PARSING AS DEDUCTION

Technical Note 295

June 1983

By: Fernando C. N. Pereira, Computer Scientist
David H. D. Warren, Computer Scientist

Artificial Intelligence Center
Computer Science and Technology Division

This paper appears in Proceedings of the 218t Annual
Meeting of the Association for Computational Linguistic,
Boston, Massachusetts (June 1983).

This research was supported by the Defense Advanced
Research Projects Agency under Contract N00Q039-80-
C-0575 with the Naval Electronic Systems Command.
The views and conclusions contained in this article

are those of the authors and should not be interpreted
as representative of the official policies, either
expressed or implied of the Defense Advanced Research
Projects Agency or the United States Government.

Approved for public release. Distribution unlimited.

~ nternational

333 Ravenswood Ave. ® Menlo Park, CA 94025
{4151 326-6200 « TWX: 910-373-2046 » Telex: 334-486

international

o LA
“SRZZ®

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
JUN 1983 2. REPORT TYPE 00-06-1983 to 00-06-1983
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Parsing as Deduction 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

SRI International,333 Ravenswood Avenue,Menlo Park,CA,94025 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THISPAGE 9
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

PARSING AS DEDUCTION!

Fernando C. N. Pereira
David H. D. Warren
Artificial Intelligence Center
SRI International
333 Ravenswood Ave., Menlo Park CA 94025

Abstract

By exploring the relationship between parsing and
deduction, a new and more general view of chart parsing
is obtained, which encompasses parsing for grammar
formalisms based on unification, and is the basis of the
Earley Deduction proof procedure for defipite clauses.
The efficiency of this approach for an interesting class of
grammars is discussed.

1. Iptroduection

The aim of this paper is to explore the relationship
between parsing and deduction. The basic notion, which
goes back to Kowalski (Kowalski, 1980) and Colmerauer
{Colmerauer, 1978), has seen a very efficient, if limited,
realization in tbe use of the logic programming language
Prolog for parsing (Colmerauer, 1978; Pereira and
Warren, 1980). The connection between parsing and
deduction was developed further in the design of the
Earley Deduction proof procedure {Warren, 1975), which
will also be discussed at length here.

Investigation of the connection between parsing and
deduction yields several important henefits:

s A theoretically clean mechanism to connect parsing
with the inference needed for semantic
interpretation.

¢ l{andling of gaps and unbounded dependencies “on
the fly" without adding special mechanisms to the
parser.

e A reinterpretation and pgeneralization of chart
parsing that abstraets from unessential data-
structure details.

® Techniques that are applicable to parsing in related
formalisms not directly based on logic.

lThia work was partially supported by the Defense Advanced
Research Projects Agency under Contract NODO39-80-C-0575 with
the Naval Electronic Systems Command, The views and conelusions
contained in this article arc those of the authors and should not be
interpreted as representative of the official policies, either expressed
or implied, of the Defense Advanced Research Projects Agency or the
United States Government.

® Elucidation of parsing complexity issues for related
formalisms, in particular lexical-functional grammar
(LFG).

Our study of these topics is still far from complete;
therefore, besides offering somne initial results, we shall
discuss various outstanding questions.

The connection between parsing and deduction is based
on ‘the axiomatization of context-free grammars in
definite e¢lauses, a particularly simple subset of first-
order logic (Kowalski, 1980; van Emden and Kowalski,
1976). This axiomatization allows us to identily context-
free parsing algorithms with proof procedures for a
restricted class of definite clauses, those derived from
context-free rules. This identification can then be
generalized to include larger classes of definite clauses to
which the same algorithms can be applied, with simple
modifications. Those larger classes of definite clauses can
be seen as grammar formsalisms in which the atomie
grammar symbols of context-free grammars have been
replaced by complex symbols that are matched by
unification {Robinson, 19685; Colmerauer, 1978; Pereira
and Warren, 1980). The simplest of these formalisms is
definite-clause grammars (DCG) (Pereira and Warrep,
1980).

There is & close relationship between DCGs and other
grammar formalisms based on unification, such as
Unification Grammar (UG} (Kay, 1879), LFG, PATR-2
(Shieber, 1983) and the more recent versions of GPSG
(Gazdar and Pullum, 1982).

