
Software Wrappers for Rapid Prototyping JAUS-Based Systems  
 

Bill Smuda, US Army TARDEC 
 

ABSTRACT 
 

Recent experiences with robots in Iraq have proven that robotic technology is useful to the warfighter, but tools are 
needed to rapidly respond to evolving missions. This paper details a methodology for automatic generation of software 
wrappers using JAUS to simplify prototyping and development of robotic systems (distributed, embedded and real-time 
system software modules). Software wrappers will allow insertion of modules into a visual prototyping environment.  
The wrappers will intercept module functions and bind them with functions needed to exercise the modules outside of 
the native environment.  Automatic generation of JAUS wrappers will enhance the development environment by 
reducing rote work and producing consistently behaving module interfaces.  The resulting methodology will provide a 
rapid prototyping environment for use in sensor integration, Operator Control Unit (OCU) development and 
autonomous vehicle control.   
 
Keywords: Software Engineering, Robotics, Rapid Prototyping, Software Generation, JAUS 
 

1. Introduction 
 
The Department of Defense and the Army have invested heavily in automation infrastructure to aid in the development 
of defense systems.  High Performance Computing assets have been distributed across the country and connected by a 
high performance computer network, the Defense Research and Engineering Network (DREN).  The Army’s 
Simulation and Modeling for Acquisition, Requirements and Training (SMART) program is expected to reduce cost, 
development life cycle and improve the war fighter’s edge. 
  
Similarly, a large investment is being made in robotics, both for current operations and especially for Future Combat 
System (FCS).   Both current robots and FCS rely on distributed assets communicating over wired and wireless 
networks, albeit on different scales.   
 
Payoff from these initiatives can only be realized if we can develop the reliable, high quality software that will allow 
material developers to conduct large tradeoff analysis in a reasonable time frame. 
 
The current state of software development industry is not amenable to the lofty goals of the above programs.  Software 
continues to be largely developed by hand.  Simulation and prototype analysis require the direct involvement of 
expensive and scarce software experts.   Engineers that develop software for individual components are often experts on 
the technical domain and thrust into the software development arena by necessity.  In many cases domain experts have 
little knowledge of system and network administration.  Forcing them to learn these additional disciplines dilutes their 
knowledge base and takes time away from their primary responsibility.   
 

1.1. Automation. To improve the software development picture we need to discover place where we can automate the 
process.  Tremendous gains have been made by stepwise automation of the manufacturing process. Automotive paint 
robots have moved human operators out of the paint booth and to a control panel.  The result is consistent, high quality 
finishes on automobiles.  The paint station operator no longer paints the car.  A specialist configures the paint station for 
the current assembly line.  The operator is presented with a limited number of operational choices on a control panel.   
 
Similarly, in the software development we need to find places where we can automate parts of the process that are 
difficult and done by hand.  We need to discover high payoff domains that can be automated in a re-configurable 
fashion.  One of these domains is building the network configuration and instrumentation for prototyping distributed 
systems.  



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
01 MAR 2005 

2. REPORT TYPE 
N/A 

3. DATES COVERED 
  -   

4. TITLE AND SUBTITLE 
Software Wrappers for Rapid Prototyping JAUS-Based Systems 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 
Bill Smuda 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
USA TACOM 6501 E 11 Mile Road Warren, MI 48397-5000 

8. PERFORMING ORGANIZATION
REPORT NUMBER 
14730 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 
TACOM TARDEC 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release, distribution unlimited 

13. SUPPLEMENTARY NOTES 
U.S. Government Work; not copyrighted in the U.S. Presented at SPIE Defense & Security Symposium
2005, Orlando, Fl USA, The original document contains color images. 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

SAR 

18. NUMBER
OF PAGES 

9 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



 
The inherent complexity of computer network environments has limited the potential gains of using distributed 
prototyping and simulation in the material development process.  The network configuration parameters (ports and 
addresses) needed to allow distributed elements to communicate are often difficult to create and reuse.   Firewalls and 
separate firewall administrators not included in the design environment confound the situation.  An incomplete 
understanding of network standards and operation scenarios confound the domain experts attempting to prototype a 
distributed system.  Ad hoc methods reduce repeatability and make comparing alternatives difficult if not impossible. 

