building was not distinguished from the blue sky even though
moest of its windows were found. Numerous tiny patches of sky were segmented out
for no apparent reason, yet an easily visible U.S. flag was not distinguished from the
sky region

Subsequent enalysis and experimentaticn led te several improvements: minor
software bugs were fixed, the strict/moderate /mild parameter scale was developed,
and Kender’s versions of the HSD and YIQ transforms were implemented.! The D and
Y transforms are essentially redundant, and are also very similar to the red, green,
and blue feature planes. They do not always segment identically, but the extra

13ubsequent correspondence with Steven Shafer indicates that CMU researchers have favored Chta‘s
transforms over the nonlinear HSD scale,
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information is not worth the computational effort. We have used all nine features,
however.

Hue was mapped to the range 0 to 179, with red at 0 (and 180), green at 60, and blue
at 120. Achromatic pixels (i.e., black, gray, and white) were mapped to 255; this ulti-
mately made no difference since pixels with exactly equal red, green, and blue com-
ponents are exceedingly rare. A less exact test for achromaticity might work better
{or at least differently) for images with slight imbalances in the color strengths; the
bishop image, for instance, is found to have red clouds even though they appear
white.

Pixels containing blue mixed with red (i.e., purples and violets) are also rare even in
the hazy mountain scenes, so we found no particular problem with peaks in the hue
histogram being split between the bottom and top portions of the scale. Saturation
was more likely to have such instabilities; we found examples of dark or shadowed
image regions that transformed to very high saturation values. The histograms
resembled peaks with their left tails clipped at zero and moved up to the high end of
the scale. Such areas were so small in ocur test imagery that they never caused any
difficulties.

The I and Q color features computed by Kender’s formulas must be divided by two
(and then shifted to a nonnegative range) if they are to be stored in B-bit image
planes. Compression to eight bits is not really required by PHOENIX, but it seems a
reasonable dynamic range. Experiments showed, however, that most of this range
was being wasted. We chose to stretch I by a factor of two and Q by a factor of four
prior to quantization, with clipping of extreme values. This greatly increased their
usefulness for natural imagery, although it could fail for scenes containing large
regions of saturated colors.

For skyline delineation, hue was the most important feature. Sky, clouds, and some
vegetation all had hue values near blue or blue-green, whereas land and buildings
were closer to red, orange/brown, and yellow. This might not hold true for other
scenes, but, for cur portland and mounfain images, the hue feature and the strict
parameter settings were nearly sufficient to extract the sky as a single region. For
the bishop image they extracted the near skyline from the rather homogeneous
background of distant land and cloudy sky.

Even better results were obtained by first segmenting with strict heuristics and then
resegmenting with moderate heuristics. (This involves somewhat more computation
than using the moderate heuristics alone, but did a better job of segmenting tex-
tured regions.) The strict heuristics typically produce three to five regions for a
128x128 image, and the moderate heuristics extend this to 12 to 30 regions. Further
segmentation with the mild heuristics produces 80 te 100 regions, many of them sha-
dows or contours in fairly smooth scene regions. Scme of these contours may be due
to instabilities in the color transforms, but most have visible interpretations.

Skyline ‘determination was straightforward in the portlend and mountoin images
because the sky was extracted as a single region. The bishop image was much more
difficult. Strict and moderate heuristics separate the nearby land, biue sky, several
large cloud areas, and a large region that included a distant valley, a rim of moun-
tains, and a cloudy sky. The true skyline could only be segmented by using the mild
heuristics. It was found as a single boundary, but could easily have been broken,
apart if the various thresholds had been slightly different. In any case the challeng-
ing problem of determining which regions were sky and which were land is not
resolved by PHOENLX it just passes the regions on to some unknown post-processor
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(in this case a human visual system).

The bishop image exhibited another characteristic of PHOENIX. In segmenting the
blue sky from large cloud masses, it misplaces the boundary slightly. This is because
the histogram cutpoints are sensitive to global area effects rather than local spatial
variations. (Shafer [ShaferB0, ShaferB2] discussed this as the “majority rule’’ prob-
lem.) The misclassified cloud patches are picked up during later segmentations, but
are so small that many are remerged with the sky. PHOENIX currently has no way of
detecting the spatial patterns of small noise patches that indicate a poorly chosen
border or a string of mixed-source pixels.

A final test sequence was run on the full-resolution (500x500) portland image. Strict
and even moderate heuristics were unable to segment the image when only the red,
green, and biue feature planes were used; it was necessary to use the mild heuristics.
The best approach would be to start the segmentation with mild thresholds and then
return to strict or moderate ones for segmenting the subregions. Instead, we
avoided such special interference and ran the segmentation to completion using mild
heuristics. The full run (which, with the ‘v’ flag set, generated 19,000 lines of print-
out) required 33 minutes of CPU time:

PHASE REAL CPU
Fetch 0:00:13 0:00:08
Histogram 0:04:13 0:02:32
Interval 0:18:12 0:07:27
Goodfeatures 0:00:01 0:00:00
Nextfeature 0:00:01 0:00:01
Threshold 0:10:00 0:03:47
Pateh 0:03:51 0:03:30
Evaluate 0:00:05 - 0:00:04
Selection 0:00:08 0:00:08
Collect 0:38:12 0:14:04
Segmentation 1:18:15 0:32:34

The final segmentation inte 1182 regions (including nearly every window of every
building) was much better than the original attempt, but still had difficuities distin-
guishing a glass-surfaced building from the sky that it reflected. The U.S. flag was
segmented out as two small regions.

Another attermpt was made using color transforms. This timme the strict heuristies
were able to segment sky from land using the hue feature. Results were very similar
to those for the reduced portland image, although outlines were noisy and somewhat
more ‘‘gerrymandered.’” Splitting on the hue features required less than two
minutes of CPU (with perhaps an equal amount for computing the color transforms)
and produced nine regions, one of which was the U.S. flag, Some vegetation and
building surfaces were included in the sky region, including most of the glass-
surfaced building. It took another minute to determine that the nine regions were
bomogeneous.

Further segmentation required switching to the moderate heuristics. Running this
sequence to completion produced 153 regions after an additional 11 minutes. The
sky was cleanly separated from the vegetation and buildings, but had been split into
two major regions along a front in the cloud cover. The noise threshold of 10 was evi-
dently too low for this task and image resolution, but only a few small regions were
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retained. This combined strict/moderate segmentation of the color transforms was
very successful at skyline delineation. (Segmentation using the moderate heuristics
alone is also quite good.)

The regions found by PHOENIX are not smoothed in any way. Often they are narrow,
twisted, or convoluted. This contrasts with human segmentation, which favors
straight lines at the expense of region homogeneity. Despite this, the regions found
with the strict and mederate thresholds are quite reascnable, and even the mild
threshelds give acceptable segmentations. The best course seems to be to overseg-
ment the image and then use some type of post-analysis to classify and merge the
regions.

For the particular application of skyline delineation, PHOENIX is handicapped by its
lack of knowledge about the task domain It spends much of its time segmenting and
resegmenting areas that are nowhere near the skyline. A more focused search would
save computation and pass fewer regions for further analysis. Specific feature planes
for land/sky segmentation might also be used to simplify the segmentation and
classification tasic

8.3. Summary

PHOENIX is a general-purpose segmentation systemm. It is designed to produce a rea-
sonable segmentation on almost any type of imagery. Proper use of the system
requires extensive knowledge of the algorithm and of the effects of varicus threshold
settings, but the system can be made to produce reasonable segmentations.

A difficult part of the Testbed integration effort was the analysis and docurnentation
of PHOENIX control options and heuristic threshelds. Eventually this work led to the
strict/moderate/mild threshold settings specified above. The various settings were
determined by analysis, by disabling most heuristics and testing the remainder in
isolation, by watching the heuristics interact during segmentation of a simple chair
image, and by refinement during segmentation of natural imagery. While possibly not
optimal for any particular purpose, these threshold groupings provide a framework
for fine adjustments.