The parsing algorithms we are concerned with are
oniine algorithms, in the sense that they apply the
constraints specified hy the augmentation of a rule as
soon as the rule is applied. In contrast, an offfine parsing
algoritbm will consist of two phases: a context-free
parsing algorithm followed by application of the
constraints to all the resulting analyses,

The paper is organized as follows. Section 2 gives an
overview of the concepts of definite clause logic, definite
clause grammars, definite clause proof procedures, and
chart parsing. Section 3 discusses the connection betwee
DCGs and LFG. Section 4 describes the Earley
Deduction definite-clause proof procedure. Section 5 then
brings out the connection between Earley Deduction and
chart parsing, and shows the added generality brought in
by the proof procedure approach. Section 6 outlines some
of the problems of implementing Earley Deduction and
similar parsing procedures. Finally, Section 7 discusses
questions of computational complexity and decidability.

2. Basic Notions

2.1. Definite Clauses
A definite elause has the form

P=Q &.. 2@,

to be read as "Pis true if @, and ... and Q, are true”. If
n = 0, the clause is a unit clause and is written simply as

P.

FPand Q, ..., @, are literals. Pis the poaltive literal
or head -of the clause; Qp -, @, are the negative

literals, forming the body of the clause. Literals have the
form p(!,,...,t;), where p is the predieate of arity & and

the ¢; the arguments. The arguments are terms. A

term may be: a variable (variable pames start with
capital letters); a constant; a ecompound term

JUyseity) where fis a functor of arity m and the l; are

terms. All the variables in a clause are implicitly
universally quantified.

A set of definite clauses forms a program, and the
clauses in a program are called input c¢lauses. A
program d_efines the relations denoted by the predicates
appearing in tbe heads of clauses. When using a definite-
clause proof procedure, such as Prolog (Roussel, 1975), a
goal statement

= P

;fquests the proof procedure to find provable instances of

2.2. Definite Clause Grammars
Any context-free rule

X — a..a,
can be translated into a definite elause
x(5q.5,) = 0, (5,5 & ... & a,(S,_;S,).

The variables S; are the string arguments, representing

Positions in the input string. For example, the context-free
rule 'S — NP VP" is translated into “g{50,52) &=
Pp(SO,S}) & vp(S1,82)," which can be paraphrased as
‘there is an S from S0 to S2 in the input string if there is
an NP from S0 to S1 and a VP from S1 to $2."

Given the transiation of a context-free grammar G with
start symbol S into a set of definite clauses G° with
corresponding predicate &, to say that a siring w is in the
grammat’s language is equivalent to saying that the start
goal s{p,,p) is a consequence of G° Y W, where p, and p
represent the left and right endpoints of w, and W is & set
of unit clauses that represents .

It is easy to geperalize the above notions to defin
DCGs. DCG nonterminals have arguments in the sam:
way that predicates do. A DCG nontermipal with n
arguments is translated into a predicate of n+?2
arguments, the last two of which are the string points, as

in the translation of context-free rules into definite
clauses. The context-frec grammar obtained from a DCG
by dropping all nonterminal arguments is the econtext-
free skeleton of the DCG.

2.3. Deduetion in Deflnite Clanses

The fundamental inference rule for definite clauses is
the following resolution rule: From the clauses

Be=A & .. & A, (1)

C=D&.2D;&..8D, (2)
when B and D; are unifiable by substitution o, infer

olC = '

D &.D &A% . &A &D,,..2D,] (3

Clause (3) is a derived clause, the resolvent of (1) and
(2).

The proof procedure of Prolog is just & particular
embedding of the resolution rule in a search proecedure, in
which a goal clause like (2} is successively rewritten by
the resolution rule using eclauses from the program (1).
The Prolog prool procedure can be implemented very
efficiently, but it has the same theoretical problems of the
top-down backtrack parsing algorithms after which it is
modeled. These problems do not preclude its use for
ereating uniquely efficient parsers for suitably construeted
grammars (Warten and Pereira, 1983; Pereira, 1982), but
the broader questions of the relation between parsing and
deduetion and of the derivation of online parsing
algorithms for unification formalisms require that we look
at a more generally applieable class of proof procedures.