1.2. Objective.  The objective of this work is to describe a methodology that includes automatic generation of software 
wrappers to simplify development of distributed, embedded and real-time robotic systems. This work can also be 
extended into the more general case of communicating heterogeneous distributed systems. Automatically generated 
wrappers will allow insertion of modules into a prototyping environment.  The wrappers will intercept module functions 
and bind them with functions needed to exercise the modules outside of the native environment.  Unlike the well-known 
security wrappers, prototyping wrappers will be tailored to the current state of the prototyping environment.  Automatic 
generation of the wrappers will enhance the development environment by reducing rote work and producing 
consistently behaving module interfaces. 

2. Wrappers  

2.1. Wrappers. Wrappers are executable programs that facilitate interoperability among existing standalone 
programs and/or program modules that were not explicitly designed to communicate with each other.  The wrapper 
consists of at least two parts, specific information about the module it is wrapping and an interface to the external world.  
In the case of wrapping distributed elements, the interface to the world consists of specific information about the 
common network communication environment.  The wrappers allows the distributed prototype to treat each of the 
elements as a component.  In reality, in terms of data flow, we are creating programs to for each of the arcs in a data 
flow diagram.  

 
Consider the following simple example.  We have a robot and a Operator 
Control Unit (Figure1).  The two components communicate via a serial 
interface.  The interface carries proprietary packets.  In the simple case, 
we are interested in determining how the system will work under different 
conditions, using Ethernet instead of serial for instance. 
 
We note that the system can be modeled as a dataflow diagram, a graph  
 
                              G = (V,E) 
 
Where V is the set of Vertices and E is the set of Edges.  Each vertex is 
an operational element of the system, and each edge is a data stream 
(Figure 2). 
 
 

 
N
th
b
W
th
(
T
a

Robot
Operator
Control

Unit
Control Packets

Status Packets

Robot
Operator
Control

Unit
Control Packets

Status Packets

 
Figure 2 Simple System Data Model 
Robot
Operator
Control

Unit

Proprietary Serial Packets

Robot
Operator
Control

Unit

Proprietary Serial Packets  
Figure 1 A Simple  System 
ext, we remodel the system as in (Figure 3).  In 
is case, we break the direct serial connection 

 etween the robot and the Operator Control Unit.  
e connect the robot serial line to a device at 
e robot end and the Operator Control Unit 

OCU) serial line to a device at the OCU end.  
he new devices intercept the original packets 
nd translate them to messages.   
Robot
Wrapper

Operator
Control

Unit
Wrapper

Operator
Control

Unit
Robot

Status Packets

Control Packets Control Packets

Status Packets

Control Messages

Status Messages

Robot
Wrapper

Operator
Control

Unit
Wrapper

Operator
Control

Unit
Robot

Status Packets

Control Packets Control Packets

Status Packets

Control Messages

Status Messages

Figure 3 Simple System Data Model with Wrappers 



 
 
When the system is implimented, it can now 
communicate over an arbitrary network, or 
communication device, that is dependent on the 
code in the wrappers.  Note however, that the 
communications code for the two wrappers must 
match over the dataflows between two 
ommunicating wrappers. 

 model the system as an Extended 
ypergraph 

 
G = (V,E, W(v)) 

here W(v) = (T(v), {A(v,e)}, C(v,e)) 

related to the execution of 
e prototype and C(v,e) is the communication mechnisim to be used on on a particular edge. 

t, nothing will happen.  
e next consider the case where we want to extend out simple robot prototype with a bumper.   

 

ges to the 
bot to stop or take corrective action. 

 

 

g 
int module 

nd its wrapper as a single node in the graph (Figure 6). 

