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LONG-TERM GOALS

The long-terms goals of this project are (1) to develop a probabilistic sonar system
performance prediction methodology that makes use of limited knowledge of random or
uncertain environment, target and sonar system parameters, and (2) to derive detectors
and classifiers which are robust in random, fluctuating media. There is no single system
application, but the focus is on frequencies below 1000 Hz. An overarching goal of this
project is to employ graduate students and thus train future ocean scientists.

OBJECTIVES

FY05 was the first year of this project. Important objectives are to:
"* Develop a method for constructing probability density functions (pdf's) from

samples of random or uncertain environmental and signal parameters.
"• Select ocean acoustic models for environmental parameters and propagation
"* Investigate how to exploit knowledge of received signal variability in predicting

signal processor performance.
* Derive the maximum likelihood (ML) detector for random/uncertain propagation

medium and system parameters.
* Derive expressions for pdfs of the detection statistics of the ML detector.
* Compute receiver operating characteristic (ROC) curves for the ML detector.
* Find and begin work with three new graduate students.

A related project with more of an ocean acoustic focus was carried out during FY99 -
FY04. An FY05 objective was to close out work that had begun in prior years.

APPROACH

The first three objectives were pursed in FY05. The approach is to:
0 LUtilize published models for oceanographic and ocean acoustic parameters.
0 Apply the maximum entropy (ME) method to construct pdf's for random or

uncertain environmental and sonar parameters.
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* Employ a parabolic equation (PE) ocean acoustic propagation model to estimate
received signal variability from environmental and sonar system variability

* Utilize the ME method to construct pdf s for received signal parameters.
• Calculate the pdf's of the detection statistics of the conventional processors.
* Compute receiver operating characteristic (ROC) curves that incorporate the

detection statistic pdf for conventional signal processors and compare
performance.

Figure 1 shows a block diagram of the approach. We begin by discussing the final bullet
above (corresponding to the last blocks in Fig. 1) and then work backwards.
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Figure 1. Approach to using knowledge of environmental variability to compute a
probabilistic sonar system performance prediction.

Classic texts provide a framework for incorporating the received signal pdf's into the
performance predictions for the energy detector and correlation (or matched filter)
receivers (Van Trees, 2001, Vol.]1; Whalen, 1995, Chap. 7). However, applying the
framework can be challenging. The pdf's of the received signal under both hypotheses
(HI: received signal contains target signal plus noise-, HO: received signal contains only
noise) are required. The received signal is a random variable with pdf po under HO and
pdf p, under Hi. Signal processing derivations often assume Gaussian noise and signal
statistics in order to make the calculations tractable and obtain analytic results (e.g. Sha
and Nolte, 2005). In contrast, the approach taken here is to assume Gaussian noise but
utilize a signal parameter pdf that is calculated fromn knowledge of the sonar, the target,
and the ocean medium. The detection statistic. pdf is calculated from the noise and



received signal pdf's, and the ROC curves are calculated numerically from the detection
statistic pdf's. The final step is to present the sonar operator with a useful probabilistic
prediction.

The ME method is employed to calculate pdf's for random quantities based upon
available knowledge. Example quantities include sound speed and received signal
amplitude. ME is an axiomatic principle that makes use of known data and information
but is maximally noncommittal about what is not known or what is uncertain. Derivation
of ME pdfs is formulated as a calculus of variation problem, where the ME pdf
maximized Shannon's entropy (Shannon, 1948; Reza, 1961) under moment constraints.
Moment constraints and range of the data represent known information. Shannon's
entropy is a measure of uncertainty; maximizing the entropy produces a pdf that is
maximally noncommittal about what is not known.

In general, published ocean acoustic parameter models relate the mean and (at best) the
variance to the underlying environmental parameters. For example, a respected model
for the spatial coherence of sound that has been forward-scattered by the ocean surface
(Dahl, 2004) predicts mean spatial coherence as a function of the sea surface height
correlation function, which can be calculated from the wind speed. Because available
models do not fully characterize the pdf of ocean acoustic parameter, the ME method is
used to calculate maximally uncertain pdf's.

The approach outlined here is being evaluated using environmental and acoustic data
acquired during the Strait of Gibraltar Acoustic Monitoring Experiment (SGAME)
conducted in April 1996 as a joint project between the Scripps Institution of
Oceanography and the Institut ftr Meereskunde, University of Kiel, Germany (Tiemann,
et. al. 2001).