2.4. Chart Parsing and the Earley Algorithm

Chart parsing is a general framework for constructing
parsing algorithms for context-free grammars and related
formalisms. The Earley context-free parsing algorithm,
although independently developed, can be seen as a
particular case of chart parsing. We will give here just
the basic terminology of chart parsing and of the Earley
algorithm. Full accounts can be found in the articles by
Kay (Kay, 1880) and Earley (Earley, 1670),

The state of a chart parser is represented by the chart,
which is a directed graph. The nodes of the chart
represcnt positions in the string being analyzed. Each
edge in the chart is either active or passive. Both types
of edges are labeled. A passive edge with label N links
node r to node g il the string between r and s has been
analyzed as a phrase of type NN. Initially, the only edges
are passive edges that link consecutive nodes and are
]abeled with the words of the input string (see Figure 1).
Active edges represent partially applied grammar rules.
In the simplest ease, active edges are labeled by dotted
rules. A dotied rule is a grammar rule with a dot inserted
somewhere on its right-hand side

X = al . 0".1 . 0'- oo (4)

An edge with this label links node r to node a if the
sentential form a; ... @, is an analysis of the input string

between r and a. An active edge that links & node to

itsell is called empty and acts like a top-down prediction.
Chart-parsing procedures start with a chart containing
the passive edges for the input string. New edges are
added in two distinct ways. First, an active edge from r to
& labeled with a dotted rule (4) combines with a passive
edge from s to ¢ witb label a; to produce a new edge from

r to !, wbich will be a passive edge with label X if a, is
the last symbol in the right-hand side of the dotted rule;
otberwise it will be an active edge with the dot advanced
over a;. Second, the parsing strategy must place into the

chart, at appropriate points, new empty active edges that
will be used to combine existing passive edges. The exact
method used determines whether the parsing method is
seen as top-down, bottom-up, or a combination of the
two,

The Earley parsing algorithm can be seen as a special
case of chart parsing in which new empty active edges are
introduced top-down and, for all &, the edge combinations
involving only tbe first k¥ nodes are done before any
combinations that involve later nodes. This particular
strategy allows certain simplifications to be made in the
general algorithm.

3. DCGs and LFG

We would like to make a few informal observations at
this point to clarify the relationship between DCGs and
other unification grammar formalisms — LFG in
particular. A more detailed discussion would take us
beyond the intended scope of this paper.

The different notationa! conventions of DCGs and LFG
make tbe two formalisms less similar on the surface than
they actuzlly are from the computational point of view.
Tbe objects that appear as arguments in DCG rules are
trec fragments every node of which has a number of
children predetermined by the functor that labels the
node. [Explicit variables mark unspecified parts of the
tree. In contrast, tbe functional structure nodes that are
implicitly mentioned in LFG equations do not have &
predefined number of children, and unspecified parts are
either omitted or defined implicitly through equations.

As g first approximation, a DCG rule such as
s{s{Subj,0bj)) — np(Subj} vp(Obj) (5)
might correspond to the LFG rule

S — NP VP (8)
{subj=1] fobj=]

The DCG rule can be read as *an 2 with structure
8

/ A\
Subj Obj

is an np with structure Subj followed by a wvp with
structure Obj.* The LFG rule can be read as ®an S is an
NP followed by a VP, where the value of the subj
attribute of the S is the functional structure of the NP
and the value of the attribute obj of the S is the
functional structure of the VP.* For those familiar with

the details of the mapping from lunctionsal descriptions to
functional struetures in LFG, DCG variables are just
"*placebolder” symbols (Bresnan and Kaplan, 1982).

As we noted above, an apparent difference between
LFG and DCGs is that LFG functional structure nodes,
unlike DCG function symbols, do not have a definite
number of children. Although we must leave to a
scparate paper the details of the application to LFG of
tbe unifieation algorithms from theorem proving, we will
note here that the formal properties of logical and LFG or
UG unification are similar, and there are adaptations to
LFG and UG of the algorithms and data structures used
in the logical case.

4. Earley Deduction

The Earley Deduction proof procedure schema is named
after Earley's context-free parsing algorithm (Earley,
1970), on wbicb it is based. Earley Deduction provides
for definite clauses the same kind of mixed top-down
bottom-up mechanism that the Earley parsing algorithm
provides for context-free grammars.