 = (V’, E) 

here V’ represents a node V with function W(v)  applied. 

c
 
We can now
H

 
W
 
V is the set of verticies, E is the set of edges, T(v) is a translation, {A(v,e)} is a set of aspects 
th
 
Now consider a situation where we have a working robot.  What happens if it runs into something?  Obviously, from the 
above models, we can easily see that unless obstacle detection is a built-in function of the robo
W

In order to extend the prototype with a bump stop 
device, we may discover that the neither the robot 
or the OCU can accept a bump message 
intelligently.  We might have found this out by 
initially having the bumper wrapper generate a 
stop message and send it directly to the robot the 
probable result would a robot that will not move 
until it is physically removed from the obstacle. 
The more robust solution requires that we find or 
create an additional component, a driver, to 
accept the messages from the OCU and from the 
bumper.  Logic in the driver component then 
makes the decision to send an OCU command 
forward or to send one or more messa
ro

As in the the prototype system descripion language (PSDL1),  V 
represents an operator.  In this case, the operator will almost always be
a hardware in the loop module or a simulation of a hardware module. 
Each node V can only be entered via a wrapper, so for simplicity, since 
each node has the wrapped module hidden from the person assemblin
the prototype, we simply model the graph with the endpo
a
 
G
 
W
 

Robot
Operator
Control

Unit

Control Messages

Status Messages

DriverBumper

 
Figure 6 Simplified Notation 

Robot
Wrapper

Operator
Control

Unit
Wrapper

Operator
Control

Unit
Robot

Status Packets

Control Packets Control Packets

Status Packets

Control Messages

Status Messages

DriverBumper Driver
Wrapper

Bumper
Wrapper

On/Off
Signal Unique Driver Signals

Figure 5 Modified System Model 

Proprietary Serial PacketsProprietary Serial Packets Proprietary Serial PacketsProprietary Serial Packets  

Robot
Operator
Control

Unit

Robot
Wrapper

Operator
Control

Unit
Wrapper

Arbitrary
Network

Messages

Robot
Operator
Control

Unit

Robot
Wrapper

Operator
Control

Unit
Wrapper

Arbitrary
Network

Messages

Figure 4 Simple System with Wrappers - Implementation



The ability to add functionality without modifying existing elements is known as the “ Paradigm  of Independent 
Extensibility”2.  The principle function of component orientations is to support this principal. 
 
2.2 Components. In many cases, the engineers who are ultimately creating the prototype are not software engineers.  
Mechanical, electrical and other engineers have learned to rapidly prototype systems using off the shelf components for 
the most part and custom assemblies of off the shelf components  to create a hierarchy of components resulting  in a 
breadboard or brassboard  prototype. 
 
Mechanical engineers have access to  dozens of catalogues offering gears, struts, pumps and actuators, just to name a 
few.  Electronics engineers have TTL manuals, discrete chips, a range of resistors and capacitors as well as more 
complex integrated circuits.  In both cases, the specifications for the components are usually very clear and concise.  
The interfaces are not always simple, but they are immutable.   An and gate has 2 inputs and one output, a 24 tooth gear 
has 24 teeth; there is no changing the interface, and obviously no reason to do so. 
 
On the other hand, software engineers do not have it as easy.  In a 1999 an article in Software Engineering, 2 boldly 
announced “The emergence of software components as a viable approach to software development represents a 
maturing of the discipline”.  Here it is 2005 and I doubt if I could find one mechanical or electronics engineer who 
could point me at a catalog of software components.  I imagine I could find one if I looked hard enough, but my guess is 
that it would be business software components, not engineering.   
 
The reasons for this are many, but probably mainly economic.  Mechanical and electrical engineers prototype with 
“things”.  If a mechanical engineer needs 7 gears in a component, 7 gears are purchased.  If a electronics engineer over 
voltages a chip and burns it out, a new chip is purchased.   The reality of software is that it is not purchased in discreet 
parcels.  Either one has to purchase a license to a complete collection (possible cost prohibitive) or the vendor has to sell 
inexpensive bits and pieces with no guarantee of return business (not a good business model).  
 
The issue is confounded even more when one attempts to find a definition for a component.  The distinction between a 
component, a class and an object is not always made clear.  In his book “Component Software” 3 Clemens Szyperski 
describes a component as having the following three characteristics: 
 

− Is a unit of Independent deployment 
− Is a unit of third party composition 
− Has no externally observable state 
 

This definition, would be expected if we acquired and used software components the way we might prototype with TTL 
chips.   
 