The next three objectives will be pursued in FY06 and beyond. The approach here begins
with the observation that ME pdfs derived from a fundamental principle and physical
models encompass most of the density functions that are widely use in signal processing
(Kapur and Kesavan, 1992). In particular ME pdfs belong to the exponential class or
Koopman-Pitman-Demois class of densities (Lehman, 1986). This fortunate result leads
to an efficient implementation of maximum likelihood detectors, in which the detection
statistic is calculated by correlating the conditional mean estimates (CME) of the random
signal and noise with received data. The CME of the noise statistic is used to implement
an estimator-noise canceller. This part of the processor incorporates applicable noise
characterization into processor. The processor that uses CME's of both random signal
parameters and noise parameters can be called a maximum likelihood processor for
estimated ocean model.

Co-PI Leon Sibul performed a key role in formulating the ME approach for modeling
random signal and noise parameters, deriving the ML processor for detection of signals in
random media, which is a generalized estimator-correlator and estimator-noise canceller
structure, from a classic paper by Schwartz (1977), and in deriving mathematical
expressions for pdfs of detection statistics. Graduate student John Camin began work on
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the project in January 2005, and had a key role in exercising the RAM PE acoustic
propagation model; implementing the ME algorithm; and calculating sound speed profile
pdf's from Strait of Gibraltar experiment environmental data. Graduate students Jeff
Ballard and Colin Jemmott began work on the project during the summer, thus
accomplishing the last objective.

WORK COMPLETED

The ME method for constructing pdf's from sample moments of a data set was
implemented and applied to estimate (location and depth-dependent) pdf's of the sound
speed profile (SVP) for the Strait of Gibraltar (SGAME) measurement. Matlab scripts
were used to segregate SVP's into similar geographical areas, apply the ME method to
estimate the depth-dependent pdf in each area, and interpolate the variability onto a
regular range-depth grid suitable for numerical processing. The sound speed pdf's were
used to generate statistically-valid realizations of the depth and range dependent SVP's.
for the Strait of Gibraltar experiment. Each realization of the range and depth dependent
SVP field was used in a Monte Carlo simulation using RAM PE. The ME method was
used to generate a pdf for transmission loss (TL). Figure 2 shows some of the results.
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Figure 2. Use of the Maximum Entropy method to generate statistically-valid
realizations of the sound speed profile (left) and transmission loss (left) using

environmental data from the Strait of Gibraltar Acoustic Monitoring Experiment
(Tiemann, et. al. 2001).

In order to evaluate the approach presented above, including the exponential distribution
and ME method, the predicted TL pdf is being compared to the statistics of TL measured
during the SGAME at 250 Hz. These results will be presented at the October 2005
Acoustical Society of America meeting in Minneapolis, MN.
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To continue with the approach, the TL pdf's calculated using PE are being applied to
compute detection statistic pdfs for matched filter and energy detector processors. ROC
curves that take into account environmental uncertainty are then calculated from the
detection statistic pdf's. Code has been written to utilize the TL pdf to compute the
probability of detection (PD) for a fixed probability of false alarm (PFA) for the correlation
receiver and energy detector receivers. These results will be presented at the October
2005 Acoustical Society of America meeting in Minneapolis, MN. Figure 3 shows PD as
a function of signal to noise ratio for fixed PFA of 10-4 and using a transmission loss pdf
like that shown in Figure 2.
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Figure 3. Predicted performance of a correlation receiver calculated using a
transmission loss pdf like that shown in Figure 2. The PFA is 104

Three efforts began under the preceding project were completed in FY05:
* Completion of research and publication of a Master of Science thesis on "Scintillation

index of high frequency acoustic signals forward-scattered by the ocean surface" by
graduate student Benjamin Cott6.

* Completion of a research and publication of a journal article on "On the relationship
between signal bandwidth and frequency correlation for ocean surface forward
scattered signals," by R. Lee Culver and David L. Bradley.

• Publication of previous research in "The use of multi-beam sonars to image bubbly
ship wakes," by R. Lee Culver, Tom C. Weber, and David L. Bradley.

