SRI INTERNATIONAL FASTUS SYSTEM
MUC-6 TEST RESULTS AND ANALYSIS

Douglas E. Appelt, Jerry R. Hobbs, John Bear, David Israel,
Megumi Kameyama, Andy Kehler, David Martin, Karen Myers, Mabry Tyson

SRI International
Menlo Park, California 94025

appelt@ai.sri.com

(415) 859-6150

INTRODUCTION

SRI International participated in the MUC-6 evaluation using the latest version of SRI’s FASTUS
system {1]. The FASTUS system was originally developed for participation in the MUC-4 evaluation
[3] in 1992, and the performance of FASTUS in MUC-4 helped demonstrate the viability of finite
state technologies in constrained natural-language understanding tasks. The system has undergone
significant revision since MUC-4, and it is safe to say that the current system does not share a single
line of code with the original. The fundamental ideas behind FASTUS, however, are retained in
the current system: an architecture consisting of cascaded finite state transducers, each providing
an additional level of analysis of the input, together with merging of the final results.

This paper will describe the version of the FASTUS system employed in MUC-6 and highlight
the innovations that distinguish it from previous versions described in the literature.

SRI used the FASTUS system for each of the MUC-6 tasks: the named entity task, the template-
entity task, the coreference task, and the scenario template task. Because a single system, with a
single configuration, was used to run all the tasks, and because the first three tasks are in some
sense prerequisites to the fourth, we will focus our attention in this paper on the scenario template
task.

BASIC FASTUS

The SRI FASTUS system is based on a series of finite-state transducers that compute the transfor-
mation of text from sequences of characters to domain templates. This architecture has proven to
be very flexible, and has been applied with success to a number of different information extraction
tasks in widely varying domains. We have applied FASTUS to extraction of information about ter-
rorist incidents [3], extraction of information about joint ventures [2], indexing of legal documents
for hypertext, extracting extensive information from military texts (Warbreaker Message Handler),
extraction of information from spoken dialogues [4], and a number of other smaller systems and
pilot applications. We have applied FASTUS to Japanese texts [2, 4] as well as English.

FEach transducer (or “phase”) in the series takes the output of the previous phase and maps
it into structures that comprise the input to the next phase, or that contain the domain template

237

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
1995 2. REPORT TYPE 00-00-1995 to 00-00-1995
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

SRI International Fastus System MUC-6 Test Resultsand Analysis £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

SRI International,333 Ravenswood Avenue,Menlo Park,CA,94025 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THISPAGE 12
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

information that is the output of the extraction process. It is possible to vary the number of
transducers as a parameter of an application, as well as to control precisely how each transducer
accepts and produces output. A transducer may handle input by nondeterministically starting at
each point in the input stream, or sequentially by determining the final states reachable from the
first point of the input stream, and then restarting the transducer at the end of each successive
“best” analysis. Typically, all FASTUS phases except the final phase follow the latter regimen,
and the templates for all the fragments are merged to form the final analysis. Phases also have the
option of passing unanalyzable input to the next phase, or eliminating it from the stream.

The MUC-6 system employs the following sequence of transducers:

1. Tokenizer. This phase accepts a stream of characters as input, and transforms it into a
sequence of tokens. Most English text is tokenized in the same way, so applications that
require heavy runtime optimization can replace this phase by one that is coded directly
in the implementation programming language. However, some domains that make unusual
demands on tokenization, (i.e. the text contains frequent chemical or mathematical formulas,
or names with internal structure, like names for chemical compounds or drugs) may require
their own tokenizers, and FASTUS makes an excellent rapid-prototyping tool. In Japanese,
where tokenization is problematic, we have replaced the tokenization phase by a standard
off-the-shelf segmenter (JUMAN). The result of the tokenization is to ignore completely the
whitespace in the input text stream. The FASTUS system preserves whitespace information
internally to facilitate the analysis of spatially structured objects like tables and outlines, but
this capability, much exercised in the Warbreaker Message Handler, was of no consequence

for MUC-6.

2. Multiword Analyzer. This phase is generated automatically by the lexicon to recognize token
sequences (like “because of”) that are combined to form single lexical items.