Fortunately, there are other definitions of components that relax the requirement of “third party composition”.  
Czarnecki and Eisenecker  refer to components as simple building blocks combinable is as many ways as possible4.  
 
From this definition, we can refer to the endpoints, the individual hardware items or simulations as components for the 
purposes of this paper.  Therefore, wrappers are software, that at a minimum, provides a mechanism to allow 
components to be connected.  Extending the wrappers, they can also contain an arbitrary number of aspects (within 
experimental bounds) to instrument the prototype, induce disturbances, simulate communications protocols, throttle 
communications speed and provide translations. 

2.3 Joint Architecture for Unmanned Ground Systems (JAUS). From the JAUS website5: 
 
“JAUS is mandated for use by all of the programs in the Joint Robotics Program (JRP). This initiative is to develop an 
architecture for the Domain of unmanned systems. JAUS is an upper level design for the interfaces within the domain of 
Unmanned Ground Vehicles. It is a component based, message-passing architecture that specifies data formats and 
methods of communication among computing nodes. It defines messages and component behaviors that are independent 
of technology, computer hardware, operator use, and vehicle platforms and isolated from mission.” 



 
JAUS is chosen for this work for the above reason, as well as the fact that it is in the process of transitioning to an 
Society of Automotive Engineers (SAE) Aerospace Standard.   
 
The JAUS approach is to mitigate the “Tower of Babel” effect that is inherent when a number of independently created 
components are brought together.  The typical approach for building a prototype robot system is for all the intermediate 
code to be created by hand.  In most cases, time is of the essence, so shortcuts are taken.  In some cases, the code is 
written by students, and is driven by an assignment or thesis requirement.   In most cases, after the prototype is 
completed and examined, the knowledge behind the code evaporates.  If a new question or project arises, most times, 
the process begins from scratch.  The goal is to capture the knowledge gained during the exercise  and make it reusable.  
Creating point to point translations requires a maximum of  n(n-1)/2 translations6 to make each node communicate with 
each other. Using an intermediate representation, such as JAUS requires a maximum of 2n translations to convert from 
the source to the intermediate representation and then to the destination representation. 
 
JAUS is of course not the only intermediate representation.  There are other messaging schemes in use, the important 
part is to have a consistent messaging architecture.   

3. Prototyping 
 
There are many reasons create a  prototype: 
 

− One might want to investigate and gain a better understanding of the requirements. 
− One may need to understand a physical attribute that is too complex for calculation. 
− There may be a compelling need that must be addressed quickly, while normal development progresses in 

parallel. 
− One may subscribe to a spiral development model, where each successive prototype adds additional 

functionality. 
 
In any case, a common attribute of a prototype is that it is not the complete and final solution.  Typically, prototypes we 
create are used in a limited test.  There is something we need to understand.  Therefore, prototypes should be amenable 
to instrumentation.  We need to be able to measure some aspect of the system, either internal or external.  In either case, 
we would like to present a simple interface to the engineer or technician.  We would like to be able to capture 
information, both about the configuration of the prototype and the results of running it. 
 

3.1.  Phases of a Prototype. 
 
3.1.1 Preperation. The preparation phase formalizes the process of creating a prototype.  Rather than create the entire 
prototype by hand, engineers create the interfaces to the components of interest and additional aspects that may be 
needed to execute a prototype, most commonly instrumentation.  These small packages, possibly components in their 
own are stored for future use.  The minimum set includes the code to translate the interface of the component of interest 
into a standard representation, and an interface to the world, usually a network interface.  Along with the code, a set of 
instructions might be created specifying compilers, installation instructions and instructions on how to start the 
component if necessary. 
 
3.1.2 Setup. In the setup or assembly phase, the prototype is built from the elements created or installed in the 
preparation phase.  This is accomplished using a graphical user interface (GUI) to connect the components  The 
components cannot communicate directly, so each component is associated with a wrapper, which can be customized 
during the assembly phase.  After a graphical model is created, parameterized and error-checked, a set of wrapper 
programs is created.  The wrapper programs should have attached documentation needed for their deployment. The 
assembled prototype should be stored for future reference and configuration management. 
 



