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Objective Functions for Feature Discrimination

Pascal Fua and Andrew J. Hanson"®
Artificial Intelligence Center
SRI International
333 Ravenswood Avenue

Menlo Park, California

Abstract

We propose and evaluate a class of objective
functions that rank hypotheses for feature la-
bels. Qur approach takes into account the
representation cost and quality of the shapes .
themselves, and balances the geometric require-
ments against the photometric evidence. This
balance is essential for any system using un-
derconstrained or generic feature models. We
introduce examples of specific models allowing
the actual computation of the terms in the ob-
jective function, and show how this framework
Ieads naturally to control parameters that have
a clear semantic meaning. We illustrate the
properties of our objective functions on syn-
thetic and real images.

1 TIntroduction

All approaches to the problem of extracting features
from images can in principle be phrased in terms of de-
cision theory; however, the concepts of decision theory
are very hard to put into practice because of the diffi-
culty of evaluating the required probability measures.
Therefore, most practical approaches to model-based
vision for both specific models, e.g., [Binford, 1982,
Bolles and Horaud, 1986, Brooks, 1981, Shneier et al.,
1986], and generic models, e.g., [Fischler et al., 1981,
Ohta et al.,, 1979, McKeown and Denlinger, 1984, Huer-
tas and Nevatia, 1988)], rely on heuristic measures to
select among competing scene parses. These methods,
although they may be effective in the context for which
they were designed, are extremely hard to extend and
require the use of many parameters whose significance is
not clearly understood.

On the other hand, approaches such as those of
Feldman and Yakimovsky [1974] Georgefl and Wallace
{1984], and Rissanen [1983, 1987]' provide a sound theo-
retical basis for the decision problem but offer few prac-
tical computational methods for dealing with complex
scenes in real images.

In this paper, we focus on an objective function ap-
proach to the task of ranking scene-labeling hypotheses.

*This research was supported in part by the Defense
Advanced Research Projects Agency under Contract Nos.
MDA903-86-C-0084 and DACAT6-85-C-0004.
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For brevity, we omit discussion of the related problem
of hypothesis-generation, and refer the reader to [Fua
and Hanson, 1989]. We define a class of objective func-
tions based upon theoretical arguments similar to those
of Georgeff, Wallace and Rissanen, and show that the
required probability estimates can actually be computed
in the context of a few natural assumptions.

Qur formulation has many desirable features, but is
not by itself a complete solution to the feature extrac-
tion problem. To be effective it must be coupled with a
robust hypothesis generation mechanism and an efficient
optimization procedure. Furthermore, one would like to
have models for geometric quality analysis much more
complex than those presented here. It should come as
no surprise that discovering good models and hypothests-
generalion siraiegies are the most difficult tasks in the
development of a system attempting to perform shape
perception. The strength of our approach is that it pro-
vides a unified framework that clearly exposes the criti-
cal components and characteristics of model-based vision
systems.

2 Derivation of the Objective Function

The goal of feature extraction is to parse a scene in
terms of objects conforming to particular models. To
discriminate among competing parses, an objective func-
tion must be able to measure the goodness of fit to
feature models that include such characteristics as area
photometry, edge photometry, shape, and semantic re-
lationships. In this section, we define a basic class of
models, discuss the parameters we expect to control our
objective functions, derive the theoretical forms of the
objective functions themselves, and provide an interpre-
tation of the resulting functions in terms of information
theory.

2.1 Object Modehng

For the purposes of this work, we define a model to be a
geometric description of an object in the world charac-
terized by its geomelric constrainis and its pholometric
signature; we define the evidence for such objects in dig-
ital images to be a collection of delineated areas corre-
sponding to major object parts, together with associated
quantities directly derivable from the pixel values in such
areas.



We interpret the photometric signature of any ob-
ject model in terms of the expected signal from an
ideal object model plus a noise model [Rissanen, 1983,
Rissanen, 1987, Leclerc, 1989). The object’s evidence
can then be encoded in terms of these models. We will
use length of the shortest encoding to measure the qual-
ity of the fit between the data and the model.