Evaluation of segmentation software is a difficult task. There are few methods for
comparing segmentations other than tabulation of pixel classification errors
[Yasnoff?7] or subjective evaluation on simulated or natural imagery [Nagin?9,
RanadeB0]. We have subjectively evaluated PHOENIX's performance for a particular
task using a variety of images.

PHOENIX performed adequately for the task of skyline delineation. We did not
develop optimum parameters or procedures for this task, but used very general
techniques developed for much simpler test imagery. The amount of computation
that PHOENIX required to find the skyline varied with the difficulty of the scene, but
it did succeed in all cases. The further problem of determining which regions consti-
tute sky is beyond the domain of this system.
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Suggested Improvements

The process of evaluation has turned up numerous ways to improve the current
PHOENIX implementation. Comments about existing features have been made at the
appropriate points throughout this document. The following are additional suggestions
for substantial modifications or needed research. Some of these would require major
research projects or are beyond the scope of a segmentation program per se. (The
large number of suggestions should not be taken as a criticism of the PHOENIX system.
Rather it is a tribute that the approach is flexible encugh to support such extensions
and is promising enough to be worth the effort.}

v Flezible nteraction

PHOENIX is both an automated segmentation system and an interactive one.
The interactive control system is excellent, but could be improved if more of
the dynamic decisicns were based on queues or lists instead of compiled
iterations. The user could then attach and detach feature planes, manuaily
screen or add histogram cutpoints, select heuristics to be applied, accept or
reject threshelded patches, etc.

v Alternnote Cblor Features

Our experience indicates that the hue feature is much more useful for sky-
line delineation than the original color features. Researchers at CMU have
favored Ohta’s transforms over HSD features for general work. LANDSAT
analysts have used various ratios of cclor bands to emphasize water, vegeta-
tion, mineral deposits, efe. There may still be much te be gained by develcp-
ing transforms suited to particular tasks.

* Texture Tronsforms

Texture features supplied to PHOENIX evidently need to be combined in
much the same way that color features are combined into YIQ and HSD ver-
sions. Combinations of texture and color features might alse be useful for
splitting the one-dimensional projections of multidimensional histogram
peaks.

* Additional Feature Types

PHOENIX has been developed primarily for color image segmentation,
although it seems able to work in other multispectral and multitextural
domains. Since additional features can only improve performance (at a cost
in processing time}, it may be desirable to add other computed scene
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characteristics such as gradient and edge maps; stereo disparity; estimated
illumination at each pixel; estimated surface distance, reflectance, curva-
ture, and orientation {Horn77, BarrowB1, BradyB2]: optic flow [Thompson80];
and estimated material type.

* Delayed Transforms

PHOENIX cutrrently accepts color transform features (YI1Q, HSD, efc.) as input
feature planes. This works well in a research environment, but might require
more storage and computation than necessary for a production environ-
ment. These feature planes and histograms can be computed from the
image as needed. Perhaps few regions would require threshelding on
transformed values if RGB segmentation were first used wherever effective.

* FHistogram Stretching

Some of the color transform features are likely to have a narrow range on
any given image, making them useless for segmentation. Unfortunately the
feature ranges vary Irom one image to another. Since PHOENIX is not sensi-
tive to linear transformation of the features, it might be wise to stretch each
feature to its full dynamic range prior to quantization. (This requires an ini-
tial pass through the image to determine the range.) This computation
could even be done on a region by region basis. Note, however, that full non-
linear histogram equalization will prevent PHOENIX from segmenting the
feature at all.

* Adagptive Smoothing

PHOENIX cwrrently applies the same smoothing window te each of the
feature histograms. An adaptive or iterative smoothing algorithm that
suppressed noise without merging peaks would perform better.

* Luminance Screening

Ohlander and Price [Ohlander?78] segment first on high and low luminance (Y
or D) values to avoid singularities in the color transforms. PHOENIX counts
on spatial analysis to reject these unstable transform intervals, but might
benefit from similarly extracting bright and dark regions before doing more
general segmentation!. An alternative is to change the color transform code
so that colors in the unstable regions are all mapped to special code values;
PHOENIX might then need to understand these mappings.

* Histogram Modeling

Several comnﬁents were made in Section & about the deficiencies of
PHOENIX's interval selection algorithm. The most severe problems relate to

IThig capability is now available in the CMU version of PHOENLL
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its lack of a model for histogram peals or valleys. Although its heuristics
are cheap and often effective, there may be better alternatives. Statistical
modeling has already been mentioned. Spline fitling, Kalman filtering,
filtered gradient zero-crossing detection, and hierarchical waveform parsing
[Ehrich78] are others. Another idea is to use one set of heuristics to assign a
“valley center’' score to each histogram bin and another set to select high-
scoring bins that are spaced suitably far apart.

* (Circulor Fealures

Hue is computed on a circular interval, with red at both ends of the scale.
The histogram analysis routines could be modified to understand this
characteristic so that purple/red peaks would not be elirninated or spilit,
The PLAN segmenter [Price?8, Chlander78] has this capability.

* Feature Rejection

A feature may fail to segment a region either because it contains broad
peaks that cannot be resoclved or because the histogram has degenerated to
a narrow spike. Although the latter is not too common, some computation
could be saved by eliminating such a feature from all further splitting of the
region and its subregions.

* FKeordered Heuristics

Questionable heuristics such as relarea, height, and absmin should be post-
poned as long as possible in order to develop context and perhaps eliminate
the need for the decision. A supervisory systern might be added to deter-
mine when these tests are required, and multiple spatial analyses might be
performed as a final check.

* Alternate Heuristics

The absolute heuristics (e.g., absarea and noise) can only be set in the con-
text of a particular task and image resolution. Relative heuristics are gen-
erally better, although the PHOENIX versions often perform differently for
small regions than for large ones. Also good are those, like intsmax, that
rank order the histogram cutpoints and choose the top few.

PHOENIX and the Ohlander/Price segmenters use slightly different heuristics
for segmenting histograms. In particular, Price’s version prefers bimodal
features and also considers the heights and slopes of neighboring peaks (to
avoid chopping off the tail of a skewed peak). There is also a special heuris-
tic for extracting a low-saturation interval. Such heuristics could easily be
added to PHOENIX, although it is not clear how they would interacted with
the existing heuristics. .

Once histogram peaks have been found, Ohlander and Price use successively

weaker acceptance criteria to choose a single histogram peak for threshoeld-
ing. This differs from the PHOENIX approach, which uses successively
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stronger rejection criteria to screen potential cutpoints. While either set of
heuristics might be transformed to the other system, it is not clear how
acceptance and rejecticn criteria could be made to work together.

A useful property of PHOENIX's heuristics is monotonieity; once used, later
applications of the same heuristic would have no effect. If other heuristics
were introduced that destroyed this property, it might be necessary to
repeat the heuristics round-robin untii the entire set produced no change in
the cutpoints.

Perhaps the best advice is to make the heuristics so intelligent that each
individually seldom makes a mistake, and to make them accessible to the
user so that they can be refined when exceptions are found. This is the
expert systems approach, with part of each heuristic being a test to deter-
mine when the rule is applicable.

* Multivoriate Histogram Analysis

Clustering and multivariate histogram segmentation are discussed in Appen-
dix A.68. There may be situations in which a single three-dimensional histo-
gram analysis is more powerful and less expensive than PHOENIX's sequential
univariate analyses of (typically) nine histograms. Histogram storage and
analysis are becoming much less of a problemm as computer hardware
improves, and a single clear-cut decision in muitidimensional space may
often take the place of many doubtful decisions in the one-dimensional
spaces.