Earley Deduction operates on two sets of definite clauses
cailed the program and the state. The program is just
the set of input clanses and remains fixed, The state
consists of a set of derived clauses, where each nonunit

. clause has one of its negative literals selected; the state is

continually being added to. Whenever a nonunit clause is
added to the state, one of ils negative literals is selected.
Initially the state contains just the goal statement (with
one of its negative literals selected).

There are two inference rules, called instantiation and
reduction, which can map the current state into a new
one by adding a new derived clause. For an instantiation
siep, there is some clause in the current state whose
selected literal unifies with the positive literal of a
nonunil clause C in the program. In this case, the
derived clause is o[C], where ¢ is a most general unifier
{Rohinson, 1965} of the two literals concerned. The
selected literal s said to instantiste C to o[C].

For a reduction step, there is some clause C in the
current state whose selected literal unifies with a uni!
clause from either the program or the current state. In
this case, the derived clause is ¢[C’], where o is a most
gencral unifier of the two literals concerned, and C" is €
minus jts selected literal. Thus, the derived clause is just
the resolvent of C with tbe unit clause and the latter is
said to reduce C to o|C”).

Before a derived clause is added to the state, a check is
made to sce whether the derived clause is subsumed by
any clause already in the state. I the derived clause is
subsumed, it is not added to the state, and that inference
step is said to be blocked.

In the examples that follow, we assume that the selected
literal in a derived clause is always the leftmost literal in
the body. This choice is not optimal (Kowalski, 1980),
but it is sufficient for our purposes.

For example, given the program

e¥,2) &= ofX,Y) & <(Y,Z). (7
¢(1,2). (8)
¢(2,3). (e

and goal statement
ans(Z) & (1,2}, (10)

here is a sequence of clauses derived by Early Deduction

ans(Z) < e(1,Z). gosl statement (11}
c(1,2) & (1.7 & c(T,2). (11) instantistes (7 (12)
ans(2}, (8) reduces {(11) {13)
c(1,2) = ¢(2,2). (8) reducse (12) (14)
c(2.2) «= ¢(2,Y) & c(¥,2). (14} instantiatee ()] (18) *
c(1,3). {9) reduces (i4) (18)
ans(3). (46) reducese (11) (17)
c(2,2) = c(3,2). (9} reduces (1B) (18)

c(3,2) &= ¢(3,7) & c(7,2). (18) inostantiates 4))] (19)

At this point, all further steps are blocked, so the
computation terminates.

Earley Deduction generalizes Earley parsing in a direet

snd natural way. Instantiation is analogous to the
“predictor” operation of Earley’s algorithm, while
reduction corresponds to the ‘‘scanner” and “completer”
operations. The “sesnner” operation amounts to
reduction with an input unit clause representing 8
terminal symbol occurrence, while the “completer”
operation amounts to reduction with a derived unit clause
representing a nonterminal symbol occurrence.

5. Chart Parsing and Earley Deduction

Chart parsing (Kay, 1980) and other tabular parsing
algorithms {Aho and Ullman, 1872, Graham et al., 1880)
are usually presented in terms of certain (abstract) data
structures that keep a record of the slternatives being
explored by the parser. Looking at parsing procedures as
proof procedures has the following advantages: (i)
unification, gaps and unbounded dependencies are
automatically handled; (ii) parsing strategies become
possible that eannot be formulated in chart parsing.

The chart represents completed nonterminals (passive
cdges) and partially applied rules (active edges). From the
standpoint of Earley Deduction, both represent derived
clauses that have heen proved in the course of an attempt
to deduce a gosl statement whose meaning is that a string
belongs to the language generated by the grammar. An
active edge corresponds to a nonunit clause, a passive
edge to a unit clause. Nowhere in this definition is there
mention of the “endpoints” of the edges. The endpoints
correspond to certain literal arguments, and are of no
concern to the (abstract) proof. procedure. Endpoints are
just a convenient way of indexing derived clauses in an
implementation to reduce the number of nonproductive
(nonunifying) attempts at applying the reduction rule.

We shall give now an example of the application of
Earley Deduction to parsing, corresponding to the chart
of Figure 1.