3. Preprocessor. The preprocessor is the point at which the application developer can insert a
transducer to handle more complex or productive multiword constructs than could be handled
automatically from the lexicon. An example is the transformation of a sequence like “twenty
three” into a single number, associated with its numeric value.

4. Name Recognizer. This phase recognizes word sequences that can be unambiguously iden-
tified as names (like “ABC Corp.” and “John Smith”). It also finds unknown words and
sequences of capitalized words that don’t fit other known name patterns, and flags them so
that subsequent phases can determine their type, using broader context.

5. Parser. This phase constructs basic syntactic constituents of English, consisting only of those
that can be nearly unambiguously constructed from the input using finite-state rules. The
output of this phase consists of noun groups (the part of the noun phrase from the determiner
through the head noun) and verb groups (the verb together with auxiliaries and adjacent and
intervening adverbs). Punctuation, prepositions, relative pronouns, and conjunctions are
passed through as ‘particles.’

6. Combiner. The combiner produces larger constituents from the output of the parser when
these can be combined fairly reliably on the basis of local information. Examples are ap-
positives, (“John Smith, 56, president of Foobarco”), coordination of same-type entities, and
locative and temporal prepositional phrases.

238

7. Domain. The final phase recognizes the particular combinations of subjects, verbs, and
objects that are necessary for correctly filling the templates for a given information extraction
task. While the earlier FASTUS phases may have minor domain-dependent parts, they are
largely domain independent. Before MUC-6 the domain phase of each FASTUS system was
entirely domain dependent, and was rewritten from scratch for each application. In MUC-6
we tested a new idea of a “domain-independent” domain phase that can be easily customized
to a new domain. This effort is described below.

The basic FASTUS system includes a merger for merging the templates produced by the domain
phase. Merging is essentially a unification operation; the precise specifications for merging are
provided by the system developer when the domain template is defined. The developer specifies
for each slot what type of data is contained in that slot, and for each data type, FASTUS provides
procedures that compare two items of that type and decide whether they are identical or necesarily
distinct, whether one is more or less general than the other or the two are incomparable. Depending
on the results of this comparison, the merge instructions specify whether the objects can be merged,
or if not, the candidates should be combined as distinct items of a set, or if the merge should be
rejected as inconsistent. The merger makes the assumption that these comparison and merge
decisions are context independent, i.e. it is not necessary to know anything other than the values
of the slots to determine whether they merge. For MUC-6, we found it desirable to allow limited
cross-slot constraints in the form of equality and inequality constraints.

FASTUS FOR MUC-6

The development of FASTUS since its introduction in 1992 has been focused primarily on making
the system easier to use and adapt to new domains. The original system demonstrated in MUC-4
used transition tables that were constructed by hand, and its semantics were embodied solely in
lisp code associated with the virtual machine states. For MUC-5, we had developed a system that
allowed the system developer to encode automata with a graphical user interface that constructed
the transition tables. Subsequent to MUC-5 we developed a specification language (called FAST-
SPEC) that allows the developer to write regular productions, that are translated automatically
into finite state machines by an optimizing compiler.

This last step greatly facilitated the ability to port FASTUS to new domains quickly. The
shortcoming remained, however, that writing FASTSPEC rules was not something that one could
reasonably expect an analyst to do in response to an information extraction need. If information
extraction systems are going to be used in a wide variety of applications, it will ultimately be
necessary for the end users to be able to customize the systems themselves in a relatively short
time.

Customizing an extraction system to a domain has always been a long and tedious process.
One must determine all the ways in which the target information is expressed in a given corpus,
and then think of all the plausible variants of those ways, so that appropriate regular patterns can
be written. Because computational linguists have been developing systems for a long time that
employ grammars that capture the relevant linguistic generalizations, one might be led to believe
that systems that are based on linguistically-motivated English grammars would be much easier to
adapt to a new domain.

239

It has, however, been the experience at past MUC evaluations that systems based on general
grammars have not performed as well as those that have been customized in a more application-
dependent manner. The reasons for this are more practical than theoretical. General grammars of
English, by virtue of being general, are also highly ambiguous. One consequence of this ambiguity is
that a relatively long processing time is required for each sentence; this implies, in turn, a relatively
long develop-test-debug cycle. Moreover, these systems have proved rather brittle when faced with
the multitude of problems that arise when confronted by real-world text. (Lack of robustness may
not be inherent in the approach, and much of the current work in corpus-based statistical models
is an attempt to overcome this problem).