2.2 Essential Parameters of the Objective
Function

Our approach introduces two fundamental parameters,
the scale and the shape coefficient:

Scale. The scale is interpretable as the unavoidable
dimensional factor that converts dimensional quantities
such as area or length into dimensionless probabilities.
Area units are thus scaled down by two powers of the
dimensional unit, while length terms such as edges are
scaled down by a single power. The scale parameter
thus controls whether the area signature dominates edge
signature,

The scale parameter may also be understood by ob-
serving that when an image is resampled or zoomed,
the area A of a patch will change, but the complex-
ity of the patch, as reflected in its minimal encoding,
should remain invariant. Thus there should be some in-
trinsic zoom factor s that relates the area A to the area
Ap = A/s? in the zoomed image that has exactly the res-
olution needed to encode the model complexity without
oversampling. The formulas presented later in the paper
may thus be alternatively interpreted as expressing the
patch encoding cost in terms of the samphng—lnvanant
quantity Ag instead of A itself.

Shape Coefficient. An objective function with a
shape quality term alone will retain any candidate model
instance with the appropriate geometry, even if it does
not fit the image data. On the other hand, an objec-
tive function with only a photometric model will make
the same class of errors as a segmentation algorithm.
The shape coefficient balances the possibly conflicting
requirements of the geometry and photometry; the point
where this balance lies must be determined by the con-
text of the application.

The scale and shape coefficients characterize the fun-
damental balance of influences that must be semanti-
cally specified for each application. Within a particular
model domain, it seems possible in principle to estimate
the scale by using measures of local complexity. Our ap-
proach to feature-hypothesis evaluation provides a clear
way to justify and understand the essential role of these
two parameters in feature extraction, regardless of the
other details of a particular system.

2.3 The Probability of a Scene Parse

We choose to describe the problem of determining the
best image interpretation as the need tc maximize the
probability P = p(mgm; ...muley ...e,) that, given the
evidence E = {¢;; i = 1...n}, parsing the scene in terms
of a particular set of model instances M = {m;; 1 =

1...n} and a backround my is in fact correct.’ Each m;
is taken to be a geometric model instance, while ¢; is the
measurable evidence for the object, typically a collection
of associated pixel intensities. Since we are interested
in feature extraction, we do not explicitly represent the
background and collect no evidence for it.

It is essentially impossible to evaluate the conditional
probability P in its most general form, so we make a
crucial independence assumption: the probability of a
particular model hypothesis is influenced only by its cor-
responding body of evidence and the other model in-
stances. For example, in an aerial image, whether or
not a patch of pixels can be identified as a road may
depend on its own photometry and on the presence or
absence of neighboring houses, but not on the particular
photometry of those houses.

Formally, this assumption can be written as follows:
If I,J,K denote sets of indices referring to model in-
stances and their corresponding bodies of evidence, we
assume VI, J, K such that JN ] =@ and JNK = 0,
P(m;e;de;) P(mjeg), and VI,J, P(m;|mse;) =
P(my|my).

The assumption may break down when one object’s
expected photometry is strongly modified by another ob-
ject, as when a superstructure or a separate building oc-
cludes or casts a shadow on a roof. In practice, one can
partially compensate for such phenomena by discounting
small anomalies.

Combining our assumption with Bayes’ rule, it is
straightforward to express the probability of the parse
as: i

P = .Maler...e,)

Hp(ellml . (1)

= ple:)

This expression clearly separates the contribution of
the photometry, in the evidence-dependent terms, from
the abstract contribution of the geometric and semantic
component in p{mgm; ... m,) under the stated assump-
tion. We further expand this term as:

P(mnm1 .

= p(mom, ..

plmomy...mp) = p{mo|mi...mu)p(my...m,)
= Pyp(im; ... my), (2)
where p(m, ...my) is the probability that these » mod-

els appear in the scene, and Fy is the probability that
no other models appear. Since we do not take the back-
ground explicitly into account in this work, we consider
Py to be constant.