The CFG
§ - NP VP

NP — Det N

Det — NP Gen
Det — Art
Det — 4
VP — VNP
cortesponds to thé following definite-clause program:
5(S0,S) = np(50,51) & vp(SL,5). (20)
np{50,5) = det{S0,51) & n(S51,5). (21)
det{S0,S) «= np(50,S1) & gen(S1,5). (22)
det(S0,S) = ari(50,5). {23)
det(S,S). (24)
vp(S0,8) = v(50,51) & np(S1,5). (25)
The lexica! categories of the sentence
oAgatha, 's;husband,hit, Ulrichy (26)
can be represented by the unit clauses
n{0,1). ' (27)
gen(1,2). (28)
n(2.3). (29)
¥(3,4). (30)
n{4,5). (31)

Thus, the task of determining whether (26) is a sentence
cap be represented by the goal statement

ans & s(0,5). ' {a2)

If the sentence is in the |language, the unit ¢lause ans will
be derived in the course of an Earley Deduetion proof.
Such a proof could proceed as follows:

anx = 9(0,5). sl ststezent

e(0,6) = np(0,5i) & vp(Sl.B).‘o e @)
(33) instaatist 0

2p(0.5) &« det(0,51) & n(51,S). o wes 20 (30
(34) instantistes (21) (3

det.(0,5) « np(0,51) & gen(51.5). Lo »
(35) ipstantiates (22} (36)

det{0,8) = art(D.5). (36} imstantiates (23) (37)
ppl0,S) = (0,5}, (24) reduces (35) (28}
op(0,1). (27} reduces (38) (39)
5(0,67 & vp(L,5). (39) reduces (34) (40)

vpli.6) & v(1,51) & op(51,5).
(40) iostantiates (26) (41)

det(0.S) ¢ gen(}.8). (39) reduces (36) (42)
det(0,2). (28) reduces (42} (43)
op(0.5} & p(2.9). (43) reduces (35) (44)
np(9,3). (28) reducee (44) (45)
5(0,6) & vp(3.5). {45) reducens (34) (48)
det(0,5) «= gen(3,5), (456) reduces (38) (47)

vp(3.5) < v(3,51) 2 np(51,5).

{46) inetantiates (25) (48)
vp(3.5) & ppl4.6). (30) reduces (48) (49)
np(4,.5) e det{4,51) & n(S51,6). ‘
(49) irnstantiat 21
det.(4,5) «= np(4,51) & gen(51,5). prtatistes (3D (0)

(50) instantiates (22) (B1)
det(4,5) = art{4.5). (50) iastastiates (23) (52)
op(4,5) = det(4,51) & n(s1,5).

(1) instantistes (21) (563)

op(4,6) «= n(4,5). (24) reduces (50) (64)
op(4,5) «= n(4,5). . (24) reduces (53) (55}
np4,5). (31) reduces (B4) (68)
¥p(3,5). (55) reduces (49) (67)

dat{4.5) &= gen(5.5). (68) reduces (51) (68)

(E7) reduces (48) (69)

5(0,5). (60} reduces (33) (80}

ans.
Note bow subsumption is used to curtail the left recursion
of rules (21} and (22), by stopping extraneous
instantiation steps from the derived clauses (35) and (35).
As we have seen in the example of the previous section,
this mechanism is a general one, capable of bandling
complex grammar symbols within certain constraints that
will be discussed later.

The Earley Deduction derivation given ahove

corresponds directly to the chart in Figure 1.

In general, chart parsing cannot support strategies that
would create active edges by reducing the symbols in the
right-band side of a rule in any arbitrary order. This is
because an active edge must correspond to a contiguous
sequence of analyzed symbols. Definite clause proof
procedures do not have this limitation. For example, it is

very simple to define a strategy, “head word parsing’'?
(McCord, 1980}, which would use the reduction rule to
infer

np{S0,S) « det(S0,2} & rel(3,S).

husband

vo

Figure 1: Chart vs. Earley Deduction Proof

Each are in the chart is labeled with the number of 2
clause in the proof. In each clause that corresponds to a
chart arc, two literal arguments correspond to the two
endpoints of the arc. These arguments bave been
underlined in the derivation. Notice bow the endpoint
arguments are the two string arguments in the bead for
unit clauses (passive edges) but, in the case of nonunit
clauses (passive edges), are the fitst string argument in the
bead and the first in the leftmost literal in the body.