One might naturally wonder whether one can have the advantages of both worlds: tightly
defined, mostly unambiguous patterns that cover precisely the ways the target information is ex-
pressed, and a way of capturing the linguistic generalizations that would make it unnecessary for
an analyst to enumerate all the possible ways of expressing it. We feel that the FASTUS system
developed for MUC-6 represents a major step toward achieving this synthesis.

In the current FASTUS system, we attempt to localize the domain-dependence of the rules to
the maximum extent possible. To this end, the FASTPEC rules of the domain phase have been
divided into domain-dependent and domain-independent portions. The domain-independent part
of the domain-phase consists of a number of rules that one might characterize as parameterized
macros. The rules cover various syntactic constructs at a relatively coarse granularity, the objective
being to construct the appropriate predicate-argument relations for verbs that behave according
to that pattern. The domain-dependent rules comprise the clusters of parameters that must be
instantiated by the ‘macros’ to produce the actual rules. These domain-dependent rules specify
precisely which verbs carry the domain-relevant information, and specify the domain-dependent
restrictions on the arguments, as well as the semantics for the rule.

An example of a typical macro rule is the rule called ActiveBase:

EVENT-PHRASE --> EVENT-ADJUNCT* (NG[??subj] ({COMPL | COMPL1}))
VG[Active=T,Subcat=Basic,?7head]
(NG[?70bj])
{P[?7prep1] NG[??pobj1] | P[??prep2] NG[??pobj2] |
! P[??prep3] NG[??pobj3] | EVENT-ADJUNCT}*;

head = (head 2);

rule-type = ActiveBase;

svo-pattern = 77label;
??semantics;;

This rule describes the basic subject-verb-object pattern of a simple active-voice declarative
sentence with a transitive verb. The EVENT-ADJUNCT non-terminal parses locative and temporal
adjuncts (as well as absorbing otherwise unknown constituents). The next optional constituent is
the subject noun phrase, which optionally skips any complements that may be present, followed by
an active verb, an optional object, and up to three prepositional arguments, optionally interspersed
with temporal and locative adjuncts. The alert reader will notice that the only required element in
this pattern is the verb—in analyzing a typical sentence, each pattern will be instantiated multiple
times as FASTUS nondeterministically ignores or recognizes the various arguments. The preferred
analysis is, of course, the one that is the most complete.

240

The tokens beginning with “??” in the above example are parameters that are specified by the
domain-specific rules when the macro is expanded. Thus, this pattern applies only to noun groups
meeting the “??subj” constraints, and to verbs meeting the “?7head” restrictions, etc.

Currently, domain-specific rules are centered around verbs. In a typical information extraction
task, one is interested in events and relationships holding among entities, and these are usually
specified by verbs. Verbs, of course, have corresponding nominalizations, so the macros should
automatically instantiate nominalization patterns as well. Unfortunately, the current FASTUS
lexicon is not rich enough reliably to make the connection between verbs and their corresponding
nominalizations, so the FASTUS system employed for the MUC-6 evaluation did not recognize any
nominalized events (like “resignation” or “promotion”). This is an example of a large gap that is
easy to close.

The success of this general approach depends heavily on two prerequisites: reliable coreference
resolution and a well-developed combiner phase. The coreference module is necessary because it
relieves the developer of the domain phase rules of the burden of anticipating all the variations that
would result from pronominal and definite reference. Otherwise the developer must see to it that
every rule that involves a company as subject also applies to “it,” when it refers to a company, as
well as to “the company,” “the concern,”, etc. The FASTUS coreference module resolves pronouns,
reflexives, definites, and some bare nominal temporal expressions, with simple algorithms. (There
is a separate Alias Recognition module that also contributes to the overall coreference output.)
The entity associated with an anaphor gets merged with the first consistent entity found while
traversing an ordered list of candidate phrases, each of which is associated with a set of entities.
Different types of anaphors call for slightly different candidate phrase ordering and consistency
checking algorithms. Our focus was on coreference of phrases that referred to individuals, not
types, for it is individual coreference that is needed in most information extraction tasks. Type
coreference is both theoretically and practically more difficult, as evidenced by the difficulty of
reliable bare-nominal resolution, and its utility in information extraction tasks is unclear. Areas of
future extensions are intrasentential coreference based on sentence patterns and limited plausibility
inferences based on described events.