3.1.3 Run Time.  When the prototype is operated, various aspects of the system will be captured and stored for future 
analysis.  There is also the possibility at this point to monitor the run-time instrumentation in real time.  By doing so, we 
can display various conditions to the test team as the prototype execution continues.  Real time constraints described in 
the instrumentation can be monitored and an indication of how closely the system is operating in regards to timing 
bounds.  Network traffic can be monitored and the capacity of a particular link displayed as a color change on the 
graph’s edge.   
 
3.1.4 Analysis.  Data collected during run time is retrieved with the assembled prototype for analysis. 

3.2. Prototyping Environment. 
 
Examining a feature model based on the above four phases of a prototyping (Figure 7) one finds several areas ripe for 
automation (outlined in dashed lines).  However, most are optional features in the sense that they are not terribly 
difficult to do by hand, or they already require the involvement of an expert.  The mandatory feature labeled compiler, is 
the feature that creates the wrappers.  This is where we would like to embed the knowledge of the software specialists 
for use by expert in the hardware domain.  

Prototype

Preparation
Setup Run Analyze

Manual Assisted
Library GUI

Error
Check Conf

Mgmt
Compiler Log Monitor

Read Compare

Translate Aspects Comm

Temporal
Logs

Serial TCP/IP Others

Optional Feature Mandatory  Feature Alternative
Features

Or
Features

Legend

Distribute 
Code

…

 
Figure 7 Feature Diagram for a Prototyping Environment 

 

3.2.1. Preperation. In the preparation phase, Software experts create the interfaces and components necessary for 
compiling a wrapper.  This is usually not a trivial task.  Creating an interface to a module with only a serial output may 
take several weeks of effort, and may include creating wiring harnesses as well as code.  The engineer charged with this 
task must first sort through the code and documentation (if available) to discover the format of the serial packets (Figure 
8).  Once the serial packet formats are understood, then a JAUS message that matches the packet data must be chosen.  
For the case of an ODIS command packet, a JAUS wrench command is chosen (Figure9).  
 
Another part of the puzzle is to create a set of XML data structures to describe JAUS commands. A set of XML data 
structures will be associated with each translator component, one for each of the message types supported.  Data 
generated during the translation will be passed through the wrapper in XML format. 
 



 

 

27 28 29 3

59 60 61 6

91 92 93 9

23 124 125 12

55 156 157 15

87 188 189 19

87 188 189 19

19 220 221 22

I
w
q
c
r

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 1

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 1

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 1

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 1

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 2

230 231 232 233 234 235 236 237 238 239

pad (int8) size (int16)

type (int16) timems (int16)

command (OT2Command)
mode (int16) ESTOP (int16)

command (OT2Command)
xdot (float32)

command (OT2Command)
ydot (float32)

command (OT2Command)
yawdot_rad (float32)

end (int8)

command (OT2Command)
offset_x (float32)

command (OT2Command)
offset_y (float32)

 

Figure 8 ODIS Serial Command Packet 
n addition to the translation component, a communication co
rapper. The communication component will be the wrapp
uestion is if converting the XML data structure to a JAUS w
omponents are necessary since the data flow is directional; 
ead and write. 

V e c to r  D r iv e r

T e le o p e ra te d
D r iv e r

R o b o t

V e h ic le
c o m m a n d e r

T ra in e rIn p u t  C o m m

T ra in in g
D a ta

S e n s o r  D a ta

S e n s o r  D a ta

S p e e d /S te e r

A c tu a to r  S ig n a ls

S p e e d /S te e r

S p e e d /S te e r
T ra in g  D a ta  N o d e

O rd e r

S ta b i li ty

H u m a n
In t e rv e n tio n

S ig n a lH u m a n

S q u a d
C o m m a n d e r

S e n s o r  A rra y

H u m a n  S u p e r v is o r y  P e r c e p t io n ,  N e u r a l  N e t  U p d

V e c to r  D r iv e r

R o b o t

V e h ic le
c o m m a n d e r

T ra in e r

In p u t  C o m m

S e n s o r  A rra y

Figure 10 Model for Prototype GUI

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Field # Name Type Units Interpretation 