As we noted before, our view of parsing as deduction
makes it possible to derive general parsing mechanisms for
augmented phrase-structure grammars with gaps and
unbounded dependencies. It is difficult (especially in the
case of pure bottom-up parsing strategies) to augment
chart parsers to bandle gaps and dependencies
(Thompson, 1981). However, if gaps and dependencies
are specified by extra predicate arguments in the clauses
that correspond to the rules, the general proof procedures
will handle those phenomena without further change.
Thig is the technique used in DCGs and is the basis of the
riggtin)alized extraposition grammar formalism (Pereira,

The increased generality of our approach in the area of
parsing strategy stems from the fact that chart parsing
strategies correspond to specialized proof procedures for
definite clauses with string arguments. In other words, the
origin of these proof procedures means that string
arguments are treated differently from other arguments,
as they correspond to the chart nodes.

from the clauses

np(50,S) = det{50,51) & n(51,52) & rel(52,S).
[NP — Det N Rel|
n(2,3).
[There is an N between points 2 and 3 in the input]

This example shows that the class of parsing strategies
allowed in the deductive approach is broader than what is
possible in the chart parsing approach. It remains to be
shown which of those strategies will have practical
importance as well.

6. Implementing Earley Deduction

To implement Earley Deduction with an efficiency
comparable, say, to Prolog, presents some challenging
problems. The main issues are

¢ How to represent the derived clauses, especially the
substitutions involved.

¢ How to avoid the very heavy computational cost of
subsumption.

e How to recognize when derived clauses are no Ionger

2This particular strategy could be implemented in a chart parser,
by changing the rules for combining edges but the generality
demonstrated here would be lost.

needed and space can be recovered.

There are two basic methods for representing derived
clauses in resolution systems: the more direct copying
method, in which substitutions are applied explicitly; the
structure-sharing method of Boyer and Moore, which
avoids copying by representing derived clauses implicitly
with the aid of variable binding environments. A
promising strategy for Earley Deduction might be to use
copyring for derived urit clauses, structure sharing for
other derived clauses. When copying, care shouid be
taken not to copy variable-free subterms, but to copy just
pointers to those subterms instead.

It is very costly to implement subsumption in its full
generality. To keep the cost within reasonable bounds, it
will be essential to Index the derived clauses on at least
the predicate symbols they contain — and probably also
on symbols in certain key argument positions. A
simplification of full subsumption checking that would
appear adequate to block most redundant steps is to keep
track of selected literals that have been used exhaustively
to generate instantiation steps. If another selected literal
is an instance of one that has been exhaustively explored,
there is no need to consider using it as a candidate for
instantiation steps. Subsumption would then be only
applied to derived unit clauses,

A major efficiency problem with Earley deduction is
that it is difficult to recognize situations in which derived
clauses are no longer needed and space can be reclaimed.
There is a marked contrast with purely top-down proof
procedures, such as Prolog, to which highly effective
space recovery techniques can be applied relatively easily.
The Earley algorithm pursues all possible parses in
pnrallel, indexed by string position. In principle, this
permits space to be recovered, as parsing progresses, by
deleting information relating to earlier string positions. It
may be possible to generalize this technique to Earley
Deduction, by recognizing, -either automatically or
manually, certain special properties of the input clauses.

7. Decidability and Computational
Complexity

It is pot at all obvious that grammar formalisms based
on unification can be parsed within reasonable bounds of
time and space. In fact, unrestricted DCGs have Turing
machine power, and LFG, although decidable, seems
capable of encoding exponentially bhard problems.
However, we need not give up our interest in the
complexity analysis of unification-based parsing. Whether
for interesting subclasses of grammars or specific
grammars of interest, it is stil] important to determine
how efficieni parsing can be. A basic step in that direction
is to estimate the cost added by unification to the
operation of combining (reducing or expanding} a
nonterminal in a derivation with a nonterminal in a
grammar rule.