* Adaptive Quster Analysis

Most clusters in a muitidimensional histogram space can be adequately
separated by piecewise-linear decision boundaries. These decision surfaces
can be found by standard cluster analysis techniques without storing mul-
tidimensional histograms. The advantages increase as the number of
features considered increases, since the adaptive cluster methods require
essentially the same analysis time regardless of dimensionality. There are
additional advantages to using parametric (e.g., Gaussian) methods where
appropriate, since they are designed to optimally separate peaks from each
other and from random ncise.

* (onservative Thresholding

The region boundaries computed with PHOENIX are affected by global cir-
cumstances such as the number and size of other similar regions. An editing
phase may correct the boundaries by moving them back and forth and by
deleting noise regions, but will not be able to recover small regions that have
been absorbed by their neighbors. The cccurrence of such lost regions can
be minimized by conservative thresholding [Nagin77]. Some type of region
growing is then needed to merge pixels between regions. One method of
adjusting region boundaries is given in [Barrett81].
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* Noise Analysis

PHOENIX currently discards any region that is too small either in absolute
area or as a percentage of its parent region. Even for task-independent seg-
mentation this may be toc simple; any meaningful interpretation of some
small patches would sharpen the retain test based on the remaining noise.
There may also be applications for which the small anomalous patches are
important and cannot be discarded.

In the most common situation, poorly segmented or mixed-source pixels are
discovered along a region boundary. PHOENIX remerges these with the
parent region instead of testing to see which region should properly contain
them. (This could be done by disabling the noise heuristics and allowing a
post-processor to rmake such decisions, but, with the noise heuristic dis-
abled, PHOENIX has no way to choose which feature to use.)

A more difficult case arises for occluded cbjects or “flocks” of related pixels.
The disconnected parts have similar histograms and are located by the histo-
gram analysis, but spatial analysis rejects the feature or merges the
patches. This is right for most applications, but wrong for others. A more
sophisticated system would anatyze the small patches for shape, contrast,
regular spacing, similarity to existing regions, rmultispectral signature, or
other unifying criteria.

* Planning

PHOENIX does not currently include the planning mechanisms developed by
Price [Price76]. These would seern worth inclusion in either a research or a
production system. The software involved is sirnilar to that for conservative
thresholding.

* Partitioning

Another neglected feature of Price’s system is partitioning of large regions.
Price uses thresholds derived from the subregions to segment the entire
scene — this gets the segmenter started when faced with unimodal histo-
grams. An alternative is to analyze each subimage independently, then
merge the region descriptions In a later editing step. The method performs
badly if the arbitrary divisions are close to true region boundaries. While
this can lead to sorme blockiness, it reduces computation time at a very
small sacrifice in global information.

* Selective Sampling

The problem of finding srnall regions within large ones may also be combat-
ted by computing histograms only near pixels with high gradient [Weszka74].
Equally valid is the use of only low-gradient pixels; this resolves the centers
of large regions but may produce poor boundaries. Such techniques could
be used after recursive segmentation of a region can proceed no further.
They are made easier if a gradient map is one of the input features.
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Suggested Improvements

* Relazation Analysis

Often a histogram is obviously bimodal, but the peaks cannot be resolved.
PHOENIX allows the feature to be used for splitting, but may not be sophisti-
cated enough to merge the resulting noise regions into a meaningful segmen-
tation. For such cases, or even for unimodal regions, more expensive
analysis may be appropriate. Use of more features, partitioning, and selec-
tive samp]mg have already been discussed. If all else fails, one can modify
the original image by nonlinear relaxation to smooth the subregion interiors
and enhance the boundaries [Bhanu82].

* Maop Input

One method of adding planning and feedback is to feed crude segmentation
maps to PHOENIX as feature planes. These maps might come from previous
PHOENIX runs or from other segmenters. Using such maps requires
different control structures and heuristics since the bin contents, not the
overall histogram peaks and valleys, are the meaningful features. Phoenix
can make partial use of such a segmentation map only by accepting it as the
current state and then trying to split it further. A more flexible system
might use multiple segmentation maps as guides to a multidimensional clus-
ter analysis.

* Adoptive Thresholds

The Ohlander and Price segmenters use a tightly constrained valley selection
heuristic, then a wealter one. A similar interactive technique has been found
useful with PHOENIX. This concept could be integrated with the PHOENIX
control structure by automatically segmenting first with severe histogram
smoothing and tight constraints, then with gradually relaxed constraints for
regions that are deemed worthy of further effort. Each new region would go
through this same sequence of tests. The cost of such a technique would be
lessened if the pre-smoothed histogram were retained until a satisfactory
segmentation was achieved

* Shape Analysis

PHOENIX currently chooses a region for segmentation without regard to the
region’s shape or context. Only the region size and segmentation depth are
considered. It is possible that better segmentation could be achieved by
considering shape during the feich phase and also during spatial analysis.
Extended regions such as rivers and roads may require heuristics different
from those for compact regions.

* Heuristic Troining

The space of all heuristic orderings and threshold settings is too large for
intuitive design. If the heuristics are to be extended or improved, some type
of ordered search is required. This will require a set of training images with
known region boundaries. PHOENIX can be modified so that segmentation
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Suggested Improvements

errors are flagged and evaluated at each step. A human operator or higher-
level control system could then drive PHOENIX through the training set,
adjusting the thresholds to achieve good performance. If ground-truth train-
ing images are not available, a much more sophisticated expert system will
be required.

*  Additional Displays

The rundisplay option is very good, and made it much easier to evaluate the
existing heuristics. The SRI heuristic display (flag H) should be extended to
show separately the action of the absarea and relarea heuristics, and of
absscore and relscore. (It should also be modified to allow early escape from
the full set of displays. The best solution would be to make each heuristic
application a separate phase.)

The rundisplay layout of all feature histograms on a single screen is also
excellent, although it could be improved by printing the interval set score
with each histogram. A similar display should be implemented for the
""display histograms’ command, which currently shows the histograms one
by one. For single-feature interval set display, each interval set area should
be printed; a vertical scale on the histogram might also help.

For large images, where rundisplay is currently not available, it would be
useful to be able to display the histograms of any region at any time. At
present this usually involves moving the region to the segmentation queue
and executing a histogrum phase. This cannot be done if the region has
already been segmented unless you are willing to prune the region.

Better displays are also needed for showing individual regions in context.
This is currently done by drawing the region outline on the original image
and marking the center with a blinking cursor. Unfortunately the outline is
often difficult to see and the cursor is insufficient to indicate whether the
inside or outside of the outline is meant. A better display would show either
the region or its surround as a solid patch. (A keystroke could be used te
flip between the two options.)

During rundisplay each region that is created is drawn as an outline on the
original image. This overlay is supposed to represent the current state of
the segmentation. It should be erased and redrawn when a regicn is pruned.
Some of the other rundisplay components should be erased when a retry
command makes thern obsolete.

* mmediate Feedback

The noise area produced in a threshold phase is not reported until after all
promising features have been analyzed. It would be better to report the
results of the spatial analyses individually as well as jointly; the user could
then match the noise statistic with the corresponding patch display. (The
evaluate phase does little except compute and print these percentages. It
could be eliminated.) Another improvement would be to inform the user
about which heuristic rejected a particular interval set score.



Suggested Improvemments

* Verbosity Caordination

The PHOENIX code contains several mechanisms for controlling verbose
printout and debugging messages. Various messages are controlled by com-
piler flags, global variables, PHOENIX fags, and by the SRI printerr package.
It would be better if all were controlled by PHOENIX fiags or variables. There
should be an additional flag to print the name of each phase as it is begun;
this would simplify debugging and retry commands.