1 Presence Vector Unsigned Short N/A See mapping table that 
follows. 

2 Propulsive Linear 
Effort X 

3 Propulsive Linear 
Effort Y 

4 Propulsive Linear 
Effort Z 

5 Propulsive Rotational 
Effort X 

6 Propulsive Rotational 
Effort Y 

7 Propulsive Rotational 
Effort Z 

Short Integer Percent 
Scaled Integer 

Lower Limit = -100 
Upper Limit = 100 

8 Resistive Linear 
Effort X 

9 Resistive Linear 
Effort Y 

10 Resistive Linear 
Effort Z 

11 Resistive Rotational 
Effort X 

12 Resistive Rotational 
Effort Y 

13 Resistive Rotational 
Effort Z 

Byte Percent 
Scaled Integer 

Lower Limit = 0 
Upper Limit = 100 

 

Figure 9 JAUS Message 405h Set Wrench Effort 

 

mponent must also be created for the opposite side of the 
er interface to the prototyping environment.  An open 
ire format is necessary or desirable. Of course, multiple 

one each, translation and communication, component for 

Other components are 
necessary to make the 
prototyping environment 
useful.  Logging, temporal 
logic, data throttle, and fault 
insertion are just a few.  
Programming elements, such 
as counters, loops and 
conditional gates are also 
necessary. 

U p d a te  C o m m

U p d a te d  N N

N N  U p d a te
D e s t in a t io n

N o d e s

U p d a te d
N N

s

a te  D a ta f lo w

 

3.2.2. Setup.  In the setup 
phase, the prototyping 
environment is turned over 
to a domain expert to 
construct a prototype system 
of interest (Figure 10).  The 
engineer runs a Graphical 
User Interface (GUI) to 
create a dataflow model of a 
distributed system.  Each 
node represents a separate 
computing element.   When 
a node  is opened, the screen 
changes and the wrapper 
programming environment is 
displayed. 



Translator

Communicator

Delay

Delete

If

Log

Delay

Delete

If

Log

Log

Message3

Message1
Message 2

Figure 11b Wrapper Programmer, After 
Modification 

L
w
w
c
T
 
T
c
(
c
u
th
 
A
n
 
W
th
Message3

Translator Communicator

Delay

Delete

If

Log

Message1
Message 2

Figure 11a Wrapper Programmer, Initial 
Condition 
ike the main programming environment, The wrapper programming screen will have components on the left and a 
ork area to the right.  In addition a list of allowed messages are displayed. If a message is checked, the environment 
ill read the XML file for the message and display the data items in the checked messages.  These will be used with 

ontext sensitive menus to configure components that are capable of making decisions based on message parameters.  
he results will be stored in a scratch file associated with the component graphical item. 

he wrapper programming screen will start up with a translator and communicator component (Figure 11a).   The user 
an accept this as it is, and complete any communicator setup, or the user can add additional aspects to the wrapper 
Figure 11b).  Since we are dealing with real time systems, timing is a concern.   As we add additional aspect 
omponents, we slow down the system.  We have to live with some overhead, and some of the overhead may be made 
p for by using faster communications than we expect in the completed system.  In other cases, we may have to limit 
e aspects we install in the wrappers and possibly create two instances of a prototype with different aspects in each. 

dditional standard utilities will be available such as storing the prototype at any time, retrieving a previous prototype, 
otes and cut/paste. 

e now have everything needed in place to generate wrappers for each node.  Generation will be discussed further in 
e next section. 

4. Wrapper Generation 
 
To generate the wrappers, requires that each node of the prototype be 
visited and the graphical program within the node be transformed into 
executable code (Figure 12).  For each node we first edit each template 
with the appropriates parameter file.  As the templates are completed, they 
are written to a file and a class is created.  Finally, we walk the graph and 
call appropriate methods from each class on the graph, passing a reference 
to the XML version of the JAUS command.  Each template includes in its 
instructions a file with machine readable instructions on how to invoke 
appropriate methods.  
 