Citations are provided below in the section entitled "Publications."
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Benjamin Cotte and Lee Culver presented papers at the November 2004 s•
Society of America meeting in San Diego, CA:

0 B. Cott6, D. L. Bradley, and R. L. Culver, "Scintillation index of c
forward scattered HF acoustic signals: Beam pattern and pulse lent

0 S. D. Lutz, R. L. Culver, and D. L. Bradley, "Scintillation of short
records."

Leon Sibul presented papers on the application of maximum entropy princ
acoustics and inverse problems at the May 2005 Acoustical Society of AiE
in Vancouver, BC:

"* L.H. Sibul, M.J. Roan and C.M. Coviello, "Signal processing tecl-
inverse problems in stochastic propagation an scattering channels,
in special session on Signal processing in Acoustics: Stochastic Si
and Inversion.

"* L.H. Sibul, R.L. Culver, D.L. Bradley, and H.J. Camin, "Maximur-_
method for constructing environmental parameter probability dens.-

RESULTS

A significant insight gained in the past year is that pdfs obtained using ME
lead to efficient, practical implementations of the maximum likelihood prc
insight is significant because the maximum the likelihood formulation, in
not lead to a practical, implementable detector (Kailath and Poor, 1998). L_
results from the signal processing literature, it has been shown that for ME
the maximum likelihood detector can be implemented as a generalized est-
correlator together with a noise estimator-canceller. This is an important g;:
previous results to a wide class of probability density functions. Previous] -
estimator-correlator was implemented only for Gaussian processors.

IMPACT/APPLICATIONS

The results of this research can lead to new sonar processors that take into
medium randomness and uncertainty. The results will be applicable to botl
passive processing. The active processor can be considered "a detector me
estimated ocean. " These results should have significant impact on Navy
applications.

RELATED PROJECTS

The ONR Defense Research Initiative (DRI) on Capturing Uncertainty in I
Tactical Environmental Picture
(http://www.onr.navy.mil/sci techiocean/321 sensing/cuwg/default.asp)
This DRI, which completed in FY04, was concerned with including uncert
associated with propagation channels, system parameters, and signal para"
performance prediction of sonar systerns. The present project is concerned
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issues and is drawing from progress made under the DRI. However, using ME principle
to generate maximally uncertain pdfs is new and unique to the present project. Also,
signal processing structures derived under this project were not considered in DRI. Sha
and Nolte (Sha and Nolte, 2005) have analyzed and compared performance of a matched
ocean detector, a mean ocean detector and an unknown ocean detector. In a similar vein,
the detector developed under this project is termed the estimated ocean detector.
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LONG-TERM GOALS

The long-term goal of the REVEAL project is to develop a signal processing structure that exploits
available knowledge of the environment and of signal and noise variability induced by the
environment. The research is directed toward passive sonar detection and classification, continuous
wave (CW) and broadband signals, shallow water operation, both platform-mounted and distributed
systems, and frequencies below I kHz.

OBJECTIVES

The major FY06 objectives were to:
"* Develop a method for estimating received signal and noise characteristics using physics-based

models and in-situ measurements that describe ocean environmental knowledge and
uncertainty.

"* Develop a method for constructing probability density functions (pdf's) for signal and noise
parameters from signal and noise ensembles.

", Derive the maximum likelihood (ML) detector for acoustic propagation through a
random/uncertain medium.

"* Compute receiver operating characteristic (ROC) curves for the ML detector and compare with
standard sonar signal processors.

A related project with more of an ocean acoustic focus was carried out during FY99 - FY04. An
additional FY05-FY06 objective was to finish documenting work begun in prior years.

APPROACH

General considerations. At-sea experience has shown that current passive sonar systems have
difficulty distinguishing between targets and various interference and noise sources, especially in high
shipping and industrial environments. To improve classification performance in a real ocean
environment, the signal processor must incorporate knowledge of the deterministic component Lis well



thes i anduinu ur-c=rtain-component-ofsignat propagation and scattering. Thereis nearly-always
some level of environmental knowledge, e.g. water depth or historical sound speed profiles, and this
knowledge provides a basis for predicting system performance. However, factors such as randomly
distributed sound speed inhomogeneities, uncertainty regarding the boundary parameters, and lack of
information about the source characteristics, lead to uncertainty and/or random variations in signal and
noise parameters.