* GQueue Monogemend

PHOENIX maintains a segmentation queue and a terminal region queue. It is
somewhat disconcerting when the same region appears on both, or when a
region appears several times on one queue. PHOENIX does check each
fetched region to make sure that it has not been segmented, but a better
approach would be to ensure that the queues rernain valid at all times.
Adding a region to a queue should remove all other cccurrences, and seg-
mented regions should not be allowed on the segmentation queue. The
queue manipulation routines should also be augmented with various screen-
ing options for transferring regions from one queue to the other.

* Split s/Herge Capability

One option that the user should have is to combine two neighbering regions.
Eventually heuristics might be added for doing this automatically in
appropriate circumstances. The segmentation history will require a general
graph representation instead of a tree. ‘

* FErplenatory Capability

It would also be helpful if enough history information were kept so that the
system could answer questions about the final segmentation and the steps
that led te it. This would include questions about why a particular region had
been retained and why it had not been split further, what thresholds would
be needed to segment it further, what effect those thresholds would have on
other regions, efc. (Admittedly some of the answers might require extensive
computation.) Such question-answering capabilities are common in expert
systems. The answer to a "why did you" question is typically a printout of
the rule that triggered the action

* (oroutine fmplementation

FPHOENIX can be driven by another program, but the interaction is clumsy.
The driver program must invoke PHOENIX and send commands down a UNIX
pipe. Output is obtained by sending a ‘'‘checkpoint’’ command and then exa-

mining the resulting map and data file.?

2Thig solution was suggested by Steven Shafer at CMU. [t aveids the checkpoint parsing overhead of re-
peatedly invoking new PHOENIX processes with the single-step option



Suggested Improvements

For more flexible interaction, PHOENIX must either be implemented as a
subroutine or as a server process. The subroutine approach gives the con-
trol program a dedicated process for segmenting a particular irnage; some
communication protocol would be needed for conveying the new segmenta-
tion results. The server, or coroutine, impletnentation is more like having a
separate piece of hardware for segmenting images: the control program
would send requests, and PHOENIX would send back replies. This permits
isolation of the PHOENIX history files so that no other program would have to
load and parse them, but it does introduce complications if PHOENIX ser-
vices are to be shared by several control programs.
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The PHOENIX segmentation system is one of several existing systems for recursively
segmenting digital irmages. Its major contributions are the optional use of multiple
thresholds, spatial analysis for choosing between good features, and a sophisticated
control interface. Some of the strengths and weaknesses of the PHOENIX algorithm are

Section 8

Conclusions

listed below.

PHOENIX, like other region-based methods, always yields closed region boun-
daries. This is not true of edge-based feature extraction methods, with the
possible exception of boundary following and zero-crossing detection [see
Appendix A]. Closed boundaries are the essence of segmentation and greatly
simplify certain classification and mensuration tasks.

PHOENIX is a hierarchical or recursive segmenter, which means that even a
partial segmentation may be useful. This can save a great deal of computa-
tion if eflorts are concentrated on those regions where further segmentation
is eritical. If PHOENIX is to be driven to its limits, other methods of seg-
menting to small, homogeneous regions may be more economical.

PHOENIX is relatively insensitive to noise. Thresholds are determined by the
feature histograms, where noise tends to average out. This contrasts with
edge-based methods, where the local image characteristics can be highly
perturbed by noise.

Different segmentation problems require different amounts of histogram
smoothing [Ranade80]. It generally works best to start PHOENIX with strong
smoothing and strict heuristics and then to gradually weaken both. Some
images, however, require mild smoothing or thresholds te get the segmenta-
tion started. An adaptive system would be desirable.

PHOENIX has no notion of boundary straightness or smoothness. This may be
good or bad depending on the scene characteristics and the analysis task. It
easily extracts large homogeneous regions that may be adjacent to detailed,
irregular regions (e.g., lakes adjacent to dock areas or sky above a city);
such tasks can be difficult for edge-based segmenters.

PHOENIX tends to miss small regions within large ones because they contri-
bute so little to the composite histogram. It is thus poorly suited for detect-
ing vehicles and small buildings in aerial scenes, although there may be ways
to adapt it to this use. It also tends to misplace the boundary between a
large region and a small one, thus obscuring reads, rivers, and other thin
regions. Boundaries found by edge-based methods are less affected by dis-
tant scene properties.



Conclusions

* PHOENIX may also fail to detect even long and highly-visible boundaries
between two simnilar regions if the region textures cause their histograms to
overlap. Edge-based methods are better able to detect local variations at
the boundary.

* PHOENIX requires multispectral or "'multitextural" input for effective opera-
tion, and may even require transformations and combinations of these
feature planes. Edge-based techniques are better adapted to operation in a
single feature plane.

* BSince perfect segmentation is undefined and unobtainable, PHOENIX must
oversegment an image in order to find all region boundaries that may be of
use to any higher-level process. It is left for a segmentation editing step to
merge segments that have no usefulhess for some particular purpose.
Without having such a step, or indeed even a purpose, it is very difficult to
evaluate the segmenter output.

Selection of a segmentation algorithm and improvement of a particular software pack-
age are both highly dependent on the task to be performed. The PHOENIX segmenta-
tion system is a flexible starting point for further development. This report and the
SRI Testbed environment help to make PHOENIX available as a benchmark system and
as a research tool,
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Appendix A

Alternate Segmentation Techniques

This appendix explores alternate methods of segmenting images. It is intended to clar-
ify the issues involved in region extraction, and te intreduce background and vocabu-
lary needed to read the literature in this field. For other surveys see [Zucker76a],
[Riseman?7], and [Fus1].

Al. Edge Methods

One approach to segmentation consists of detecting small edge elements and then
linlding them into region boundaries. Edge and region methods are nearly equivalent
for simple scenes of cubes and wedges. In natural images, specific structures are
best found with particular techniques [Nevatia77a]. Region methods locate irregular,
homogeneous regions, but may ignore or conceal! linear features; edge methods
detect linear features and detailed (or possibly camouflaged) objects, but give frag-
mented region boundaries that may be difficult to interpret. Perhaps the two must
be combined so that detected edges provide context for region growing and region
knowledge can aid edge linking [Milgram?7, Milgram78, Barrow81].

Sometimes edge detection and linking are combined [Pingle7l, Montanari7l, Mar-
telli?6]; this is called edge following or boundary tracking, and has advantages when
closed regions are required. A similar method is run tracking [Nahi77, Nahi78], in
which the object boundaries found on one row are used to aid location of boundaries
on the next row. (This is similar to the PHOENIX connected-component extraction
algorithm.)

A separate edge detection step is more popular because it is compatible with either
single-pass or parallel implementation, and because the detected edge elements are
also useful as texture primitives. Edge linking may be done using relaxation labeli
[Riseman?7, Zucker?7, PragerB0], expansion-contraction to close gaps [Perkins80],
curve fitting, or clustering and heuristic linking [Jarvis75, Nevatia78, Fischler83].

Edges in digital images are difficult to define. A few edge detectors are based on
theoretical models of scene edges [Hueckel7l, Hueckel73, Horn77, MiticheB80, Haral-
ick81, Brady82], but most are heuristic local gradient estimators [Davis75, Pratt78].
Some operators are small in order to approach a true local derivative, others are
quite large to provide noise immunity. Comparative studies [Fram?75, Builock78,
Abdou79] have not proven the superiority of any one operator for all classes of

imagery.

Color edges are even more difficult to define. Either a single gradient map must be
defined on the multivariate feature plane, or edges detected separately in each
feature plane must somehow be combined [Nevatia?7b, Robinson?7]. For coler data
the method should match human perception of color edges, but we would like it to
extend to texture features and other data as well
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Texture edges (i.e., boundaries between regions of differing texture) are also impor-
tant. The standard approach is to identify ordinary intensity edges in some texture
transform of the image, but texture-specific methods have been developed {Thomp-
son77, Deguchi?8, DavisB0, DavisB82].