2.4 Minimal Encoding Length and Model
Effectiveness

We choose to £XPress the quality of a parse as the (base
2) logarithm 2 of Eq. (1). Classical information theory
[Shannon, 1948, Hammmg, 1985) leads us to interpret
the resulting score S in terms of encoding length:

S:+log-§:F—G, (3)

!For example, in terms of a human analyst’s perception,
or in terms of ground truth.
2All logarithms in this paper are base 2 logarithms.



where we define

F = ZF = Z{—bgp(es)+logp(eflm-‘)} (4)

G = —logp(m;...m,). (5)

Here F is what we call the encoding-effecfiveness of the
set of models. The first term in F is the number of bits
needed to describe the evidence in the absence of the
model, while the second term gives the number of bits
needed to describe the evidence in {erms of the model
The term effectiveness is thus motivated by the fact that
F represents the number of bits saved by representing the
evidence wsing the model, and the fact that F increases
as the fit improves.

G is the number of bits needed to encode the evidence-
free model representation information, and quantifies the
elegance of the chosen set of model instances as well as
their dependencies.

2.5 Remarks

Feature Extraction Viewed as an Optimization
Problem. The problem of finding the best parse of a
scene can now be rephrased as the problem of optimiz-
ing over sets of hypotheses evaluated by Eq. (3). Global
optimization corresponds to a blind search procedure,
which searches all possibilities without attempting to
determine which candidates are more likely than oth-
ers. In practice, the search space may be far too large
for this type of search. Since intelligent heuristics can
overcome this drawback, a natural way to design an ap-
plication system is to incorporate hypothesis-generation
algorithms that projeci from the space of all possible hy-
potheses onto a subspace of very likely hypotheses. Such
projections have the side effect of reducing the discrimi-
natory burden placed upon the objective function.

Generic Models Require Photometric/Geometric
Balance. When a model’s geometry is completely de-
termined beforehand, as it:1s for template-matching ap-
proaches to automatic shape recognition, there is no need
for the geometric information component of the objec-
tive function, since it is constant and maximum like-
lihood analysis alone will do. The geometric terms in
the objective function begin to play a critical role when
we utilize models defined by a set of general geometric
constraints in place of a specific shape template. Such
generic models, with arbitrarily large numbers of param-
eters, require objective functions like ours that balance
their geometric aspects against their photometry.

3 Photometry: Computing F'

Two of the main characteristics of an object in an im-
age are its interior photometry and its contrast with the
background, which produces edges. Here we explore sim-
ple models for the area and for the edges of an object
that have proven useful in analyzing imagery. When
working with stereo pairs of images, we also incorporate
a stereoscopic model, and compute the depth parameters
of an object in the scene by optimizing the correspondin

stereo eflectiveness. :

We have seen that the effectiveness F is comiputed as
—log p(e) + log p(e|m) where e represents the grey level
values of the pixels that are enclosed by the contour m.
For the sake of exposition, let us distinguish the evidence
e, relative to the interior of the patch and the evidence
eg relative to the boundary. Formally, we can write:

p(e|m) plealm)p(eg|m, e}

p(e) = plea)p(eelea) -
We assume that contrast with the background can be
measured by using local image derivatives, while ignor-
ing the grey levels of the boundary pixels. This contrast
depends on the grey level of background pixels that do
not appear in the object descriptions, and can therefore
be considered as independent of the interior object pho-
tometry. Thus we write F; in Eq. (4) as the sum of area
and edge components:

Fi = Fia+FE
Fia = =—logp(ea)+logp(ealm)
Fig = ~logp(eg)+logplec|m) .

This prescription must be modified when dealing with
objects that share edges, since the contrast of the shared
edges is completely determined by the photometry of the
regions on both sides of the edge. In this case, the shared
boundaries do not contribute to the edge eflectiveness
term.

When additional images are available and m is a three-
dimensional model, additicnal evidence es can be gath-
ered using the projection of m onto each image. We
write:

ple,eslm) = plelm)p(es|m,e)
plees) = ple)plesle) .