Physics-based models for environmental parameters and the effects of environmental variability on
acoustic propagation and scattering have the subject of research for many years and results have been
published in the open literature. More recently, significant progress has been made under the Office of
Naval Research (ONR) Departmental Research Initiative (DRI) on Capturing Uncertainty in the
Common Tactical Environmental Picture'. A second uncertainty DRI scheduled to begin in FY07 will
contribute further knowledge. However, what is needed to apply uncertainly models and increased
knowledge is a processing structure that incorporates available environmental knowledge as well as
stochastic representations of signal and noise parameter uncertainty and variability. Such a structure
would allow knowledge of environmental, target and sonar system parameters and parameter
uncertainties to be incorporated into passive sonar detectors, estimators, classifiers and trackers. A key
concept underlying the REVEAL project is that environment, target and sensor knowledge and
uncertainty are inexorably intertwined with fidelity and uncertainty in signal processor outputs.

The approach to developing a signal processing structure that incorporates environmental knowledge
and environment-induced signal and noise variability is presented in Figure ,............................. _C

Environmental
information Sonar data

"Maximufi likelihood
0Detetor/ClassifierS:• .• ,•(Estimat~or/Correlator

A 1.1 J, 1ý I ,ItrUcture)

decision

Figure 1: The REVEAL sonar signalprocessor which exploits environmental knowledge and a
stochastic representation of environment-induced signal and noise variability.

A related point, though not the focus of this project, is that knowledge of signal parameters can be used
to better predict sonar performance. More realistic performance prediction will result from
incorporating knowledge of the environment and of environmental variability (e.g. sound velocity,
bathymetry and surface roughness variability) into the acoustic predictions.

hinp:/iwww.onr.navvwm ilsci tech ) 'ean '321 sensing;,;cjwgi



received signal pdf's, and the ROC curves are calculated numerically from the detection
statistic pdf's. The final step is to present the sonar operator with a useful probabilistic
prediction.

The ME method is employed to calculate pdf's for random quantities based upon
available knowledge. Example quantities include sound speed and received signal
amplitude. ME is an axiomatic principle that makes use of known data and information
but is maximally noncommittal about what is not known or what is uncertain. Derivation
of ME pdfs is formulated as a calculus of variation problem, where the ME pdf
maximized Shannon's entropy (Shannon, 1948; Reza, 1961) under moment constraints.
Moment constraints and range of the data represent known information. Shannon's
entropy is a measure of uncertainty; maximizing the entropy produces a pdf that is
maximally noncommittal about what is not known.

In general, published ocean acoustic parameter models relate the mean and (at best) the
variance to the underlying environmental parameters. For example, a respected model
for the spatial coherence of sound that has been forward-scattered by the ocean surface
(Dahl, 2004) predicts mean spatial coherence as a function of the sea surface height
correlation function, which can be calculated from the wind speed. Because available
models do not fully characterize the pdf of ocean acoustic parameter, the ME method is
used to calculate maximally uncertain pdf's.

The approach outlined here is being evaluated using environmental and acoustic data.
acquired during the Strait of Gibraltar Acoustic Monitoring Experiment (SGAME)
conducted in April 1996 as a joint project between the Scripps Institution of
Oceanography and the Institut ftir Meereskunde, University of Kiel, Germany (Tiemann,
et. al. 2001).

The next three objectives will be pursued in FY06 and beyond. The approach here begins
with the observation that ME pdfs derived from a fundamental principle and physical
models encompass most of the density functions that are widely use in signal processing
(Kapur and Kesavan, 1992). In particular ME pdfs belong to the exponential class or
Koopman-Pitman-Demois class of densities (Lehman, 1986). This fortunate result leads
to an efficient implementation of maximum likelihood detectors, in which the detection
statistic is calculated by correlating the conditional mean estimates (CME) of the random
signal and noise with received data. The CME of the noise statistic is used to implement
an estimator-noise canceller. This part of the processor incorporates applicable noise
characterization into processor. The processor that uses CME's of both random signal
parameters and noise parameters can be called a maximum likelihood processor for.
estimated ocean model.