Some exciting advances have been made in the area of zero-crossing detection
[GrimsonB0, Brady82). The image is convolved with the second derivative of a Gaus-
sian blur function (chosen to match hypothesized channels in the human visual sys-
tem). Zero-crossings in the filtered image then form closed region boundaries whose
positions can be estimated with sub-pixel accuracy [MacVicar-Whelan81]. Further,
the sensitivity of the detector to edges of different widths can be controlled by the
width of the Gaussian function, and the strength of the edge at a given point can be
measured by the rate of change across the zero crossing, More work is needed to
determine how to combine these multiple sources of evidence without losing the
closed-region property.

A 2. Thresholding

Thresholding is a quick way of locating regions. Often an image function may be
found that is maximal for the smooth interiors of regions and minimal for region
boundaries. Other functions, such as the image itself, may be maximal in some
region centers and minimal in others; boundary areas take on intermediate values.
In either case, thresholding may be used to separate region interiors {from edges.

Using successively lower thresholds generates a contour map; adding a stopping cri-
terion makes this a segmentation algorithm. In forward-looking infrared (FLIR) tar-
get imagery it has been found that object shapes change very little as the threshold
is varied, but noise regions change dramatically. Milgrarm [Milgram77] exploits this
consistency by choosing the threshold giving the best match between corresponding
region boundaries and the edge elements detected by another method; this has
difficulties with small or textured regions [RanadeB0].

There are three types of threshold: constant, scene-dependenf, and cdaptive.
([Weszka78] further classified thresholds as globdl if they depend only on pixel value,
local if they depend on neighboring pixel values, and dynamic if they depend on spa-
tial position.)

Constant thresholds are those having the same value for all images (e.g.,
{Kasvand74]). Some real-time hardware systems use this technique, but it is rare for
any function of diverse images to have an appropriate constant threshold.

Scene-dependent thresholds are constant for a given image, but may vary as a func-
tion of the sensor, illumination, analysis task, or image content. The threshold is typ-
ically set interactively by an observer or automatically by histogram analysis. Histo-
gram thresholding was developed in the context of cell segmentation and
identification [Prewitt86], and may still be the best technique for this purpose
{RanadeB0).

- Relaxation processes have also been used to remap the histogram into a few dom-
inant intensities [Rosenfeld78, Peleg78, RanadeB0); this is essentially a thresholding
process. Like other histogram-based methods, it tends to ignore small regions that
may be semantically meaningful.

Adaptive thresholds are set automatically as a function of local scene content; they
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vary from point to point within an image. Such thresholds can adjust for changes in
illumination within a scene. As usually implemented, the threshold is a function of
the image data along a scan line [Serreyn78] or within a window. The threshold will
work badly if a window contains no object or multiple objects with different intensi-
ties. An isolated small object may be overlooked in a large window, and a large object
may be thresholded inconsistently across small windows.

Histograms computed over regions of mixed sizes are difficult to segment. Weszka et
al, [Weszka74] suggest computing the histogram only over pixels near region boun-
daries (i.a., pixels with high gradient). Further discussions of edge detection and
texture analysis to set thresholds may be found in [Weszka78] and [Kohler81].

Panda and Rosenfeld [Panda78] found that intensity/edge-strength histograms of
FLIR targets are trimodal, with peaks representing background, edge, and cbject. It
was found insufficient to set a single threshold at the intensity value of the edge
peak. Better methods used edge gradient to implement decision boundaries extend-
ing from the edge peak to the valley between the background and object peaks.

A.3. Iterative Modification

An alternative to adaptive thresholding is context-sensitive modification of the image
itself. This is typicelly done by iterative relaxation or ''competitive-cooperative'
processes [Troy73, Hummel78, Zucker?8, Kirby79, Nagin79, EklundhB0, PelegBQ],
although single-pass methods such as cluster analysis and pixel classification could
be adapteid to this purpose. (Relaxation output might be useful in training such a
classifier.

Unfortunately relaxation processes tend either to do very little or to be very sensi-
tive to the updating rule, the image-dependent compatibility coefficients, or the class
membership function for initially labeling each pixel. Various schemes have been
proposed for estimating these quantities. Histogram segmentation, for instance, can
be used to select the initial class membership function [Ranade80]. .

One use of relaxation is to get the segmenter started on scenes (or composite
regions) with unimodal histograms [BhanuB2]. The relaxation process emphasizes
spatial features that are too weak or space-variant to show up in the histogram. Such
preprocessing can split a composite peak into subpeaks that are useful to a thres-
hold segmenter. This is in contrast to relaxation methods applied to the histogram
(see Section A.2), which can reduce the number of peaks but never create new ones.

A4, Recursive Splitting

Uniform regions can be found by recursively splitting nonuniform regions (beginning
with the whole image) into smaller regions. In the limit this produces single-valued
and perhaps single-pixel regions. In some cases it may be desirable to split even uni-
form regions using region shape criteria [ Lemkin79, RutkowskiB1].

Since almost any area can be better represented (in a mean-square-error sense) by
two small regions than by a single large one, it is difficult to determine when to stop
splitting. Most splitting methods lack a justifiable stopping criterion. One possibility,
derived from coding and information theory, is to use the number of bits required to
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code a region before and after splitting as a measure of improvement; this is unfor-
tunately dependent on the coding method.

Splitting is always costly since region descriptors (shape, variance, efc.) must be
computed for each subregion. Suppose that a region is split into d subregions: all
pixels in at least d—1 subregions must be reexamined to compute the new descrip-
tors. To segment an image down to the pixel level requires

N2 (1+ %logd N3

pixel examinations, as opposed to N? for segmentation by merging or growing pro-
cedures. .

The above analysis assumes a deterministic splitting algorithm. In quadrant subdivi-
sion, for example, regions are repeatedly split into four square subregions until
homogeneous regions are found. {The number of pixels in a row or column is typi-
cally a power of two, making the subdivision trivial.) This method segments too finely
so that a later merging step is required; even so, it is one of the fastest partitioning
methods.

The most difficult step in other partitioning methods is deciding exactly where the
new boundary should go. If the new boundary location is not known a pricri, the
region descriptors must be computed for each possible boundary. This can invelve a
very large search space and enormous computational costs. Functional approxima-
tion schemes [Pavlidis72] avoid this by using parametric solutions for the boundary
and for the region descriptors. The PHOENIX algorithm offers another solution by
choosing boundaries along significant intensity contours.

A5. Claszifieation

The purpose of segmentation is often classification. This can be reversed by using
pixel classification to achieve segmentation. The basic problem is to classify an
image window as one of several texture types. For a swurvey of multispectral
classification in remote sensing see Haralick [Haralick76].

The method of maximum likelihood could be used if we had enough information about,
the texture classes. We would estimate the likelihood of the observed pattern under
each hypothesis, then choose the texture class giving the highest likelihood. Unfor-
tunately the required prebability distributions are too large to be represented as his-
tograms.

Nonparametric methods have been proposed for estimating and storing large distri-
butions; see, lor example, the set covering procedures of Read and Jayaramamurthy
[Read72] and McCormick and Jayaramamurthy [McCormick?5]. It seems sensible,
however, to assume a parametric form for the distributions whenever it is possible to
do so. This allows us to develop simple vector preduct scores for classifying pixels.

Image intensities seem to be well characterized by statistical moments. Ahuja et al.
[Ahuja77] show that the first few moments are as useful as an entire histogram for
classifying textures. Statistical methods have also been developed for classifying the
spatial distributions of texture pixels [Haralick?3, Mitchell78, Rosenfeld79, LawsB0].

A simple nonparametric approach is to store an exemplar (or feature vector) for
each known texture type. Each pixel to be classified is compared to each exemplar
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and is assigned to the class of the most similar one. This has the advantage that it is
easy to add additional texture exemplars.

