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Abstract

In turbulence applications, strongly imposed no-slip ¢bowls often lead to inaccurate
mean flow quantities for coarse boundary-layer meshes.r€aravent this shortcoming,
weakly imposed Dirichlet boundary conditions for fluid dymas were recently introduced
in [4]. In the present work, we propose a modification of thigioal weak boundary condi-
tion formulation that consistently incorporates the weaibwn “law of the wall”. To com-
pare the different methods, we conduct numerical expetisnien turbulent channel flow
at Reynolds number 395 and 950. In the limit of vanishing nszé in the wall-normal
direction, the weak boundary condition acts like a strongngiary condition. Accordingly,
strong and weak boundary conditions give essentially idehtesults on meshes that are
stretched to better capture boundary layers. However, oranmeshes that are incapable
of resolving boundary layers, weakly imposed boundary itimms deliver significantly
more accurate mean flow quantities than their strong copantes: Hence, weakly imposed
boundary conditions present a robust technique for flowsddistrial interest, where op-
timal mesh design is usually not feasible and resolving daonlayers is prohibitively
expensive. Our numerical results show that the formulatianincorporates the law of the

wall yields an improvement over the original method.
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1 Introduction

In computational fluid dynamics formulations that employitiouous representa-
tion of the fields, Dirichlet boundary conditions are typigamposed by specifying
the nodal values of the solution. This amounts to so-cakébhg satisfaction” of
the boundary conditions. In flow computations, stronglyasgd no-slip conditions
often lead to inaccurate mean flow quantities for insuffidiefine boundary-layer
meshes. Recently, Bazilevs and Hughes [4] proposed tdys@tigchlet bound-
ary conditions in a weak sense rather than strongly. To thds the variational
equations are augmented by terms that enforce the Dirichladitions weakly as
Euler-Lagrange conditions. Thus, the functions représgrihe discrete solution
are not required to satisfy the Dirichlet conditions exiycIt was found that for
the linear advection-diffusion equation it is preciselg tveak Dirichlet bound-
ary conditions that are able to mitigate or even entirelgnglate oscillations due
to unresolved boundary layers as well as to improve the acgun the regions
away from the layers. Moreover, numerical results for lowm@ds number flows
computed on coarse meshes demonstrated that weak no-ghipldry conditions
provide a significant increase in accuracy over their stiamgterparts.

In the present work, we revisit the weak Dirichlet conditformulation. Although
the design of the boundary condition is based on numeri¢hérahan physical
considerations, the weak treatment seems to behave liké funetion. To exploit
this link with wall modeling, we propose a modification of thaginal formula-
tion that consistently incorporates the well-known “lanmtloé wall”, an empirical
relation between the near-wall fluid velocity and the distafrom the wall that
is commonly assumed to hold for a broad range of Reynolds ews21]. We
combine the weakly imposed boundary condition formulatigtn residual-based
turbulence modeling, which is a new paradigm for computurgpulent flows in-
troduced in [6, 15] and further developed in [1]. To comp&edifferent Dirichlet
boundary condition formulations, we assess their perfagaan turbulent chan-
nel flows at medium-to-high Reynolds numbers. These nuiletést cases are
more challenging than the ones considered previously iml(#] to the increased
Reynolds number. In the limit of vanishing mesh size in thé-warmal direction,
the weak formulation acts like a strong formulation. Acaoglly, strong and weak
formulations give essentially identical results on stniettmeshes that are designed
to better resolve the boundary layer. However, on mesheésatbainiform also in
the wall-normal direction, weakly imposed Dirichlet boang conditions deliver
significantly more accurate mean flow quantities than thieong counterparts.
This fact makes the weakly enforced boundary condition tdations attractive
for computing flows of industrial interest, allowing one teoal the costly resolu-
tion of boundary layers without compromising the accuradpige-scale features.
We also find that the weak formulation modified to incorpothtelaw of the wall
provides an improvement over the original formulation.dighout this work, the
spatial discretization makes use of the Isogeometric Asigpproach [2, 3, 8, 16].



The paper is organized as follows. In Section 2, we deschibeneak formula-
tion of the continuous problem for the incompressible NaGtokes equations.
We then state the discrete, residual-based variationdlsoale formulation of the
problem with no-slip Dirichlet boundary conditions impdsgeakly. In Section 3,
we describe the new formulation with weakly imposed boupdanditions that
incorporates the law of the wall by appropriately modifythg boundary terms of
the original weak boundary condition formulation. In Sent#4, we show numeri-
cal results for an equilibrium turbulent channel flow at Relgis numbers 395 and
950 based on friction velocity. In all cases, we use meshesudb computations
that are orders of magnitude coarser than the ones employegh-fidelity Direct
Numerical Simulation (DNS); see [9, 20]. In Section 5, wewdtmnclusions.