In the case of a pair of stereo images, e is the evidence
measured in the left image and eg the corresponding ev-
idence in the right image relative to the model projected
into that image. For a stereo pair, we therefore add to
the eflectiveness a sfereo effectiveness term,

Fs = —logp(esle) + logp{es|m,€) . (6)

3.1 Area Model for Homogeneous Regions

We model the interior intensities of an image region by a
smooth intensity surface with a Gaussian distribution of
deviations from the surface. Since objects in real images
typically have anomalies which do not lie on the smooth
surface, we encode such anomalous pixels as outliers. As
we shall see later, this can critically enhance the discrim-
inatory power of the area-encoding effectiveness.

In the application of our approach to aerial imagery,
we take the intensity surface to be a plane, In Figure 1,
we show: (a) An image and a delineated model instance.
(b} The histogram of deviations from the planar fit to
the intensity surface. (¢} The solid white area indicating
the location of the pixels within the main Gaussian peak.
Black areas within the model outline lie outside the peak
and are considered anomalous.

In an 8-bit image, it would take 8A bits to encode
the pixel values if we did not take advantage of depen-
dencies among pixels. Similarly, it would take k4 A bits



to encode the same information using our region model,
where

kgad=n(loge +c)+8u+ E(n,7) . (M

Here n(log ¢+c) is the cost of Huffmann-encoding {Ham-
ming, 1985] the pixels in a Gaussian peak, 87 is the cost
of encoding the outliers, and

n

E(n,7)=~ nlog%—i—ﬁlogA (8)

is the entropy, i.e., the cost of specifying whether a pixel
is or is not anomalous. « is the variance of the Gaussian
distribution, n is the number of pixels in the Gaussian,
T=A—mn,and ¢ = (1/2)log(27e). Note that in the
computation of the encoding cost, we have not included
the cost of encoding the six internal parameters of the
model: 3 for the plane, 2 for the Gaussian, and one for
‘the probability n/A that a pixel lies in the main peak.
It can be shown [Rissanen, 1983, Schwarz, 1978] that
these costs are approximately equal to (1/2)logA bits
per internal parameter of the statistical distribution, and
are therefore negligibly small compared to k4 A.

We weight all areas and lengths using the scale pa-
rameter s (see section 2.2) so that the area-encoding ef-
fectiveness becomes:

F;, 4 = bits(without model) — bits(with model)
A
= (8- k,q);i
1
= 5—2((8—c—loga’)n — E(n,7)) . (9

Optimization of this score is intuitively appropriate be-
cause it finds the best comprormise among the following:

» large area 4,
» Jow standard deviation o,

s small number of anomalies 7.

Effect of Anomaly Discounting. In the graphs on
the left in Figure 2, we plot the area-encoding effective-
ness F4 as a function of the radius of a square patch
centered at the center of the images shown in the left
column: a good but noisy synthetic image of a square,
the same Image with gross area anomalies, and an image
of a simnilar but distorted square. When we compare the
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Figure 2: Area and edge effectiveness of a square patch as
a function of candidate radius, with (solid) and without
(dotted) anomaly discounting.

results obtained afler discounting anomalies (solid lines)
with those results found without anomaly discounting
(dotted lines), we see that anomaly discounting must be
included to make the objective function reliably select
the same shape a2 human observer perceives. This is po-
tentially a critical factor in the practical application of
this approach because, as we see in Figure 1, real images
nearly always have significant anomalous components.

Note that we only have local maxima of the area-
encoding effectiveness appearing in Figure 1; for large
radii, a better parse of the scene would be in terms
of twe model hypotheses, one square and one square-
shaped ring covering the rest of the image, rather than
one square plus random background. From this example,
we see that high score alone is not an adequate criterion;
we must also require local maximality when dealing with
a partial description of the scene as opposed to a global
one. For this reason it is important in practice to mea-
sure whether a candidate object passes this maximality
test. Experimentally, we have found that high edge qual-
ity enforces this requirement; we now turn to the explicit
form of the edge term used.