Because definite ¢lauses are only semidecidable, general
proof procedures may not terminate for some sets of
definite clauses. However, the specialized proof
procedures we have derived from parsing algorithms are
stabje: il a set of definite ¢lauses G is the translation of a

context-free grammar, the procedure will always
terminate (in success or failure} when to proving any start
goal for G. More interesting in this context is the notion
of strong stability, which depends on the following
notion of offline parsability. A DCG is offline-parsahle
if its context-free skeleton is not infinitely ambiguous.
Using different terminology, Bresnan and Kaplan
(Brespan and Kaplan, 1982) have shown that the parsing
problem for LFG is decidable because LFGs are offline
parsable. This result can be adapted easily to DCGs,
showing that the parsing problem for offline-parsable
DCGs is decidable. Strong stability can now be defined: a
parsing algorithm is strongly stable if it always terminates
for offline-parsable grammars. For example, a direct DCG
version of the Earley parsing algorithm is stable but not
strongly so.

in the following complexity arguments, we restrict
ourselves to offline-parsable grammars. This is a
reasonable restriction for two reasons: (i) since general
DCGs have Turing machine power, there is no useful
notion of computational complexity for the parser on its
own; (ii) there are good reasons to believe that
linguistically relevant grammars must be offline-parsable
{Bresnan and Kaplan, 1982).

In estimating the added complexity of doing online
unification, we start from the fact that the length of any
derivation of a terminal string in a finitely ambiguous
context-free grammar is linearly bounded by the length of
the terminal string. The proof of this fact is omitted for
lack of space, but can be found elsewhere (Pereira and
Warren, 1983).

General delinite-clause proof procedures need to access
the values of variables (bindings) in derived clauses. The
structure-sharing method of representation makes the
time to access a variable binding at worst linear in the
length of thie derivation. Furthermore, the number of
variables to be looked up in a derivation step is at worst
linear in the size of the derivation. Finally, the time (and
space) to finish a derivation step, once all the relevant
bindings are known, does not depend on the size of the
derivation. ‘Therefore, using this method for parsing
offline-parsable grammars makes the time complexity of

each step at worst o{n?) in the length of the input.

Some simplifications are possible that improve that time
bound. First, it is possible to use a wvalue array
representation of bindings (Boyer and Moore, 1872) while
exploring any given derivation path, reducing to a
constant the variable lookup time at the cost of having to
save and restore o{n) variable bindings from the value
array each time tbe parsing procedure moves to explore a
different derivation path. Secondly, the unpification cost
can be made independent of the derivation length, if we
forgo the occurs check that prevents a variable from
being bound to a term containing it. Finally, the
combination of structure sharing and copying suggested in
the last section eliminates the overhead of switching to a
different derivation path in the value array method at the
cost of a uniform o(log n) time to look up or create a
variable binding in a balanced binary tree.

When adding a new edge to the chart, a chart parser

musl verify that no edge with the same label between the
same nodes is already presenf. In general DCG parsing
(and therciore in online parsing with any unification-
based formalism), we cannot check for the ‘‘same label”
{same lemma), because lemmas in general will contain
variables. We must instead check for subsumption of the
new lemma by some old lemma. The obvious
subsumption checking mechanism has an of{n®) worst case
cost, hut the improved hinding representations described
above, together with the other special techniques
mentioned in the previous section, can be used to reduce
this cost in practice.

We do not yet have a full complexity comparison
between online and offline parsing, but it is easy to
envisage situations in which the number of edges created
by an online algorithm is much smaller than that for the
corresponding offline algorithm, whereas the cost of
applying the unification constraints is the same for both
algorithms.

8. Conclusion

We have outlined an approach to the problems of
parsing unification-based grammar formalisms that builds
on the relationship between parsing and definite-clause
deduction.

Several theoretical and practical problems remain.
Among these are the question of recognizing derived
clauses that are no longer useful in Earley-style parsing,
the design of restricted formalisms with a polynomial
bound on the number of distinet derived clauses, and
independent characterizations of the classes of offline-
parsable grammars and languages.

Acknowledgments

We would like to thank Barbara Grosz and Stan
Rosenschein for their comments on earlier versions of this

paper.
References

A. V. Aho 2nd J. D. Ullman, The Theory of FParsing,
Translalion and Compiling (Prentice-Hall,
Englewood Cliffs, New Jersey, 1972).