The principal difficulty with any type of texture classification is that the region to
compute texture statistics over cannot be known unless segmentation has aiready
been accomplished. Typical image processing problems require analyses near the
resolution limit of the imagery, and windowing errors are intolerable.

A.8. Clustering

Cluster analysis is identical to classification except that the classes are net known a
priori. Various spectral or spatial descriptors of the pixels are analyzed for similari-
ties, and those pixels that are judged similar to each other or to some prototypical
seed pixels are assigned to the same class [Wackerf9, Carlton?77, Goldberg78, Yoo78,
Coleman?79, Mitchell79, Schachter79]. Spatial analysis then completes the segmenta-
tion; this analysis may include probabilistic relaxation [Nagin79, Kohler81i] or other
methods of noise cleaning and boundary smoothing. Clustering can also be used to
merge regions found by thresholding or other methods [Haralick?5a].

PHOENIX-style histogram segmentation is a type of cluster analysis. This is more evi-
dent when done in a multivariate space [Schachter?S, Schachter?7?, Hanson78, Mil-
gram79, Schachter79, MilgramB0]. Multivariate histograms are typically quantized
very coarsely in each feature in order to reduce storage requirernents and analysis
time. If finer quantization is required, either two passes should be made through the
data (planningcs. or an adaptive accumulator scheme should be used [Schachter7s,

- O'RoarkeB1, SloanB1]. Perhaps a better alternative is to use a parametric or adap-
tive (perceptran) cluster method not relying on histograms.

A7. Region Growing

Region growing is based on the premise that it is easier to identify interior pixels
than border pixels. One starts with a set of region seeds, preferably one seed per
image region. Each region is then expanded like a wavefront, incorporating adjacent
unassigned pixels. Growth stops when all pixels have been absorbed or when unas-
signed pixels are too dissimilar to be merged with adjacent regions. An editing phase
may follow in which unassigned pixels are classified and neighboring regions are
tested to see if they can be merged.

One method is to start with completely homogeneous regions and then merge neigh-
bors that have statistically-similar pixel populations or classifications [Muerle68,
Gupta74]. Another is to merge neighbors that are divided by ''weak' boundaries or
that together form a simple shape (the *phagocyte’” heuristic) [Brice70]. Yet
another is to accept any unassigned pixel as a region seed and to grow the region
until its natural limits are found. The regions may be grown either sequentially
[Jarvis?5] or in parallel during a single scan [Yakimovsky76]. Any of these methods
essentially combine connected-component extraction with region growing.

Region seeds are usually found by crude segmentation, retaining as seeds only those
ixel groups most certain to belong together. The seeds may be chosen interactively
Garvey76b] or automatically. Often the seeds are chosen by adaptive thresholding

or peak-finding algorithms applied to a gradient or edge transformation of the image.

The segmentation is then done on the original image data. (Region growing typically
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uses only monochrome input, although see Kettig [Kettig78].)

Levine and Leemet [Levine76] have developed an interesting method of obtaining
region seeds from an edge map. The edges are thickened by pyramid reduction. As
the successive reductions occur, they isolate and eventually cover the pixels in the
more uniform region interiors. The last pixels to be enveloped are chosen as region
seeds. The growing process that follows is essentially the reverse of this region

shrinking,

The order in which pixels are considered for merging is a major concern. Truly paral-
lel "best first” growth can be implemented on a sequential machine only by expen-
sive schernes to repeatedly examine eligible pixels. Single scan methods have been
proposed [Yakimovsky76, Somerville76], although a second sean is necessary to label
the region map.

Deciding whether to merge a pixel with an adjacent region is equivalent to a one-
sided hypothesis test. Some measure of membership must be computed and some
threshold must be used. Often the pixel is compared with the region mean, using the
region variance to set a threshold. Somerville and Mundy [Somerville78] use a planar
approximation to the region, thus allowing for slope in the luminance function. Other
researchers have compared the unassigned pixel only to the region pixels nearest it.
For a survey of techniques see Zucker [Zucker76a].

A major problem with region growing is lealage, sirmilar to chaining in cluster
analysis. Two very dissimilar regions may be joined by an area of intermediate
appearance: it is then possible for one region to grow across the neck and absorb pix-
els belonging to the other region. This can be remedied by recursive splitting or by a
split-and-merge editing phase, but greatly complicates the segmentation process.

A.B. Merging

Another appreach is region merging, beginning with uniform or single pixel regions.
Those regions sharing a common border are eligible for merging. The border is elim-
inated if the combined region is sufficiently homogeneous. This differs from region
growing in that both regions to be merged may be larger than one pixel.

The decision of whether to merge two regions can be based on the strength of the
boundary between them. This leads to trouble when two distinct regions share a
blurred or indistinct border. Merging can also be treated as a hypothesis test: the
two regions are combined only if this gives an acceptable planar fit to the data

The results of region merging may depend strongly on the order in which region pairs
are tested for merging. Order independence may be achieved by considering all
merges in parallel and allowing only the best merge to occur at any one time. This
requires extra computation and ''bookkeeping,” leading many investigators to
develop approximations to best-first merging.

Merging algorithms avoid recomputation if the uniformity measure for a combined
region is a function of the statistics of its subregions. Maximum and minimum pixel
values, for instance, can be computed from the subregion extrema: only the initial N2
pixel examinations are needed. Unfortunately a large number of storage locations
(N? per feature in theory, but less in practice) are required to hold the region statis-
tics. Elaborate data structures may also be required to keep track of the numerous
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irregularly-shaped regions.

Semantic merging integrates segmentation with interpretation. Yaldmovsky and
Feldman [Yakimovsky73a, Yakimovsky73b, Feldman74] suggest using real-world pro-
babilities of region-type adjacencies. Such probabilities may be obtainable for lim-
ited domains such as X-ray analysis. A similar approach to region labeling has been
proposed by Tenenbaum and Barrow [Barrow?78, Tenenbaum76a, Tenenbaum76b].

A9, Split-Merge

Most researchers using splitting or merging techniques alone have acknowledged the
need for the complementary process as an editing step. At any stopping point in a
segmentation there are usually some regions that should be split further and some
that should be merged.

Merging techniques generally consider only two subregions at a time, and the final
partitioning depends on the order of these comparisons. Splitting techniques are
similarly limited by the order in which histogram peaks are chosen. The best possi-
ble partioning, by any particular criterion, might not be reachable by either tech-
nique. Integrated (or iterated) splitting and merging may also fall short of this ideal,
but the combination is able to explore a larger space of possibilities.

Split-merge methods do not require accurate region seeds. Horowitz and Pavlidis
[Horowitz74] start with arbitrary square neighborhoods. (This is particularly useful
for computing Fourier texture measures over the seed regions [Pavlidis?5].) Their
algorithm breaks the nonuniform squares into uniform seeds, then combines neigh-
boring fragments that are similar, The similarity measure may be based on intensity
or on texture properties [Chen79]. No connected-components analysis is necessary if
a segmentation tree is maintained.

Split-merge methods are able to use local information to determine each splitting,
but the region boundaries tend to ‘'cling” to the major rectilinear divisions. The
splitting steps integrate well with quadiree representation of segmentation maps
[Horowitz74, Klinger76, Hunter79, Samet79], but a merging step tends to destroy the

uadtree structure. More elaborate linked tree structures have been developed
?BurtBD, PietikdinenB2] to solve this problem.

Although these methods have become strongly linked to quadtree representations, it
is immportant to note that a split-merge approach is compatible with chain-code out-

lines, binary overlays, region maps, or other representations.

A10. Spanning-Tree Methods

Several researchers have proposed tree structures to model the hierarchical struc-
ture of a scene. (Often neighbor relationships are stored, malking the structure a
graph rather than a tree.}) The root node is the image itself; leaf nodes are the indivi-
dual pixels or homogeneous regions. The scene may be segmented at any resolution
by cutting branches of the tree [Kirsch71, Freuder76, Horowitz76, Horowitz78].