2 Weak Imposition of Dirichlet Boundary Conditions for Inco mpressible Navier-
Stokes Equations

2.1 Continuous problem

We begin by considering a weak formulation of the IncompldsdNavier-Stokes
equations. LeV denote the trial solution and weighting function spacescivare
assumed to be the same. We also assume 0 onI" and [, p(t) d2 = 0 for all
t € ]0,T[. The variational formulation is stated as follows: Fbd= {u,p} € V
such thatW = {w, ¢} € V,

B(W,U)=(W,F) (1)
where
B(W.,U) = ('w, %) —(Vw,u®@u)y +(¢,V-u)g— (V-w,p)a (2)
Q
+ (V'w, 2vViu),, ,
and

(W, F) = (w, f)a. 3)

Variational equations (1)-(3) imply satisfaction of thedar momentum equations
and of the incompressibility constraint, namely

L(u,p)—f=0 in Q, (4)
V-u=0 in Q, %)



where

L(u,p) = aﬁ_t +V-(u®u)+Vp—V-(2vViu). (6)

We also introduce the “advective” form of the above operator

'Cadv(uvp) + u-Vu+ vp - VAU’ (7)

ot
which is obtained from (6) by using the incompressibilitpstraint in the advective
term and in the viscous stress term.

2.2 Discrete formulation

Below, we recall the discrete variational formulation of ihcompressible Navier-
Stokes equations with weakly imposed Dirichlet boundamndiions; see also [4].

Let 2 be decomposed inta,; elements, which induces the decompositiof afito
ne, boundary faces. We approximate (1)-(3) by the followingat&wnal problem
over the finite element spaces: Fibtl = {u",p"} € V" w"-n = 0onT such
thatyW" = {w", ¢"} € V", w" -n=0o0nT,

BW" U") — (w", f)a (8)
+ %({uh - Vw' + vqh}TMv ‘Cadv(uhvph) - fa.

e= 1

+ Z {u }TMwCadv( h,ph) - fa.

nel
— Z(th,TM{EadU(uh,ph) — 1} @ T {Laaw(u", p") — ).
e=1
+ Z(V . wh, ch . uh)Qe
e=1
— i('wh, 2wVul - Nn)r,or
b=1
- i@yvswh ‘n,u" — 0)pr,r
b=1

+Zw—u O)Fbmp:(),

with the following definitions

™™ —

C
(A—tg +u . Gu' + CpAG GV, 9)



and

e = (g -Tug)"", (10)

whereG is a second-rank metric tensor

(08" 9

g is a vector obtained by summirg on its first index as
d
g=1(9):=>_(G)j, (12)
j=1

andg—g is the inverse Jacobian of the element mapping between teatmnd the
physical domain. In (8)-(9)k, is the wall-normal element mesh-size, aif] C,
and(C’ are positive constants.

Remarks

(1) The above formulation makes use of a Residual-Basediddale Method
(see e.g.[1, 6, 15]), which is based on the Variational Ma#dle Formulation
(see e.g. [10-14, 17]). These residual-based methodsgsoastual nature:
on the one hand they are bona-fide LES-like turbulence mpdets on the
other hand they may be thought of as stabilized methods,a18UPG [5],
extended to the nonlinear realm.

(2) The last three terms of (8) pertain to the weak enforceméthe no-slip
condition, as presented in [4]. We choose to enforce the albcomponent of
the no-slip boundary condition, that is, the no-penetrationdition, strongly
on the trial and weighting function spaces.

(3) In the case of strongly imposed no-slip conditions, tet three terms of (8)
vanish.

3 Weakly Imposed No-Slip Dirichlet Boundary Conditions Bagd on a Wall
Function Formulation

In this section, we revisit weakly imposed Dirichlet boundeonditions and pro-
pose a modification of the original formulation presentethi previous section.
This modification draws on the knowledge of the fluid behawiauhe vicinity of
the wall in the regime of fully developed turbulence. In wfakows, we reformu-
late the weakly imposed Dirichlet condition in a way thatessistent with the idea
of wall modeling.