R. 8. Boyer and J S. Moore, "The Sharing of Structure
in Theorem-Proving Programs,” in Machine
Intelligence 7, B. Meltzer and D. Michie, eds.,
pp. 101-116 (John Wiley & Sons, New York, New
York, 1972).

J. Bresnan and R. Kaplan, “Lexical-Functional
Grammar: A Formal System for Grammatical
Representation,” in The Menlal Represeniafion of
Grammalical Relalions, 1. Bresnan, ed.,
pp. 173-281 (MIT Press, Cambridge, Massachusetts,
1982).

A. Colmerauer, “Metamorphosis Grammars,” in Nalural
Language Communication’ with Computers, L. Bole,
ed. (Springer-Verlag, Berlin, 1978). First appeared as
‘Les Grammaires de Metamorphose', Groupe
d’Intelligence Artificielle, Université de Marseille I,
Novembher 1975.

J. Earley, “An Efficient Context-Free Parsing
Algorithm,” Communicalions of the ACM, Vol. 13,
No. 2, pp. 94-102 (February 1970).

G. Gazdar and G. Pullum, Generalized Phrase Struclure
Grammar: A Theoretical Synopsis (Indiana
University Linguistics Club, Bloomington, Indians,
1082).

5. L. Graham, M. A. Harrison and W. L. Ruzzo, “An
Improved Context-Free Recognizer,” ACM
Transaclions on Programming Languages and
Systems, Vol. 2, No. 3, pp. 415-462 (July 1980).

M. Kay, “Functional Grammat,” Proc. of the Fifth
Annual Meeling of the Berkeley Linguistic Sociely,
pp. 142-158, Berkeley Linguistic Society, Berkeley,
California (February 17-19 1979).

M. Kay, “Algorithm Schemata and Data Structures in
Syntactic Processing,” Technical Report , XEROX
Palo Alto Research Center , Palo Alto, California
(1980). A version will appear in the proceedings of
the Nobel Symposium on Text Processing,
Gothenburg, 1980.

R. A. Kowalski, Logic for Problem Solving (North
Holland, New York, New York, 1980).

M. C. McCord, “Slot. Grammars,” American Journal of
Compulational Linguistics, Vol. 6, No. 1, pp.
255-286 (January-Mareh 1980).

F. C. N. Pereira, "Extraposition Grammars,” American
Journal of Compulational Linguistics, Vol. 7, No. 4
PP. 243-256 (Octoher-Decemher 1981),

F. C. N. Pereira, Logic for Natural Language Analysis,
Ph.D. thesis, University of Edinburgh, Seotland,
1982,

F. C. N. Pereira and D. H. D. Warren, ““Definite Clause
Grammars for Language Analysis - a Survey of the
Formalism and a Comparison with Augmented
Transition Networks,” Arlificial Intelligence, Vol.
13, pp. 231-278 (1880}

F. C. N. Pereira and D. H. D. Warren, ""Parsing as
Deduction,” Forthcoming technical note , Artificial
Intelligence Center, SRI International , Menlo Park,
Calilornia (1983).

J. A. Robinson, “A Machine-Oriented Logic Based on the
Resolution Principle,” Journal of the ACM, Vol. 12,
. Pp. 23-44 (January 1965).

P. Roussel, "“Prolog : Manuel de Référence et
Utilisation,” Technieal Report , Groupe d'Intelligence
Atrtificielle, Université d’Aix-Marseille Il , Marseille,
France (1075).

5. Shieber, Personal communication, 1983.

H. Thompson, “*Chart Parsing and Rule Schemata in
GPSG,” Proc. of the 19th Annual Meeting of the
Asaociation for Compulational Linguistica,
pp. 167-172, Assoeiation for Computational
Linguistics, Stanford University, Stanford, California
(June 29-July 1 1981).

M. H. van Emden and R. A, Kowalski, “The Semantics
of Predicate Logic as a Programming Language,”
Journal of the ACM, Vol, 23, No. 4, PP-

733-742 (October 19786).

D. H. D. Warren, Earley Deduction. Unpublished note,
1975,

D. H. D. Warren and F. C. N. Pereira, Ar Efficient
Easily Adaptable System for Interpreting Natural
Language Queries. To appear in the American
Journal of Computational Linguistics., 1983.