The combiner has the responsibility of correctly analyzing appositives and noun-phrase con-
junction. This makes it possible for the domain phase to skip complements correctly. If all this
work is done, then the specification of domain-specific rules can be a surprisingly simple task.

This system of compile-time transformations allowed us to cover with 12 macro rules and 15
domain-dependent rules what would otherwise require approximately one hundred patterns, were
the patterns to be written out explicitly. (Not every macro rule applies to every domain-dependent
rule.) The domain phase for MUC-6 was developed in less than one person-day.

The set of FASTSPEC grammar rules resulting from the application of the domain-independent
macros to the domain-dependent parameters are very close to those that a developer would have
written, had he or she been encoding them directly. Thus, the macro rules facility preserves the
ability to write patterns that are tightly constrained to fit the particular relevant sentences of the
domain, but with the additional advantage of automatically generating all of the possible linguistic
variations in an error-free manner. A developer need no longer lament having failed to include
a ‘passive’ variant of a particular pattern simply because no instance occurred in the training
corpus. Also, the information specified by the domain-dependent rules is relatively straightforward
to provide, (although currently obscured by a rather opaque syntax) so that with the help of a

241

suitable user interface, it is easy to imagine an analyst supplying the system with the information
needed to customize it to a new extraction task. Developing such tools is one of our next priorities.

OVERALL PERFORMANCE ON MUC-6 TESTS

FASTUS achieved an outstanding result of F 94 (Recall 92, Precision 96) on the named entity
recognition task. The scores for the Template Entity task were somewhat lower F 75.0 (Recall 74,
Precision 76). This is to be expected, because some of the named entities, such as percentages, are
very easy to extract reliably, and some of the fields in the template entity task (e.g. descriptors)
are extremly difficult to extract reliably. The system consistently made certain errors in name
recognition , and because these culprits popped up often, they had a substantial impact on the
score.

e Although there were numerous instances in the test corpus in which “White House” was used
to refer straightforwardly to the building, the system always classified it as a government
organization.

¢ Company names that are identical to person names are a frequent source of error. The
surname is sometimes categorized as an alias for the person and sometimes as an alias for the
company, depending on where the surname appears relative to the person name or company
name in the text.

¢ Newspapers are to be classified as companies only when the name is intended to refer to the
publishing company rather than the periodical. We currently have no overall strategy for
distinguishing these cases, although we do pick them up as companies if they are involved in
succession events in the scenario template task.

¢ Location names were to be treated as government entities when the intended referent of the
name was the government. We made no attempt to do this correctly.

¢ When two named entities were combined in a phrase like an appositive that is recognized
by the combiner, one of the entites would frequently be lost. For example, “John Smith, a
Johnson & Johnson vice president,” would lose Johnson & Johnson. This was due to some
remaining bugs in the combiner grammar.

FASTUS achieved one of the better results in the coreference task, with Recall of 59 and
Precision of 72.

In the scenario template task, SRI’s FASTUS system achieved a score of F 51.0 (Recall 44,
Precision 61). The details of the scenario template task are discussed in the following section.

SRI has been involved in information extraction research for over ten years. As mentioned
earlier, the FASTUS System has been under development for a little over three years. SRI undertook
a substantial effort prior to the MUC-6 evaluation to clean up all of the domain-independent
processing phases, so the domain-independent macro rules could be tested and validated. This
effort lasted well into the development period for the MUC-6 evaluation. In fact, we were not able
to do a scoreable run of the development training corpus until September 22—two weeks before

242

the test. During this period we were able to quickly bring the system from an F-measure of 32.2
to 55.3 the day before the test. Nearly all the development effort was focused on the combiner
phase and on merging and coreference. As noted above, the total amount of time spent on domain
patterns was less than a day. Examining the results of the test leads us to believe that many of
the problems the system encountered represent not conceptual difficulties but easily fillable gaps,
such as the nominalization problem referred to above, or missing domain-relevant lexical features
on important words, that would disappear with a short period of additional development.

This experience also supports the view that customization of FASTUS to a new domain is
relatively easy and thus gives us reason for a good deal of optimisim about the future for practical
applications of information extraction technology.