Burr and Chien [Burr76] apply minimal spanning tree methods to find strongly linked

pixel groups separated from each other by weak links. The one-pass segmentation
method of Yaldmovsky [Yakimovsky76] builds a spatially constrained approximation
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to the minimal spanning tree; it could be called a rminimal spanning maze. A very
similar segmentation system is developed in Narendra [Narendra?7, Narendra80].

The spanning-tree methods all require that region interiors be smoother than border
neighborhoods. They are thus unsuitable for locating textured regions unless the
textures can be transformed to one or more feature planes with the property of
region homogeneity. Macrotextures must be analyzed by identifying the primitive
elements, then using structural methods to find texture regions.

A1l1. Segmentation Editing

The preceding methods provide the best segmentation possible using local statistical
analysis. The purpose of an editing phase is to improve the segmentation by using
more global or application-dependent knowledge.

It is much easier toc merge regions than to split themn, since splitting requires that
the best boundary be identifled. Images are thus nearly always oversegrnented to
simplify the editing or interpretation phases that follow.

Syntactic editing analyzes the properties of regions and their spatial relationships.
Pavlidis ef al. [Tanimoto?7, Horowitz78] use region adjacency graphs to identify
noise regions. These are deleted and the pixels are reassigned to neighboring
regions. Riseman and Arbib [Riseman?7?] use region adjacency graphs to identify
composite textures. The regions are considered texture elements, and it is desired
to find larger regions containing distinctive distributions of these primitives.

One of the main reasons for segmentation of textured images is to permit region-by-
region classification, which should be more accurate than pixel-by-pixel methods.
The classification can be done using multispectral discriminant analysis [Gupta74],
cluster analysis on within-region textures [LumiaB1)], or model-based shape analysis
[Brenner?7, Pavlidis78, JainB0, RutkowskiB1]. Primitive regions can then be merged
if their signatures are classifled identically.

Semantic merging integrates region growing with interpretation [Yakimovsky?3a,
Yaldmovsky73b, Feldman74, Barrow76, Garvey76a, Garvey76b, Tenenbaum?78a,
Tenenbaum76b, Tenenbaum#80, Fischler82]. Probabilities of region-type adjacencies
may be even more applicable at the final editing and classification stage [Lumia81].

Another form of editing uses initial region knowledge to guide a more sophisticated
segmenter. It may be possible, by examining the initial edge and interior points, to
infer a classifying rule or grammar [Keng77a, Keng77b]. This bootstrap information
can then be used to resegment the scene or te segment other similar scenes.
Bootstrapping is particularly eflective if ground-truth segmentations are used to
infer the rules.

There is no reason why editing must be limited to a single pass. Ilterative parallel
algorithms have been suggested [Rosenfeld76b, Riseman?7] in which each pixel’s
label or region membership is repeatedly updated as a function of its neighbors’
labels. These competitive-cooperative processes have also been used for edge thin-
ning and edge linking [Zucker76b, Zucker?7]. The metheds are very flexible and
pewerful, but little is known about constructing the label assignment functions.

After a scene has been segmented into regions, it is still necessary to determine
which of these regions belong to composite objects. Even a simple object such as an
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untextured block may have several distinct regions because of lighting effects. On
the other hand, a single uniform region may be segmentable into a stack of blocks or
a clump of particles on the basis of its outline [Arcelli71]. (The Price segmenter per-
forms some shape analysis and region editing during connected-component extrac-
tion. This is a rather expensive step, and PHOENIX has left it for an external editing
program.)

There have been many attempts to combine segmentation with semantic interpreta-
tion in natural scenes; see, for instance, [Preparata72, Tenenbaum?3, Feldman74,
Barrow76, Garvey78a, Garvey76b, Price78b, Sakai76, Tenenbaum?76a, Tenenbaum?76b,
Levine77, FaugerasB0, Tenenbaum80, Price81, Fischler82]. Such recognition requires
domain-specific knowledge beyond the scope of this study.
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Appendix B

Connected Component Extraction

The following information on the connected component extraction algorithm was pro-
vided by Duane Williams of Carnegie-Mellon University as part of the PHOENIX code.
(For the algorithm used in the Ohlander /Price segmenter, see [Ohlander78]. Another
algorithm is given in Kelly [Kelly70, pp. 54-55].)

This algorithm is the connected region extraction algorithm, reganal, developed for the
KIW] segmentation program at Carnegie-Mellon University. It is based upon the method
of Agrawala and Kulkarni [Agrawala??7]. This implementation (and that of KIWI) differs,
however, in several peints from their algorithm,

This algorithm takes a binary image, and produces a list of descriptions of the com-
ponent regions (patches) and their pixels (strips). The patches are represented by
paich records, and include shape features and an indication of whkich patch contains
this one (i.e., surrounds it). The strips are described by strip records, which include a
row, the columns on which the strip begins and ends, and a link to the next strip. The
input image is actually a map of the interval purnbers resulting from thresholding; this

rocedure is executed once for each interval, and considers pixels in that interval
given by the parameter val) to be *1,” all others to be ‘0.” A border of 0’s is assumed
to surround the image.

The algorithm proceeds by forming, for each row, a description of the strips of that
row. This description includes, for each consecutive run of 1’s or 0's, the column at
which the run starts. The run ends one colurnn before the next run starts. The runs
for each row are compared with the runs of the previous row, by examining the loca-
tions of the endpoints, to determine how to propagate partial region labels from the
previous row to the current row. The examination is performed by the assign pro-
cedure. This procedure can perform five actions: create a new region of 1’s (newbody),
create a new region of 0’s (newhole), propagate a label from an existing region
(extend), end a region of 1°s (endbody), end a region of 0’s (endhole}).

The actions in assign take place within a big loop that scans one segment (run of 1‘s
followed by a run of 0°s) in the previous row, dealing with all segments in the current
row that are encountered. At their leftmost endpoint, the runs in the current row are
labeled. This big loop may encounter eight situations: four while scanning the 0‘s
before the ones, and four while scanning the 1°s before the next 0. Here, pictorially,
are the possible situations; the letters A, B, efc., mark the start of the next run; + indi-
cates a 1 and ~indicates a 0:

Casa 1:
reav. Rew:' N el S L LU L Tt B . -
is Tow: R R e n ] T

Description: a rum af 1°n extendr from befere A, 1mto tha
hola AB.

Actlonmnn: sxtand (AB) te (¥...)

Reasonn: the hala W... Touchas tha hels AB;
the run ...¥ has slreesdy beasa labsled.



Cass 11:
reav. How: s ol SEL LR BiE. ..
his row: . o R L
Description: a run of 19 extends from bhefors A until
somswvhere past B.
Aotloms: sndhole (AB)

Case 111:
rav, How: ce e HFA-mmmm B, ..
19 row e ===Vt W=
Dascriptlen: a rum of 18 bagine and ends withim the
ramn AB.
Astloms: n-'iodi (Y¥): extand (AB) to (W__.)
Reasens: " the body YV 1s oreatad; the hole W...
Touches the hole AB.
Case 1v:
rev. Row: I e n Sl B, ..
1s row: s e ===V tb4. ..
Deserilptlonmn: mram of 1°’s starts between A and B, and
contimmes puat B
Astilone: extend (B.._) ta (¥V...)
Rearoas: tha bady V... Teanchas the hedy B...
Tho hola ...¥V kas alrsady been labaled.
Case ¥:
;;.'_ Row: - e - Byt G - L,
18 row: ey mmmm— T4 ...
Daseriptian: a hala starts bafere B, and ands befarae C.
Aotlomx: extand (BC) to (V...)
Reusona: tha bady Y... Tomcher the bhody BC: the kole
-+«.Y has already bhesn labaled.
Caas vl:
rarvr. Haw: .o ===B e - L
1s row: B e ettt [P
Dewsariptlon: s kala starts bhefors B and amds efter C.
Astlams: sndbody (BC)
respuns: the bady BC does ast coatinns balow: ths hole
sn this rew has slreasdy basn lsbeled.
Cass vwil:
rav. Row: e n =BG --—=
i1 row: P = 1 B £ S
Desariptlenm: a hole starts amnd ends withln the rum BC.
Aot loms: navhuele (U¥V): axtemd {(BC) te '-..4
Reasons: the hele UV 13 naw. the bedy V... Toushes BC.
Casa wilii:

resssus:

the hole AB oannot comntinme hslow: the

rox om thls row has slready besa labeled.

prev. Raw: v e o == =B+ C - -
This row: PR WY, P e
Desoriptism: s kals starts b1}:‘ll B emd C, and onmds
after C.
Astions: axtand (c.-.& te (U...)
Ressonp: the bedy ...U kanm alrsady besn lsbaled; the
kole U... Toanakas the hola C...

