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This paper considers a dynamic sensor coverage problem in which a single mo-
bile sensor attempts to monitor multiple sites.  Sensor motion is modeled using a 
discrete time, discrete state Markov process.  State dynamics at each site are 
modeled as a linear system.  A stochastic simulation is used to demonstrate pre-
viously derived theoretical conditions under which a single sensor is or is not suf-
ficient to maintain a bounded estimate of the state of every site.  Observations are 
made about the relationship of sensor motion to system dynamics.  A strategy is 
presented to find a good sensor motion model based upon the system dynamics 
and to determine the convexity of the solution set. 
 
  Keywords:   
Dynamic Sensor Coverage, Markov Chain, Kalman Filter, Monte Carlo 
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 1.  Introduction 

 
“Sensor coverage is the problem of deploying multiple sensors in an unknown en-

vironment for the purpose of automatic surveillance, cooperative exploration or target 
detection [5].” Sensors can either cover an area of interest statically (fixed sensors) or 
dynamically (mobile sensors).  Static coverage can be used when the area or objects of 
interest can be completely covered by the associated sensors.  However, dynamic cover-
age becomes necessary when the available sensors cannot adequately cover the area or 
objects of interest from fixed positions. 
 
 
2.  Problem Description 
 

This chapter focuses on the dynamic sensor coverage problem when there is only 
one sensor available to cover N sites.  This research is an extension of the work accom-
plished by Tiwari, et al. in [5].  Each site is defined to be a discrete time linear system 
located at a unique point in space.  The sensor maintains discrete time Kalman filter esti-
mates of an attribute of interest at each site, but is constrained to only measuring the at-
tribute of the site where it is physically located at a given instant in time.  An indicator 
function, described by Sinopoli in [4], ensures that if the sensor is over site i at time k, 
both the measurement and time updates of the Kalman filter are executed for site i.  
However, if the sensor is not over site i at time k, then only the time update is executed 
for site i.   

The physical realization of this problem could range from estimating the changing 
temperature in several buildings to estimating the pollution emission levels of several 
manufacturing plants in an area.  In these examples, the attributes would be temperature 
and pollution emissions, respectively.  The changing attributes of each site are modeled 
in the following manner.  Consider N independently evolving linear time invariant (LTI) 
systems, whose dynamics are given by  
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where xk, xk+1, wk ∈ 1 x  n and yk, vk ∈ 1 x  m , w and v are Gaussian random vectors with 
zero mean and covariance matrices Q and R respectively.  In this chapter, we track only 
one attribute per site.  Since all sites’ attributes are independent, the information pertain-
ing to the attribute is found on the diagonals of A, C, Q, and R.  For instance, all informa-
tion regarding the attribute at site two would be contained at A22, C22, Q22, and R22.  
 The goal of the Kalman filter is to keep a bounded estimate of the a priori error 
covariance between the random vectors and ; that is, the true state of the system and 
the estimate of the system state at time k, respectively.  The a priori error covariance, i.e. 
the error covariance on the ‘time update’ side of the Kalman filter, at time k and location i 
is denoted  and is defined as 

kx kx̂

−
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In general, the dynamic coverage problem is said to have been solved, if for N sites, the 
limit of the expected value of the error covariance as k approaches infinity is finite for all 
sites, if .  Similarly, if the limit of the expected value of the error covariance as k 

approaches infinity is unbounded for some , then the dynamic coverage problem is 
not solved.  If the error covariance is unbounded at any site, the system is referred to as 
unstable; if the system is bounded for all sites, it is referred to as stable [6].   

00, ≥−
iP

00, ≥−
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 The sensor’s motion can be modeled as an independently and identically distrib-
uted (IID) random process or by a discrete time discrete state (DTDS) ergodic Markov 
chain.  This chapter only considers the Markov chain model.  The concept of steady state 
ergodic Markov chains is described in depth in [2] and [3].  For simplicity, we assume 
that the sensor can move instantaneously from one site to another at any time k.  The 
DTDS Markov chain has a transition probability matrix T, where Tij is the probability that 
the sensor will be at site j at time k+1 given that the sensor was at site i at time k.  Tii, the 
ith diagonal entry of the transition probability matrix, denotes the probability that the sen-
sor remains at site i at time k+1 given that the sensor was at site i at time k.  Also, let πi be 
the steady state probability of finding the sensor at site i.   
 The conditions under which the coverage problem is or is not solved were already 
discussed in a qualitative sense; now those conditions will be explicitly defined for sensor 
motion described by an ergodic Markov chain.   
(a) Let (A, C) be detectable and ) ,( QA be observable, then the sensor fails to solve the 
coverage problem if at least one of the following conditions hold:   
     