DISCUSSION OF THE EXAMPLE

The difficulty of building an extraction system is determined to a significant extent by the design
of the templates to be filled. Ideally, the structure of the templates will correspond in a systematic
way to the linguistic structures through which the relevant information is typically expressed in
natural language. Unfortunately this ideal is rarely met.

The MUC-6 template for the scenario template task presented certain problems. In particular
there was a lack of fit between the conceptualization of succession events embodied in the template
and the typical expression of the corresponding events in language. For example, it is often the
case that a single event report (e.g. “John Smith left Microsoft to head a new subsidiary at
Apple”) corresponds to multiple succession events. Conversely, it is (even more) typical to have
a single succession event expressed by multiple sentences (events-reports), often far removed from
one another. Also, static information (e.g. “John Smith has been chairman for the last five years.”)
is often essential to filling the final template, although the succession event structure provides no
way of representing this static information.

The Representation of States and Transitions

We feel that the proper template design, or ontology, is essential for the rapid development of an
information extraction application. For this reason we developed our own internal representation of
the domain that corresponded more closely with the ways the information is typically expressed in
the texts. A post processor was written to generate the official MUC-6 templates from this internal
representation.

We felt that a more appropriate representation of the domain involved two kinds of structures:
states and transitions. A state consists of the association among a person, an organization, and a
position at a given point in time. A transition is a ternary relation between states and reasons,
associating a start state and and end state with a transition reason. In what follows, we will use
“position” to refer to position-organization pairs.

The system recognizes two kinds of transitions associated with a succession event: a person
pivot, which is a transition in which a start state involving a person and a position is related a
state involving the same person but a different position, and a position pivot (which is similar to a

243

succession event), which is a transition in which the start and end states involve a single position
and two different people. If a sentence directly implies one of these transitions, then transitions of
the other type (‘shadow’ transitions) are also implied. For example, given the sentence “John Smith
resigned as executive vice president of Microsoft” the system represents the content of the sentence
as a transition involving the state “John Smith, executive vice president, Microsoft” to “John
Smith, some other position, some other company.” The system then also generates the implied
position pivot, namely the transition from “John Smith, executive vice president, Microsoft” to
“Some person, not John smith, executive vice president, Microsoft.”

The shadow transitions provide a locus for merging of other states and transitions that may be
mentioned in the text. For example, if the next sentence were “Joe Schmoe will assume the post
of vice president next month,” it would produce a shadow position pivot that would merge with
the shadow position pivot from the previous sentence. States that are not otherwise associated
with transitions can be merged with transitions. If the next sentence were “Joe Schmoe is the new
executive vice president,” this would also merge with the end state of the shadow position pivot
generated by the previous sentence.

Merging

We decided to augment the FASTUS merger, described in Section 2 above, to handle equality
and inequality constraints among slots. Position pivots and person pivots come with pre-specified
constraints among their slots stating which elements of the participating states have to be the same
and which must be different. The merger will refuse to merge two templates for which the equality
and inequality constraints are not satisfied by the resulting merge. This feature, preventing sparsely
instantiated templates from overmerging, has now been incorporated into the general FASTUS
merger.

The Walkthrough Example

The official score for FASTUS on the walkthrough message was Recall 50, Precision 60. FASTUS
did about as well on this message as on the test as a whole, which implies that this was a fairly
typical message, at least as far as the system’s processing was concerned.

It is thus quite instructive (even to us) to examine the system’s response.

The key postulates three succession events for the text: James out, Dooner in as CEO of
McCann-Erickson, James out, Dooner in as chairman of McCann-Erickson, and Kim in as vice
chairman of McCann-Erickson.

FASTUS missed the transition event regarding the chairmanship of McCann-Erickson. The
key sentence, in paragraph 2, where this was introduced was misanalyzed due to a simple bug in
the lexicon. The succession event involving Kim was missed for the simple reason that the verb
“hire” was never considered as a domain-relevant verb. There is no conceptual problem here—this
is merely a consequence of the short development time available. Adding a subject-verb-object
pattern “Company hires or recruits person from company as position” and one more small gap in
the system’s coverage is filled.