3.2 Edge Model

We adopt the definition [Rosenfeld, 1970, Haralick, 1984,
Canny, 1986] of edge pixels as maxima of the local image
derivative, and we ¢lassify edges according to whether or
not an edge boundary pixel conforms to this definition.
In the absence of a model, it would take 1 bit per pixel to
encode this information. If we now use the l-parameter
model that takes into account the proportion of maxi-
mal edge pixels, the most efficient Huffmann [Hamming,
1985] code for this information would require

n

L

n n n

kg =—|=log— log — 1

E 7log T+ plog+ (10)
bits per boundary pixel, where L is the length of patch
boundary in pixels, n is the number of boundary pixels
that are maxima of the local image gradient, and 7 =
L—mn

We then weight all lengths by the scale factor s and

estimate the edge-encoding effectiveness to be

e =
L

bits(without model) — bits(with model)
(11)

As in the case of the area term, we have neglected the
(1/2)log(L/s) bits required to encode the one internal
parameter of the model [Rissanen, 1983, Schwarz, 1978].

As shown in the right column of Figure 2, this edge
score is maximal when all boundary pixels conform to
our edge model, and degrades as the proportion of such
pixels diminishes. This model has proven eflective in our
application of these techniques to aerial images because
it provides a measure of edge-quality that does not in-
clude an image-dependent threshold on edge strength.

We have also experimented with an edge model that
requires the gradient direction be normal to the object
outline, and computes the encoding cost of deviations
from the normal vector. Both models yield similar rank-
ings.

3.3 Stereography

The simplest stereo model assumes that corresponding
pixels have the same grey-levels in both images. In prac-
tice, to compute the stereo effectiveness of Eq. (6), we
determine the number of bits required to encoede the pro-
Jected patch in the second image, while knowing its pho-
tometry in the first. We compute the deviations of the
intensities from their predicted values and encode them
using the same Gaussian model with anomalies that we
used for the area term. The anomaly discounting is re-
quired because of the possibility of occlusions. We also
take into account the edge quality of the contour in the
second image and its edge-encoding eflectiveness.

The stereographic eflectiveness term Fs is therefore
the sum of an edge and an area term:

Fs = Fas+ Fgs (12)
A
Fas = (8- L‘Aa)s—:
L
Fgs = (1 - kEn ';2'

where A, is the area of the projected patch in the second
image, L is its boundary length, and k4, and kg, are
the corresponding model encoding costs.

We can use the effectiveness measure (12) to opti-
mize the elevation parameters of 2 two-dimensional de-
lineation found in the first image. The search space is ex-
tremely constrained since the projected shape is known
and the only degree of freedom is epipolar motion in the
second image.

Let us consider the stereo pair of images in Figure
3(a,c). Assuming that the roof is horizontal, we plot in
Figure 3(b) the value of Fs as a function of the assumed
disparity between the candidate outline in the left image
(a) and the projected outline in the right image. We note
that Fs has a sharp peak for the correct match outlined
in (c).

SO e
2 5 18 15
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(b) ()

(a)

Figure 3: (a) Roof candidate in left image of a stereo
pair. (b) Fs as a function of the assumed disparity be-
tween left and right image. (c) The projection of the
contour in the right image using the best disparity value.

4 Geometry: Computing G.

The geometric cost G defined by Eq. (5) is a measure of
quality of a set of object hypotheses. The simplest way
to handle dependencies aniong objects is to require that
there be no conflicts within a particular set of hypothe-
ses; formally we write:

p(mi|m;) p(m)
0 otherwise

Hp(m;) if no conflict
=0

It follows that GG can be expressed as

ifm,-ﬂmj =@or m; C my

p(my...my) =

otherwise.

n
G:—logp(ml...mn)zyzG;, (13)
i=1

where G; o —log p(m;) is a2 model quality measure that
increases as the shape degrades, and 7 is the arbitrary
shape coefficient.