             ∈>
−
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                     (3) 

 
where αi is the eigenvalue of A associated with site i.  Note: in this chapter, since every 
site is independent, all off-diagonal elements will be zero, so αi will simply be the value 
of Aii [5].   
(b)  If matrix C is invertible, then the sensor solves the coverage problem if all of the fol-
lowing conditions hold [5]: 
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If the coverage problem is solved, then a lower and upper bound of the expected 

value of the error covariance, , can be obtained based on π][E ,
−
kiP i, Tii, A, C, Q, R, and 

Pi,0.  Reference [5] provides additional detail on these bounds.  If the bounds diverge for 
at least one site, then the coverage problem is not solved.  However, if the bounds con-
verge for all sites, then the coverage problem is solved.  Equations (4) and (5) will later 
be referred to as feasibility inequalities.  Figures 1(a) and 1(b) illustrate bounds for both 
stable and unstable sites.   
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                           (a)                       (b)   
 
 
Fig. 1.  Figure (a) shows a typical unstable site: both bounds diverge.  Figure (b) shows a stable site: both 

bounds converge. 
 
 
3.  Simulation: Checking the Theory 
 
3.1  Simulation Approach 
 
 Intuition suggests that the faster the system dynamics of a site relative to other 
sites, the more time the sensor must spend over this site.  Also, it makes sense that the 
sensor must divide its attention among the sites according to the dynamics of the attribute 
of each site.  The theory in [5] confirms this intuition.  We now provide a simulation both 
to demonstrate the theory and to provide additional insights into the relationship between 
sensor motion and the dynamics of each site.   
 A Monte Carlo simulation was built in MATLAB® using a DTDS Kalman filter 
with an indicator function and a DTDS Markov chain.  The error covariance was com-
puted at each site for all time iterations over multiple replications.  The average error co-
variance over the multiple replications was calculated for all time iterations and plotted 
with the appropriate error covariance bounds for each site.  The values used for equation 
(1) in the simulation were Cii = 0.2, Qii = 10, and Rii = 2 for all sites.   
 The feasibility inequalities in equations (4) and (5) not only convey whether or 
not the coverage problem is solved, but also indicate, given the dynamics of each site, 
whether or not a given transition probability matrix provides a feasible solution to the 
problem.  Refer to Figure 2 for the following discussion.  As discussed in the Section 2, if 
at least one site’s bounds are divergent; i.e., if the feasibility inequality in equation (4) is 
not satisfied for at least one site, then the transition probability matrix does not provide a 
feasible solution to the coverage problem. Note that the bounds in Figure 2(c) are diver-
gent and that the inequality in Figure 2(f) is not satisfied.  However, in Figures 2(d) and 
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2(e), the bounds are convergent, indicating that both inequalities in Figures 2(g) and 2(h) 
are satisfied.  In this case, the overall coverage problem is not solved because the dynam-
ics at site one cannot be adequately monitored.   
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π = [0.36111, 0.33333, 0.30556] 

 

 
 
           (c)  Bounds for Site 1               (d)  Bounds for Site 2               (e)  Bounds for Site 3 
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         (f)  Inequality for Site 1          (g)  Inequality for Site 2                  (h)  Inequality for Site 3 
 

 
Fig. 2.  This figure shows that the bounds computed in simulation match the feasibility inequalities.  The 

feasibility inequality at site 1 is not satisfied, and the bounds at site 1 are divergent.  The feasibil-
ity inequalities at site 2 and 3 are satisfied, indicating that the bounds at sites 2 and 3 converge.   

 
 
 
3.2  Simulation Observations 
 
3.2.1  Case I: System Dynamics Equal, Transition Probabilities Varied 
 
 Next, we examine a case in which the system dynamics are the same across all 
sites. The transition probability matrix is constructed so that the coverage problem is 
solved, even though each site receives a different amount of “sensor attention.”  In this 
case, site one will be visited by the sensor most often, and site three will be visited least 
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often [Figure 3].  Each dot in Fig. 3 represents the average error covariance over 10,000 
Monte Carlo replications.  There are 200 dots at each site, one for each time step.  As a 
site gets less sensor attention, we notice several effects: the bounds converge more 
slowly, the scale of the bounds is increased, and more dots are outside of the bounds.  As 
a site nears the point of instability, the bounds begin to look more like a line than a curve.  
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  (a)  System Dynamics                        (b)  Sensor Motion 
  
 

 
 

        (c)  Site 1           (d)  Site 2           (e)  Site 3 
 
           

 Fig. 3.  This figure shows Monte Carlo simulation trends when the system dynamics are equal at each site 
and the sensor motion is varied. 
 