244

What was more disturbing was the second overgenerated succession event found by FASTUS,
which was a succession involving Dooner out and Alan Gottesman in as president of Paine Webber.
Inspection of the text reveals that Alan Gottesman was mentioned as an analyst with Paine Webber,
and was not involved in any succession events. Closer analysis reveals precisely what happened:
one sentence in the text is “There are no immediate plans to replace Mr. Dooner as president.”
The subject of the sentence did not receive a domain analysis, bug the verb phrase “replace Mr.
Dooner as president” did receive an analysis and produced a partially instantiated position pivot
transition with Dooner as president of something being replaced by somebody else as president
of something. The mention of Alan Gottesman as an analyst at Paine Webber produced a state
(not associated with any transition) consisting simply of Alan Gottesman and Paine Webber (since
the position “analyst” was not a high corporate officer, it was simply ignored, and the position in
the template left uninstantiated). When merging took place, this state merged with the sparsely
instantiated end state of the position pivot, filling out the overgenerated transition and leading
eventually to the incorrect succession event.

We were dismayed to discover what appeared to be a grevious but previously undetected bug;:
sparsely instantiated states and transitions were being allowed to merge, producing many spurious
results. This bug was fixed by establishing some minimal instantiation requirements for state to
transition merges, and we reran the test and rescored the results. We discovered that our score
with the ‘bug’ fixed was F 47.6, (Recall 36, Precision 69). This bug had purchased us an increase
of nearly 4 points in F measure.

While it is tempting at this point to relabel the ‘bug’ as a ‘feature’ and consider the matter
no further, there is actually a rather interesting story to be told as to why our performance was
helped so much by this bug, a story that suggests interesting lines for further investigation.

High Recall, Low Precision Extraction

Hardly anyone has attempted to develop a high-recall low-precision extraction system. Part of the
problem is that it is far from clear how to go about doing it. Typically, extraction systems are
built by implementing some likely domain-relevant patterns that signal important information in
the text, and then examining ever more texts to find the ever less frequent patterns that signal task
relevance. This procedure naturally approaches the problem from the low-recall, high precision
side. The first patterns that come to mind are likely to be the most reliable. As you add more and
more of the rare ones, eventually precision declines as recall creeps upward.

But, what if one wanted to approach the problem from the other angle? The basic idea would
be the following: posit every entity of the right type as a candidate for participation in one of the
events/relationships of interest, merge to produce more fully instantianted events/relationships and
then filter according to some application-specific criteria. It is plausible to suppose that one would
start with fairly high recall and gradually, by developing better filter criteria, one would eliminate
most of the clearly irrelevant hypotheses, while eliminating few of the relevant ones.

This is a quite reasonable approach for certain extraction tasks, even those tasks for which
high recall and low precision is not an acceptable tradeoff. Such tasks are characterized by the
following features: (1) entities in the domain have easily determined types and (2) the templates
are structured so that there is only one or a very small number of possible slots that an entity
of a given type can fill and only entities of a given type can fill those slots. The microelectronics

245

domain of the MUC-5 evaluation [6] was a good example of a domain with these characteristics,
and techniques similar to these were successfully applied by at least one system in that evaluation
[5]. Our own experience in working in the labor negotiation domain of the MUC-6 dry run has
suggested that that domain was also reasonable to approach from this standpoint.

We attempted to develop a system that approached the succession task in this manner. We
called this approach the ‘atomistic’ approach or the ‘one rule’ approach, because it was based on
finding distinct atoms of relevant information and it was implemented by a single domain rule in
FASTUS. This single rule would look for any PERSON, COMPANY or POSITION in the text,
and hypothesize a transition event involving that entity. These typically very partial transitions
would be merged and finally a post processor would be invoked to filter the resulting hypothesized
transitions according to various experimental criteria.

After experimenting with this approach for a while, it seemed to us that it would be difficult
to raise the F-score beyond the low 40s. The regular (‘molecular’) FASTUS approach with the
macro-expanded domain rules was already doing as well in tests and it appeared to have more
promise. We began devoting all our efforts to it.

We did realize that the two approaches raised interesting questions, however. In particular, if
one has results from both high-recall and high precision systems, can these be combined in some
way to produce a result that would be better than either system taken on its own? The answer
was by no means obvious, and in the end we put aside both the atomic approach and any attempt
to combine the results.