Co-PI Leon Sibul performed a key role in formulating the ME approach for modeling
random signal and noise parameters, deriving the ML processor for detection of signals in
random media, which is a generalized estimator-correlator and estimator-noise canceller
structure, from a classic paper by Schwartz (1977), and in deriving mathematical
expressions for pdfs of detection statistics. Graduate student John Camin began work on
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guch-au-non-stationarity, spectrum shift-s randspreadingthat are caused by time-varying systems. Tihese-..
results can be derived using linear system theory as discussed above.

The Bayesian approach incorporates random uncertainties in the environment, target and sonar as a
priori pdf's, which are then incorporated into the signal processor (Haralabus et.al., 1993; Premus et.
al., 1995; Richardson and Nolte, 1991). The critical issue of the Bayesian approach is how to obtain
valid a priori pdf's. We propose obtaining them using MaxEnt method (Jaynes, 1968, 1982; Kapur
and Kesavan, 1982; Kapur, 1989; Burg, 1967).

The model-based processor (MBP), as investigated by Candy and Sullivan (Candy and Sullivan 1995a,
1995b, 1994; Candy 1986), is a version of the matched field processor that utilized the normal-mode
acoustic propagation model in state-space form. In this research, we will not consider matched field
processing, but will incorporate several distinct advantages offered by the MBP: recursive
implementation, inclusion of both noise and parameter uncertainties, relaxation of the assumption of
stationary statistics, ability to estimate environmental parameters, and capability to monitor its own
performance. Burkhardt (1992) has investigated robust adaptive processing for application to
underwater acoustic array processing. His work is applicable to a wide class of robust signal
processing techniques in uncertain acoustic channels. Williams (1989) has investigated robust signal
subspace techniques for direction of arrival estimation in multipath environment.

Stochastic operator theory, dynamic modeling of uncertainty, and sequential estimation theory provide
a theoretical formalism that is derived from fundamental physical principles and probabilistic
characterizations of signals propagating through stochastic channels. In most cases, these approaches
require more complete knowledge, e.g. a pdf, than is usually unavailable. The Maximum Entropy
(MaxEnt) method uses the knowledge or data that is available, but is maximally noncommittal of what
is unknown. The MaxEnt method is a well-developed scientific method that has been applied to many
problems in physics, engineering, spectral estimation and Bayesian estimation. Our proposed
application of this powerful method to signal processing in random/uncertain channels is the first of
this type.

Recently there has been renewed interest in exploitation of environmental information for
improvement of performance of detectors, estimators and classifiers. Abraham and Willett used the
Page test for improved detection of time-spread active echoes (Abraham and Willett, 2002). Sun,
Willett and Lynch fused constant frequency and linear frequency modulated signals to improve
detection of reverberation-limited targets (Sun et. al., 2004). Proakis (2004) showed that using a
sequentially estimated channel impulse model for the acoustic multipath channel reduced the bit error
rate of a communication system by an order of magnitude.

WORK COMPLETED

There were two thrusts in FY06: (1) development of a method for predicting signal and noise statistics
(deterministic and uncertain components) from available knowledge of the environment and
environmental variability, and (2) derivation of a maximum likelihood detector capable of
incorporating signal and noise statistics. Progress in these two areas is described in this section.

Predicting received signal and noise deterministic and uncertain components. Although knowledge of
environmental parameters may be incomplete or uncertain, we have developed a method for obtaining
parameter distributions that incorporate all available knowledge but do not make unwarranted
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assumptions, i.e. assumption-s that-mieifijustified by physical models,-available data or khiown -

constraints (Camin et. al., 2006). Available knowledge of the environment is used with an acoustic
propagation model and Monte Carlo simulation to obtain an ensemble of received signals, from
whence parameters can be estimated. The problem of inferring parameter distributions from partial or
incomplete information is a fundamental problem in statistics. Jaynes has applied the maximum
entropy (MaxEnt) principle to the case where available information consists of sample moments of the
unknown parameter (Jaynes, 1957). The MaxEnt principle states: out of allprobability density
functions consistent with a set of constraints (moment constraints and physical constraints), choose the
one that has maximum uncertainty (Kesavan and Kapur, 1989). The measurement of uncertainty is
Shannon's entropy S (p) = I pi in pi , where p = (p1, p2 ,...,p) is the vector of probabilities

associated with a parameter vector; hence the name Maximum Entropy (Srikanth et. al., 2000).