In engineering practice it is often of interest to accusatekolve large-scale flow
features rather than fine-scale components. It is typicadtythe detailed features
of the boundary layer turbulence that are relevant for th@iegtion, but their ef-
fect on the overall flow behavior. This fact can be accountedy wall modeling,
in which the no-slip Dirichlet boundary condition is repéaicby a traction Neu-
mann boundary condition; see for example [19, p. 47]. In tihection tangent to
the wall a shear stress is specified by adding the following te the variational
formulation

TNeb h

S (w!, u =) ar, (13)

b=1 |[wh]

where|| - || denotes Euclidean length. The magnitude of the wall sheassst**
is consistent with the so-called law of the wall. This “lawg”’an empirical relation
between the mean fluid speed and the normal distance to theédwaing the many
available parameterizations we employ the one given bydBa[21]

2 3
yt = flut) =ut + e~ XB <6xu+ 1yt — (XU;) . (X%Jr) ) . (14a)

wherey™ andu™ denote the distance from the wall and the mean fluid speed, re-
spectively, expressed in non-dimensional wall units

yto= 2 (14b)
1%
h
ut = ”“*” . (14c)
u

In Egs. (14b) and (14c)y* is the friction velocity,y is the vertical distance to the
wall, u” is the velocity parallel to the wall, and= 0.4 andB = 5.5.

Upon rearranging terms in (13), and dropping the sum oveelgraent boundaries
for brevity, the “penalty” structure of (13) becomes apparéhat is

(’wh u*? uw ) = (wh[ u ] u — 0) = (thB u — O)
) = O ) 0, (-0,
(15)

with

B ‘= (16)

acting as a penalty parameter. Based on this observatiorpromose to mod-
ify the original weak boundary condition formulation (8) faflows: Find U" =



{u" p"} € V' u'-n = 0onl suchthatW" = {w", ¢"} € V", w"n =0o0nT,

BW".U") — (w", f)a (17)

Nel
+> ({u" - V" + V", Loao(w” ") — Fa.

e=1

3t (VY g, Lo, 5" — Fla,
e=1

- Z(vwhv TM{‘Cadv(uhvph) - f} ® TM{‘Cadv(uhvph) - f})Qe

e=1
Nel

+ (Vw76 V- uh)g,

e=1

Neb b A
= (w", 2vV°u" - n)r,qr
b=1
Neb
— Y (VA" - n,u" — 0)r,ar
b=1

TNeb

+ Z(thB, ’LLh — O)FbﬁF =0.
b=1

Variational equation (17) differs from (8) only in the lastiin on the left-hand side,
and it may be thought of as a generalization of (8). Selecjing be a constant
multiple of the wall-normal mesh sizk,, that is,y = h,/C{, and lettingh; go
to zero, the Spalding equation (14a) reducesgto= u*, which is a well-known
parameterization of the viscous sublayer. In this limitbecomes independent of
the slip velocityu and takes on the expression

I
=LV (18)
Y Iy

Thus, we recover the original weak formulation (8). Thistum, implies that the
formulation (17) inherits all the attributes of the origliiarmulation (8) in this
limit. Conversely, when the mesh sizgis large, 5 deviates from (18).

Algorithm 1 outlines a Newton procedure to determigefrom givenu”, hy and

v in accordance with the law-of-the-wall equation (14a).sTprocedure is lo-
cal to each boundary-face integration point. Expressi@) {lith y = h,/C] is
used to initializer. In caseu”, h, andv correspond to the viscous sublayer, the
law-of-the-wall equation (14a) is satisfied by the initialwes, and no iteration is



necessary. Algorithm 1 makes use of the Jacobian

or hy —1/2
oty 21/(]1 7B

ut)2 7_—?;/2
+ <1+X6_XB ((BX“+ —1—yut — (X2 ) )) B2 w2,

wherer := y* — f(u™) is the residual of the Spalding equation (14a).

||/ (19)

Alg. 1: Algorithm for computingrg.