 

  
 
3.2.2  Case II: System Dynamics Varied, Transition Probabilities Equal 
 

In this case, the transition probability matrix is approximately equal for all sites, 
meaning that every site will be visited approximately the same number of times.  The sys-
tem dynamics vary across the three sites: site one has the fastest dynamics and site three 
has the slowest dynamics [Figure 4].  The varied dynamics cause results similar to the 
varied sensor attention in the last scenario.  As a site’s dynamics get slower, the bounds’ 
scales decrease, the number of dots outside the bounds decrease, and the time required for 
the bounds to converge gets smaller.  Also, as can be seen in Figure 4(e), when a site’s 
dynamics are slow, and it receives sufficient attention from the sensor, the sample error 
covariances tend to form a horizontal line well within the bounds. 
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  (a)  System Dynamics                             (b)  Sensor Motion 
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        (c)  Site 1           (d)  Site 2           (e)  Site 3 
 
           

 Fig. 4.  This figure shows Monte Carlo simulation trends when the system dynamics are varied at each site 
and the sensor motion is equal for all sites. 

 
 
3.2.3  Summary of Observations 
 

The Monte Carlo simulations confirm both theory and intuition.  It is clear in the 
simulation results that as a site gets more sensor attention, the average error covariance is 
more likely to cluster within the bounds.  We also note that the slower the dynamics of a 
site, the less sensor attention is needed to ensure that the error covariance remains 
bounded and stable.  Finally, when a slowly evolving site has sufficient sensor attention, 
the average error covariance remains well within the bounds.   
 In the next section, we introduce a method that exploits the system dynamics to 
find a good, although not necessarily optimal, sensor motion model.   
 
4.  Optimization: Finding a good sensor motion model given the system dynamics 
 
4.1  Optimization Approach 
 
 In this section, we present an approach to determine a good transition probability 
matrix given a model of site dynamics.  Note that the existence of a method that guaran-
tees an optimal solution remains an open question.   
 The approach presented in this section is a genetic-based heuristic algorithm 
called scatter search implemented in MATLAB®.  The goal of this meta-heuristic is to 
provide both intensification and diversification of the solution: intensification meaning 
that the algorithm uses randomly created feasible solutions to progressively find better 
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results with respect to the objective function, and diversification meaning that the algo-
rithm uses differences between randomly created feasible solutions to increase the 
chances of finding the best solution available.   

The objective function is based on the feasibility inequalities discussed earlier.   
The objective is to minimize the maximum ratio over all N sites, as shown in (5), subject 
to typical probability constraints on π and on the rows of T. 
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This min/max objective will be referred to as the performance indicator; the smaller the 
performance indicator, the better the solution. 

In general, the algorithm performs the following process.  First, initial solutions 
for T are randomly generated.  A solution is retained if it is determined to be feasible 
based on equation (4).  Next, linear combinations of feasible solutions are constructed to 
form new solutions.  Each solution is assigned a score based upon the objective function 
(5), and each solution is ranked according to its score.  After a set number of iterations in 
which no better score is obtained, the algorithm is terminated.  The solution with the low-
est performance indicator is presented as the best solution found.  
 The simulation was also used to investigate whether the set of feasible solutions is 
convex.  First, solutions were constructed so that the solutions were feasible, but very 
close to the infeasibility boundary.  Next, linear combinations of these close-to-the-
boundary solutions were formed, using equation (6), with ]1,0[∈λ .  If any linear combi-
nation of two initial solutions was found to be infeasible, then the solution set cannot be 
convex.  In fact, more than one infeasible solution was found, so the solution set of all 
feasible solutions is not convex by demonstration.  The matrices shown in Figure 5 show 
one example where the linear combination of two feasible solutions formed an infeasible 
solution.  In this example, λ = 0.5, the system dynamics are shown in Figure 5(a), and T1 
and T2 represent the two feasible solutions in Figures 5(b) and 5(c).  
 
 

                            213 )1( TTT λλ −+=                                                         (6) 
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Fig. 5. 