One way to view the bug we discovered in our system is that it accomplishes just that: the
bug embodied, quite accidentally, a not unreasonable strategy for selectively adding information
to the result, even though the domain phase did not detect a transition involving the entity.
Although there was not enough information to actually determine what states the transition applied
to, FASTUS was extracting just enough information from the text to conclude that there was a
transition. The system then picked some state to instantiate the transition, and this state was
both (1) mentioned in general textual proximity to the transition, and (2) not involved in any
other known transition event. Although this occasionally produces ridiculous hypotheses, it is
frequently correct; transition events are often mentioned in texts in clusters, and the proximity
heuristic works well.

ASSESSMENT OF THE RESULTS

We were generally pleased with the results of FASTUS in this evaluation. Our name recognition
was close to the best of the among the participating systems and is approaching the practical
maximum performance level for this task. Our coreference module performed the best among all
the participants. More important, the module played an important role in the scenario template
system, and plays an important role in enabling the system to be easily customized to new domains.

The results in the scenario template evaluation were acceptable and analysis of the particular
problems encountered reveals that there are still large gains in performance to be had by simple,
straightforward hill climbing on training texts.

246

One of the most promising results of our MUC-6 preparation effort is that we have implemented
a complete extraction system using the macro rules that we proposed a year ago. It allows a
significant localization of the domain dependence of the system and this is an essential step toward
enabling customization of the system by its end users.

As we mentioned in this article, the amount of time spent analyzing and implementing domain
patterns for this evaluation was very minimal—a little more than half a day. Given that most of
the effort required to develop the domain independent parts of the system to support the macro
rule approach has already been done, if we were to repeat a similar domain task, we suspect that
much higher performance could be achieved with much less effort.

How successful were we in isloating domain dependence? There were still a few parts of the
larger FASTUS system that had to be modified in response to this task. The combiner rule for
recognizing appositives had to be modified, because of the frequency of patterns like “John Smith,
56, president of Foobarco,...” Phrases representing positions were marked, but this marking can
be derived from features on the head noun. We modified the FASTUS merger to include the
equality and inequality constraints, but, as suggested above, this requirement is likely to be useful
in implementing other domains as well, and will be retained as part of our basic system.

FUTURE DIRECTIONS

Our experience from MUC-6 suggests two promising areas for further work. The first area is that of
tool development to facilitate the customization of the system by analysts. We have developed the
underlying infrastructure required to make this possibility a reality, and we now have the capability
to begin experimenting with strategies for specifying patterns, and learning patterns from examples.

The other area of research suggested by our serendipitous bug is to investigate more principled
means for combining the results of low-recall high-precision analysis, and high-recall low-precision
analysis. Our experience in this evaluation suggests that there may be strategies based on partial
information, and textual proximity that yield promising results, particularly for applications in
which some sacrifice of precision for increased recall is reasonable.

ACKNOWLEDGEMENTS

This research was supported by the Advanced Research Projects Agency under contract N66001-
94-C-6044 with NCCOSC, and contract 94-F-1577-00-000 with ORD.

References

[1] Appelt, D. et al., FASTUS: A Finite-State Processor for Information Extraction from Real-
World Text, Proceedings of the 13th International Joint Conference on Artificial Intelligence
(IJCAI-93), August, 1993, pp. 1172-1178.

[2] Appelt, D. et al., Description of the JV-FASTUS System Used for MUC-5 Proceedings of the
Fifth Message Understanding Conference (MUC-5), August 1993, pp. 221-235.

247

[3] Hobbs, J. et al., Description of the FASTUS System Used for MUC-4 Proceedings of the Fourth
Message Understanding Conference (MUC-4), June, 1992, pp. 268-275.

[4] Kameyama, M and I. Arima, A Minimalist Approach to Information Extraction from Spoken
Dialogues, Proceedings of the International Symposium on Spoken Dialogues (ISSD-93), pp.
137-140.

[5] Dekang Lin, Description of the NUBA System as Used for MUC-5 Proceedings of the Fifth
Message Understanding Conference (MUC-5), August, 1993, pp. 263-275.

(6] Onyshkevych, B. et al., Tasks, Domains, and Languages Proceedings of the Fifth Message
Understanding Conference (MUC-5), August, 1993, pp. 7-18.

248