The MaxEnt approach utilizes moments and physical constraints to produce a pdf that belongs to the
exponential or Koopman-Pitman class of distributions. The moments can be calculated from data or
derived from physical laws. A large number of pdfs used in statistical detection theory belong to the
exponential class, including the gamma, beta, Gaussian, chi-squared, log normal, uniform, and Poisson
density functions (Kapur and Kesavan, 1992; Lehmann, 1986; Schwartz, 1977).

Ei.ure, shows the method developed in FY05-06 under the REVEAL project for incorporatinrg -[ F
environmental knowledge and variability into signal parameter predictions. The objective is to make
use of knowledge of the spatio-temporal variability of the environment to predict the spatio-temporal " 0

variability of the received acoustic signals. Once the relevant ocean environment parameter
distributions have been obtained, synthetic realizations of the environment are generated by random

draw. An acoustic model is used to propagate acoustic energy through each realization to produce an
ensemble of acoustic fields. This is referred to as Monte Carlo simulation.

In order for the link between environmental and acoustic variability to be accurate, the physics that
relate environment and source parameters to acoustic propagation must be incorporated. Various
approximations to the wave equation are available to predict acoustic propagation given environmental
and source/receiver parameters, e.g. normal modes, parabolic approximation (PE), and ray tracing.
The best model for a particular application is influenced by factors such as the acoustic frequency,
range dependence of the environment, the source-receiver range, and the signal parameters to be
predicted.

In our approach, a large number of environmental realizations are used with an appropriate acoustic
propagation code to calculate an ensemble of received acoustic signals (i.e. a Monte Carlo simulation).
Therefore, statistics of the received signals are directly related to the environmental variability.
Sample moments of received signal and noise parameters are calculated from the ensemble and the
MaxEnt method used to produce an exponential class pdf. As discussed above, if received signal and
noise pdfs are of the exponential class, the Maximum Likelihood detector has a useful estimator-
correlator and noise estimator-canceller structure.
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Figure 2: Method for calculating received acoustic signals using an en vironmental parameter model
and in-situ measurements, Monte Carlo acoustic propagation simulation, and the Maximum

Entropy (MaxEnt) method to obtain parameter pdfs from the ensemble of signals.

The method outlined above has been demonstrated using acoustic and environmental measurements
made in the Strait of Gibraltar in 1996 (Camin et. al., 2006; Tiemann et. al., 2001 a, 2001b). This is a
dynamic region from an oceanographic standpoint due to strong tidally-driven flow and the presence of
internal waves. The acoustic measurements utilized broadband acoustic pulses transmitted 13 km
across the strait hourly over several days and many tidal cycles, and significant variation in received
signal pressure was measured. Monte Carlo simulation was carried out using sound speed fields
derived from a time and space-varying mean sound speed model combined with a large number of
sound speed measurements. The MaxEnt method was used to obtain range- and depth-dependent pdfs
of rms received pressure. The predicted pdfs are being compared with the measured pdfs in order to
validate the method.

Derivation o/the maximum likelihood detector. In FY05-06 the Maximum Likelihood (ML) detector
was derived 61)r signals that have propagated through a random or uncertain ocean environment
(Ballard, et. al., 2CU(6). To calculate the likelihood ratio, one must have the probability density



fti-iiiiS (pdfs) of the certain parameters 6fth-- receiv-d-signal and the noise. Received signal . .
parameters pdfs can be calculated from incomplete knowledge of environmental and source parameters
using the MaxEnt principle (Jaynes, 1957; Srikanth et. al., 2000) and an acoustic propagation program.
This is discussed further below. The result important to this work is that the received signal parameter
pdfs are of the exponential or Koopman-Pitman class, which includes the Gamma, Beta, Gaussian,
Chi-Squared, log normal, Weibull, and many other density functions that have been used in statistical
signal processing (Lehmann, 1986; Schwartz, 1977).