1. Initialize iteration counter: = 0
2. Initializers,; = ghlb
3y = = 7 |2
4. ry= yi - f( )
5. While (|r;| > TOL) Do
6. Build Jacoblan | according to (19)
—1
7. Solve for mcrementAerHl = — ((%Ii) T
8. Updaters ;11 = 7, + ATp i+
1/2
9. y;—l = VCITB/2+1||Uh||1/2
10. Lrwﬁ@mmm
11. Tiv1 = yz+1 f(u;d)
12. =141
13. Enddo

4 Numerical experiments for turbulent channel flow

4.1 Problem setup

To investigate the performance of the weak boundary canrdibrmulations, we
conduct numerical experiments for turbulent channel floiReynolds numbers
Re, = 395 andRe, = 950, with Re,. based on the friction velocity and the channel
half width. We compare the results with the formulation timaposes the no-slip
condition strongly. To assess the accuracy of our methoesompare our results
to the DNS results of [20] foRe, = 395 and [9] for Re,. = 950.

The problem setup is shown in Figure 1. The flow is driven byesgure gradientin
the stream-wise direction. At the computational domaimatauy, periodic bound-
ary conditions are imposed in both stream-wise and spae-ifisctions, whereas a
homogeneous Dirichlet boundary condition is applied irvilai-normal direction.
Stream-wise and span-wise directions are commonly reféor@as homogeneous
directions.



Solid wall

Flow driven by pressure gradit

Fig. 1. Turbulent channel flow. Problem setup.

The spatial discretization is comprised of quadratic spfimctions that are'-
continuous at knots. This type of discretization is comma@arhployed in isoge-
ometric analysis [16]. The semi-discrete equations aramchkd in time using the
generalizedr method [7, 18]. We employ meshes that are uniform in all dioes.
For comparison we also use meshes that are stretched in theormal direction
to cluster points near the boundary layer. The stretchigiained by distributing
the knots according to a hyperbolic tangent function suehtte first knot lies at
y* ~ 1.3, which is typical of Large Eddy Simulation (LES) computaiso Details
of the computational setup are shown in Table 1. Moreoveset@, = 4, C'; = 36
andC{ = 4.

Table 1

Details of the computational setup,. , . denotes the length of the channel in the stream-
wise, wall-normal and span-wise directialN,; is the number of elements in the domain,
N, .- is the number of basis functions in the stream-wise, waltmad and span-wise
direction, f, is the forcing in the stream-wise direction, andenotes kinematic viscosity.

Lo | Ly | L. | Ng | N.| N, | N. £ v

Re=395 |27 | 2 71323 32| 34 | 32| 3.372040 - 1073 | 1.47200 - 10~*

Re=950 | 47 | 2 71643 | 64 | 66 | 64 | 2.630991 - 1073 | 0.53992 - 10~*

Wl | WINo

Numerical results for all cases are reported in the form afisics of the mean
velocity and root-mean-square of the velocity fluctuati@tatistics are computed
by sampling the velocity field at the mesh knots and averatiagolution in time
as well as in the stream-wise and span-wise directions. Téganmelocity is typi-
cally referred to as the primary statistic, while the flutioias are called secondary
statistics. It is generally acknowledged that accuracyhefftuctuations is more



difficult to achieve than accuracy of the mean velocity. Resare presented in
non-dimensional wall units.

4.2 Turbulent channel flow dte, = 395

Our computations are carried out on a mest3df elements. This discretization
gives 32 basis functions in the homogeneous directions abd&is functions in the
wall-normal direction due to the open knot vector constaic{see [16] for details).
In terms of the number of degrees-of-freedom, this type sbligion is typical of
LES at Reynolds number 395. The domain size7is2, and2/3r in the stream-
wise, wall-normal, and span-wise directions, respedtividhe corresponding DNS
computation was carried out on a domain of the same size andisleretization
used256 x 193 x 192 spectral functions in the stream-wise, wall-normal andspa
wise direction, respectively.

Figures 2 and 3 show statistics of the computations on tle¢ckied and uniform
meshes, respectively.

On the stretched mesh, both the mean flow and the fluctuatrens aery good

agreement with the DNS (see Figure 2). In fact, the accurétlyeoresults is vir-

tually that of a spectral computation, although simple gagad spline functions

with local support are used instead of spectral basis fanstiResults obtained
with strongly and weakly imposed no-slip conditions preailly coincide, which is

consistent with the fact that the weak boundary conditiomfdation reduces to
the strong one in the limit of vanishing mesh size. The newbppsed formulation
that incorporates wall modeling gives slightly more acteistream-wise velocity
fluctuations than the other formulations.