There are tweo cases not covered here: the case in which a hole starts before A and ends
after B, and the case in which a run of 1’s starts before B and ends after C. These cases
need not be examined, since they involve ne new bodies or holes, ne ending bodies or
holes, and no propagation of labels.

There. are also two cases not completely examined, cases ii and vi, in which a body or
hole ends. In case ii, we must note the fact that bedy B... is touching the run on the
current row, which is touching body two possibilties. If ...A and B... are the same par-
tial region then the hole AB is completely contained within that partial region; if ...A
and B... are different, they are to be merged together. Both cases are discussed below
in more detail. Similarly, in case vi, holes ...B and C... touch each other. In the pro-
gram, these cases are handled by the endbody and endhale procedures.
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it must also be kept in mind that a single partial region may, by cases iii and vii, be
split up into any number of runs on a single row: some of these may be ended, some
merged, and some extended on any given row of the image. So, we must keep track of
exactly what has happened to a partial region throughout the scan of the entire row;
then, we can do drastic things (like declaring a partial region to be really at its end) at
the end of the row.

There is always an issue, in connectivity algorithms, of the exact definition of connec-
tivity. Two deflnitions are the rmost common: 4-connectivity and B-connectivity.

The definitions are these:

4-connected 8-connected
x XXX
X4+X X4+X
x XXX

(the pixel + is connected to all pixels x)

For reasons pointed out by Rosenfeld [Rosenfeld76a), it is frequently desirable to have
objects (i.e., 1’s) be 4-connected and holes (i.e., 0’s) B-connected, or vice versa. In
fact, this algorithm depends on this distinction. For the segmentation program, it is
necessary to have objects be 4-connected in order to avoid sorne infinite-loop situa-
tions, for example, if the input is alternating 1 and 0 pixels, like a checkerboard. So,
holes are 8-connected and objects are 4-connected. This may be reversed (objects B-
connected and holes 4-connected) by converting all the ‘<’ signs in assign (where
column numbers are being compared) to ‘<=, and all the ‘<=" signs (again, only for
comparisons of column numbers) to *<”.

A single row is represented by the line data structure. This contains the number of
segments, Isegs; the segments Zseg themselves; and two counters: Leurseg and Leol.
These counters are used in assign for indicating the current segment (Leurseg) and
the column on which the next segment begins (Lcol). Each segment record indicates
the column of the first 1, the column of the first 0; and the partial-region labels
assigned to the 1's and the 0's,

There is assumed to be a region of 0’s surrounding the image; this is called outside,
and is represented by partial region preg_outside. This is accomplished by the follow-
ing steps:

* The firstrow procedure pretends there is a row of 0’s from before the first
column until past the last one.

* The runcode procedure pretends there are 0°s from the last 1 until past the
end of the image.

* The extend procedure pretends there is another segment to the left of the
first segment of the row, which has already been labeled as oufside.

* The merging procedure {etc.) always merges other partial regions into out-
side; never outside into another partial region.

* The region description for the cutside region is not meaningful, and may con-
tain garbage.

* The lastrow procedure pretends there is a row of 0’s frormn before the first
column until past the last one.
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Peculiarities of PR _desc:

The fields of the region description of a partial region (PR _desc) are used in a special
way: R rstart is indeed the first row of the partial region. £ rows, however, is the last
row number rather than the number of rows. Similarly, R.cstart is the starting
column, but cols is the ending column. A _area, R holes, and R herea are normal. The
centroid, however, is accumulated in /£ rcent and R _ccent as the sum of the row (and
column) number for each pixel of the partial region Then, when the patch record is
written, R rcent is divided by R_norea (also, £ ccent is divided by R.orea) to compute
the actual cocrdinates of the centroid.

The most important piece of information in the patch recerd is the link to the contain-
ing patch, P guter., However, as stated in the paragraph above, the patch record is
created when its partial region(s) comes to an end; this is before the patch record for
the containing patch has been created! So, it is necessary to remember, when a patch
is created, which partial region contains it. Then, when a patch is made from this par-
tial region, the link in the contained patch can be updated. This remembering is
accomplished via the PR inner and FP nezt links: each partial region points (via
FPinner) to a patch it contains, which points (via P_nezt) to the next one, and so on.
When the partial region is converted to a patch, this list is scanned, and the new patch
number is placed into the P outer field.

There is one problem with the above structure: when partial region A is merged into
partial region B, both A and B have these lists of contained patches. The lists could be
combined by traversing one list and updating the link of the last patch, efc. However,
the lists may become quite long, and it is not attractive to have to scan through them
(potentially many times, as partial regions are merged). So, instead, each partial
region has a list of other partial regions that have been merged into it (PR piece), with
the last partial region on the list containing PREG NIL as its PR piece fleld, When a
partial region is converted to a patch, this list is traversed and all the patches con-
tained by all these partial regions are updated. The partial regions may then be freed
so they may be used again.

There is, however, a further problem. Since all these merged partial regions are kept
around, there may be references to themn (i.e., segments that are labeied with these
merged partial regions, other partial regions indicating that these partial regions sur-
round them, efc.). So, whenever such a reference is made, it is necessary to find which
partial region is really indicated (thus, if A is merged into B and we refer to A, we really
want to talk about B). The PR whole fletd is a link to the partial region used after
merging, and the roof function traces down these links to find the intended partial
region. Note that PR prece is not the exact inverse of preg_auhole. The PR 1whole flelds
form a list from the active partial region through all those partial regions merged with
it. If, however, A is merged with B and B is merged with C, then the PR_1uhale field of A
points to B and PR awhale of B points to C. If, then, D is merged into C, PRwhole of D
also points to C. In this example, the PR piece fields form a real linked list:
¢ ->D ->B -> A

while the PR_auhole flelds form a tree:

A

!

B D

¥

C

(with links pointing down, in this picture).

The run codes normally indicate a row, the columns at which the run starts and ends,
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and a link to the next run for the same region. When partial regions are merged, they
each indicate a linked list of runs; somehow, these must be merged as weil. This is
accomplished by a special run whose row number is the special value S_MERGE. This
run has two fields: pointers to the two linked lists to be merged. During the actual
traversal of the runs, both lists must be examined when a merge run is encountered. .

The column numbers used in this procedure are sometimes tricky. Normally, for each
run of 1’s and @’s (i.e., in the segment record), the column of the start of each run is
stored. This means that the last column of a run of 1’s is actually the start of the next
run of 0°s, minus one. In the partial region records, cols is this value; actually, one plus
the rightmost column of the partial region. When patch records are created, the
proper conversion is performed. Alsec, when run records are stored, the column of the
end of the run is really the last column of the run; i.e., 1 has already been subtracted.
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