The ML detector for exponential class signal parameter pdfs was shown to amount to computing the
mean of the parameter conditioned on the received signal, referred to as the conditional moment
estimate (CME), and calculating a detection statistic by correlating the CME with the observation. The
detector structure has been termed an "estimator-correlator" by Price (1956), and in application to
ocean acoustic signal processing, following the terminology of Sha and Nolte (2005), the Estimated
Ocean Detector (EOD). Kailath and Poor (1998) have pointed out that estimator-correlator detectors
are often easier to implement than ML detectors. The general EOD structure, shown in Eigure.3, also C .- o
includes a noise canceller in which the noise component is estimated and subtracted from the It.
observation. Fo
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Figure 3: General structure of the Estimated Ocean Detector (EOD).

As a benchmark check of EOD implementation, the case of Gaussian signal and noise was investigated
in detail. The resulting detector amounts to a weighted sum of an energy detector (ED) and a
correlation detector (CD), with the weights determined by the noise and signal variances. This result is
shown to produce receiver operating characteristics (ROC) that are equivalent to the classical case of



the maximum likelihood detectr-of sgi ls-th-at-has both deterministic and random compoften- Vn
Trees, 1968, Chapter 2, p 327).

Three cases were investigated for Gaussian signal and noise using a Monte Carlo numerical simulation
for calculation of ROC. The "known ocean" refers to low signal variance, in which case knowledge of
the signal is good, and the EOD is shown to reduce to a CD. The "unknown ocean" refers to high
signal variance, in which case the signal is not well known, and the EOD reduces to an ED. The third
case is for intermediate signal variance, and here the weighted sum of CD and ED formed by the EOD
provides better performance than either detector by itself. In addition, the robustness of the Gaussian
EOD to incorrect a priori knowledge of signal parameters was investigated. This investigation showed
that EOD was robust to very wide range of incorrect prior knowledge of signal and noise variances.

Passive detection and classification is made particularly difficult by the many target-like interference
sources. For this reason a receiver that incorporates an interference estimator-subtractor would be
expected to provide major improvement to the passive sonar signal processors.

RESULTS

The results from the REVEAL project for FY06 are promising but preliminary. The overall goal of the
project is to improve passive sonar detection and classification by taking advantage of knowledge of
environmental variability, and the current work is best described as building components that will
become part of the solution. Briefly, the components are:

- the Maximum Entropy method, with which we have learned how to construct probability density
functions (pdfs) that incorporate what is known about the environment but are maximally uncertain
about what is not known (or put another way, do not make unwarranted assumptions about what is
not known). The resulting pdfs belong to the exponential class.

- a received signal and noise statistics prediction capability developed using RAM PE and Monte
Carlo simulation. The method is being evaluated using acoustic and environmental measurements
from the 1996 Strait of Gibraltar Acoustic Measurement.

- a maximum likelihood receiver formulated to accommodate prior distributions belonging to the
exponential class. The receiver has been termed an Estimated Ocean Detector (EOD) because it
possesses an estimator-correlator structure in which a conditional estimate of the parameter is
obtained and then correlated with the observations.

The linkage of the MaxEnt method, which produces an exponential class pdfs, with the Estimated
Ocean Detector, which can achieve optimal performance using an exponential class prior pdf, is an
important result of this project.

Another significant result is that research by Ben Cott6 in FY03-05 (MS Acoustics 2005) was accepted
for publication in the Journal of the Acoustical Society of America (see Publications below for
reference).
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IMPACT/APPLICATIONS

The results of this research are expected to lead to new passive sonar detectors and classifiers that take
advantage of knowledge of medium variability and uncertainty. The results are mainly applicable to
passive processing. However, the active processor can be considered "a detector matched to the
estimated ocean. " These results could have significant impact on Navy sonar system applications.

RELATED PROJECTS

The ONR Defense Research Initiative (DRI) on Capturing Uncertainty in the Common Tactical
Environmental Picture (http://www.onr.navy.mil/sci tech/ocean/321 sensing/cuwg/default.asp)
This DRI, which completed in FY04, was concerned with including uncertainty associated with
propagation channels, system parameters, and signal parameters into performance prediction of sonar
systems. The present project is concerned with same issues and is drawing from progress made under
the DRI. However, using MaxEnt principle to generate maximally uncertain pdfs is new and unique to
the present project. Also, signal processing structures derived under this project were not considered in
DRI. Sha and Nolte (Sha and Nolte, 2005) have analyzed and compared performance of a matched
ocean detector, a mean ocean detector and an unknown ocean detector. In a similar vein, the detector
developed under this project is termed the estimated ocean detector.
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