In contrast, on the uniform mesh, the methods perform diffdy (see Figure
3). Placing the first knot a§™ ~ 23, we intentionally sacrifice the resolution of
the boundary layer. This leads to a gross overestimatioheofrtean flow for the
strongly enforced Dirichlet boundary condition formudati Note that, on the other
hand, the mean velocity for both weak formulations agreegwell with the DNS
result. This shows that weak boundary conditions are capabhlleviating the
gross inaccuracy induced by insufficient near-wall resofutThis superior robust-
ness despite “poor” mesh design makes the new method attrdot industrial
applications. We also note that the wall function formwats slightly more accu-
rate for mean flow velocity than the original weak boundanyditbon formulation.
Despite the large difference in the mean flow, the secondatigscs in the core of
the channel for the uniform mesh cases are very similar féomhulations consid-
ered. In the near wall region, the differences in the fluetuat obtained with the
various methods are more pronounced.

Comparing the results obtained on stretched and on unifoeshes, we observe

10
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0 100 200 300 4(

Fig. 2. Turbulent channel flow ae,. = 395 computed on atretchedmesh.Top: Mean
stream-wise velocity plotted versus wall distance in walltai Bottom: Stream-wise,
wall-normal and span-wise velocity fluctuations plottedsus wall distance in wall units.
Formulation with no-slip boundary conditions enforceasgly (1), weakly according to
original methodology (8)4), and weakly based on the wall function (17).(

that the secondary statistics for the uniform mesh simardatare not quite as ac-
curate as those for the stretched grid case, although thaygofthe results is
still good. One may thus conclude that in the core of the cektie effect of the
mesh design on the fluctuations is more pronounced thanféa ef the boundary
conditions.

11



20 -

U+

0
0.1 1 10 100
y+
3 T

u+,v+,w+

Fig. 3. Turbulent channel flow ake, = 395 computed on ainiform mesh.Top: Mean
stream-wise velocity plotted versus wall distance in walltai Bottom: Stream-wise,
wall-normal and span-wise velocity fluctuations plottedsus wall distance in wall units.
Formulation with no-slip boundary conditions enforceasgly (1), weakly according to
original methodology (8)4), and weakly based on the wall function (17).(

Figure 4 shows the stream-wise velocity contours at annhgtetime, computed
on a uniform mesh with weak boundary conditions employirg wall function
formulation. Note the presence of velocity fluctuations @fisiderable magnitude
at the “no-slip” wall (top surface of the box).

12
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[ 112
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—0.78
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0.226
0.0485
-0.129

-0.307

-0.483
Fig. 4. Turbulent channel flow de,. = 395. Snapshot of stream-wise velocity contours.

4.3 Turbulent channel flow dte, = 950

For the computations ake, = 950, a mesh of643 elements is used with 64
basis functions in the homogeneous directions and 66 basdcidn in the wall-
normal direction due to an open knot vector constructior dbmain size idr, 2,
and4/3r in the stream-wise, wall-normal and span-wise directioaspectively.
The corresponding DNS used a domain siz&ofx 2 x 37 with a resolution of
3072 x 385 x 2304 spectral functions in the stream-wise, wall-normal anchspa
wise directions. Note that our resolution per unit domairgté is a factor of about
25 coarser in the stream-wise direction, a factor of 6 cearséhe wall-normal
direction, and a factor of 24 coarser in the span-wise doecHence, the adopted
discretization is significantly coarser than what is typicased for an LES-type
computation.

Figures 5 and 6 show statistics of the computations on &dtand uniform meshes,
respectively.

On a stretched mesh, the differences between the weak arstitimg boundary-
condition formulations are negligible due to the small Agall mesh size in the
wall-normal direction (see Figure 5). All methods fail tacacately represent the
mean flow velocity. Moreover, the stream-wise velocity fliations are inaccurate
in the near-wall region but are quite accurate in the corenefahannel. The ve-
locity fluctuations in the remaining directions are in vepod agreement with the
DNS. The good agreement of the velocity fluctuations with@DNS despite the

13
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Fig. 5. Turbulent channel flow ae, = 950 computed on &tretchedmesh.Top: Mean
stream-wise velocity plotted versus wall distance in wailltai Bottom: Stream-wise,
wall-normal and span-wise velocity fluctuations plottedsus wall distance in wall units.
Formulation with no-slip boundary conditions enforceasgly (1), weakly according to
original methodology (8)4), and weakly based on the wall function (17).(

discrepancy in the mean flow velocity is somewhat surprisling inability to ac-
curately capture the mean velocity illustrates the linoias of the strong boundary-
condition method for high Reynolds number wall-bounded flow