 
4.2  Optimization Results 
 
 This section presents results of the optimization algorithm.  The effectiveness of 
the heuristic is demonstrated by comparing solutions generated by the algorithm with ran-
domly generated feasible solutions.  Feasible solutions are generated by creating random 
transition probability matrices constrained so that each row sum is one.  The equilibrium 
probability vector, πi, is computed for each matrix, then the feasibility inequalities are 
checked.  Those transition matrices that provide a feasible solution are saved.  Heuristic 
solutions are compared to random feasible solutions under two cases that differ in the un-
derlying site dynamics.   
 
 
4.2.1  Case I: Faster Dynamics 
 

For the first case, one hundred feasible solutions were randomly created with site 
dynamics modeled by matrix A in Figure 6(a).  The mean of the performance indicators 
from the 100 random solutions was 0.9729, the sample standard deviation was 0.0246, 
and the minimum and maximum values were 0.9010 and .9997, respectively.  The heuris-
tic solution had a performance indicator of 0.8901, a 9% improvement.  Figures 6 and 7 
show a graphical representation of a randomly created solution and a heuristic solution, 
respectively.  The main difference between the figures is the scale of the bounds.  Also, 
there are more dots outside the bounds in Figure 6 than in Figure 7.   
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  (a)  System Dynamics                                  (b)  Sensor Motion 
 

   
 

        (c)  Site 1           (d)  Site 2           (e)  Site 3 
 
           

Fig. 6.  This figure shows the graphical depiction of a representative randomly created solution with a per-
formance indicator of 0.9737.   
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        (c)  Site 1           (d)  Site 2           (e)  Site 3 
 
           

 Fig. 7.  This figure shows the heuristic solution in graphical form for the case of faster dynamics.  The per-
formance indicator in this case is 0.89007. 
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4.2.2  Case II:  Slower Dynamics 
 

In the second comparison, one hundred feasible solutions were randomly created 
with slower dynamics, modeled by Figure 8(a).  The mean of the performance indicators 
from the 100 random solutions was 0.9398, the sample standard deviation was 0.0469, 
and the minimum and maximum values were 0.7624 and 0.9991, respectively.  The heu-
ristic solution had a performance indicator of 0.7027, a 25.2% improvement.  From the 
two comparison scenarios representing faster and slower dynamics, we note that the heu-
ristic’s performance is better when the dynamics are slower.  Figures 8 and 9 depict a 
randomly created solution and a heuristic solution, respectively, for the case of slower 
dynamics.  In both figures, the error covariances tend to form a straight line within the 
bounds.  The main difference between the figures is in the mean of the average error co-
variances.  Also, the magnitude of the bounds in Figures 9(c), 9(d), and 9(e) is consis-
tently less than in Figures 8(c), 8(d), and 8(e).   
 One observation from Figure 9(b) is counter-intuitive.  We would expect a site 
with faster dynamics to warrant more sensor attention than sites with slower dynamics, 
but the heuristic solution in this case does not bear this out.  We note that π3 is greater 
than π1 and π2, even though site three has the slowest dynamics [Figure 9(b)].  Intuition 
would suggest that π3 should be the smallest steady-state probability. 
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 Fig. 8.  This figure shows the graphical depiction of a representative randomly created solution that has a 
performance indicator of 0.9411.   
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 Fig. 9.  This figure shows the heuristic solution in graphical form for the case of slower dynamics.  The 
performance indicator was 0.7027. 

 
 
5.  Summary and Future Work 
  

The goal of this chapter was to demonstrate the theory of the dynamic sensor cov-
erage problem in the case of a single sensor whose motion is modeled by a DTDS 
Markov chain.  The Monte Carlo simulation demonstrated that the theory developed in 
[5] matched both intuition and empirical results.  Another goal was to show that an im-
proved transition probability matrix can be found using a heuristic.  An improvement 
over random feasible solutions was found using scatter search, though this method does 
not guarantee a global optimum.  The search did provide solutions that were sometimes 
counter-intuitive.  The heuristic performed best in cases with relatively slower system 
dynamics.  The algorithm run time depends on the exact conditions specified, but for the 
conditions specified in this research, the optimization algorithm required from two to four 
minutes of run time on a desktop PC.  We also showed by demonstration that the set of 
feasible solutions is not convex.   

Future work will include refined optimization approaches for the single sensor 
case and extensions to multiple sensors.  For the single sensor, an effort will be made to 
understand why the heuristic produces results that are counter-intuitive with respect to the 
division of sensor attention, and to further explore under what conditions the scatter 
search heuristic performs best.  The heuristic will also be used to provide insights that 
might lead to a theoretical solution to the problem of determining an optimal transition 
matrix.   
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