Now we can deduce a mechanism for deciding whether
or not the addition of one more feature object is advan-
tageous or detrimental to the overall parse. If we write
the overall score in the form

F= E(F:‘ —7G3),

i=1



we conclude that we should accept only model instances plication, we use an hypothesis generator that carries
with (F; — ¥Gy) > 0, since these are the only ones that  out the following steps: (1) extract linked edges; (2)
improve the likelihood of the {ull scene parse. find edges obeying geometric constraints (such as recti-

The simplest effective model for G; is-the sum of the linearity) that define enclosed regions in the image; (3)
cost of chain-encoding the boundary of the object’s area  compute the score of each enclosed area using the objec-
plus a constant cost for introducing a new object; this  tive function; (4) find the subset of nonconflicting shape

gives a geometric cost candidates maximizing the total score. One may also
L optimize each candidate shape with respect to the ob-
Gi=c+ =, {14)  jective function before the final ranking.
s

The objective function plays a crucial role in this ap-
plication because the hypothesis generator will always
produce conflicting sets of candidates, and a means of
distinguishing among these is absolutely essential.

" i g
Shape coeffilieny(fca fticiantl
F . . . : . 2 ' .

o ; : :
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(a) (b) Figure 5: (2) A complex building. (b) Interpretation in

terms of a single polygon. (¢} Interpretation in terms of

. . . two polygons.
Figure 4: (a) Ratio of single-square to double-rectangle

score as a function of noise variance (40, 20, 10). (b) _
Similar plot comparing the score of the square interpre- For example, for Figure 5(2), the system produces two
tation to the “U” interpretation. . conflicting interpretations: one in terms of a single poly-

gon enclosing both wings as in Figure 5(b) the other in
terms of two polygons, one for each wing as in Eigure
5(c). At low scale the latter will be preferred because of
its better fit to the photometric data, while at high scale
the former will dominate due to its lower geometric cost.

In Figure G, we show the hypotheses generated and
retained by the system for scale values of 6, 7 and 8,
with fixed shape coefficient; for this scene, scale 8 clearly
gives the best parse.

From the examples shown in this section, we can form
an intuitive understanding of the scale parameter: s
tunes the scale nol of the physical size of the object,
but the scale of its guality. Objects with close fits to the
strict model are selected first as we ramp the scale down
from a high value.

In Figure 4(a), we show how the length term (14),
which gives preference to compact objects, influences
the parse when a split square is interpreted alternately
as a single compact square or two adjacent rectangles.
The bottom graph takes three images, with noise vari-
ance 40, 20 and 10, and plots the ratios (two-rectangle
score)/{square score) as a function of scale for fixed
v = 1. Note that increasing the scale in this example
amounts to looking at a subsampled image in which fine
details are no longer visible. The interesting value of the
scale is that for which the scores are equal, i.e., the ratio
is one. Thus we plot in the upper graphs the locus of
points where the ratio is unity as a function of v as well
as scale. In Figure 4(b), we carry out a similar plot for
an image of a square with a missing portion that makes it .
“U”-shaped. We see that the ratio (“U” score)/(square 6 Conclusion
score) behaves so that the square interpretation is pre-
ferred at a large scale in the best image, and at a much
lower scale in the noisier images.

In this work, we have shown how an information the-
oretic approach to the feature extraction problem can
be formulated in such a way as to permit realistic com-
putational techniques for the required probability esti-
mates. Qur approach provides a firm theoretical basis
We have applied the principle of objective-function opti-  for understanding complex feature extraction problems
mization to operator-initiated shape extraction and to  that require a balance between photometric evidence and
automated extraction of generic cartographic features  geometric quality. Of course, the objective function ap-
such as buildings from aerial imagery, described else-  proach given here cannot by itself lead to good solutions
where [Fua and Hanson, 1989]. In the automated ap-  to the feature extraction problem, but must be teamed

5 Examples



with a competent (human or automated) hypothesis gen-
erator [Fua and Hanson, 1989]. Among the goals of fu-
ture work will be the extension of the range of our models
and the treatment of complex semantic dependencies in
terms of their information-theoretic context.
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