On the uniform mesh, with the first knot@t ~ 30, the strong boundary condition
formulation gives an even greater over-prediction of themeelocity than for

14
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Fig. 6. Turbulent channel flow ake, = 950 computed on ainiform mesh.Top: Mean
stream-wise velocity plotted versus wall distance in wailltai Bottom: Stream-wise,
wall-normal and span-wise velocity fluctuations plottedsus wall distance in wall units.
Formulation with no-slip boundary conditions enforceasgly (1), weakly according to
original methodology (8)4), and weakly based on the wall function (17).(

the stretched mesh computations; compare Figures 5 anacéntrast, both weak
boundary-condition formulations deliver a result of rezsue accuracy for such
a coarse discretization, similar to the caseRef = 395. The mean flow is only
slightly over-predicted when compared to the DNS. Also nbeg the uniform

discretization does not exhibit as severe an overshooterstiteam-wise velocity

15



fluctuations near the wall as for the stretched mesh. Howawety from the wall,
the fluctuations are slightly less accurate on the uniforreltlean on the stretched
mesh. This is consistent with the results for fie = 395 case.

Figure 7 shows the stream-wise velocity contours at annhgtetime, computed
on a uniform mesh with weak boundary conditions employirg wall function
formulation. Note the presence of velocity fluctuations @isiderable magnitude
at the “no-slip” wall (top surface of the box). Also note tlia¢ turbulent structures
for the Re, = 950 channel are more fine-grained than the ones forrthe= 395
channel due to the increased Reynolds number (comparessiguand 7).

Stream-wise velocity

15

-0.284

-0.508

-0.729

Fig. 7. Turbulent channel flow de. = 950. Snapshot of stream-wise velocity contours.

5 Conclusions

In this work, we proposed a new variational formulation o# ihcompressible
Navier-Stokes equations that enforces Dirichlet no-sbipriary conditions weakly.
Motivated by the observation that weak imposition of Ditethboundary condi-
tions generally seems to behave like a wall function, theopsed formulation is
based on the so-called law of the wall. We combined the weakdary condi-
tion formulation with residual-based turbulence modelig compared the per-
formance of the different boundary condition formulatidr@sed on numerical re-
sults for turbulent channel flow at medium-to-high Reynatdsnber. We found
that the weakly imposed boundary condition formulatiort theorporates the law
of the wall provides an improvement over the original weakirimary condition

16



formulation. In the limit of vanishing mesh size in the watl¥mal direction, both
weak boundary condition formulations act like a strong folation. Accordingly,

weak and strong boundary condition formulations give esslgnidentical results
on stretched meshes that are designed to better capturedhedry layer. How-
ever, on coarse, uniform meshes, weakly imposed boundangitcans deliver a
significantly more accurate mean flow velocity than theiorsgy counterpart. In
this respect, the combination of residual-based turbelencdeling and weak im-
position of the no-slip condition acts like a RANS-type mbutethe sense that
it produces accurate mean flow quantities on meshes thabv@areotirse for con-
ventional LES simulations. This result makes weakly impldB&ichlet boundary
condition formulations attractive for computing flows oftlirstrial interest, avoid-
ing the costly resolution of boundary layers without commpiging the accuracy of
large-scale flow features. Given that the weak boundaryitondormulation be-

haves like its strong counterpart on fine meshes and debvgrsrior accuracy on
coarse meshes, this suggests the use of this method as alggrategy for enforc-
ing wall boundary conditions in finite-element flow compidas. The additional
cost due to weak enforcement of the boundary conditionsgbgikele because the
corresponding integrals are evaluated only over the Detgbortion of the domain
boundary.

Regarding the role of weak versus strong boundary condfbanulation in the
context of residual-based turbulence modeling, our resoitthe Re, = 395 chan-
nel flow showed that the residual based formulation with daath strongly im-
posed boundary conditions gives remarkably accuratetsefarla well designed,
stretched mesh with a resolution that is typical of LES. Hesvefor flows at higher
Reynolds number, such &, = 950 computed on a stretched mesh with a resolu-
tion corresponding to coarse LES / fine RANS, the accurachefésidual-based
approach deteriorates. The lack of accuracy in predictiegniean flow velocity
derives from the inability to resolve the turbulent-bourydiayer flow structures
on a mesh that is insufficiently fine. Our results demondirgtat this difficulty
can be elegantly circumvented by combining the residuaktdormulation with a
weakly enforced no-slip boundary condition.
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