A grammar is being developed to formalize this task.  A preliminary 
version of the grammar follows: 
 
 
 
 

Walk 
Graph

Done

Param
File

Start

Read
Param

Class
File

Edit 
Template

Done Walk 
Graph

Walk 
Graph

Write 
Class

Method
File

Wrapper
File

Read 
Class

Done

Done

Write 
Method

Read 
Method

End

No

No

No

No

 
Figure 12 Wrapper Generator Flow 

Chart 



Wrapper  in-wrapper | out-wrapper  
in-wrapper  communicator aspect-sequence translator |  communicator translator 
out-wrapper  translator aspect-sequence communicator | translator communicator  
aspect-sequence  aspect-sequence aspect | aspect 
aspect  log | delay | if  | delete 
log  log-parameters log-template 
delay  number delay-template 
communicator  communicator-parameters communicator-template 
if  if exp then statement-sequence | if exp then statement-sequence else statement-sequence 
delete  end 
statement-sequence  statement-sequence ; statement | statement 
statement  edit-template | write-to-wrapper | call-next | end 
edit-template  if parameter then write template 
parameter  log-parameters | communicator-parameters | number 
template   log-template | delay-template | communicator-template 
 

5. Future Work 
 
It should be clear if you have read this far, that this is a work in progress.  I believe all the pieces are identified, and an 
architecture is nearing completion. But, there are a myriad of details that need to be completed to implement this work: 
 
Formal rules are needed for composing translators, aspects and communicators. 
The GUI has to be created. 
A software base has to be integrated with the GUI. 
The pop-ups and editing tools for the GUI need to be refined.  
The current code generation scheme is simplistic and has can be refined, probably via several dimensions. 
The run time monitor is but a dream, as is the analysis tools. 
 

6. Conclusion 
 
As mentioned in the introduction, software engineering will not come of age until automation penetrates the industry.  
Even today, the general perception of software engineers is that they are either coders or PC wizards.  The Holy Grail 
for software engineers is generated code.  The Holy Grail for any engineer is a tool that makes the job of those below 
easier and more economical.   
                                                           
1 Luqi, V. Berzins, R.Yeh: A Prototyping Language for Real-Time Software, IEEE Transactions on Software 
Engineering, Vol 14, No10, Oct, 1988. 
2 P. Bourque et al., The Guide to the Software Engineering Body of Knowledge, IEEE Software, November/December 
1999. 
3 C. Szyperski, Component Software: Beyond Object Oriented Programming. Addison-Wesley, 2002. 
4 K. Czarnecki and U. Eisenecker: Generative Programming, Addison Wesley, 2000. 
5 “Joint Architecture for Unmanned Systems.” www.jauswg.org 
6 P. Young, V. Berzins, J. Ge, Luqi, Using an Object Oriented Model for Resolving Representational Differences 
between Heterogeneous Systems, SAC, Madrid, Spain, 2002. 
 


	Introduction
	Automation. To improve the software development picture we need to discover place where we can automate the process.  Tremendous gains have been made by stepwise automation of the manufacturing process. Automotive paint robots have moved human operators
	Objective.  The objective of this work is to describe a methodology that includes automatic generation of software wrappers to simplify development of distributed, embedded and real-time robotic systems. This work can also be extended into the more gener

	Wrappers
	Wrappers. Wrappers are executable programs that facilitate interoperability among existing standalone programs and/or program modules that were not explicitly designed to communicate with each other.  The wrapper consists of at least two parts, specific
	Joint Architecture for Unmanned Ground Systems (JAUS). From the JAUS website�:

	Prototyping
	Phases of a Prototype.
	Prototyping Environment.
	Preperation. In the preparation phase, Software experts create the interfaces and components necessary for compiling a wrapper.  This is usually not a trivial task.  Creating an interface to a module with only a serial output may take several weeks of ef
	Setup.  In the setup phase, the prototyping environment is turned over to a domain expert to construct a prototype system of interest (Figure 10).  The engineer runs a Graphical User Interface (GUI) to create a dataflow model of a distributed system.
	Like the main programming environment, The wrapper programming screen will have components on the left and a work area to the right.  In addition a list of allowed messages are displayed. If a message is checked, the environment will read the XML file fo


	Wrapper Generation
	Future Work
	Conclusion

